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Abstract
Extreme urban heat is intensifying worldwide and often falls hard-
est on vulnerable communities, posing growing challenges for cli-
mate adaptation and SustainableDevelopmentGoal 11. Fine-grained
land surface temperature (LST) estimates are essential for identi-
fying local heat risks, yet most operational approaches still rely
on satellite products alone, which are constrained by cloud cover,
revisit cycles, and limited sensitivity to human-scale morphology
and activity. Meanwhile, web-based resources such as online im-
agery and mobility data offer rich but underused signals for scal-
able heat-risk monitoring. We present AESPA, a physics-aware
multimodal framework for tract-level urban LST estimation that
combines satellite imagery, street-view panoramas,mobility-derived
activity profiles, and interpretable physical proxies. AESPA trains
a teacher model that jointly leverages imagery and mobility, then
distills its predictions and representations into an imagery-only
student, enabling deployment in data-poor cities. Physics- and proxy-
guided losses encourage consistency with basic urban-climate re-
lationships and yield attributions linked to vegetation, impervi-
ous surfaces, shading, and surface reflectance. We evaluate AESPA
across eight major U.S. metropolitan areas under within-city and
cross-city transfer protocols: AESPA reduces mean absolute error
by about 32% and increases Pearson correlation between predicted
and observed tract-level LST by 0.15 compared with the strongest
satellite-based baseline, and improves transfer correlations by roughly
0.05-0.10. Its proxy attributions recover physically coherent gra-
dients associated with neighborhood-level heat-exposure inequal-
ity, illustrating how web-based imagery and mobility can support
transparent, deployable urban heat-risk monitoring in practice1.

CCS Concepts
• Computing methodologies → Computer vision; • Human-
centered computing → Collaborative and social computing; • In-
formation systems→ Spatial-temporal systems.
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1 Introduction
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Figure 1: Overview of the motivation of our work. Our
model fills the gap of multimodal, physics-aware learning
on the abundant thermal information across multi-view ur-
ban data from web platform to accurately predict land sur-
face temperature.

Extreme heat is intensifying under climate change, with cities
emerging as critical hotspots due to the urban heat island (UHI)
effect. Elevated urban temperatures exacerbate heat-related mor-
bidity and mortality, strain energy and water systems, and dispro-
portionately burden low-income, elderly, and marginalized com-
munities [1, 14, 21, 35, 54]. Recent work further shows that heat
exposure depends not only on where people live but also on where
they travel during the day, as daily mobility concentrates people in
persistent “heat traps” [12, 23]. Delivering the Sustainable Devel-
opment Goal on sustainable cities and communities (SDG 11) [29]
therefore requires reliable, fine-grained information on howheat is
distributed across urban neighborhoods and how it interacts with
the built environment and human activity. Yet city agencies and
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community organizations often lack tract-level temperature maps
that are timely, interpretable, and scalable, despite the growing
availability of satellite imagery, street-view image, and open ur-
ban data from web platforms [40].

A primary line of work in urban heat mapping estimates land
surface temperature (LST) or near-surface air temperature from
satellite observations. Early methods use statistical downscaling
and physical retrieval algorithms that combine thermal infrared
bands with vegetation and built-up indices in regression or split-
window frameworks [8, 39]. More recent deep models leverage
multi-source satellite products and auxiliary geophysical variables
to improve prediction accuracy at finer spatial resolutions: Urban-
Heat [36] predicts fine-grained urban air temperature from multi-
resolution imagery with physically inspired objectives, and Deep-
UHI [55] introduces a context-aware thermodynamic framework
for urban heat island forecasting, while other work couples split-
window algorithms with neural networks or interpretable down-
scaling pipelines for LST retrieval [5, 10].These approaches demon-
strate the power of satellite imagery, but remain largely satellite-
centric: they are constrained by coarse thermal resolution and two-
dimensional surface proxies, with limited representation of street-
level morphology, shading, and human behaviour.

At the same time, Web platforms now provide rich cross-view
data about cities. Street-view imagery has been used to derive green
view, sky view and façade indices and relate them to neighborhood-
scale LST andmicroclimate [38, 42, 53], whilemultimodal and vision–
language models leverage satellite and street-level images to in-
fer socioeconomic status, segregation, health outcomes and land
use [17–20, 22, 30, 50, 52]. In parallel, mobility-based studies show
that daily travel patterns concentrate people in persistent “heat
traps” and strongly shape heat exposure beyond residential loca-
tions [12, 23]. Together, these developments suggest that satellite
imagery, street-levelmorphology and human activity patterns jointly
encode the fine-grained urban thermodynamics that matter for cli-
mate adaptation.

