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ABSTRACT
Modeling people’s activities in the urban space is a crucial socio-
economic task but extremely challenging due to the deficiency of
suitable methods. To model the temporal dynamics of human ac-
tivities concisely and specifically, we present State-sharing Hidden
Markov Model (SSHMM). First, it extracts the urban states from the
whole city, which captures the volume of population flows as well
as the frequency of each type of Point of Interests (PoIs) visited.
Second, it characterizes the urban dynamics of each urban region
as the state transition on the shared-states, which reveals distinct
daily rhythms of urban activities. We evaluate our method via a
large-scale real-life mobility dataset and results demonstrate that
SSHMM learns semantics-rich urban dynamics, which are highly
correlated with the functions of the region. Besides, it recovers
the urban dynamics in different time slots with an error of 0.0793,
which outperforms the general HMM by 54.2%.
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1 INTRODUCTION
The rapid urbanization process makes the topic of understanding
urban dynamics, i.e. the temporal patterns of urban activities be-
comes increasingly important. However, traditional approaches
rely on expensive manual surveys, yet the understanding is still
coarse-grained and limited in geographical scope [1]. Fortunately,
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the advent of the mobile Internet and Location-Based Social Net-
works (LBSNs) makes it possible to collect population-scale urban
mobility data, which sheds new light on this open problem. Pre-
vious works demonstrated that the movements of citizens can be
utilized to infer the functions of urban regions [20, 22], and urban
activities (e.g., working, resting, etc.) are closely correlated with
urban mobility patterns [19, 23], which indicates the feasibility of
leveraging urban mobility data to model urban dynamics.

In this paper, we aim to harness the power of massive urban
mobility data to deepen the understanding of urban dynamics. The
research problem is non-trivial mainly for three reasons: (1) Urban
mobility behaviour is a noisy representation of urban activities.
Therefore, it is difficult to robustly and accurately infer the un-
derlying urban activities from the empirical observation of urban
mobility behaviour. (2) The semantic-rich mobility data, i.e., check-
in data on LBSNs, is sparse in urban space, especially in sparsely
populated areas which poses challenges to extract reliable patterns
of urban dynamics for different regions in urban systems. (3) Mod-
ern cities are complicated socio-economic systems, where each
urban region possesses different urban dynamics due to its unique
activities. Therefore, it is challenging to interpret the identified
urban dynamics and reveal the underlying mechanisms.

Motivated by these challenges, we propose a novel State-sharing
Hidden Markov Model (SSHMM), which considers the mobility
behavior of an urban region to reveal the urban dynamics. Specifi-
cally, the model learns the urban dynamics of a region as transitions
between hidden states, where each state maps to a certain urban
activity. The corresponding mobility behavior is generated from the
hidden state, which allows the same urban activities to be mapped
to slightly different mobility behavior and effectively addresses the
problem of data noisy. More importantly, SSHMM facilitates differ-
ent urban regions to share the same set of hidden states. Therefore,
it addresses the challenge of data sparsity , which fully exploits
the correlation between different regions. Finally, as a generative
model, SSHMM can also characterize the urban dynamics as hidden
state sequences. Based on the identified state sequences, we further
design an clustering analysis technique to reveal their correlation
with urban functions (i.e., land use) and provides a meaningful
interpretation of the urban dynamics.

The contributions of our research are three-fold:

(1) We propose a novel urban dynamics revealingmodel SSHMM.
It can robustly and accurately infer the underlying urban
activities from noisy and sparse urban mobility data by shar-
ing model parameters across different regions. In addition,
it achieves qualitative representations of urban dynamics as
the transition patterns between urban activities.
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(2) We propose an effective and efficient algorithm to infer the
parameters of our model. By splitting the long observations
into shorter ones and updating the parameters in parallel, we
reduce the training time of learning R groups of parameters
to that of only one group, where R is the number of regions.

