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Abstract
Mobile traffic forecasting allows operators to anticipate network

dynamics and performance in advance, offering substantial poten-

tial for enhancing service quality and improving user experience. It

involves multiple tasks, including long-term prediction, short-term

prediction, and generation tasks that do not rely on historical data.

By leveraging the different types of mobile network data gener-

ated from these tasks, operators can perform a variety of network

optimizations and planning activities, such as base station (BS) de-

ployment, resource allocation, energy optimization, etc. However,
existing models are often designed for specific tasks and trained

with specialized data, and there is a lack of universal models for

traffic forecasting across different urban environments. In this pa-

per, we propose a Universal model for Mobile traffic forecasting

(UoMo), aiming to handle diverse forecasting tasks of short/long-

term predictions and distribution generation across multiple cities

to support network planning and optimization. UoMo combines

diffusion models and transformers, where various spatio-temporal

masks are proposed to enable UoMo to learn intrinsic features of

different tasks, and a contrastive learning strategy is developed to

capture the correlations between mobile traffic and urban contexts,

thereby improving its transfer learning capability. Extensive evalua-

tions on 9 real-world datasets demonstrate that UoMo outperforms

current models in various forecasting tasks and zero/few-shot learn-

ing. It shows an average accuracy improvement of 27.85%, 18.57%,

and 15.6% in long-term prediction, short-term prediction, and gen-

eration tasks, respectively, showcasing its strong forecasting ca-

pability. We deploy UoMo on China Mobile’s JiuTian platform,

leveraging the predicted mobile data to optimize live networks.

This optimization includes BS deployment, resulting in a 25.3%
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increase in served users, and BS sleep control, which reduces equip-

ment depreciation by 40.7%. The source code is available online:

https://github.com/tsinghua-fib-lab/UoMo.
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1 Introduction
In recent years, foundation models [6, 48, 42] have made substantial

strides in natural language processing and computer vision. These

models are reshaping the AI ecosystem by harnessing their pow-

erful data processing, generalization, and zero/few-shot learning

capabilities. An increasing number of specialized domains have

developed foundational models tailored to their specific data and

contextual demands, including healthcare, medicine, urban naviga-

tion, and beyond [68, 65, 24, 4]. Mobile networks encompassmassive

amounts of mobile traffic, user, and geographical data, providing

inherent data support for building universal models. However, such

dedicated models for mobile network domains have yet to be es-

tablished. We hence aim to construct a universal model for mobile

traffic forecasting, which can handle rich features of large-scale mo-

bile data while retaining the generalization needed across multiple

network applications [54, 8, 67].

Constructing such a universal model of mobile traffic forecasting

is vital for mobile networks [14, 53, 76]. On the one hand, mobile
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traffic forecasting offers great potential for network planning and

optimization. It enables operators to anticipate traffic dynamics,

facilitating proactive perceptions of resource utilization and service

quality, and allowing for the preemptive development of optimiza-

tion strategies. On the other hand, mobile networks encompass a

variety of optimization scenarios, including radio resource sched-

uling [36, 32], Base Station (BS) deployment [12, 13], and antenna

configuration [34, 29], etc. These scenarios involve diverse objec-
tives like throughput, coverage, and energy efficiency, which im-
pose distinct tasks on traffic forecasting. For example, radio resource

scheduling requires performing short-term traffic forecasting tasks,

prioritizing traffic dynamics to improve user experience [9, 16],

whereas BS deployment involves long-term traffic forecasting tasks,

focusing on long-term traffic patterns within a region to align with

network demands [75, 52]. For the planning and deployment of

live wireless networks, it is essential to leverage the powerful data

mining and robust generalization capabilities of universal models

to simultaneously address a variety of optimization tasks.

Although numerous notable works have emerged in the area of

mobile traffic forecasting [17, 25, 39, 26, 58, 71, 45], current meth-

ods typically employ one-to-one approaches: designing customized

models by leveraging task-specific data [63, 20, 76, 28]. The complex,

customized models deployed in live networks often require manual

orchestration and scheduling, which will lead to the waste of com-

putational and storage resources, increasing the overhead of model

deployment. In addition, mobile traffic is inherently heterogeneous

of various collection granularity and scope. For example, Measure

Report (MR) data primarily collects millisecond-level user traffic,

while Performance Management (PM) data gathers cell-level traffic

statistics over 15-minute intervals [37, 51], leading to the absence

of a unified representation akin to that found in natural language.

Consequently, it is challenging to directly apply pre-trained models

from the natural language/visual domains to mobile traffic data.

Although some efforts have been made to reprogram mobile traffic

data into a natural language format [18, 23], this approach heavily

relies on the quality of manually crafted prompts, making it difficult

to capture a universal representation of mobile traffic. Specifically,

current mobile traffic forecasting models face two key limitations:

i) Limited generalization. Mobile traffic data is inherently shaped

by the spatio-temporal dynamics of population distribution and

communication demands. Due to variations in geographic envi-

ronments, lifestyle habits, and urban layouts across different cities,

mobile traffic can differ significantly [66, 57]. With relatively small

parameters, current models struggle to capture the diverse spatio-

temporal patterns inherent in large-scale data across multiple cities.

Additionally, it is challenging to encapsulate the complex correla-

tions between contextual factors and mobile traffic, resulting in

poor transferability in multi-city scenarios.

ii) Constrained task adaptability. Mobile traffic forecasting is

extensively applied across varying optimization scenarios. How-

ever, current models are often designed with specialized modules

tailored to specific tasks. For instance, in short-term forecasting,

models usually focus on capturing traffic fluctuations that employ

autoregressive or event-driven methods. In contrast, long-term

predictions emphasize the regular patterns of traffic and typically

utilize time series decomposition techniques. These dedicated mod-

els increase design complexity and raise deployment costs when

applied to diverse scenarios.

To tackle the limitations, we propose a Universal model for

Mobile traffic forecasting (UoMo), which aims to learn universal

features of mobile traffic data and to handle multiple tasks in mo-

bile networks, thereby establishing a one-for-all forecasting model.

First, inspired by Sora [5], UoMo adopts the transformer-based

diffusion model as the backbone instead of the U-Net structure, to

help the model understand the diverse features of massive mobile

data. We propose a contrastive diffusion algorithm and adjust the

variational lower bound by analyzing the cross-entropy between

mobile traffic and contextual features. This helps the model better

integrate environmental information, improving generalization and

addressing the first limitation. Second, we adopt a task-oriented
masking and self-supervised training paradigm, where we catego-

rize traffic forecasting in mobile networks into three tasks: short-

term prediction, long-term prediction, and generation. We design

the corresponding masking strategies to enable the model to learn

data features for various tasks and adapt to multiple tasks, thus

addressing the second research challenge.

• To the best of our knowledge, it is the first universal model

designed for mobile traffic forecasting. The proposed model enables

various forecasting tasks in mobile networks across different urban

environments via a unified framework, assisting network operators

in achieving highly efficient network planning and optimization.

• We develop our universal model using a masked diffusion

approach with spatio-temporal masking strategies tailored for di-

verse forecasting tasks, including short/long-term predictions and

distribution generation. To strengthen the correlation between con-

textual features and mobile traffic, we further propose a context-

aware contrastive learning fine-tuning strategy, which can enhance

forecasting and transfer learning capabilities.

•We conduct extensive evaluations with 9 real-world mobile

traffic datasets. The results validate UoMo’s superior generalization,

multi-task capabilities, and robust few/zero-shot performance in

unseen scenarios. We also deploy the UoMo model on China Mo-

bile’s Jiutian platform. Experiments on the live system data prove

our model empowers multiple network optimization scenarios, in-

cluding a 25.3% increase in served users for BS deployment and a

40.7% reduction in equipment depreciation for BS sleep control.