However, existingmethods only partially exploit thismultimodal
context, leading to three concrete challenges. First,multimodal con-
text is fragmented. Most temperature models operate on satellite
imagery alone or add a few handcrafted street-view indices, with-
out coherently integrating land cover, street-level form and mobil-
ity. Second, prevailing deep regressors are largely physics-agnostic
black boxes. Without explicit ties to basic urban-climate mecha-
nisms, they can violate simple thermal intuition (e.g., predicting
higher temperature when vegetation increases), limiting their use-
fulness for planning [41]. Third, rich auxiliary signals such as mo-
bility are unevenly available. Mobility profiles are informative for
exposure but often sparse, sensitive or missing, calling for models
that can use them at training time without requiring them at de-
ployment.These gaps motivate the need for a physically grounded,
multimodal framework that can turn web-sourced imagery and
mobility into reliable, tract-level urban temperature maps.

In this paper, we proposeAESPA (AlignedEnvironmental Sensing
withPhysics-awareAttribution), a multimodal framework for fine-
grained urban temperature estimation at the census-tract level. AESPA
encodes satellite patches and sets of street-view panoramas for
each tract using strong vision backbones, and fuses them into a
tract-level representation via a lightweight transformer. From the

same street-view pixels, it derives five physically motivated prox-
ies that summarize tract-level street context: vegetation, tree canopy,
impervious surface, apparent albedo, and shadow. These proxies
serve a dual role: they are predicted by dedicated heads as auxiliary
tasks, and they drive simple physics-aware regularizers that en-
force monotone relationships between proxies and predicted tem-
perature (e.g., more vegetation and canopy should not systemat-
ically raise predicted temperature, while higher imperviousness
should not systematically cool it). To leverage richer signals where
availablewithout compromising deployability, AESPA trains amobility-
aware teacher model and distills its predictions and fused repre-
sentations into an imagery-only student, treating mobility as priv-
ileged information for cross-city generalization. Figure 1 summa-
rizes the motivation of the AESPAmodel and how physical proxies
align cross-view imagery with urban climatic mechanisms.

We evaluate AESPA across eight metropolitan statistical areas
(MSAs) in the United States, using summer daytime land surface
temperature at the census-tract level as the prediction target. We
benchmark AESPA against strong satellite-only and proxy-based
baselines, as well as ablated variants without certain modalities
(satellite, street view, mobility) and without physics-aware losses,
proxy heads, or teacher–student distillation. Across MSAs, AESPA
achieves the lowest or second-lowest error in almost all cities, re-
ducing average MAE from 1.95 ℃ for the best baseline to 1.33
℃ and increasing the mean tract-level Pearson correlation from
0.61 to 0.76 in within-MSA experiments. In cross-MSA transfer,
it further improves correlation by about 0.05–0.10 over imagery-
only baselines, indicating stronger generalization to unseen cities.
A tract-level case study in Dallas shows that AESPA more faith-
fully reproduces socioeconomic gradients in heat exposure than
ResNet, supporting analysis of disparities across neighborhoods
with different racial and poverty compositions. In summary, our
main contributions are threefold:
• Multimodal framework for tract-level temperature map-
ping.AESPA integrates satellite imagery and street-view panora-
mas (plus mobility profiles during training) via vision encoders
and cross-feature fusion to predict summer daytime temperature
at the census-tract level across eight U.S. metropolitan areas.

• Street-viewphysical proxies andphysics-aware regulariza-
tion. From street-view pixels, AESPA derives five interpretable
proxies (vegetation, canopy, imperviousness, apparent albedo,
shadow) and uses them as auxiliary heads and sign-constrained
regularizers, improving robustness and interpretability without
requiring a full thermodynamic simulator.

• Mobility-aware teacher–student distillation for imagery-
only deployment.AESPA treats mobility as privileged training
information in a teacher model and distills its predictions and
representations into an imagery-only student, enabling better
cross-MSA generalization while requiring only widely available
satellite and street-view imagery at deployment time.