(3) We evaluate our method using population-scale mobility
dataset, which demonstrate that our SSHMM model learns
meaningful and explainable urban dynamics.

2 RELATEDWORK
Urban dynamics modeling. Urban dynamics, generally defined
as how sociological indicators change over time [5] which focuses
on characterizing human daily activity rhythms in the city [1, 14].
Time is an important dimension to understand the city. Abbar et al.
[1] built activity time series in cities to identify different dynamic
patterns via the geo-tagged data from Twitter. Zhang et al. [23]
utilized the geo-tagged social media to model people’s activities
in the urban space via representative learning. Zong et al. [27]
investigated to generate dynamic population distributions from
static PoIs. Lin et al. [12] considered the impact of PoIs in different
time of one day to achieve better crowd flow prediction. Besides,
Yuan et al. [22] proposed an LDA model to detect the existence of
different functional regions in a city through the GPS trajectory and
PoI datasets, and Yao et al. [20] presented a city zone embedding
framework using human mobility patterns to infer urban functions.
Different from the existing works based on statistical analysis [1]
and data visualization [14], we propose a specific model to learn
hidden state from human mobility and check-ins to represent urban
dynamics.
Hidden Markov Model and its application. Hidden Markov
Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with unobserved
(i.e., hidden) states [16]. In HMM, model mixture and parameter
sharing are very helpful to deal with increasingly complex tasks [6].
One of the well-known mixture methods is the Gaussian mixture
model based HMM (GMM-HMM). The second example is shared-
distribution HMM, where clustering is carried out for parameters
sharing and output distributions are shared with each other if they
exhibit acoustic similarity [8]. Another model tied-mixture HMM
uses both mixture and parameter sharing, which belongs to semi-
continuous HMM [2, 7, 11].

Our proposed SSHMM is also a kind of parameter sharing HMM.
While different from previous works, we design it to automatically
learn a set of states for the continuous observations and no follow-
ing clustering is conducted to force the parameters shared. Both
based on the Gaussian emission function, we use multi-dimentional
Gaussian instead of GMM. In addition, though HMM has been suc-
cessfully applied into the topic of mobility modeling, most of the
work concentrated on individual mobility prediction [13, 24, 26],
and we are the first to apply it in urban dynamics modeling.

3 OVERVIEW
3.1 Problem Description
Before formally define our investigated problem, we give the defi-
nition of mobility behaviour observation as follows,

Definition 1 (Mobility Behaviour Observation). The mobility be-
haviour sequences of region r is a time-ordered sequence Or = [Or,1,
Or,2, ...,Or,N ], where Or,n is a tuple of length L, standing for the
observation in n-th time slot. It contains two parts: (1) {or,n,1,or,n,2,
or,n,3} denotes the number of people who arrive at, leave from and
stay in this region in this time slot. (2) {or,n,4,or,n,5, ...,or,n,L } de-
notes the check-in frequency of different categories of PoIs.

Now, we formulate the urban dynamics understanding problem.
Given the mobility behaviour observations of a group of regions
in the city, we aim to (1) discover hidden states represented by the
volume of population and the visited frequency of different PoIs
to understand the intrinsic life modes in the city; (2) reveal urban
dynamics represented by hidden state sequences to understand
the daily life rhythms and their correlation with urban functions;
(3) characterize dynamic regularity by learning state transition
probability to achieve dynamic prediction.

3.2 Model Description

Figure 1: An illustration of the SSHMM, where two kinds of
dynamics for region 1 and 2 are generated from the same set
of states and each state is presented by a unique color.

Definition 2 (SSHMM). HMM is parameterized by two parts, one
is the state transition parameter characterizing how the states transit
and the other is the state emission parameter characterizing how
the observation generated by the state. SSHMM contains R groups of
HMMs for R groups of observation sequences. However, these HMMs
share the same parameters, which means all the observations are
generated by the same set of hidden states.