2 Problem Formulation
Mobile Traffic refers to the volume of data transmitted over wireless

channels between mobile devices and BSs over a period of time.

We consider a discrete-time scenario 𝑇 = {0, ...𝑇 } with equal time

intervals. For a single BS, the traffic variation over time 𝑇 can be

represented as {𝑏𝑡 }𝑡=0:𝑇 , where 𝑏𝑡 denotes the aggregated traffic

within the coverage area of BS at time 𝑡 . To characterize the mobile

traffic features across an urban region G with contextual features

𝐶G , we define the geographical length and width of that region

as 𝐻 and 𝑉 , respectively. The mobile traffic of region G can then

be defined as the sum of the aggregate traffic of all BSs located at

G: S0:𝑇 =
∑
𝑏 {𝑏𝑡 }𝑡=0:𝑇 . Regarding diverse tasks in communication

networks, such as base station deployment, user access control, and
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wireless resource allocation, different traffic forecasting tasks are

often required. We categorize forecasting into 3 typical tasks:

• Short-term prediction task uses long historical data 0 ∼ 𝑡
to predict mobile traffic dynamics over a short future period, 𝑖 .𝑒 .,

{S0:𝑡 ,𝐶G} → S𝑡 :𝑇 , where 𝑡 ≫ (𝑇 − 𝑡). Based on the forecasts with

fluctuations, operators can understand upcoming network demands

and make optimizations such as resource allocation [35] and access

control [31] to improve user experience in live networks.

• Long-term prediction task estimates future traffic patterns

based on limited historical data, 𝑖 .𝑒 ., {S0:𝑡 ,𝐶G} → S𝑡 :𝑇 , where
𝑡 ≪ 𝑇 . It explores inherent periodical patterns within the traffic.

This forecasting enables operators to estimate and analyze network

performance from a global perspective, thereby facilitating the

formulation of network optimization planning strategies, such as

cell dormancy [56] and network capacity expansion [78].

• Generation task focuses on identifying underlying network

demand within a specific area without referring to historical data,

𝑖 .𝑒 ., {𝐶G} → S𝑡=0:𝑇 . It helps operators assess potential communi-

cation demands in new regions lacking historical data, allowing

them to develop planning strategies such as BS deployment [34],

network segmentation [60], and capacity planning [33], etc.
We aim to build a domain-universal model capable of achieving

the above 3 forecast tasks. The problem can be defined as follows.

Problem Definition. Given an arbitrary urban region G, the goal is
to use a model F to forecast diverse mobile traffic sequence S with
short/long/generation tasks, conditioning on urban contextual factors
𝐶G , i.e., F (S𝑡=𝑇0:𝑇1/S𝑡=0:𝑇1 ,𝐶G).

However, building such a universal model is not straightforward.

Specifically, two key challenges arise: i). What strategies can be

employed for the training process, ensuring that the model can han-

dle the diverse forecasting tasks? ii). How to effectively integrate

user dynamics and contextual features with mobile traffic?

3 Design of UoMo
3.1 Framework overview

Figure 1: The flowchart of the UoMo framework

To tackle the challenges, we propose the UoMo framework in-

corporating three stages as illustrated in Figure 1.

i). Data tokenization reshapes mobile traffic data from various

spatial-temporal spans across multiple cities into a unified mobile

token for model training and capturing their diverse features.

ii). Masked diffusion-based pre-training tends to fully grasp the

fundamental spatio-temporal features of mobile traffic across vari-

ous forecasting tasks, where we design a diffusion-based backbone

and task-oriented masks.

iii). Urban context-aware fine-tuning introduces a contrastive

learning algorithm that integrates external factors closely asso-

ciated with mobile traffic, including network user dynamics and

urban POI distributions.

3.2 Masked diffusion-based pre-training
We propose a masked diffusion model with self-supervised training,

where specific masks are tailored for the three forecasting tasks

to enhance the model’s understanding of various forecasting tasks

and to capture the spatio-temporal correlations inherent in massive

mobile data, as shown in Figure 2.

3.2.1 Mobile traffic data tokenization. We draw inspiration from

NLP tokenization, where we decompose traffic data with varying

sampling intervals and diverse spatial ranges into basic unit ℎ0 ×
𝑣0 × 𝑡0. For traffic data 𝑆 of length 𝑇 within an urban region 𝐻 ×
𝑉 , the tokenization process breaks down 𝑆 into multiple small

mobile tokens 𝑋 , which can be expressed as 𝑆 ∈ R𝐻×𝑉 ×𝑇 → 𝑋 ∈
R(𝐻

′×𝑉 ′×𝑇 ′ )×(ℎ0×𝑣0×𝑡0 ) , where 𝐻 ′ = 𝐻/ℎ0, 𝑉 ′ = 𝑉 /𝑣0, and 𝑇 ′ =
𝑇 /𝑡0, the (ℎ0, 𝑡0, 𝑣0) of X represents the mobile token. Subsequently,

we use an embedding layer 𝐸𝑥 (𝑋 ) (𝑒.𝑔., pooling layer, convolutional
layer, or fully connected layer) to map the mobile token with hidden

features 𝐶 , 𝑖 .𝑒 ., 𝐸𝑥 (𝑋 ) ∈ R(𝐻
′×𝑉 ′×𝑇 ′ )×𝐶

.

3.2.2 Task-oriented mask. After the mobile traffic data tokeniza-

tion, the original𝐻 ×𝑉 region is divided into multiple ℎ𝑣 areas. The

masking strategy performs self-supervised training by masking

and reconstructing partial areas. We define the masked parts as the

target areas, and the unmasked parts around the target areas as the

surrounding areas. We develop 4 distinct masks: short-term, long-

term, generation, and random masks, 𝑚 ∈ R𝐻
′×𝑉 ′×𝑇 ′

. The first

three focus on specific forecasting tasks, while random masking

explores spatio-temporal correlations to enhance generalization.

• Short/Long-termmasks. The schemes mask the time dimension

𝑇 ′ at a specific spatial location (ℎ, 𝑣) to reconstruct themobile traffic

within the period𝑇 ′−𝑡0, where 𝑡0 ∈ {0,𝑇 ′}. Depending on the ratio
of 𝑡0 to 𝑇

′
, the schemes correspond to short/long-term predictions:

𝑚ℎ,𝑣,𝑡 = {0, 𝑡0 < 𝑡 ≤ 𝑇 ′ | 1, 0 < 𝑡 ≤ 𝑡0}. (1)

• Generation mask. The generation mask completely obscures

the temporal dimension at a specific spatial location (ℎ, 𝑣), enabling
the model to generate mobile traffic sequence within the target

area. Unlike prediction masks that rely on historical data, it cap-

tures spatio-temporal dependencies between the target area and its

surrounding areas to generate underlying distributions:

𝑚ℎ,𝑣,𝑡 = {0, 0 ≤ 𝑡 ≤ 𝑇 ′}. (2)

• Random mask. It masks mobile traffic across both spatial and

temporal dimensions, which aims to capture diverse correlations

of mobile tokens, aiding the model in understanding the complex

features of mobile data. Denote R(𝐻 ′,𝑉 ′,𝑇 ′) as randomly choosing

items from 𝐻 ′, 𝑉 ′, and 𝑇 ′:

𝑚ℎ,𝑣,𝑡 = {0, R(𝐻 ′,𝑉 ′,𝑇 ′) | 1, 𝑒𝑙𝑠𝑒}. (3)

3.2.3 Self-supervised masked diffusion model. After completing

the multi-task masking process, the original mobile token 𝐸𝑥 (𝑋 )
is divided into two parts: the masked portion 𝑒 requiring to be

reconstructed, and the unmasked observation 𝑜 :