2 Related Works
2.1 Satellite-Based Temperature Estimation
Accurate measurement of urban temperature is crucial for under-
standing the heat island effect and promoting sustainable cities
(SDG 11) [29]. A primary thrust in this area involves estimating
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land surface temperature and air temperature from satellite im-
agery. Early approaches relied on statistical downscaling and phys-
ical retrieval algorithms, combining thermal infrared datawith veg-
etation or urban indiceswithin traditional regression frameworks [8,
39]. While computationally efficient, these methods are inherently
limited in capturing the complex, fine-grained thermal variations
driven by street-level urban morphology.The advent of deep learn-
ing has enabled more sophisticated fusion of multi-source satellite
products. Contemporary work explores the use of multi-resolution
imagery to predict urban air temperature through physically in-
spired loss functions [36], while other approaches integrate ther-
modynamic context for forecasting urban heat island dynamics [55].
Further innovations include hybrid models that couple physical ra-
diative transfer equations with neural networks for robust temper-
ature retrieval [5], as well as interpretable downscaling pipelines
designed for urban environments [10].

These advances have substantially improved satellite-based tem-
perature mapping, but they remain predominantly satellite-centric
and do not exploit street-level views or human activity. In contrast,
we treat satellite imagery as one component within a multimodal
framework, combining it with street-view cues and simple physi-
cal constraints to model intra-urban temperature at finer scale.

2.2 Street-View Imagery and Urban
Microclimate

Street-view imagery provides a ground-level perspective on ur-
ban form, capturing features such as vegetation density and street
canyon geometry that directly influence microclimate. Initial re-
search focused on deriving quantitative indices—such as green view
or sky view factor—and correlating themwith neighborhood-scale
temperature patterns using spatial statistical models [53]. Subse-
quent studies have integrated these street-level features with tra-
ditional land cover data to improve temperature modeling, often
within single-city contexts [38, 42]. Beyond microclimate, the com-
puter vision community has leveraged joint analysis of satellite
and street-view imagery for urban inference tasks, including so-
cioeconomic assessment [22, 52], health prediction [30], and land
use classification [17, 50].

This body of work highlights the value of street-view imagery,
but most microclimate applications rely on a small number of pre-
defined indices used as auxiliary covariates. Our approach instead
derives physically grounded proxies directly from street-view pix-
els and uses them both as conditioning features and auxiliary learn-
ing targets, allowing street-level signals to regularize cross-modal
temperature prediction in a more systematic way.

2.3 Physics-Constrained Environmental
Machine Learning

The integration of physical knowledge into machine learning has
gained increasing attention as a means to improve the robustness
and generalization of environmental and urban sensing systems. In
the context of land surface temperature and urban heat estimation,
recent frameworks have sought to embed physical principles—such
as surface energy-balance constraints or radiative transfer equations—
directly into learning-based models. Examples include coupling
split-windowphysical algorithmswith neural networks for improved

LST retrieval [5], incorporating thermodynamic regularizations into
downscaling and forecasting architectures [4, 27], and using physics-
inspired objectives to guide model training. Beyond urban heat,
similar methodology has been applied to tasks such as human ac-
tivity prediction [34, 49] and high-resolution carbon emission esti-
mation [47, 48] from open data, underscoring the broad applicabil-
ity of physics-aware learning in sustainability contexts. Surveys of
this emerging field further emphasize the value of embedding in-
terpretable physical components into data-driven urban modeling
pipelines [41].

While these approaches demonstrate improved consistencywith
domain knowledge, many depend on detailed physical forcings,
high-resolution 3D geometry, or task-specific simulators and are
typically designed for gridded remote-sensing inputs. We instead
adopt a lightweight physics-aware design that encodeswell-established
monotonic relationships (e.g., between vegetation and temperature),
together with optional spatial smoothness and day–night order-
ing, as soft constraints within a multimodal encoder. This aims to
preserve physical plausibility and interpretability while remaining
compatible with web-based satellite and street-view imagery for
scalable urban temperature estimation.

