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Abstract

Web-based urban platforms increasingly rely on fine-grained mobil-
ity data to support societal applications such as epidemic response,
emergency management, and political mobilization. However, col-
lecting such data remains challenging due to privacy concerns, secu-
rity restrictions, low participation rates, and high acquisition costs,
and the resulting datasets are often uneven across regions and pop-
ulation groups. We introduce TravelReasoner, a framework that
leverages large reasoning models (LRMs) to generate interpretable
and behaviorally coherent mobility data. We construct Chain-
of-Trips, a reasoning-aligned dataset derived from the National
Household Travel Survey (NHTS), and develop a curriculum-based
post-training pipeline to improve in-domain reasoning consistency.
Experiments show that TravelReasoner outperforms strong base-
lines, improving location consistency by 6.8% and time consistency
by 4.1%, while producing interpretable reasoning traces. Travel-
Reasoner exhibits good generalization ability, adapting to diverse
demographic characteristics and demonstrating strong cross-city
generalization. Our findings suggest that interpretable reasoning
models have significant potential to promote travel equity, enhance
data-scarce urban environments, and contribute to sustainable cities
and communities. !
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1 Introduction

Web-based urban platforms are increasingly crucial for sustainable
urban planning [7, 19] and citizen engagement [9, 12, 13], requir-
ing refined mobility data to support various critical applications
such as pandemic control [1, 45], emergency response [3], and
political mobilization [2]. However, collecting such data faces nu-
merous challenges. Current methods, including user tracking and
web-based travel surveys [38], often suffer from privacy concerns,
low response rates, and high costs[18, 40]. Furthermore, access to
such data varies across different regions and social groups, further
complicating data availability [23]. These limitations underscore
the urgent need for more flexible and data-efficient alternatives
to generate more authentic, consistent, and interpretable mobility
data.

Recent developments in large language models (LLMs) offer a
promising direction, with growing evidence that LLMs can simulate
human behaviors in diverse settings [10, 32, 33]. Several recent stud-
ies have explored using LLMs to generate mobility data[6, 20, 48].
While these approaches successfully mimic surface-level travel
patterns, they often treat trips as isolated sequence elements and
struggle to capture the underlying causal, motivational, and tempo-
ral reasoning behind travel choices [6]. As a result, the generated
simulations can appear plausible on the surface yet lack behavioral
realism, interpretability, and accountability—properties that are
essential for deployment in Web-based civic platforms. Meanwhile,
the emergence of large reasoning models (LRMs) has enabled strong
performance on complex, multi-step reasoning tasks [46], present-
ing new opportunities to build more coherent and human-aligned
mobility simulations.

In this paper, we introduce TravelReasoner, a novel framework
that enhances travel survey simulation by integrating the advanced
reasoning capabilities of LRMs. Rather than treating trips as discrete
events, we reformulate a travel chain as a chain of thought, cap-
turing the first-person reasoning process behind each decision. To
support this formulation, we construct Chain-of-Trips, a reasoning-
aligned dataset derived from National Household Travel Survey
(NHTS) trip-chain records. Chain-of-Trips encodes the causal, moti-
vational, and spatiotemporal structures that shape everyday travel,
organized around five core questions—whether, why, when, where,
and how—that reflect human decision-making. We further design
a two-stage post-training pipeline that combines supervised fine-
tuning with curriculum-guided refinement to strengthen behavioral
authenticity and first-person coherence.

We evaluate TravelReasoner across multiple city-level simulation
tasks and benchmark it against traditional models and state-of-the-
art LLM-based baselines. TravelReasoner substantially improves
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behavioral consistency—boosting location consistency by 6.8% and
time consistency by 4.1%—while generalizing robustly across geo-
graphic contexts. Importantly, the model demonstrates consistently
improved simulation capabilities across different groups, while also
consistently outperforming baseline models in cross-city general-
ization. Its interpretability and strong generalization capabilities
allow for successful application to data-scarce domains. Our find-
ings suggest that interpretable inference models have significant
potential to promote mobility equity, improve data-scarce urban
environments, and contribute to sustainable city and community
development.
The key contributions of this work are as follows:

e We reformulate travel survey simulation as interpretable
first-person reasoning, enabling transparent and auditable
mobility modeling for Web-based decision-making.

e We introduce Chain-of-Trips, a reasoning-aligned dataset
constructed from NHTS trip-chain records with domain rules
and human validation. It pairs real NHTS mobility trajecto-
ries with structured, first-person reasoning traces, enabling
LRMs to learn human-aligned decision logic.

e We propose a curriculum-based LRM post-training pipeline
that improves accuracy, strengthens reasoning coherence,
and enhances cross-population and cross-city consistency
in mobility simulation.

e We demonstrate TravelReasoner’s value for Web-mediated
mobility platforms and societal applications, particularly in
supporting data-poor environments, and sustainable urban
development.

2 Related Works
2.1 Human Mobility Data

Human mobility data play a central role in understanding urban
dynamics and supporting applications such as epidemic monitoring,
emergency response, transportation planning, and civic decision-
making[37]. Traditionally, such data are collected through large-
scale household travel surveys [4, 11, 25], GPS tracking studies, and
mobile or web-based sensing. While these sources provide valuable
behavioral insights, they suffer from several systemic limitations:
surveys incur high monetary and administrative costs; mobile-
sensing data raise privacy and security concerns; and both methods
often exhibit low participation rates and demographic imbalances.
As a result, mobility datasets are frequently incomplete or uneven
across regions and population groups, creating significant barriers
for data-driven analysis.