Our model is based on the general assumptions of HMM, where
each observationOr,n is generated from one hidden state sn , which
has L dimensional features, and the n-th hidden state sn merely
depends on the previous state sn−1. We use one HMM denoted by
θr to model the dynamics of r -th region, therefore we need to learn
R groups of transition parameters for R regions in the city. Figure
1 gives the illustration of our model. There are two observation
sequences for region 1 and 2, so we learn two HMMs for them
respectively. These observations are generated by the same set of
states, since life modes (i.e., sleeping, working, etc.) in a city are
limited and there exists some similarities between different regions
with similar functions. Moreover, the massive mobility data is often
sparse and mobility behaviour is a noisy representation of urban
activities, which indicates that we can achieve more robust and
accurate models by sharing states. These states appear in different
time slots, which reveals different dynamics of these two regions.
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4 METHODOLOGY
4.1 Data Pre-processing
We first adopt the map segment method [22] to obtain the geograph-
ical boundaries of each region formed by the road network. In view
of the urban mobility patterns and life-styles, those regions are
used as an unit to reveal the dynamics instead of simply dividing
the city into grids. To share the states in the city, we normalize
mobility behaviour observations to eliminate the problem regard-
ing the difference of population between regions. For mobility, i.e.,
the number of arriving, leaving and staying, we directly conduct
min-max normalization for each region over different time slots
respectively. For check-ins, i.e., the visit frequency of PoIs, we first
compute the TF-IDF [15] weights based on the region-PoI matrix in
each time slot to indicate how popular a PoI category is in a certain
time slot. Then, for each region we conduct the min-max normaliza-
tion on the TF-IDF weights over different time slots to re-scale the
mobility behaviour observations to 0 − 1. After pre-processing, we
regard the aggregated activities in the city as normalized time series,
which is denoted by O = {O1,O2, ..., Or , ...,OR } as Definition 1.

4.2 Model Definition
When generating or,n from state sn , we assume that the emission
probability is Gaussian distribution, i.e.,p (or,n,l |sn ) = N (or,n,l |µn ,σn ).
The reason to chose the Gaussian is intuitive: µn describes the fun-
damental feature of sn , while the corresponding observations gener-
ated by sn is slightly different from the mean µn with the difference
controlled by the variance σn . Therefore, we build the SSHMM
parameterized by R groups of parameters θ = {θ1,θ2, ...,θr , ...,θR }
with θr = {πr ,Ar , µ,σ } denoted for r -th region, where
(1) πr ∈ RK×1 denotes the initial distribution over K hidden states,
i.e., πr,k = p (s1 = k ) (1 ≤ k ≤ K );
(2)Ar ∈ RK×K denotes the transition probabilities among theK hid-
den states. If (n−1)-th state is sn−1 = j , then the probability forn-th
state sn to be k is given by Ar, j,k , i.e.,p (sn = k |sn−1 = j ) = Ar, j,k ;
(3) µ,σ ∈ RK×L denotes the mean and variance of observation

probability, i.e., p (Or,n |sn = k ) =
L∏
l=1

1√
2πσk,l

exp (− (or ,n,l−µk,l )2
2σk,l ).

It is worth noting that we do not use the subscript r to distinguish
µ,σ of different HMMs, because in SSHMM they are determined
by the common state set.

4.3 Model learning
4.3.1 Parameter Inference. To infer the parameters, we use Expectation-
Maximizationmethod (EM) [4] as the solution. Since SSHMM shares
the same set of hidden states, the existing famous Baum-Welch al-
gorithm [18] cannot be applied directly. The insight of EM method
is to maximize log likelihood, parameters can be updated by maxi-
mizing Q (θr ,θ

t
r ) step by step. Therefore, we derive the Q-function

for all regions as Eq.1, and we can maximize it to enable the log
likelihood converge to its maximum.