3 Methods
3.1 Problem Definition
We aim to estimate fine-grained urban temperature at the level of
census tracts across multiple U.S. metropolitan areas. Let 𝒯 denote
the set of all tracts in our study, and index each tract by 𝑖 ∈ 𝒯.
For each tract 𝑖 we obtain three types of inputs that character-
ize its urban context: (1) a high-resolution satellite image 𝐼 sat𝑖 ∈
ℝ𝐻×𝑊×3 centered on the tract; (2) a set of 𝐾 street-view images
𝐼 sv𝑖 = {𝐼 sv𝑖,1 , … , 𝐼 sv𝑖,𝐾 } sampled along roads within the tract, capturing
human-scale morphology such as building facades, trees, and shad-
ing structures; (3) a 168-dimensional mobility profile m𝑖 ∈ ℝ168
that summarizes hourly human activity over summer weeks.

For each tract 𝑖, we observe a scalar target 𝑦𝑖 ∈ ℝ, defined as the
average summer daytime temperature over the study period. The
learning task is to estimate a function 𝑓𝜃 ∶ (𝐼 sat𝑖 , 𝐼 sv𝑖 , m𝑖) ↦ ̂𝑦𝑖
parameterized by 𝜃 , such that the prediction ̂𝑦𝑖 approximates the
observed temperature 𝑦𝑖.

3.2 Model Overview
We propose AESPA, a multimodal framework for tract-level ur-
ban temperature prediction. Building on the inputs defined in Sec-
tion 3.1, it first encodes each modality with a dedicated encoder
to obtain compact satellite, street-view, and mobility representa-
tions. These representations are merged by a cross-feature fusion
block that models their interactions and produces a single tract
embedding, from which the model regresses daytime temperature.
To improve robustness and interpretability, we attach lightweight
latent heads that recover physically meaningful factors from the
same embedding and use them only during training to regularize
the temperature mapping. Finally, we adopt a teacher–student de-
sign: a mobility-aware teacher is trained with all modalities, and
an imagery-only student is distilled from it. The student branch,
which relies only on imagery, is used at inference time. Figure 2
illustrate the overall model.
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Figure 2: Overview of the proposed AESPA model.

3.3 Multimodal Encoders
Given the three input modalities, our model first maps each of
them into a compact tract-level representation. AVision Transformer-
based [6] satellite encoder 𝑔sat(⋅)maps the high-resolution satellite
patch 𝐼 sat𝑖 to a 𝑑ℎ-dimensional embedding zsat𝑖 = 𝑔sat(𝐼 sat𝑖 ) ∈ ℝ𝑑ℎ ,
summarizing large-scale land cover and morphological patterns
around each tract.

For the set of street-view images 𝐼 sv𝑖 = {𝐼 sv𝑖,1 , … , 𝐼 sv𝑖,𝐾 }, we first
encode each view with a CLIP visual transformer encoder [32]
𝜙sv(⋅) and then aggregate them with attention-based multiple in-
stance learning (MIL) [13] to handle a variable number of views:

𝛼𝑖,𝑘 = exp(w⊤ tanh(V𝜙sv(𝐼 sv𝑖,𝑘 )))
∑𝑘′ exp(w⊤ tanh(V𝜙sv(𝐼 sv𝑖,𝑘′ )))

, zsv𝑖 = ∑𝑘 𝛼𝑖,𝑘 𝜙sv(𝐼 sv𝑖,𝑘 ), yielding
a single tract-level embedding that emphasizes thermally relevant
street scenes.

For the teacher model, the 168-hour mobility sequence m𝑖 is
normalized and then passed through a 1-D convolution and a gated
recurrent unit: zmob

𝑖 = 𝑔mob(m𝑖) ∈ ℝ𝑑𝑚 , capturing diurnal and
weekly activity rhythms in tract 𝑖. The student model shares the
same satellite and street-view encoders but omits 𝑔mob, enabling
deployment in settings without mobility data.

3.4 Street-View Physical Proxies
Beyond the learned street-view embedding, we derive five simple,
physically motivated scalar proxies from the same set of street-
view images. These quantities approximate well-known determi-
nants of urban heat: vegetation and tree canopy are generally as-
sociated with lower land-surface temperatures [8, 46], whereas im-
pervious, low-albedo, and unshaded surfaces tend to increase sur-
face and air temperature and strengthen urban heat islands [37, 43].
For each tract 𝑖 and view 𝐼 sv𝑖,𝑘 , we work in RGB space, denote the

luminance by 𝐺 = 0.299 𝑟 + 0.587 𝑔 + 0.114 𝑏, and build five per-
image proxies p𝑖,𝑘 ∈ ℝ5:

(i) Vegetation.Weapproximate a vegetation index by contrasting
green and red channels 𝑣𝑖,𝑘 = (𝑔 − 𝑟)/(𝑔 + 𝑟 + 10−6) and take its
image-wise mean [28].