To supplement sparse or biased data, researchers have explored
modeling and simulation approaches. Early statistical methods,
including Monte Carlo sampling based on household clustering
[11, 39] and neural-network-based synthetic population models
[29]—offered scalable alternatives but struggled to capture temporal
dependencies and multimodal travel behaviors. Agent-based models
(ABMs) simulate individual agents with specified behavioral rules
[16, 17], yet require extensive domain calibration and often fail to
represent rare or diverse activity chains due to rule complexity.

Recently, large language models (LLMs) have emerged as a
promising tool for generating synthetic mobility data [6, 15, 28, 41].
LLM-based methods have been shown in previous studies[6] to
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outperform traditional statistical methods[6] in capturing complex
spatiotemporal dependencies. Fine-tuned LLMs can approximate
activity sequences[26, 27] and generalize across cities with limited
training data. However, current LLM-based mobility simulators
predominantly replicate surface-level patterns and offer limited
insight into the motivations, constraints, or contextual factors un-
derlying mobility behavior. This lack of interpretability and behav-
ioral grounding limits their applicability in Web-based mobility
platforms and public-facing societal systems, where transparent,
traceable, and bias-aware data generation is essential.

2.2 Reasoning with Large Language Models

Reasoning has emerged as a central challenge for LLMs. Although
early LLMs excel at pattern completion, they often fail on tasks
requiring explicit multi-step inference or decision modeling [31].
Techniques such as Chain-of-Thought prompting [22, 42] and Inter-
action of Thought [49] elicit structured reasoning traces[43, 44] and
improve factuality and coherence. Complementary efforts fine-tune
models on domain-specific reasoning corpora or apply reinforce-
ment learning with feedback to enhance alignment [14, 36].

While these techniques significantly improve reasoning qual-
ity, they are rarely applied to socially grounded domains where
decisions depend on personal constraints, temporal context, and
sequential interdependencies—such as travel behavior. Moreover,
existing reasoning-enhanced LLMs are seldom evaluated within
Web-based civic infrastructures, where transparency, auditability,
and fairness are prerequisites for public trust. Our work extends
this line of research by developing a reasoning-augmented frame-
work tailored to human mobility decision-making, bridging the
gap between statistical accuracy and interpretable, first-person
reasoning.

2.3 Web-based Mobility Platforms and Societal
Web Systems

Web-based mobility platforms have fundamentally transformed ur-
ban travel planning and management. Key innovations range from
Mobility-as-a-Service (MaaS) systems that integrate multimodal
transport [9, 13], to participatory GIS tools that facilitate citizen en-
gagement—albeit with representational biases [5, 30]. Furthermore,
urban digital twins leverage interactive visualizations to support re-
silience planning [8, 24]. Despite their utility, these systems remain
heavily dependent on high-quality mobility data and face persistent
challenges regarding privacy, equity, and transparency.

While computational social science has successfully leveraged
digital traces (e.g., Web, mobile, and social media) to uncover large-
scale mobility patterns [21, 47], these efforts remain predominantly
descriptive rather than generative. A significant gap persists in
creating interpretable, profile-aware synthetic data that addresses
data scarcity while ensuring fairness. TravelReasoner fills this void
by providing a transparent, reasoning-driven generative model.
Designed for seamless integration into Web-based platforms, it
offers accountable, bias-aware simulations to support sustainable
urban planning and policy evaluation
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Figure 1: Overview of the TravelReasoner framework. It consists of: (A) travel data generation based on profiles and survey
dates, (B) post-training pipeline via two-stage supervised fine-tuning, and (C) first-person simulation of travel decisions.

3 TravelReasoner

In this section, we present TravelReasoner, a reasoning-augmented
framework for mobility data simulation. We first provide an overview
of the simulation process, then describe the construction of the
Chain-of-Trips dataset from real NHTS data, and finally detail our
two-stage training paradigm designed to enhance reasoning and
improve generalization in mobility data simulation.

3.1 Overview

The overall design of TravelReasoner is illustrated in Figure 1. In
(A), given a sampled survey date and a user profile (e.g., age, gender,
employment status) from the NHTS dataset, the model is prompted
to assume the role of a city resident and simulate daily travel be-
havior from a first-person perspective. The simulation yields two
complementary outputs: (1) a Travel Reasoning Chain, which cap-
tures sequential decision-making at each time step (e.g., whether
to travel, why, where, when, and how), and (2) a structured Travel
Table, recording trip attributes such as location type, arrival time,
and departure time. Post-processing the Travel Table reconstructs
a complete activity chain, providing a realistic mobility trajectory.
This design enables the model to generate not only plausible trip
sequences but also interpretable reasoning aligned with human
decision processes, producing mobility data suitable for urban plan-
ning, transportation modeling, and behavioral analysis.

Figure 1(B) illustrates the two-stage pipeline designed to enhance
reasoning capabilities. In the first stage, we perform supervised
fine-tuning on a portion of the Chain-of-Trips dataset, enabling
the model to learn structured reasoning patterns based on real-
world behavior. In the second stage, we use another portion of the
dataset to generate answers for the fine-tuned model in the first
stage, and then select high-quality question-answer pairs for the

second stage of fine-tuning. These pairs are then used for additional
fine-tuning, allowing the model to learn through self-reinforcement
and encouraging it to generate logically consistent trip chains.

Figure 1(C) presents an example after training. Given a user pro-
file and a survey date, the model simulates detailed travel behavior
from a first-person perspective. At each time point, it explicitly
reasons through core behavioral questions—whether to travel, why,
where, when, and how—producing natural language justifications
alongside structured trip records. This demonstrates the model’s
ability to generate interpretable, goal-directed, and contextually
grounded travel behavior. These interpretable simulations can be
directly plugged into Web-based mobility dashboards and decision-
support systems, where transparency and auditability are essential
for public trust.