𝑒 = 𝐸𝑥 (𝑋 ) ⊙𝑚, 𝑜 = 𝐸𝑥 (𝑋 ) ⊙ (1 −𝑚), (4)

where𝑚 corresponds to the four mask strategies, and ⊙ represents

element-wise products. Subsequently, 𝑜 is input as conditions into
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Figure 2: Masked diffusion-based pre-training network

the denoising network, while 𝑒 adds noise according to the forward

process, which is given by

𝑒𝑘 =
√︁
𝛼𝑘𝑒 + (1 − 𝛼𝑘 )𝜖, 𝜖 ∼ 𝑁 (0, 1). (5)

Afterward, 𝑒𝑘 is fed into the transformer-based denoising network

for further feature extraction. To fully capture the dependencies

between conditional observation and mobile traffic, we employ an

adaptive conditioning method [40]. The method reshapes the scale

and shift parameters of the layernorm of transformers by referring

to the given conditions, which is proven to offer better effectiveness

and computational efficiency [41]. It can be formulated as follows:

𝛼, 𝛽,𝛾 = F𝜃 (𝑜), 𝑒𝑘 ← 𝑒𝑘 + 𝛼A𝜃 (𝛽𝑒𝑘 + 𝛾), (6)

where F𝜃 and A𝜃 denote linear layer and attention layer. 𝛼, 𝛽,𝛾

are residual, scale, and shift parameters, respectively. The denois-

ing network aims to fit the posterior distribution of the diffusion

process to predict the mean noise, ultimately reconstructing the

final network traffic through an output decoder. Our objective thus

emphasizes the reconstruction accuracy of the masked portion,

which can be given as indicated in (5):

𝐿𝜃 =𝑚𝑖𝑛
𝜃

E𝑒∼𝑞 (𝑒 )

{
| |𝜖 − 𝜖𝜃 (𝑒𝑘 , 𝑘 |𝑜) | |2 ⊙𝑚

}
. (7)

3.3 Urban context-aware fine-tuning
Mobile traffic is not only a spatio-temporal sequence but also in-

fluenced by urban contexts. We thereby propose an urban context-

aware fine-tuning scheme that integrates human dynamics and

POIs into the UoMo, as shown in Fig 3.

3.3.1 Contextual data transformation. Mobile user refers to the

number of users accessing the network, which can fully charac-

terize the human dynamics in mobile networks. Similar to mo-

bile traffic, it is inherently a spatio-temporal sequence and de-

noted as 𝑈 ∈ R𝐻×𝑉 ×𝑇 . We apply the same processing method

as traffic tokens where we perform tokenization on mobile users

as 𝑐𝑢 ∈ R(𝐻 ′×𝑉 ′×𝑇 ′ )×(ℎ0×𝑣0×𝑡0 ) , allowing this data to be directly

input into the network for training.

POIs reflect the static distribution of urban layout. For each base

station’s coverage area, we count the total number of each POI

category within the coverage area so that we can obtain a POI

vector 𝑃 ∈ R𝐻×𝑉 . Although the distribution of POIs is static, the

impact of different categories of POIs on human behavior varies

across different times, leading to corresponding variations in mobile

Figure 3: Context-aware fine-tuning process

traffic. For example, restaurant-type POIs typically show higher

traffic during lunchtime and evening. In this regard, we design a

dynamic POI transformation scheme. We first extract the intrinsic

static features of POI distribution, which can be written as:

ℎ𝑠𝑝 = 𝜎 (𝑊 𝑠 · 𝑃 + 𝐵𝑠 ), (8)

where 𝜎 is the Sigmoid activation function, 𝑊 𝑠
and 𝐵𝑠 are the

weight and bias parameters of MLP network. We further utilize an

MLP network 𝜏 (𝑡) to project timestamp as temporal embeddings,

where we use the nn.Embedding layer to encode the 2D-vector 𝑡 =

[𝑑𝑎𝑦, ℎ𝑜𝑢𝑟 ] and fuse the two embeddings using an MLP network,

then we fuse the static POI feature with the temporal indicators:

ℎ𝑑𝑝 = 𝜎 (𝑊 𝑙 · [ℎ𝑠𝑝 ⊕ 𝜏 (𝑡)] + 𝐵𝑙 ), (9)

where ⊕ denotes vector concatenation,𝑊 𝑙
and 𝐵𝑙 are the learnable

parameters. In this way, we can obtain spatio-temporal dynamic

representations as ℎ𝑑𝑝 ∈ R𝐻×𝑉 ×𝑇 . The final features of POI can be

calculated via the same tokenization method as mobile traffic data:

𝑐𝑝 ∈ R(𝐻 ′×𝑉 ′×𝑇 ′ )×(ℎ0×𝑣0×𝑡0 ) . The ultimate contextual feature to-

kens can be denoted as 𝑦 = 𝑐𝑢 + 𝑐𝑝 .

3.3.2 Context-aware alignment. To establish bridges between mo-

bile traffic and contextual features, we propose a contrastive learn-

ing algorithm. We define positive samples as mobile traffic tokens

and contextual feature tokens within the same spatio-temporal

block, denoted as (𝑒,𝑦); while negative samples are defined as the

two types of tokens from different spatio-temporal blocks, denoted

(𝑒′, 𝑦). Our goal is to maximize the mutual information between

the traffic feature 𝑒 and contextual feature 𝑦. According to previ-

ous research [49], a density ratio can be utilized while preserving

the mutual information as 𝐼 (𝑒,𝑦) ∝ 𝑝 (𝑒 |𝑐 )
𝑝 (𝑒 ) , and the maximization

problem is equivalent to minimizing the InfoNCE loss that yields:

𝑚𝑖𝑛 − E
𝑒∈B

𝑙𝑜𝑔

𝑝 (𝑒 |𝑐 )
𝑝 (𝑒 )

𝑝 (𝑒 |𝑐 )
𝑝 (𝑒 ) +

∑
𝑒′
𝑝 (𝑒′ |𝑐 )
𝑝 (𝑒′ )

≥ 𝑙𝑜𝑔(𝑁 ) − 𝐼 (𝑒,𝑦), (10)

where B denotes the entire batch of samples.

We claim in Lemma 1 that training the diffusion model with pos-

itive and negative samples is equivalent to minimizing the InfoNCE

loss in contrastive learning of Eq (10):

Lemma 1: By optimizing the Mean Squared Error (MSE) of positive
and negative samples via Eq (11), we can achieve alignment between
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mobile traffic and contextual features.

𝐿 ≈ E
{(
∥𝜖 − 𝜖𝜃 (𝑒, 𝑘 |𝑦)∥2 − 𝜆

∑︁
𝑒′
∥𝜖 − 𝜖𝜃 (𝑒′, 𝑘 |𝑦)∥2

)
⊙𝑚

}
. (11)

The proof of the lemma is provided in the appendix A.3. During

the fine-tuning process, we partially froze the main parameters of

the pre-trained model, including the attention layer, linear layer,

and MLP network, to preserve the model’s ability to learn general

spatio-temporal features of mobile traffic. We primarily update the

parameters in the adaptive conditioning and output decoder layers.

By partially updating these components, the time and computa-

tional cost of the fine-tuning process can be reduced.

4 Evaluation
We perform evaluations on 9 real-world datasets to evaluate the

UoMo with 13 baselines. The evaluations need to address the fol-

lowing 2 questions.

• RQ1: How does it perform in multi-task forecasting?

• RQ2: How does it perform in zero-shot and few-shot learning?