Q (θ, θ t ) =
R∑
r=1

∑
S

p (S |Or , θ tr ) ln πr ,k +
R∑
r=1

∑
S

N−1∑
n=1

p (S |Or , θ tr ) lnp (sn+1 |sn )

+

R∑
r=1

∑
S

N∑
n=1

p (S |Or , θ tr ) lnp (Or ,n |sr ,n ),

(1)

where p (Or |S,θ
t
r ) can be calculated as follows,

p (Or |S, θ tr ) =πr ,kp (Or ,1 |sr ,1) · p (sr ,2 |sr ,1)p (Or ,2 |sr ,2)

· · · (sr ,N |sr ,N−1)p (Or ,N |sr ,N ).
(2)

From Eq. 1, we observe that optimization parameters π , A (i.e.,
p (sn+1 |sn )) and {µ,σ } (i.e., p (Or,n |sr,n )) appear independently, so
we maximize each item separately. Consequently, the forward dis-
tribution α (sr,n ) and backward distribution β (sr,n ) are defined as

α (sr ,n ) = p (Or ,n |sr ,n )
∑

sr ,n−1

α (sr ,n−1)p (sr ,n |sr ,n−1),

β (sr ,n ) =
∑

sr ,n+1

β (sr ,n+1)p (Or ,n+1 |sr ,n+1)p (sr ,n+1 |sr ,n ),
(3)

where α (sr,1) = πr,kp (Or,1 |sr,1 = k ) and β (sr,N = k ) = 1. Then,
two probability can be derived from α and β as follows,

γ (sr ,n ) = p (sr ,n |Or ) = α (sr ,n )β (sr ,n )/p (Or ),

ξ (sr ,n, sr ,n+1) = p (sr ,n1, sr ,n |Or )

= α (sr ,n−1)p (sr ,n |sr ,n−1)P (Or ,n |sr ,n )β (sr ,n )/p (Or ),

(4)

where p (Or ) =
∑
sr ,N α (sr,n ). Based on Eq. 3 and 4, we can thus

optimize the parameters π ,A and {µ,σ } separately as follows.

π (t+1)
r ,k = γ (skr ,1),

A(t+1)
r , j,k =

1
Ξj

N∑
n=2

ξ (s jr ,n−1, s
k
r ,n ),

µ (t+1)k,l =
1
ΓK

R∑
r=1

N∑
n=1

γ (skr ,n )or ,n,l ,

σ (t+1)
k,l =

1
ΓK

R∑
r=1

N∑
n=1

γ (skr ,n ) (or ,n,l − µ
(t+1)
k,l )2,

(5)

where ΓK =
R∑
r=1

N∑
n=1

γ (skr ,n ), Ξj =
N∑
n=2

K∑
i=1

ξ (s jr ,n−1, s
i
r ,n ).

4.3.2 Learning algorithm. Another difficulty is that the process
could be inefficient when applied into large-scale datasets due to
two aspects. First, the large dataset with a long period N leads the
computation of α and β complicated as Eq. 3, and the result may
even cause the float number exceeding. Second, the time complexity
of parameter inference isO (RNLK2). which is mainly costed by the
calculation of ξ as Eq. 4. The computational complexity of which is
quadratic in K , rendering it inefficient for large K . However, if the
time period is short or K is not large enough, the model is unable
to capture all the dynamic patterns in the city.

To overcome these problems, we first split the long observation
sequences into several shorter sub-sequences for each round. By
doing this, we not only utilize all the data for parameter learning
but also avoid float-point number exceeding. Second, from Eq. 5,
we can observe that the updating of πr,k and Ar, j,k for region r
is independent. Thus, we update them in parallel and cuts down
the time complexity to O (NLK2) approximately. The detailed pro-
cedure is shown in Algorithm 1. In each iteration, we run EM-steps
forW rounds, and in each round, we fed the subsequences of length
N into the model. After calculating the α (sr,n ) (t+1) , β (sr,n ) (t+1) ,
γ (sr,n )