3.2 Large Reasoning Model Use

In this section, we primarily explain the necessity of using LRM.
Table 1 presents the results of our preliminary experimental analy-
sis. We perform comparative experiments using both the baseline
model and the semantic reasoning model in zero-shot and few-shot
scenarios.

The preliminary results indicate that the reasoning model out-
performs the baseline in zero-shot settings, providing strong jus-
tification for its use in subsequent experiments. In the few-shot
scenario, we carefully designed three Chain-of-Thought examples
to facilitate model learning through imitation. The introduction
of CoT examples substantially enhances the imitation capabilities
of both models, validating the construction of the Chain-of-Trip
dataset for training generalization models.

These results highlight an important practical consideration. In
real-world Web-based mobility platforms, user profiles are highly
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Figure 2: Construction of the Chain-of-Trips dataset from NHTS data. User profiles and travel records are extracted to build
structured prompts with few-shot examples. GPT-40 then generates step-by-step reasoning chains under realistic decision

contexts.
‘ Model ‘ AverLoc TimeCons EditDis
Zero-shot Base 21.04 349.03 23.36
Reasoning 4.01 145.33 6.29
Few-shot Base 2.07 126.61 3.92
Reasoning 2.33 114.99 4.31

Table 1: Experiments with the base model and reasoning
model in zero-shot and few-shot scenarios. For few-shot sce-
narios, we manually construct chain-of-thought samples.
The base model used is Llama-3.1-8B, and the reasoning
model is DeepSeek-R1-Distill-Llama-8B. For metric infor-
mation, please refer to Table 2

diverse, and it is unrealistic to assume the availability of tailored
few-shot examples for every city, demographic group, or travel con-
text. Therefore, we prioritize strong zero-shot performance, which
enables deployment at scale without additional domain-specific
prompting or per-user calibration. By internalizing domain reason-
ing during training, TravelReasoner generates high-quality, per-
sonalized reasoning traces in a zero-shot setting. Because Web-
based mobility systems must serve highly diverse, long-tail user
profiles, zero-shot generalization and transparent reasoning are
essential for safe deployment. Without explicit reasoning, LLM sim-
ulators behave as correlation fitters and cannot support accountable
Web-based decision-making. Therefore, we consider LRM as our
experimental model.

3.3 Chain-of-Trips Construction

To support reasoning-augmented travel modeling, we construct
Chain-of-Trips, a structured dataset derived from the NHTS. Each in-
stance represents a single day of travel decisions from a first-person
perspective, conditioned on contextual factors such as demograph-
ics, activity purposes, and temporal constraints. And the inference
chains in this dataset are all based entirely on real-world travel
behavior.

As shown in Figure 2, we begin by extracting user profiles
and daily travel logs from the NHTS, including attributes such
as age, gender, employment status, ethnicity, survey date, desti-
nations(where), trip purposes(whether,why), travel times(when),
and transportation modes(how). We organize this information into
a structured prompt comprising four components: (1) a system
prompt that defines the simulation objective; (2) task instructions
that specify the scope of inference; (3) manually curated few-shot
examples illustrating the desired reasoning structure; and (4) the
target user profile with contextual details. These few-shot exam-
ples, selected from real NHTS patterns, are essential for guiding the
generation of interpretable, multi-step decision trajectories. Full
prompt details are provided in Appendix A.2 to enable reproducibil-
ity.

Using this prompt design, GPT-4o reconstructs each real NHTS
trip chain in a first-person reasoning format. Given the factual
attributes—user profile, departure and arrival times, destinations,
trip purposes, and travel modes—the model rewrites each record
into a structured Travel Reasoning Chain that explicitly explains
the observed decisions (whether to travel, why, where, when, and
how). In other words, GPT4o only serves to reconstruct real data;
the inference chain is constructed from real data, ensuring the reli-
ability of the inference. In parallel, it transforms the same factual
attributes into a normalized Travel Table. Each dataset instance
is represented as a triplet (Q, R, A), where Q contains the system
prompt, task instruction, and user profile; R is a fact-aligned rea-
soning reconstruction; and A is the corresponding structured table
derived from the same ground-truth data.

By pairing real NHTS trajectories with first-person reasoning
reflections on those trajectories, the Chain-of-Trips dataset en-
ables TravelReasoner to learn both the behavioral patterns and
the underlying decision logic of human travel. This dual-format
representation—natural language reasoning combined with struc-
tured records—provides a rich, high-fidelity supervision signal that
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grounds LRM reasoning in real-world mobility behavior. In sum-
mary, while the reasoning process for our Chain-of-Trip dataset is
generated, it is strictly constrained by real physical constraints (real
NHTS trajectories), thus reflecting real human decision-making.

3.4 Post-training Pipeline

To enhance the model’s ability to simulate human-like travel rea-
soning, we employ a two-stage training pipeline combined with
LoRA [14], a parameter-efficient adaptive method. In the first stage,
we fine-tune the model using Chain-of-Trips data to enhance its
structured reasoning capabilities. In the second stage, we applied
self-learning to improve the model’s inference stability and further
enhance its inference quality.

3.4.1 Supervised Fine-tuning. We fine-tune the model on the Chain-
of-Trips dataset using LoRA, which freezes the pretrained weights
and introduces a pair of trainable low-rank matrices into each
target layer. Formally, instead of updating the full weight matrix
Wy € R¥k LoRA parameterizes the weight update as:

AW = AB, AeR¥™", BeR™ r <« min(d k), 1)

where r is the low-rank dimension. The effective weight becomes
W =W, + AW, while only A and B are trainable. This design en-
ables efficient fine-tuning with orders-of-magnitude fewer trainable
parameters compared to full-parameter updates.