4.1 Evaluation setting from live mobile system
4.1.1 Datasets. Mobile traffic data.We collect mobile traffic data of

live networks from 7 cities of varying scales in China, encompassing

downlink traffic including 4G and 5G data. The time granularity of

the data ranges from 15 minutes to 1 hour. Additionally, we utilize

mobile traffic data from 2 other cities in China and Germany to

validate UoMo’s zero/few-shot capabilities.

Urban Contextual data. We collect mobile user data and mo-

bile traffic data in each dataset. We crawl POI data from each city

through public map services, including 15 categories related to

living, entertainment, and other aspects.

4.1.2 Baselines. We select 13 baselines with 4 types. i). Statisti-

cal models. Historical moving average (HA) and ARIMA [59].

ii) NLP-based model. Time-LLM [23] and Tempo [7] describes

time series features using natural language and uses these descrip-

tions for forecasting. iii). Spatio-temporal based models. CSDI [47],
TimeGPT [15], Lagllama [43], PatchTST [38], and UniST [69]

forecast mobile traffic as spatio-temporal series via autoregres-

sion, decomposition, and spatial convolution. iv). Dedicated models

for mobile networks. SpectraGAN [58], KEGAN [21], ADAP-
TIVE [71], and Open-Diff [8] utilizes dedicated contextual data to

generate mobile traffic. We describe the collected data and baselines

in the appendix A.1 and A.2.

4.2 Multitask forecasting (RQ1)
In our experiments, the temporal length is 64. For short-term pre-

diction, the model forecasts 16 future points using the previous

48. For long-term prediction, the model forecasts 48 future points

using the previous 16. For data generation, the model predicts all 64

points based on the current timestamp. We primarily use the 35M

UoMo model (with 16 transformer layers and a hidden feature size

of 256), and the other scaling evaluations are provided in Table 6.

To intuitively demonstrate our model’s universality for different

tasks, we select two datasets as examples (Beijing and Nanchang)

and plot the forecasting results in Figure 4. From left to right, it rep-

resents the tasks of short-term prediction→ long-term prediction
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(a) Forecasting performance of Beijing dataset.
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(b) Forecasting performance of Nanchang dataset.

Figure 4: Visualization results. From left to right, it represents
short-term/long-term/generation tasks.

→ traffic generation. The blue-shaded area indicates the model’s

predicted results, while the unshaded area represents historical

observations. UoMo generates mobile traffic closely aligned with

real values across all tasks, accurately predicting periodic trends

and capturing fast dynamics, which shows that our UoMo model

achieves forecasting across multiple cities and tasks, highlighting

its generalization capability.

• Short-term prediction. The results are presented in Table 1.

Since sufficient historical data is available for reference, most base-

lines, leveraging their temporal feature extraction modules, effec-

tively predict short-term changes. Overall, UoMo improved the

average RMSE performance by 17.80% and the average MAE by

27.85% across 7 datasets, where UoMo can improve the RMSEmetric

by up to 29.1% (Nanchang-4G dataset) and the MAE metric by up to

50% (Nanjing-4G dataset), which exhibits stronger generalization

capabilities compared to other models. Through the adaptive layer-

norm module, the diffusion model iteratively integrates contextual

features and leverages the transformer to capture long-term depen-

dencies between mobile traffic and the environment. We believe

this correlation can transfer across different cities, improving the

model’s generalization capability.

• Long-term prediction. The results are also shown in Table 2. For

this task, the lack of sufficient historical observations often leads

to performance degradation in some baselines. However, UoMo

consistently achieves the best performance, It improves the average

RMSE performance by 18.93% and the average MAE by 18.57%

across 7 real-world datasets, with a maximum improvement of

31.36% in MAE and a maximum enhancement of 27.41% in RMSE

(Beijing dataset), which showcases its adaptability to various tasks.

•Mobile traffic generation. As shown in Table 3, the absence of

historical observation of the generation task prevents some existing

baselines from completing the task. Nevertheless, the UoMo still

achieved strong generative results. It achieves a 6.95% improve-

ment in the average JSD performance and a 15.6% improvement

in the average MAE across all the datasets, with up to 21.19% im-

provement in the JSD metric (Shandong dataset), and a maximum

enhancement of 29.04% in MAE (Nanjing-4G dataset). This is due

to the contextual feature fusion module used during fine-tuning,
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Table 1: Performance of short-term prediction task. Bold numbers denote the best results and 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒 numbers denote the
second-best results. The proposed UoMo has the best prediction performance across 7 datasets.

Model Beijing Shanghai Nanjing Nanjing-4G Nanchang Nanchang-4G Shandong
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 0.1199 0.0697 0.1151 0.0576 0.0788 0.0353 0.0830 0.0371 0.0589 0.0266 0.0702 0.0339 0.1739 0.0578

ARIMA 0.2212 0.1333 0.1609 0.0819 0.1353 0.0622 0.1443 0.0668 0.1532 0.0666 0.1740 0.0789 0.1366 0.0531

SpectraGAN 0.2675 0.1228 0.2086 0.1226 0.2412 0.1186 0.2152 0.1151 0.2974 0.1467 0.1892 0.0935 0.2492 0.0814

keGAN 0.3307 0.2994 0.3456 0.2174 0.3586 0.3318 0.3579 0.3297 0.3123 0.1913 0.2521 0.2206 0.2662 0.2616

Adaptive 0.2779 0.2138 0.3007 0.2164 0.2606 0.1906 0.2219 0.1469 0.2305 0.1709 0.2572 0.1919 0.2688 0.1937

Open-Diff 0.1104 0.0899 0.1326 0.0981 0.1087 0.0823 0.1196 0.1005 0.1204 0.0801 0.1377 0.0906 0.1166 0.0799

Time-LLM 0.1511 0.1115 0.1388 0.0964 0.2351 0.1817 0.1754 0.1309 0.2039 0.1474 0.1770 0.1242 0.1571 0.0846

Tempo 0.1206 0.0873 0.0747 0.0455 0.0805 0.0625 0.0652 0.0498 0.0830 0.0638 0.0749 0.0550 0.0969 0.0763

CSDI 0.1752 0.1015 0.2060 0.1141 0.1722 0.0929 0.2299 0.1251 0.1797 0.0929 0.1587 0.0758 0.2131 0.0976

patchTST 0.1107 0.0686 0.1288 0.0872 0.0935 0.0616 0.0960 0.0631 0.1182 0.0635 0.1162 0.0638 0.1089 0.0703

TimeGPT 0.0598 0.0422 0.0866 0.0457 0.0646 0.0397 0.0657 0.0388 0.0502 0.0281 0.0576 0.0299 0.1219 0.0358

Lagllama 0.0501 0.0349 0.0853 0.0441 0.0529 0.0302 0.0530 0.0286 0.0505 0.0271 0.0625 0.0322 0.1272 0.0371

UniST 0.0332 0.0252 0.0658 0.0448 0.0623 0.0442 0.0608 0.0409 0.0433 0.0246 0.0852 0.0525 0.0766 0.0489

UoMo (our) 0.0284 0.0135 0.0588 0.0349 0.0442 0.0247 0.0439 0.0143 0.0360 0.0178 0.0408 0.0221 0.0609 0.0343
Improvement 14.45% 46.42% 10.63% 22.44% 16.44% 18.21% 16.60% 50.00% 16.85% 27.64% 29.16% 26.08% 20.49% 4.19%

Table 2: Performance of Long-term prediction task.