(t+1) , ξ (sr,n ) (t+1) , π (t+1)
r,k and A(t+1)

r, j,k in parallel for all the

regions in each round, we update the state parameters µ (t+1)k,l , σ (t+1)
k,l
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until the convergence is realized. The code is made publicly avail-
able 1.
Algorithm 1: SSHMM parameter learning.
Input: Observations O = {O1, O2, ..., OR }, Maximum Iterations
MaxI ter ;

Output: θr = {πr , Ar , µ, σ } ∀1 ≤ r ≤ R;
Procedure:

Initialization: t = 0, initial π (0)
r ,k = 1/K , A(0)

r , j,k = 1/K ,

µ (0)k,l = random (0, 1), σ (0)
k,l = random (0, 0.1),

∀1 ≤ j, k ≤ K, 1 ≤ l ≤ L.
while t < MaxI ter do

for w = 1, 2, ...,W do
E-step: ∀1 ≤ r ≤ R , calculate α (sr ,n ) (t+1) ,
β (sr ,n ) (t+1) , γ (sr ,n ) (t+1) , ξ (sr ,n ) (t+1) in parallel
based on old parameters θ (t )

r utilizing the w -th
subsequence of Or .

M-step: ∀1 ≤ r ≤ R , update π (t+1)
r ,k , A(t+1)

r , j,k in parallel.

Update µ (t+1)k,l , σ (t+1)
k,l utilizing γ (sr ,n ) (t+1) ,

ξ (sr ,n ) (t+1) ∀1 ≤ r ≤ R .
Update t : t = t + 1

4.4 Dynamics Revealing and Functions
Inferring

With the model θr = {πr ,Ar , µ,σ } obtained from Algorithm 1, the
state sequences can be decoded by Viterbi algorithm [17], which
can represent the dynamics of that state. Recall that regions with
similar dynamic patterns could have similar functions, we match
the dynamics with the functions by clustering the state sequence
of different regions via k-medoids algorithm [9]. In k-medoids al-
gorithm, we define the distance of two sequences as the sum of the
Euclidean distance of the mean of the two corresponding states.
Then, the distance between states is defined as the Euclidean dis-
tance between the mean value vector of Gaussian distribution of
these two states. Finally, the distance between state sequences Si , Sj
is the average distance of all the corresponding state sequences.

We adopt Davies-Bouldin index (DBI) [3] to determine the num-
ber of clusters, which reflects the ratio between inter-cluster dis-
tance and inter-cluster distance. A smaller DBI usually indicates
a more effective division. Finally, similar dynamics in each cluster
would present the same kind of function in the city.

4.5 Dynamics Prediction
SSHMM also has the ability of prediction. Through Viterbi al-
gorithm, we can identify the last state of the region based on
the observation. With the advantage of a probabilistic model, we
can firstly obtain the current state of the region according to the
current observation, then predict the next state according to the
latest state by maximizing the transition probability. Formally,
given the current observation sequence of r -th region denoted
by Or,1Or,2, ...,Or,n , we decode its corresponding hidden state
sequence as sr,1sr,2, ..., sr,n . If the latest state sr,n is i-th state,
then the state in the next time slot can be predicted as sr,n+1 =
argmax1≤j≤K Ar,i, j . This is to say, we can predict the volume of
1https://github.com/XTxiatong/SSHMM

population flows and the percentage of PoIs visited in the next time
slot by utilizing the mean value µ,σ of the identified next state.

5 EXPERIMENTS
5.1 Data
The mobility dataset was collected by collaborating with Tencent2,
one of the largest Internet service providers in China. The collected
dataset covers near 2 million users in Beijing, China from April
1st to 30th, 2018. Each trajectory record is characterized by an
anonymized user ID, timestamp and the GPS location. Each check-
in record consists of user ID, check-in time, check-in location and
PoI, which is divided into nine categories: Company, Agency, Shop-
ping, Service, Entertainment, Attractions, Education and Residence.
We crawl the road network from Map service and divide the the
downtown area in Beijing into 665 non-overlapping regions.