Each training instance is represented as a triplet (Q, R, A), where
Q is the prompt, R the reasoning chain, and A the structured answer
table. We concatenate (Q, R, A) as the target output and optimize
the standard auto-regressive language modeling objective:

T
Lt == ) logPa(ye | y<1,Q), ©)
t=1

where y; denotes the t-th token in the combined target (R, A), and
0 are the LoRA-augmented model parameters.

3.4.2 Two-stage training pipeline. We propose a two-stage training
pipeline that incorporates the principles of curriculum learning,
consisting of a Base Supervised Fine-Tuning (B-SFT) stage and an
Enhanced SFT (E-SFT) stage.

In the B-SFT stage, we fine-tune the LRM using a portion of
the Chain-of-Trips dataset, enabling it to grasp the fundamental
paradigms and preliminary reasoning capabilities of the domain
task, thereby constructing a baseline model.

In the E-SFT stage, we design an iterative self-optimization pro-
cess to enhance the model’s performance further. First, we use the
LRM obtained in the B-SFT stage to generate a large number of can-
didate samples. Then, through manual screening and high-quality
data curation (human-in-the-loop curation), our screening metric
is shown in Equation 3. We screen the top 20% of question-answer
pairs in the answers to construct a small, high-quality "golden"
dataset. Finally, we use this refined dataset for a second round of
fine-tuning, resulting in the final reasoning model, TravelReasoner.

AverLoc —TimeCons
Reward =A-exp|-—— | +B-exp|-——————
p
- (©)
EditDist
+C-exp|——
Y
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Where AverLoc represents the Mean Absolute Error (MAE) be-
tween the generated chain and the actual chain, TimeCons repre-
sents the Root Mean Square Error (RMSE) between the generated
stay time and the actual time, EditDist represents the edit distance
between the generated chain and the actual chain. A, B, and C are
the indicator weights, and «, 8, and y are the scaling factors. Here,
weuse A =0.2,B=04C=04a =2, =060 andy = 2. (Pa-
rameters were determined empirically based on the scale of error
metrics on a validation set.)

Our E-SFT approach preserves the core benefits of reinforce-
ment learning—reward-guided improvement and iterative refine-
ment—while avoiding the well-known instability and variance is-
sues associated with RL. Importantly, RL methods impose signifi-
cant computational and energy demands, making them less suitable
for Web-based civic platforms and resource-constrained deploy-
ment environments. By retaining an SFT objective and employing
a lightweight, reward-informed self-training loop, E-SFT achieves
stable, efficient, and energy-conscious learning that better fits the
needs of practical, Web-scale societal applications.

In summary, the B-SFT stage explicitly teaches a domain-specific
hierarchical chain of thought, covering whether to travel, why to
travel, when, where, and how. This supervision captures behavioral
semantics that generic CoT signals lack. The E-SFT stage further
refines model reasoning by combining model-generated samples,
a domain-informed reward function, and human-in-the-loop cu-
ration, producing a more precise learning signal aligned with the
requirements of behavioral realism and fairness in travel simulation.
Through this design, TravelReasoner acquires coherent, human-
like reasoning patterns that substantially enhance its simulation
quality.

4 Experimental Setup

4.1 Dataset

Data source. We base our study on the 2017 NHTS Trip Chain-
ing Dataset?, a large-scale survey conducted by the U.S. Federal
Highway Administration. The dataset provides comprehensive,
real-world records of individual travel behavior, including trip-
level information such as departure and arrival times, trip purposes,
and visited locations, as well as detailed sociodemographic profiles
of participants (e.g., age, gender, race, education level, employment
status, and household income).

Data Construction. For our purposes, the NHTS data serves two
roles. First, it provides the foundation for constructing the Chain-of-
Trips dataset, where individual travel trajectories are reformulated
into structured prompts and reasoning chains. Second, it supports
evaluation, allowing us to benchmark the plausibility and coher-
ence of simulated outputs against realistic human travel behavior.
We partition the dataset into training and test splits based on the
combination of individual x date, ensuring that no person-day ap-
pears in both sets and preventing any leakage of behavioral patterns
across splits. For cross-city generalization, all test cities are selected
such that they do not overlap with those used for training, allowing
us to evaluate the model’s ability to transfer to entirely unseen
urban contexts.

Zhttps://nhts.ornl.gov/
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Dataset Quality. For the NHTS data, we first apply an initial fil-
tering step by removing trip records containing fewer than three or
more than ten locations within a day, and by discarding sequences
with invalid patterns such as three consecutive identical locations.
To construct the Chain-of-Trips dataset, we then combine curated
system prompts, task instructions, few-shot examples, and user
profiles (details provided in Appendix A.2). Using this structured
prompt design, we employ the advanced closed-source model GPT-
40 to generate first-person travel reasoning chains aligned with
real-world trip records. These quality-control steps ensure that the
resulting dataset maintains behavioral coherence and is suitable
for reasoning-oriented model training.

4.2 Implementation Details

We utilize DeepSeek-R1-Distill-Llama-8B as our experimental model,
setting the temperature to 0.6 and top-p to 1. In line with the configu-
rations in SigSpatial [6], we restrict travel locations to 20 categories.
Our experiments leverage real-world NHTS data and carefully cu-
rated question-answer pairs, conducted across four cities(San Fran-
cisco, San Diego, Austin, Atlanta). During the B-SFT phase, we
fine-tune the model using Low-Rank Adaptation with the Adam
optimizer, a learning rate of 1e-4, and 2000 training samples. In the
E-SFT phase, we used the inference outputs of the model trained in
phase 1 on an additional 1,000 training examples and selected 200
high-quality inference data points for this phase of training. More
details can be found in Appendix A.1.