Model Beijing Shanghai Nanjing Nanjing-4G Nanchang Nanchang-4G Shandong
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 0.2945 0.1887 0.2214 0.1180 0.1808 0.0877 0.1914 0.0941 0.2011 0.0948 0.2285 0.1116 0.1331 0.0409

ARIMA 0.2023 0.1237 0.1560 0.0811 0.1269 0.0592 0.1340 0.0634 0.1533 0.0709 0.1751 0.0848 0.1224 0.0380

SpectraGAN 0.3880 0.3005 0.1962 0.1234 0.3621 0.2717 0.3212 0.2160 0.2432 0.1787 0.2352 0.1260 0.2438 0.0809

keGAN 0.3041 0.3716 0.2695 0.1837 0.2525 0.1809 0.2623 0.1917 0.2241 0.1770 0.2132 0.1837 0.1742 0.1315

Adaptive 0.2885 0.2234 0.3019 0.2197 0.2631 0.1876 0.2619 0.1907 0.1959 0.1419 0.2436 0.1752 0.1605 0.1144

Open-Diff 0.2801 0.1993 0.1562 0.1102 0.2042 0.1313 0.1809 0.1623 0.1822 0.1511 0.1907 0.1749 0.1496 0.1097

Time-LLM 0.1472 0.1099 0.1765 0.1124 0.2463 0.1843 0.2239 0.1602 0.2261 0.1751 0.2199 0.1621 0.1789 0.0868

Tempo 0.3514 0.2559 0.1518 0.0787 0.2896 0.1892 0.2780 0.1793 0.2380 0.1347 0.2365 0.1306 0.1020 0.0275

CSDI 0.3822 0.2836 0.2880 0.1856 0.4164 0.3034 0.3492 0.2520 0.3879 0.2913 0.3452 0.2347 0.2973 0.1705

patchTST 0.1512 0.1331 0.1627 0.0817 0.1521 0.1236 0.1644 0.0999 0.1430 0.0905 0.1789 0.1060 0.0985 0.0676

TimeGPT 0.3422 0.2433 0.1110 0.0766 0.2272 0.1391 0.2116 0.1345 0.1994 0.1001 0.1953 0.0919 0.0887 0.0253

Lagllama 0.2318 0.1879 0.1453 0.0874 0.0960 0.0683 0.1115 0.0959 0.1091 0.0788 0.1684 0.0889 0.1076 0.0439

UniST 0.1426 0.1014 0.1264 0.0803 0.1831 0.0845 0.1268 0.0869 0.1387 0.0835 0.1445 0.0763 0.0622 0.0337

UoMo (our) 0.1035 0.0696 0.0983 0.0679 0.0818 0.0532 0.0849 0.0570 0.0853 0.0576 0.1206 0.0563 0.0518 0.0197
Improvement 27.41% 31.36% 11.44% 11.35% 14.79% 10.14% 23.85% 10.09% 21.81% 18.76% 16.54% 26.21% 16.72% 22.13%

Table 3: Performance of generation task.

Model Beijing Shanghai Nanjing Nanjing-4G Nanchang Nanchang-4G Shandong
JSD MAE JSD MAE JSD MAE JSD MAE JSD MAE JSD MAE JSD MAE

SpectraGAN 0.3621 0.1584 0.3788 0.1284 0.3477 0.2888 0.3352 0.2494 0.2285 0.1288 0.3482 0.1762 0.3364 0.1794

keGAN 0.3435 0.2297 0.4909 0.2183 0.3071 0.1801 0.4862 0.1865 0.4032 0.1988 0.4792 0.2493 0.4007 0.2387

Adaptive 0.3044 0.2143 0.2751 0.1848 0.3040 0.1536 0.2587 0.2304 0.2730 0.2251 0.3201 0.1681 0.2806 0.1889

CSDI 0.3385 0.1431 0.2331 0.1025 0.4044 0.1844 0.3875 0.2516 0.3416 0.2163 0.2895 0.1734 0.2666 0.2170

Open-Diff 0.2155 0.1112 0.2299 0.1020 0.2114 0.1149 0.2275 0.1322 0.2296 0.1326 0.2624 0.1222 0.1977 0.1203

UoMo (our) 0.2013 0.0894 0.2259 0.1002 0.1971 0.0948 0.2164 0.0938 0.2226 0.1043 0.2494 0.1159 0.1558 0.0993
Improvement 6.58% 19.60% 1.74% 1.76% 6.76% 17.49% 4.87% 29.04% 2.58% 19.02% 4.95% 5.15% 21.19% 17.45%

which captures the correlation between contextual and mobile traf-

fic features through contrastive learning. This allows the model to

infer potential traffic distribution based on environmental changes,

even without historical data.

4.3 Zero/Few shot learning (RQ2)
To evaluate UoMo’s zero/ few-shot learning capabilities, we se-

lect two datasets that UoMo has not encountered during training:

Hangzhou (China) and Munich (Germany). We choose 4 baselines

that perform well in previous multitask forecasting: Open-Diff,

TimeGPT, Lagllama, and UniST. The results are shown in Figure 5,

where 5% few-shot and 10% few-shot represent the model training

(a) Results on Munich dataset. (b) Results on Hangzhou dataset.

Figure 5: Zero/Few-shot across two cities (Munich: long-term
prediction task, Hangzhou: short-term prediction task).

with a small amount of data (5% and 10%, respectively). It shows
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(a) Long-term prediction results of zero/few-shots on Munich dataset.
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(b) Long-term prediction results of zero/few-shots on Hangzhou dataset.

Figure 6: Visualization of zero/few-shot learning. From left
to right: zero-shot→ 5% few-shot→ 10% few-shot.

Table 4: Zero/Few-shot evaluation on FY and NN datasets.

Model Zero-shot
(MAE)

5% Few-shot
(MAE)

10% Few-shot
(MAE)

UoMo (FY) 0.156 0.034 0.023

LagLlama (FY) 0.162 0.094 0.053

UoMo (NN) 0.134 0.051 0.021

LagLlama (NN) 0.152 0.088 0.026

that UoMo exhibits good zero-shot performance, especially in the

Munich dataset, where UoMo’s zero-shot performance even sur-

passes that of Open-Diff after small-scale training. After training

with a small amount of data, all models show varying degrees of

improvement. UoMo still demonstrates the best performance, in-

dicating that UoMo can utilize the pre-trained model to quickly

capture general features within unseen mobile data. We visualize

the performance in zero/few-shot scenarios, as shown in Figure 6.

We select a long-term forecasting task, with the results for zero-

shot→ 5% few-shot→ 10% few-shot from left to right in the figure.

It can be observed that UoMo can learn the general distribution

characteristics of mobile traffic in the zero-shot phase, and after

training with a small sample, the model realizes accurate traffic

forecasting. We additionally select two datasets, Fuyang (FY) and

Nanning (NN), to evaluate the model. These datasets represent two

Chinese cities of different scales, for which we collect mobile traffic

data at an hourly granularity. As shown in Table 4, compared to the

baseline method, UoMo is also capable of quickly learning the traf-

fic patterns of new cities with limited training data, demonstrating

its transferability.

4.4 Ablation study
To test the effectiveness of our proposed fine-tuning module, we

conduct ablation experiments on UoMo, as shown in Table 5, with

UoMo-user and UoMo-POI representing the incorporation of mo-

bile users and POI distributions, respectively, during the fine-tuning

process. It can be observed that adding these two contextual fea-

tures during fine-tuning enhances model performance to varying
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Figure 7: Scaling performance of UoMo.

degrees. Moreover, the performance degradation of UoMo-POI is

more significant, indicating that mobile users better reflect the

dynamic characteristics of mobile traffic and are more critical for

mobile traffic forecasting compared to POI distribution.

Table 5: Performance of ablation study. Δ represents the
degradation after removing certain modules.