(ii) Tree canopy. We combine a “green-dominant’’ mask {𝑔 >
100, 𝑔 > 𝑟, 𝑔 > 𝑏} with an HSV-based green mask obtained from
standard RGB–HSV conversion (hue in a green range, sufficient
saturation and brightness). The proxy is the average of the two
pixel fractions, clipped to [0, 1] [25].

(iii) Impervious surface. We detect bright, low-saturation pixels
{𝐺 > 150, 𝑆 < 0.2} as a visual proxy, and blend this fractionwith an
NDBI (Normalized Difference Built-up Index)-like term (𝑟 −𝑔)/(𝑟 +
𝑔 + 10−6) using fixed weights (0.6 and 0.4) and clipping the result
to [0, 1].

(iv) Albedo.We use the mean luminance normalized to [0, 1], i.e.,
𝑎𝑖,𝑘 = 𝐺/255, clipped to [0.1, 0.9] as proxies of albedo.

(v) Shadow. We take the fraction of very dark pixels {𝐺 < 50}
and clip it to [0, 0.5].

For each tract, we aggregate over all views, p𝑖 = 1
𝐾 ∑𝐾

𝑘=1 p𝑖,𝑘 ∈
ℝ5, obtaining an interpretable low-dimensional summary of the
street-level physical context.These proxies are pre-computed from
street-view images and later used both as conditioning signals and
as targets of lightweight prediction heads in our model.

3.5 Cross-Feature Fusion and Prediction Heads
To capture interactions betweenmodalities, ourmodel fuses the en-
codings zsat𝑖 , zsv𝑖 , the proxy vectorp𝑖, and, for the teacher, themobil-
ity embedding zmob

𝑖 . We first apply a vector-level cross-attention
module to let the satellite and street-view embeddings attend to
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each other, producing z̃sat𝑖 and z̃sv𝑖 . This step allows each view to
adapt its representation in light of the other.

We then form a simple conditioning vector

u𝑖 = [ ecity(𝑖) ‖p𝑖 ‖ zmob
𝑖 ],

where ecity(𝑖) is a learnable city embedding and the mobility term
is omitted for the student. A FiLM-style conditioner [31] ℎcond(⋅)
maps u𝑖 to modulation parameters that rescale and shift the at-
tended features, and a shallow multilayer perceptron 𝑓fuse(⋅) pro-
duces the fused tract representation

h𝑖 = 𝑓fuse(z̃sat𝑖 , z̃sv𝑖 , ℎcond(u𝑖)) ∈ ℝ𝑑ℎ .
On top of h𝑖 we attach two types of lightweight heads. A tem-

perature regression head ̂𝑦𝑖 = 𝑔temp(h𝑖) produces the predicted
daytime temperature. In parallel, a small linear–nonlinear head
p̂𝑖 = 𝑔phys(h𝑖) ∈ ℝ5 recovers an estimate of the five physical
proxies from the same representation. While only ̂𝑦𝑖 is used at in-
ference time, p̂𝑖 is used during training to keep h𝑖 aligned with
physically meaningful variations, which we exploit in the physics-
aware regularization described next.

3.6 Physics-Aware Regularization
Our primary objective is to predict tract-level daytime tempera-
ture, but we exploit basic physical knowledge about urban heat to
regularize the mapping from h𝑖 to ̂𝑦𝑖. The proxy predictions p̂𝑖 al-
low us to encode simple sign-level relations between urban form
and temperature without imposing a rigid parametric model.