4.3 Baselines

We used the following methods as baselines. These methods lever-
age the LLM’s ability to process and reason about complex, se-
mantically rich data to generate and predict mobility behaviors.
These methods are more flexible and adaptable, and can handle a
variety of tasks by combining human-like reasoning and contex-
tual understanding, such as V-LRM(vanilla LRM), LRM-CoT[42],
Bhandari24[6], CoPB[35], and LLMob[15].

e V-LRM: Represents a vanilla LRM, an untrained version
of the model that has not yet undergone any specialized
training or fine-tuning.

o LRM-CoT: Utilizes large language models to simulate mo-
bility, enhancing the generation of mobility intentions by
incrementally breaking down reasoning processes.

e Bhandari24: A model focused on spatially-augmented gen-
eration, which incorporates geographic factors and personal
preferences to simulate mobility behavior.

e CoPB: A workflow that integrates the Theory of Planned
Behavior into mobility behavior generation, incorporating
attitudes, subjective norms, and perceived behavioral control
to improve the accuracy of mobility predictions.

e LLMob: An LLM agent framework that accounts for indi-
vidual activity patterns and motivations, employing a self-
consistency approach to align LLMs with real-world activity
data, and a retrieval-augmented strategy for interpretable
activity generation.
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4.4 Evaluation Metrics

To comprehensively evaluate the quality of simulated travel behav-
ior, we adopt three complementary metrics. These metrics assess
accuracy at the trip level, temporal consistency, and sequence-level
similarity. Together, they provide a holistic evaluation of both indi-
vidual trajectories and aggregated mobility patterns. See Table 2
for a detailed description of the metrics.

Metric Formula Description
N The mean absolute error (MAE) be-
AverLoc 1 Zl i — 0] tween the generated chain and the
N & P actual chain length.

Root mean square error (RMSE) of the

TimeCons 1 i (= 1)? dwell time between the generated and
/ o actual chains.

1N Edit distance between the generated

EditDi
oIS chain and the actual chain.

Table 2: Detailed description of the evaluation metric.

Specifically, £ and & denote the predicted and ground-truth loca-
tion categories, respectively. #; and t; represent predicted and actual
stay durations. Finally, §; and s; are the predicted and ground-truth
location sequences, and Lev(-) denotes the Levenshtein distance.

5 Results and Analysis
5.1 Main results

In this section, we present the key experimental results of Travel-
Reasoner and compare its performance with well-known baselines,
including V-LRM, LRM-CoT, CoPB, LLMob, and Bhandari24, using
the AverLoc, TimeCons, and EdiDis metrics.

‘ San Francisco ‘ San Diego

‘ AverLoc TimeConsEditDis ‘ AverLoc TimeConsEditDis

V-LRM 4.01 145.33 6.29 4.08 156.39 6.22

LRM-CoT 3.69 147.60 5.95 3.94 151.80 6.06

CoPB 2.79 140.04 5.14 2.81 130.12 5.40

LLMob 2.74 131.22 5.09 2.80 128.02 5.02

Bhandari24 191 96.40 3.17 1.94 97.62 3.06

TravelReasoner‘ 1.85 91.88 2.84 1.90 89.90 2.85
‘ Atlanta Austin

‘AverLoc TimeConsEditDis | AverLoc TimeConsEditDis

|
|
|
V-LRM 3.92 133.76 5.98 4.98 154.24 7.12
|

LRM-CoT 3.38 138.93 5.51 3.76 141.58 5.90
CoPB 2.74 135.04 4.96 3.84 124.29 5.14
LLMob 2.87 136.33 5.09 2.81 137.24 5.06
Bhandari24 1.81 93.79 2.76 1.75 92.11 2.85
TravelReasoner‘ 1.77 88.38 2.65 1.77 90.09 2.71

Table 3: Performance comparison of TravelReasoner with the
baseline model on the San Francisco, San Diego, Atlanta, and
Austin datasets. Bold indicates the best result, and underlined
indicates the second-best result. V-LRM represents a vanilla
LRM, an untrained LRM.
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The results, presented in Tables 3, demonstrate that TravelRea-
soner consistently achieved either the best or second-best perfor-
mance across all evaluation metrics. For instance, on the San Fran-
cisco dataset, TravelReasoner recorded an AverLoc of 1.85, out-
performing the strong baseline Bhandari24 (1.91). Furthermore, it
achieved the best results in terms of temporal consistency (Time-
Cons = 91.88) and sequence edit distance (EditDis = 2.84). Similarly,
across datasets from three additional cities, TravelReasoner outper-
formed all other methods, highlighting its robustness in diverse
urban contexts. These findings underscore that TravelReasoner not
only generates accurate trip sequences but also preserves high tem-
poral rationality and behavioral consistency, thereby validating the
efficacy of our reasoning-enhanced approach in travel simulation.
On average, TravelReasoner improves location consistency by 6.8%
and time consistency by 4.1% compared to the strongest baseline.

5.2 Cross-population Generalization

Beyond the overall performance, we evaluate TravelReasoner across
different demographic groups in the San Francisco dataset, includ-
ing age, gender, and income categories. Table 4 presents a perfor-
mance comparison between TravelReasoner and other baseline
models on the San Francisco dataset, stratified by demographic
groups, including gender (male vs. female), age (younger than 40
years vs. 40 years and older), and income (low income: household
annual per capita income below $40,000; high income: household
annual per capita income above $40,000). As shown in Table 4,
the model achieves highly consistent results across demographic
segments, demonstrating robust performance for diverse user pop-
ulations. For instance, TravelReasoner attains AverLoc scores of
1.77/1.93 for male and female users, and 1.69/1.93 for younger (under
40) and older (40 and above) groups. Similarly, the model performs
comparably in low-income and high-income groups, with AverLoc
results of 1.73/1.93 and 1.77/1.94, respectively.