Ethics. To protect user privacy, all data is anonymous and stored
in Tencent offline servers. We pre-process the data under their
supervision and only take the aggregated results of different regions
for further analysis. Our research has been reviewed and approved
by both the company and Tsinghua University institutional board.

5.2 System Settings
5.2.1 Data Usage. In the experiments, we divide the dataset into
two parts. We utilize 21 days of data to generate the mobility be-
haviour observations to train our model and use the rest for predic-
tion evaluation. We set the length of time slot to 1 hour. The obser-
vation in each time slot is 12-dimensional, including 3-dimensional
population flow volume and 9-dimensional check-in frequency.

5.2.2 Model evaluation. To evaluate the effectiveness of our model
and the inferred parameters, we utilize the obtained states to recover
the observations by concatenating the mean value of correspond-
ing state in the hidden state sequence in chronological order. We

adopt ϵ =

√
R∑
r=1

N∑
n=1

L∑
l=1

(µn,l−sr ,n,l )2

R×N×L , the error between all of the ob-
servations and the activities recovered by the mean value of the
corresponding hidden state as an evaluation metric.

To determine the number of hidden states and the length of time
slots for training, we searched different values. From fig. 3(a), we
can observe that when K increases,ϵ decreases while the training
time increases rapidly. Thus, we set K = 100 as a trade-off between
model complexity and accuracy. As Figure 3(b) show, we find the
length of time window has almost no impact on the training time
and ϵ . We set is as 24, i.e., train the model day by day.

5.2.3 Prediction Performance. In terms of prediction, we use the
rest 9 days’ data for evaluation. We compare the mean value of the
predicted next state with the ground-truth observations, and the
baseline is general HMM. For mobility prediction, we adopt RMSE,
the root-mean-square error between the normalized the population
flow of predicted and the ground truth [25] for measurement. For
check-ins, we adopt TopM-accuracy to reflect the accuracy on topN
frequently-visited PoI prediction of all regions [21]. A lower RMSE
or a higher TopM-accuracy indicates better prediction performance.

2Tencent Incorporation. https://lbs.qq.com/index.html
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(a) Tsinghua University (Function: Education) (b) Tian’anmen (Function: Tourist Attraction)

(c) Wangjing (Function: Residence) (d) Zhongguancun Software Park (Function: Company)

Figure 2: Visualization for representative states and state sequences for different regions, where each row in the state sequences
heatmap exhibits the state transition process of one day with the number indicating the corresponding state.

(a) Effects of K (b) Effects of N

Figure 3: Effects of parameters.

5.3 Results
5.3.1 Model Effectiveness. Figure 4 shows the relationship between
recovering error ϵ and the number of iterations. We compare it with
the result of training independent HMM for each region with the
same number of states. From Figure 4, we can observe that as the
number of iterations increases, the recovering error ϵ decreases first,
then tends to remain unchanged. Furthermore, our representative

Figure 4: Model Effectiveness comparison.

ability for human activities is better than HMM: When the model
converges, our ϵ is 0.0793, which outperforms HMM by 54.2%.

5.3.2 Visualization of the Hidden States and Urban Dynamics. In
order to demonstrate the ability of our model in discovering hidden
states and revealing urban dynamics, we give a series of special
examples and detailed explanations. Figure 2 visualizes the results
for 6 regions.We first plot themean value of the states with frequent
occurrence, then show the state transition process in working day
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and non-working day (Apr. 5th (Thur.), 6th (Fri.) and 7th (Sat.) are
the Qingming Festival), respectively.

States: Each state represents two aspects: (1) The density of the
population flow. For example, state 32 presents a large volume of
flows and high density of populations, state 21 presents a small
volume of flows while a high density of populations. (2) The visit
frequency of different PoIs. For example, state 31 indicates the
most frequently visited PoI is Education, while state 21 indicates
the most frequently visited PoI is Attractions. As shown in Figure
2(a), Tsinghua University have the state 79 during the day, and
Tian’anmen has state 81. By combining these two semantics, we
can infer the activity level and lifestyle of the region. For example,
state 79 shows active school status while state 70 shows quiet
school status.