Model Beijing Shanghai Nanchang
Prediction Generation Prediction Generation Prediction Generation

(RMSE) (JSD) (RMSE) (JSD) (RMSE) (JSD)

UoMo (our) 0.1035 0.2213 0.0983 0.2202 0.0360 0.2226

UoMo-user 0.1230 0.2294 0.1295 0.2264 0.0421 0.2260

Δ -23.82% -21.77% -47.75% -24.31% -19.81% -34.69%

UoMo-POI 0.1758 0.2464 0.1507 0.2363 0.0636 0.2301

Δ -88.38% -67.47% -80.36% -63.13% -89.61% -76.53%

Pre-train 0.1853 0.2585 0.1635 0.2457 0.0668 0.2324

4.5 Scaling performance of UoMo
Scaling performance reflects the relationship betweenmodel param-

eters, data size, and overall performance. Understanding the scaling

performance of foundation models provides valuable guidance for

parameter selection during model deployment, which optimizes

computational and storage overheads for the entire system. We ex-

plore the relationship between model size and performance across

tasks, as shown in Figure 7(a). Smaller models improve quickly with

more parameters, while larger models show diminishing returns.

We attribute this to parameter redundancy in larger models relative

to fixed training data, leading to overfitting and limiting perfor-

mance improvements. To assess scaling performance, we evaluate

the model with varying dataset sizes in Figure 7(b). Larger models

degrade with small datasets, but as data volume increases, they

leverage their extensive parameters to improve performance. In

contrast, smaller models struggle with diverse features, leading to

performance drops. From these observations, we identify a scaling

regulation for UoMo: Simply increasing model parameters does not
guarantee better performance in mobile traffic forecasting. The opti-
mal model size depends on the available data, prompting further

investigation into the relationship between model scale and factors

like urban size, population, and temporal granularity to enhance

performance.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Haoye Chai et al.

5 Deployment Applications
Deployment. To validate UoMo’s prediction effectiveness, we de-

ploy the model on the Jiutian platform, an AI platform developed

by China Mobile, featuring functions like scenario construction,

network simulation, optimization strategy formulation, and perfor-

mance evaluation. The Jiutian platform offers full-element network

simulation capabilities, enabling efficient simulation of interactions

between communication systems and user behavior. It also supports

operators in developing customized algorithms and applications,

deploying them into production environments, and performing

product validation and testing with real network data. The plat-

form has now been fully deployed within China Mobile, supporting

network development across 31 provinces in China. We select pre-

defined urban layout and human mobility data. UoMo is deployed

in the mobile traffic module, with its predictions feeding into the op-

timization selection module. We focus on 3 optimization scenarios

(highlighted in yellow in the figure) and evaluate the performance

via network coverage, throughput, and energy consumption. The

training of UoMo is conducted on 4 NVIDIAA100 GPUs (80GB each)

using PyTorch 2.0.1. Table 6 summarizes the model’s parameters

and training/inference time per sample.

Table 6: Model deployment efficiency on JiuTian. The train-
ing/inference time refers to the unit time per sample, which
is obtained by dividing the time taken to generate a batch of
data by the number of samples in the batch.

Model Layers Hidden Parameter Training Inference
feature scale time time

Open-Diff 6 128 10M 0.09 min 0.021 min

UniST 12 512 30M 0.19 min 0.009 min

Lagllama 8 144 10M 0.21 min 0.011min

UoMo
12 128 5M 0.24 min 0.043 min

16 256 35M 0.32 min 0.054 min

20 768 200M 0.82 min 0.162 min

Optimization. Our optimization method on the Jiutian platform

is shown in figure 8. First, we use UoMo or other mobile traffic fore-

casting algorithms to generate traffic data. The platform then uses

this generated data to formulate and solve the problem of network

optimization and planning. After obtaining the optimal network

strategy, we input real live network traffic data into the platform

to validate the optimization strategy and assess its performance.

Figure 8: Optimization workflow via UoMo.

5.1 BS deployment
We examine a BS deployment planning at the grid level within

a discrete-time {1, ...𝑡} framework. The target area consists of 𝑁

(a) BS deployment. (b) BS sleep control optimization.

Figure 9: Optimization results with live system data.

grids, and𝑀 BSs need to be deployed across the grids. Each grid ex-

periences varying mobile users at different times 𝑡 , and each BS has

a maximum capacity of 𝐶 users at any given time. The deployment

strategy’s objective is to optimize the serving user count in each

grid while minimizing operation cost (deploying fewer BSs in grids

with fewer mobile users) and reducing capacity shortfalls (prevent-

ing situations where grids lack BSs and cannot accommodate excess

users). Since there is no historical data on mobile user distribution

for the target area, we rely on forecasting methods to estimate

future mobile traffic demands. Three different estimation methods

are utilized: the mobile traffic generation approach (UoMo-based)

using the generation mask in (2), POI distribution (POI-based), and

residential population distribution (Resident-based). Our focus is on

addressing the BS deployment problem with a long-term perspec-

tive. The decision variables include 𝑥𝑖 , which denotes the number

of BSs deployed in grid 𝑖 , and𝑢𝑡
𝑖
, which represents the mobile traffic

served by grid 𝑖 at time 𝑡 . Then the BS deployment problem yields

𝑚𝑎𝑥

𝑇∑︁
𝑡

𝑁∑︁
𝑖

(
𝑦𝑡𝑖 − 𝛽 (𝑈

𝑡
𝑖 − 𝑦

𝑡
𝑖 )
+ − 𝛼

𝑀∑︁
𝑖

𝑥𝑖

)
𝑠 .𝑡 .

𝑁∑︁
𝑖

𝑥𝑖 = 𝑀, 0 ≤ 𝑦𝑡𝑖 ≤ 𝑚𝑖𝑛{𝑥𝑖𝐶0, 𝐹
𝑡
𝑖 },

(12)

where (𝑦)+ = 𝑚𝑎𝑥 (0, 𝑦) denote choosing the maximize value be-

tween 𝑦 and 0, and𝑈 𝑡
𝑖
is the mobile network demand that is esti-

mated by UoMo, POI, and residential distribution. We employ the

Pulp library to solve the optimization problem described above, and

we can derive 3 distinct BS deployment strategies by referring to

the three estimation methods. Subsequently, we test the optimiza-

tion strategies using real user mobility trajectory data in Nanchang,

streamed by the Jiutian platform, with the test results presented

in Figure 9(a). The UoMo-based strategy maximizes service rev-

enue while significantly lowering operational costs and capacity

deficits, increasing the served user ratio by 25.3% (0.652 to 0.817),

and reducing costs and deficits by 18.03% (0.549 to 0.45) and 9.00%

(0.733 to 0.667), respectively. This success is attributed to the UoMo

takes into account the time-varying nature of network usage across

different regions. By accurately estimating the mobile traffic predic-

tions with UoMo, we can effectively capture the dynamic patterns

of human activities over time in a region. In contrast, the POI-based

and resident-based strategies rely solely on static attributes to guide

BS deployment. These methods are less effective in capturing the

dynamic activity patterns of humans over time, and fall short when

compared to those based on traffic.
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5.2 BS sleep control
We consider the C-RAN scenario, where the BS achieves cell cover-

age by activating different numbers of RRUs [1]. BS sleep strategy

involves controlling the RRU operational status (activated or sleep)

based on the network load. We model the problem from the perspec-

tives of service quality, depreciation cost, and energy consumption.