Across all metrics—spatial accuracy (AverLoc), temporal coher-
ence (TimeCons), and activity-chain similarity (EditDis), Travel-
Reasoner either matches or outperforms the strongest baseline,
Bhandari24. These findings show that the model does not rely on
demographic-specific patterns or group-specific tuning; instead, it
captures domain reasoning structures that generalize across popu-
lation subgroups.

Notably, the performance gap between demographic groups is
smaller than that of baseline models. This suggests that explicit rea-
soning supervision helps the model internalize behavioral patterns
that are stable across user types, resulting in more uniform predic-
tive performance. Such cross-population consistency is particularly
important for Web-based mobility systems, where user diversity
is high, and mobility data are often scarce or unevenly distributed
across social groups.

5.3 Cross-city Generalization

To validate the model’s cross-domain generalization, we use data
from four cities (San Francisco, Austin, San Diego, and Atlanta)
for training and test it on Dallas-Fort Worth and Los Angeles (see
Table 5).

Experimental results show that TravelReasoner maintains its
strong performance in novel cities, maintaining its lead over other
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‘ Male Female

‘AverLoc TimeConsEditDis | AverLoc TimeConsEditDis

V-LRM 4.12 149.1 6.28 3.91 141.72 6.31

LRM-CoT 3.65 147.96 5.83 3.74 147.25 6.08

CoPB 291 120.13 5.22 2.54 136.90 5.02

LLMob 2.93 127.08 5.17 2.56 135.39 5.02

Bhandari24 1.94 96.21 3.21 1.87 96.58 3.14

TravelReasoner‘ 1.77 88.43 2.72 1.93 95.19 2.96
‘ Younger Older

V-LRM 3.52 146.67 5.58 4.37 144.37 6.81
LRM-CoT 291 147.24 5.00 4.25 147.86 6.64
CoPB 241 150.24 5.20 4.52 150.22 6.06
LLMob 2.94 134.76 5.13 2.61 128.86 5.07
Bhandari24 1.90 99.29 3.07 1.91 94.33 3.25
TravelReasoner‘ 1.73 94.76 2.71 1.93 89.82 2.94

‘ Low-income High-income

‘AverLoc TimeConsEditDis | AverLoc TimeConsEditDis

|
|
|
|
‘ AverLoc TimeConsEditDis ‘ AverLoc TimeConsEditDis
|
|
|
|

V-LRM 3.36 139.56 5.53 4.74 153.48 7.15
LRM-CoT 4.06 145.18 6.2 3.41 153.27 5.80
CoPB 4.76 146.20 4.09 3.61 145.85 6.08
LLMob 2.83 128.54 5.10 2.66 135.03 5.09
Bhandari24 1.80 91.65 2.98 2.02 102.57 3.40
TravelReasoner‘ 1.77 90.14 2.68 1.94 95.19 3.02

Table 4: Performance comparison of TravelReasoner and
baseline models on different groups on the San Francisco
dataset. Bold indicates the best result, and underlined indi-
cates the second-best result. v-LRM represents a vanilla LRM,
an untrained LRM.

Dallas-Fort Worth Los Angeles

‘ AverLoc TimeConsEditDis ‘ AverLoc TimeConsEditDis

V-LRM 3.93 143.65 6.13 4.03 142.21 6.21
LRM-CoT 3.97 137.28 6.12 416 144.19 632
CoPB 2.49 141.60 5.10 3.54 143.18 4.88
LLMob 2.97 130.91 5.27 6.13 189.60 838
Bhandari24 1.95 89.70 293 191 102.08 3.12
TravelReasoner|  1.87 82.99 267 | 185 94.50 2.79

Table 5: Our method generalizes to other cities. We train it
using travel data from four cities (San Francisco, Austin, San
Diego, Atlanta) and evaluate it using data from Dallas-Fort
Worth and Los Angeles.

baselines in AverLoc and EditDis. For example, on the Dallas-Fort
Worth dataset, TravelReasoner achieved an AverLoc score of 1.87

and an EditDis score of 2.67, both outperforming Bhandari24 (1.95/2.93).

It also achieved the best results on the Los Angeles dataset (AverLoc
= 1.85, EditDis = 2.79), with significant improvements in temporal
consistency. This shows that the model can not only learn reason-
able travel patterns in the training city, but also be transferred to
unseen urban scenes, showing good cross-domain generalization
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ability. This ability is crucial for real-world travel simulation be-
cause practical applications often require the transfer of models
between different cities without the need for a large amount of
local annotated data.

5.4 Ablation Studies

To further assess the contribution of each module in our approach,
we conducted ablation experiments using datasets from San Fran-
cisco and San Diego (see Table 6).

Compared to V-LRM, the inclusion of B-SFT resulted in signifi-
cant improvements across all evaluation metrics, highlighting the
crucial role of supervised fine-tuning in learning fundamental rea-
soning patterns. The introduction of E-SFT, based on a self-learning
paradigm, further enhances model performance, demonstrating that
the enhanced fine-tuning stage improves reasoning consistency and
behavioral rationality through the incorporation of high-quality,
human-curated samples. Overall, the two-stage training pipeline is
synergistic, with both stages being indispensable.