Dynamics: Dynamics are represented by the state transition
processes. Take the dynamics of Tsinghua University as an example.
As shown in Figure 2(a), during the night, there are fewer people
than the day as state 70. Besides, in working days, there is a sudden
increase in crowd flow as state 32 appear in 8:00-9:00 and 17:00-
19:00. The transition from state 70 to 32, from 32 to 79 in working
days reveals the dynamics that only students live in the region at
night and many teachers go to school in the morning, causing the
population denser than night. Compared with 2(a), 2(b) shows that
both in working day and non-working day, the density of popu-
lation is consistently high and the PoI visited most frequently is
Attractions, as Tian’anmen is one of the most famous tourist spots
in China. Another interesting finding is that for residential areas as
Figure 2(c), non-working days are more prosperous and lively than
working days, but working areas are quiet and peaceful as Figure
2(d) shown. To conclude, Figure 2 gives the insights as follows:
(1) From the state sequence heatmap, we notice that the state se-
quences are aligned by day, which indicates that the dynamics in
the city have a period of one day, as the states in the same time slot
but with different dates are usually the same.
(2) The dynamic patterns within working days or no-working days
are very similar, while the patterns between working and non-
working days are determined by the function of the region.

In summary, SSHMM not only detects the urban states with
different activity patterns but also reveal the rhythm of daily life.

5.3.3 Visualization of Urban Functions. To further evaluate our
model to infer the functions, we cluster the state sequences by the
method introduced in Section 4.4 and found that 8 types is most
suitable as the minimum DBI is achieved. We compare the result
with the state-of-the-art functional zones discovering method, i.e.,
an LDAmodel by utilizing the static PoIs and mobility together [22].
The geographical distribution of the regions with their function
types is shown in Figure 5, where different colors present different
functions. After clustering, we label their functions by the revealed
semantic dynamics and manually check some regions in Figure 2
to verify their functions, which shows most of the regions with
the same functions are divided into one cluster. Besides, clusters
obtained by our model and LDA model have with the Normalized
Mutual Information (NMI) of 0.25, which measures the similarity
of two divisions with the range from -0.5 to 1 [10]. Therefore, the
functions we infer from dynamic patterns are validated by the
labeled regions and the state-of-the-art method.

Figure 5: Visualization of the distribution of the regions
with similar dynamics and functions.

(a) Prediction for the number of staying of
Tsinghua University

(b) Evaluation metrics

Figure 6: Prediction performance compared with HMM.

5.3.4 Performance of Activity Prediction. In order to evaluate the
prediction accuracy of ourmodel, we first show the prediction of the
number of staying for 9 days in Tsinghua University in Figure 6(a)
as an example. Compared with the generate HMM, the recovered
observations of our model are closer to the ground-truth in different
time slots. The results for all metrics are shown in Figure 6(b), where
the average RMSE of population flow prediction is 0.195 and the
Top3-accuracy for PoI popularity prediction is 41.4%, outperforming
theHMMby 16% and 8% respectively. These results demonstrate our
SSHMM outperforms HMM in urban dynamics prediction problem.

6 CONCLUSION
In this paper, we study the problem of understanding urban dynam-
ics. We propose a State-sharing Hidden Markov Model (SSHMM),
where all the regions share a common state set, but each region has
it own transition regularity. To make it practical, we not only derive
the inference of the parameters but also give an efficient algorithm
to update them. We evaluate our method via a real-life dataset in
Beijing, which demonstrates that SSHMM learns semantics-rich
urban dynamics model, recovers different activity regularities by
a limited number of states and incurs low training cost. Our work
also opens a new angle for dynamic urban region representation by
learning the vector for both urban states (i.e, the mean of different
feature dimension) and urban dynamics (i.e, the state sequence).
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