We set 𝑁 BSs, each of which has 𝑀 cells to serve at time 𝑡 . De-

fine the traffic load that a single RRU can serve as 𝑐0, then for BS

𝑛, its Quality of Service (QoS) equals 𝑄 (𝑛) = ∑
𝑡

∑
𝑚𝑚𝑎𝑥 (𝐿𝑚,𝑡 −

𝑥𝑚,𝑡𝑐0, 0)/𝐿𝑚,𝑡 , where 𝐿𝑡,𝑚 is the actual cell load and 𝑥𝑚,𝑡 is the

activated RRUs. Moreover, frequent switching of RRUs can lead

to a reduction in the lifespan of BSs, and the depreciation yields

𝑊 (𝑛) = ∑
𝑡

∑
𝑚 |𝑥𝑚,𝑡 − 𝑥𝑚,𝑡−1 |. BS energy consumption equals

𝐸 (𝑛) = ∑
𝑡

∑
𝑚 P[𝑚𝑖𝑛(𝐿𝑚,𝑡 , 𝑥𝑚,𝑡𝑐0)] that is determined by the load

at the RRU [70], where P[𝐿] = 𝛼𝐿 + 𝛽 (𝐿/𝑐0) is the energy con-

sumption function. Therefore, the optimization objective yields:

𝑚𝑖𝑛
∑︁

𝑛
𝑌 (𝑥 (𝑛)𝑚,𝑡 |𝐿

(𝑛)
𝑚,𝑡 ) = 𝑄 (𝑛) +𝑊 (𝑛) + 𝐸 (𝑛) . (13)

For the BS sleeping strategy, frequently adjusting RRUs over a

short period is impractical. A more reasonable approach is to assess

network dynamics over a longer period and develop a long-term

adjustment strategy. Therefore, we leverage UoMo’s long-term pre-

diction capability to estimate𝐿𝑚,𝑡 via the long-term predictionmask

in (1). As shown in Figure 9(b), the UoMo-based strategy closely

aligns with the Real-based one, achieving a 21.9% QoS improve-

ment (0.645 to 0.504) and up to 40.7% lower BS depreciation (0.83 to

0.59) than the others. Although energy consumption is higher than

the baselines, it matches the Real-based strategy, demonstrating

UoMo’s accurate traffic prediction and strong demand alignment.

6 Related Work
Mobile traffic forecasting. It can be broadly categorized into two

types: prediction and generation. Mobile traffic prediction involves

estimating future values using historical data, while generation

learns the underlying distribution of mobile traffic relying on exter-

nal contextual information and samples new data from this distri-

bution. Early forecasting used statistical approaches or simulation

techniques [3, 11], but these methods typically struggled to capture

complex traffic patterns. With the rise of machine learning, many

studies used AI for mobile traffic forecasting. For mobile traffic

prediction, LSTM models have been used to capture long-term de-

pendencies in traffic patterns [10, 77, 50]. Some studies incorporated

spatial attributes into traffic prediction, with Li et al [27] combin-

ing transformer and GCN to capture spatio-temporal correlations.

Wu et al [55] combined GAN with GCN to capture spatial corre-

lations across multiple cities. The MVSTGN model [64] divided

urban spaces into multi-attribute graphs to capture mobile traffic

features in latent space. For mobile traffic generation, early work

used GANs to capture the overall distribution of mobile traffic [44,

30]. SpectraGAN [58] viewed cities as images, extracting POI and

land use information via CNNs and incorporating it into traffic gen-

eration. Sun et al [46] added user usage features to a GAN network,

improving the accuracy of traffic generation. Hui et al [21] built a
city knowledge graph incorporating extensive semantic features

into traffic generation models. Open-Diff [8] used a diffusion model

to generate grid-level traffic via open contextual data.

Universal and foundation models. These models show to excel in

multitasking and zero/few-shot learning, and have been applied

across various specialized domains. Yang et al [61] and Zhang et
al [72] proposed foundation models aim to achieve various special-

ized tasks like investment, quantification, and urban navigation.

Notably, many universal models for spatio-temporal forecasting

have been proposed. Leveraging existing LLM, TEMPO [7] and

Time-LLM [23] introduces a prompt mechanism in the pre-trained

LLM for long-term forecasting by aligning features between mo-

bile traffic and natural language tokens with a reprogramming ap-

proach. Some methods do not rely on existing language models but

reconstruct spatio-temporal foundation models using transformer

architectures. LagLLama [43] used lag indices to annotate multi-

dimensional periodic features such as monthly, daily, and hourly

periods. TimeGPT [15] replaced the Feedforward layer in the trans-

former with a CNN to enhance temporal correlations. UniST [69]

achieved spatio-temporal prediction in urban contexts by employ-

ing a memory network. While existing models offer advantages in

forecasting mobile traffic, they are often designed for specific tasks

like short-term prediction or generation [73, 22, 74]. In real-world

deployments, network optimization involves multiple forecasting

tasks across cities, requiring frequent model switching and complex

adaptations, which increases deployment costs. The main challenge

lies in mastering various forecasting tasks while integrating contex-

tual features such as human dynamics and geographical traits. This

integration is essential for building a robust model that captures the

intrinsic correlations between the environment, users, and mobile

traffic.

7 Conclusion
In this paper, we propose UoMo, a universal model with diffusion

models for mobile traffic forecasting. To the best of our knowledge,

it is the first universal model in mobile networks that simultane-

ously supports diverse forecasting tasks including short-term/long-

term predictions and generation. By capturing the temporal, spatial,

human dynamics, and geographical features related to mobile traf-

fic, UoMo exhibits robust multi-task adaptability and zero/few-shot

learning capability for diverse tasks across multiple cities, which

exhibits good universality. Moreover, we identify the scaling prop-

erties of UoMo by examining the model performance with diverse

parameter scales and data sizes. We deploy UoMo on the Jiutian

platform, where it is used to optimize various aspects of network

coverage, throughput, and energy consumption based on its accu-

rate traffic forecasts. Currently, UoMo has been implemented in

Nanning, Guangxi Province, China, for real-time traffic forecasting

and data streaming. The model has the potential for large-scale

deployment and can effectively assist operators in designing pric-

ing strategies and network expansion, which improves both user

experience and economic revenue.
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A APPENDIX
A.1 Description of dataset
We collected mobile traffic and user data from 9 different cities,

covering over 30,000 base stations, with time granularities ranging

from 15 minutes to 1 hour. POI data was crawled from the map

service and includes 15 categories, such as lifestyle, entertainment,

work, and dining, as shown in Table 7.

Table 7: Description of datasets

Dataset Usage
Data Mobile Mobile Time

description traffic users granularity
Beijing 5G data, October, 2021, 4000+ BSs ✓ ✓ 1 hour

Shanghai 4G data, August, 2014, 5000+ BSs ✓ ✓ 1 hour

Nanjing
Model

training

5G data, February to March, 2021, 6000+ BSs ✓ ✓ 15 min

Nanjing-4G 4G data, February to March, 2021, 6000+ BSs ✓ ✓ 15 min

Nanchang 5G data, July, 2023, 5000+ BSs ✓ ✓ 30 min

Nanchang-4G 4G data, July, 2023, 7000+ BSs ✓ ✓ 30 min

Shandong 5G data, February, 2024, 1000+ BSs ✓ ✓ 1 hour

Hangzhou Zero/Few 5G data, July, 2023, 1000+ BSs ✓ ✓ 1 hour

Munich shot tests 4G data, 2022, 2500+ grid-data ✓ — 1 hour

POI

Shopping, Enterprise, Restaurant, Local Living, Transportation,

Public Health, Automobile, Physical facilities, Accomodation, Finance,

Government organs, Education, Business, Public facilities, scenic spot.