‘ San Francisco ‘ San Diego

‘ AverLoc TimeConsEditDis ‘ AverLoc TimeConsEditDis

V-LRM 4.01 145.33 6.30 4.08 156.39 6.22
TR(w/o E-SFT) 1.89 100.12 3.27 1.89 97.24 3.21
TravelReasoner 1.85 91.88 2.84 1.90 89.90 2.85

‘ Atlanta ‘ Austin

‘ AverLoc TimeConsEditDis ‘ AverLoc TimeConsEditDis

V-LRM 3.92 133.76 5.98 4.98 154.24 7.12
TR(w/o E-SFT) 1.75 100.02 3.02 183 96.12 3.10
TravelReasoner 1.77 88.38 2.65 1.77 90.09 2.71

Table 6: This table shows the results of ablation experiments
in San Francisco, San Diego, Austin, and Atlanta. V-LRM
represents a vanilla LRM, an untrained LRM.

6 Discussion

TravelReasoner is designed not only as a methodological contri-
bution, but also as a practical component for Web-based mobility
systems. Its transparent reasoning structure and demographic ro-
bustness make it particularly well-suited for civic technologies,
online planning tools, and data-driven policy interfaces.

Deployment in Web-based civic platforms. Modern mobility plan-
ning increasingly relies on Web-based dashboards, urban digital
twins, and participatory platforms that allow planners, policymak-
ers, and the public to explore mobility patterns. TravelReasoner
can be integrated into these systems to simulate group-level or
city-wide travel distributions and support interactive exploration
of travel behavior under different demographic profiles. Because
the model outputs both structured activity tables and interpretable
reasoning chains, it enables stakeholders to inspect not only what
the model predicts but also why those predictions arise.

Interpretability and Generalization. TravelReasoner provides trans-
parent reasoning traces that clarify how simulated travel decisions
are formed, enabling behavioral inspection and improving the trust-
worthiness of mobility analysis. At the same time, the model ex-
hibits strong generalization consistency across demographic groups
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and across cities, indicating that it learns mobility reasoning pat-
terns that transfer beyond specific populations or regions. This
combination of interpretable decision pathways and stable cross-
population performance makes TravelReasoner well-suited for de-
ployment in Web-based mobility platforms.

Efficiency and sustainability. Efficient model deployment is cru-
cial for practical applications.[34] TravelReasoner is built using dis-
tilled models, LoRA-based adaptation, and supervised self-training
rather than computationally intensive reinforcement learning. This
design substantially reduces training and deployment costs, mak-
ing the framework more compatible with resource-constrained
environments such as municipal planning agencies or civic tech
platforms.

Limitations and future directions. TravelReasoner currently sim-
ulates travel decisions without incorporating real-time Web signals
such as live traffic, public transit disruptions, or social media events,
which could further enhance realism in dynamic settings. Address-
ing these limitations—through open-source reasoning datasets, ex-
panded evaluation metrics, and integration with real-time Web
data—presents promising directions for future research.

Overall, TravelReasoner demonstrates how interpretable, fair,
and resource-efficient reasoning models can support responsible
mobility planning and strengthen the societal value of Web-based
urban systems.

7 Conclusion

In this work, we introduce TravelReasoner, a reasoning-augmented
framework for mobility data simulation that leverages the struc-
tured inference capabilities of large reasoning models. By ground-
ing simulation in the Chain-of-Trips dataset—constructed from real
NHTS trip records and enriched with first-person reasoning—our
approach enables models to learn coherent and human-aligned
decision-making patterns. The proposed curriculum-based post-
training pipeline further improves reasoning quality and strength-
ens behavioral plausibility.

Empirical results show that TravelReasoner consistently outper-
forms strong baselines, improving location consistency by 6.8% and
time consistency by 4.1%, while generating interpretable reasoning
traces that clarify the motivations and constraints behind simulated
travel decisions. The model also exhibits stable performance across
demographic groups and robust cross-city generalization, indicat-
ing that it captures mobility reasoning patterns that transfer across
diverse populations and urban contexts.

By combining interpretable decision pathways with strong gen-
eralization ability, TravelReasoner offers a practical and responsible
solution for addressing mobility data gaps, particularly in regions or
groups where data are scarce. We believe that reasoning-enhanced
models provide a promising direction for building transparent and
reliable mobility simulation tools in real-world urban applications.
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A Appendix
A.1 Implementation Details

Detailed Experimental Parameter Setting. During training and
inference, we use the existing integrated Llama-factory for fine-
tuning and Vllm for efficient inference, respectively.

Below are examples of Llama-factory fine-tuning parameters
and Vllm inference parameters.

CUDA_VISIBLE_DEVICES=xxx llamafactory-cli train \

--stage sft \

——do_train \

—--model_name_or_path ./model/lora/v1l/DeepSeek-
R1-Distill-Llama-8B-trained \

—-dataset train_travel_reasoning_data_enhance \

—-—dataset_dir ./data \

-—template deepseekrl \

--finetuning_type lora \

—--lora_target g _proj,v_proj,k_proj,o_proj,
up_proj,down_proj,gate_proj \

—-lora_rank 64 —--lora_alpha 128 --lora_dropout
0.05 \

—-—output_dir ./saves/DeepSeek-R1-Distill-Llama-8
B/lora/large/sft \

-—overwrite_output_dir \

——cutoff_len 4096 \

—--preprocessing_num_workers 16 \

—-per_device_train_batch_size 4 \

—-per_device_eval_batch_size 2 \

—--gradient_accumulation_steps 4 \

——1r_scheduler_type cosine \

--logging_steps 10 \

—--warmup_ratio 0.03 \

--save_strategy steps \

--save_steps 200 \

-—eval_steps 100 \

——do_eval \

--eval_strategy steps \

——load_best_model_at_end \

——metric_for_best_model eval_loss \

--greater_is_better false \

-—learning_rate le-4 \

--num_train_epochs 5 \

--val_size 0.1 \

——plot_loss \

—-save_total_limit 3 \

—--bfl6

1lm = LLM(model_name, tensor_parallel_size=2)

sampling_params = SamplingParams (
temperature=0.6
top_p=1,
top_k=50,

max_tokens=4096,
repetition_penalty=1.0
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)
response = llm.generate (prompt,
sampling_params, use_tgdm=False)

Compute Resources. We train and infer LRM on two A100 GPUs
with 80GB of RAM. Each experiment took from several minutes to
several hours, depending on the number of training and test sets.