A.2 Description of baselines
Statistical models. Historical moving average method (HA) and
ARIMA method that integrate autoregression with average mov-

ing. Natural language-based model. Time-LLM describes time se-

ries features using natural language and uses these descriptions

as prompts into a natural language pre-trained model (LLAMA-

7B) for forecasting. Tempo designs temporal prompts with trend

and seasonal features for pre-trained models (GPT-2) to predict

time series. Spatio-temporal-based models. TimeGPT replaces the

Feedforward layer in the transformer with a CNN network and

is trained on vast spatio-temporal data. Lagllama uses a set of

lag indices to capture different periodic correlations in the time

series. CSDI is a conditional diffusion model that uses a masking

method for time-series data forecasting and imputation. PatchTST
decomposes time series into multiple segments and uses trans-

formers for feature extraction. UniST segments spatio-temporal

data and fine-tunes the model using geographical proximity and

temporal correlations. Dedicated models for mobile traffic forecast-

ing. SpectraGAN converts mobile traffic generation into an image

generation problem and utilizes a CNN-based GAN network for

traffic forecasting. KEGAN is a hierarchical GAN that utilizes a

self-constructed Urban Knowledge Graph (UKG) to explicitly incor-

porate urban features during the forecasting process. ADAPTIVE
leverages the UKG and a BS aligning scheme to transfer mobile

traffic knowledge from one city to another. Open-Diff utilizes

open contextual data like satellite images, residential count, and

POI distribution to generate mobile traffic data.

A.3 Proof of Lemma 1
The forward chain of DDPM gradually adds Gaussian noise 𝜖 ∼
𝑁 (0, 1) to the original data as 𝑞(𝑥𝑘 |𝑥𝑘−1) = 𝑁 (

√︁
1 − 𝛽𝑘𝑥𝑘−1, 𝛽𝑘 I),

{𝛽𝑘 ∈ (0, 1), 𝑘 ∈ (1, 𝐾)} is a set of scheduled noise weight, and the

generated noisy data in step k can be calculated by 𝑥𝑘 =
√︁
𝛼𝑘𝑥0 +

(1 − 𝛼𝑘 )𝜖. The reversed chain utilizes a denoising network 𝑝𝜃 to

recurrently recover 𝑥𝐾 to original data 𝑥0 that yields 𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 ) =
𝑁 (𝜇𝜃 (𝑥𝑘 , 𝑘), 𝜎𝜃 (𝑥𝑘 , 𝑘)I). The objective of the diffusion model is

essentially to maximize the log-likelihood function of the denoising

network 𝑝𝜃 for the initial data 𝑥0, i.e.,

𝐿(𝜃 ) = E𝑥0∼𝑞 (𝑥0 ) {−𝑙𝑜𝑔𝑝𝜃 (𝑥0)}. (14)

Subsequently, this function is optimized using the Variational Lower

Bound (VLB), which can be expressed as:

− 𝑙𝑜𝑔𝑝𝜃 (𝑥0) ≤ −𝑙𝑜𝑔𝑝𝜃 (𝑥0) + 𝐷𝐾𝐿 (𝑞 (𝑥1:𝑇 |𝑥0) | |𝑝𝜃 (𝑥1:𝑇 |𝑥0))

= E𝑞 (𝑥1:𝑇 |𝑥0 ) {𝑙𝑜𝑔
𝑞 (𝑥1:𝑇 |𝑥0)
𝑝𝜃 (𝑥0:𝑇 |𝑥0))

}.
(15)

Taking the expectation on both sides of the above equation and

applying Fubini’s theorem [62], we can derive:

𝐿(𝜃 ) =E𝑞 (𝑥0 ) {−𝑙𝑜𝑔𝑝𝜃 (𝑥0)} ≤ E𝑞 (𝑥0 )

{
E𝑞 (𝑥1:𝑇 |𝑥0 ) {𝑙𝑜𝑔

𝑞 (𝑥1:𝑇 |𝑥0)
𝑝𝜃 (𝑥0:𝑇 |𝑥0))

}
}

= E𝑞 (𝑥0:𝑇 ) {𝑙𝑜𝑔
𝑞 (𝑥1:𝑇 |𝑥0)
𝑝𝜃 (𝑥0:𝑇 |𝑥0))

} ≜ 𝐿𝑣𝑏 (𝜃 ) .
(16)

We can minimize the upper bound of 𝐿(𝜃 ) by minimizing 𝐿𝑣𝑏 ,

thereby maximizing the log-likelihood function of 𝑝𝜃 . Ho et al. [19]
proved that 𝐿𝑣𝑏 (𝜃 ) can be further parameterized by 𝜇𝜃 (𝑥𝑘 , 𝑘) =
𝛼−0.5
𝑘
[𝑥𝑘 − 𝛽𝑘 (1 − 𝛼𝑘 )−0.5𝜖𝜃 (𝑥𝑘 , 𝑘)], and 𝜎𝜃 can be parameterized

as 𝜎𝜃 (𝑥𝑘 , 𝑘) =
√︁
(1 − 𝛼𝑘−1)/(1 − 𝛼𝑘 )𝛽𝑘 . The network 𝑝𝜃 can then

be optimized by the following objective:

𝑚𝑖𝑛
𝜃
𝐿𝑣𝑏 (𝜃 ) ≈𝑚𝑖𝑛

𝜃
E𝑥0∼𝑞 (𝑥0 ),𝜖∼𝑁 (0,𝐼 ) [| |𝜖 − 𝜖𝜃 (𝑥𝑘 , 𝑘) | |

2

2
] . (17)

The objective in equation (17) is fundamentally equivalent to that

of InfoNCE in contrastive learning. We use 𝑝𝜃 to represent the prob-

ability in the mutual information as 𝐼 (𝑒,𝑦) = 𝑝𝜃 (𝑒0:𝐾 |𝑦)/𝑝𝜃 (𝑒0:𝐾 ).
In this way, the origin InfoNCE loss can be rewritten as:

𝐿 = E
𝑒∈B
− 𝑙𝑜𝑔 𝑝𝜃 (𝑒0:𝐾 |𝑦)/𝑝𝜃 (𝑒0:𝐾 )

𝑝𝜃 (𝑒0:𝐾 |𝑦)/𝑝𝜃 (𝑒0:𝐾 ) +
∑
𝑒′ 𝑝𝜃 (𝑒′0:𝐾 |𝑦)/𝑝𝜃 (𝑒

′
0:𝐾
)

= E
𝑒∈B

𝑙𝑜𝑔{1 + 𝑝𝜃 (𝑒0:𝐾 )
𝑝𝜃 (𝑒0:𝐾 |𝑦)

· 𝑁E𝑒′
𝑝𝜃 (𝑒′0:𝐾 |𝑦)
𝑝𝜃 (𝑒′0:𝐾 )

},

(18)

where 𝑒′ denotes all negative samples. Referencing the parameteri-

zation in [2] where 𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 ) =
∑
𝑥0∈𝑞 𝑞(𝑥𝑘−1 |𝑥𝑘 ,𝑥0 )𝑝𝜃 (𝑥0 |𝑥𝑘 ),

the above loss can be further formulated as:

𝐿 ≈ E
B

{
E𝑞{−𝑙𝑜𝑔

𝑝𝜃 (𝑒0:𝐾 |𝑦)
𝑞(𝑒1:𝐾 |𝑒0)

} − 𝑙𝑜𝑔𝑁E𝑒′E𝑞{−𝑙𝑜𝑔
𝑝𝜃 (𝑒′0:𝐾 |𝑦)
𝑞(𝑒′

1:𝐾
|𝑒′
0
) }

}
= 𝐿𝑒

𝑣𝑏
− 𝑙𝑜𝑔𝑁

∑︁
𝑒′
𝐿𝑒
′

𝑣𝑏

� E
{
(∥𝜖 − 𝜖𝜃 (𝑒, 𝑘 |𝑦)∥2 − 𝜆

∑︁
𝑒′
∥𝜖 − 𝜖𝜃 (𝑒′, 𝑘 |𝑦)∥2) ⊙𝑚

}
,

(19)

where symbol � denotes the loss function we used during the model

training process and 𝜆 is a scaling parameter proportional to 𝑙𝑜𝑔𝑁 .
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