A.2 Prompt

Construction prompt. Examples of prompts for building a pro-
cess chain can be found here, https://github.com/tsinghua-fib-lab/
TravelReasoner. This includes system prompt, instructions, few-
shot example, and the target task.

Chain-of-Trips example. Here’s a demonstration of the main
question-answer pairs in the Chain-of-Trips.

You are a city dweller. Based on your personal
profile and travel purpose, please simulate
your travel in a first-person perspective,
construct a reasoning chain (whenever you are

in a place, think about your travel plan to
the next place, including whether to travel?
Why travel? When to travel? Where to travel?
How to travel (in terms of transportation)?)

your travel should follow the Instructions
content, and then generate your complete
travel plan table (the table shows your stay
time in each place, not the travel time).

The final output must follow the following table
format:

| Visited Places | Arrival Time | Departure Time
Place Type

| [Place Name] | [HH:MM AM/PM]| [HH:MM AM/PM]
[Place Type]

Instructions:

1. If "home" is part of the travel activities on
the specified date, please make sure to
include it in the list.

2. The exact arrival and departure times recorded
in the travel diary.

3. Enter the arrival time and departure time
carefully, because a certain travel time
needs to be maintained to ensure the
rationality of the trip, and the arrival time

of the current location is always later than
the departure time of the previous location.

4. Note that in the travel plan, the difference
between the departure time of the previous
location and the arrival time of the current
location represents the travel time, and the
difference between the arrival time and
departure time of a location represents the
stay time at that location.

5. For [Location Typel], please use only the
numeric codes provided below:

Location type code:


https://github.com/tsinghua-fib-lab/TravelReasoner
https://github.com/tsinghua-fib-lab/TravelReasoner

TravelReasoner: Leveraging Large Reasoning Models
to Address Mobility Data Gap

Regular home activities (chores, sleep)

Work from home (paid)

Work

Work-related meeting/trip

Volunteer activities (not paid)

Drop off/pick up someone

Change type of transportation

Attend school as a student

Attend child care

10: Attend adult care

11: Buy goods (groceries, clothes, appliances, gas)
12: Buy services (dry cleaners, banking, service a
car)
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13: Buy meals(go out for a meal, snack, carry-out)

14: Other general errands (post office, library)

15: Recreational activities (visit parks, movies,
bars, etc)

16: Exercise (go for a jog, walk, walk the dog, go

to the gym, etc)

17: Visit friends or relatives

18: Health care visit (medical, dental, therapy)

19: Religious or other community activities

97: Something else

Task:

Your profile is as follows:

Age: 77

Gender: male

Ethnicity: White

Education: Bachelors degree

Working status: No

Household annual income per capita: $112,500
Place of residence: San Francisco

Survey date: Tuesday, August 2016

Please construct a travel reasoning chain from a
first-person perspective based on your
portrait and travel purpose (whenever you are

at each location, think about traveling to
the next location, including whether to
travel? Why travel? When to travel? Where to
travel? How to travel (in terms of
transportation)? ), your travel should follow

the Instructions content, and then generate
your complete travel plan (this table shows
your stay time in each place, not the travel
time), as follows:

| Visited Places | Arrival Time | Departure Time |

Place Type |

| [Place Name] | [HH:MM AM/PM]| [HH:MM AM/PM]
[Place Typel |l

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates.

Answer:
### Travel Reasoning Chain:

#### At Home (16:50 PM):

— x*Whether to travel?+x Yes.

— x*Why travel?x* I need to buy groceries and
essentials for the household. It is a
convenient time to head out now.

— x*When to travel?x* At 16:50 PM.

— xxWhere to travel?xx A nearby grocery store.

- xxHow to travel?+x Drive a van for personal
convenience and to carry purchased goods.

#### At First Shopping Location (17:20 PM):

— x*xWhether to travel?*x Yes.

— *xWhy travel?x+ After finishing my shopping at
the first location, I need to visit another
store for additional items that were
unavailable at the first location.

— x*When to travel?x* Around 17:20 PM.

— xxWhere to travel?x* Another nearby store.

- *xHow to travel?+x Drive the van.

#### At Second Shopping Location (17:45 PM):

— *xWhether to travel?xx Yes.

— x*Why travel?x+ After completing my shopping
errands, I plan to participate in volunteer
activities scheduled for the evening.

— x*xWhen to travel?x* At 17:45 PM.

— xxWhere to travel?xx The volunteer activity
location.

- *xHow to travel?+x Drive the van.

### Complete Travel Plan Table:

|Place Visited |Arrival Time|Departure

Time | Location Typel
[mmmmmmm e [ === ===
| mmmmmm I
| Home | 12:00 AM | 4:50 PM
1 I
|[First Shopping Location | 5:05 PM | 5:20 PM
|11 I
| Second Shopping Location| 5:35 PM | 5:45 PM
|11 |
|[Volunteer Activity | 5:50 PM | 11:59 PM
|5 |
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