Proxy–temperature consistency. We focus on qualitative trends
supported by urban climate studies: higher vegetation and tree
canopy are associated with lower temperature, whereas higher im-
perviousness and stronger direct illumination are associated with
higher temperature. Let ̂𝑝𝑖,𝑗 denote the 𝑗-th component of p̂𝑖 and
𝑠𝑗 ∈ {−1, +1} encode the expected sign of its correlation with tem-
perature (e.g., 𝑠veg = −1, 𝑠imp = +1). For a mini-batch ℬ, we com-
pute the empirical Pearson correlation 𝑟𝑗 = corr({ ̂𝑝𝑖,𝑗 }𝑖∈ℬ, { ̂𝑦𝑖}𝑖∈ℬ)
and penalize violations:

ℒphys = ∑
𝑗

max(0, −𝑠𝑗 𝑟𝑗).

This softly encourages the learnedmapping to respect knownmono-
tone trends while leaving the exact functional form data-driven.

Day–night ordering. When nighttime temperature labels 𝑦night𝑖
are available, we attach an auxiliary head 𝑔night(h𝑖) that predicts
̂𝑦night𝑖 and enforce a simple ordering constraint reflecting diurnal

cycles. Specifically, we require daytime temperature to be no lower
than nighttime temperature up to a small margin 𝛿 > 0:

ℒrank = 1
|ℬ| ∑𝑖∈ℬ

max(0, ̂𝑦night𝑖 − ̂𝑦𝑖 + 𝛿).

This auxiliary loss shapes the representation without changing the
prediction target.

3.7 Mobility-Aware Teacher–Student Training
We emphasize that the teacher model is not intended to be the
primary predictor during inference. Instead, its role is to provide

mobility-informed structural inductive bias to the student model
during training. Given that real-world mobility signals are often
noisy, incomplete, and highly city-specific, direct reliance on them
at inference time could compromise generalization. The student
model, distilled from the teacher, focuses on capturing transfer-
able behavioral patterns while avoiding overfitting to rawmobility
data.The teacher and student share the same satellite and street-
view encoders and fusion module, but only the teacher consumes
the mobility embedding zmob

𝑖 . The teacher produces fused repre-
sentations h𝑖 and temperatures ̂𝑦𝑖, and is trained with the regres-
sion and physics-aware terms described above, leveraging all modal-
ities.

The student model receives only satellite and street-view inputs
and the tract-level proxies p𝑖, yielding a fused representation h𝑆𝑖
and a temperature prediction ̂𝑦𝑆𝑖 = 𝑔𝑆temp(h𝑆𝑖 ).

To transfer the benefits of mobility-aware training without re-
quiringmobility at inference, we align the student with the teacher
through prediction and feature distillation:

ℒkd = 1
|ℬ| ∑𝑖∈ℬ

| ̂𝑦𝑆𝑖 − ̂𝑦𝑖|, ℒfd = 1
|ℬ| ∑𝑖∈ℬ

‖h𝑆𝑖 − h𝑖‖22.

During student training, these distillation terms are combinedwith
the standard regression and regularization objectives to shape h𝑆𝑖
and ̂𝑦𝑆𝑖 towards the mobility-enhanced teacher, while the deployed
model remains imagery-only.

3.8 Training Objective
We train the teacher and student in two stages. For a mini-batch
ℬ, the teacher minimizes

ℒteacher = ℒtemp + 𝜆proxy ℒproxy + 𝜆phys ℒphys + 𝜆rank ℒrank

where ℒtemp = 1
|ℬ| ∑𝑖∈ℬ| ̂𝑦𝑖 −𝑦𝑖| is the temperature regression loss

and ℒproxy = 1
|ℬ| ∑𝑖∈ℬ‖p̂𝑖 − p𝑖‖22 encourages accurate reconstruc-

tion of the proxies.
In the second stage, we freeze the teacher and optimize the stu-

dent with
ℒstudent = ℒ𝑆

temp + 𝜆proxy ℒ𝑆
proxy + 𝜆phys ℒphys

+ 𝜆rank ℒrank + 𝜆kd ℒkd + 𝜆fd ℒfd,
with ℒ𝑆

temp and ℒ𝑆
proxy defined analogously.

4 Experiments and Results
In this section, we evaluate our proposed AESPA model to answer
the following research questions:

• RQ1: Can AESPA outperform satellite-only and street-view-only
baselines on tract-level daytime temperature prediction across di-
verse U.S. metropolitan areas?

• RQ2: How do different input modalities and physics-aware com-
ponents (proxy heads, physics-consistency loss, and day–night rank-
ing loss) contribute to the accuracy and robustness of AESPA?

• RQ3: Does themodel improve cross-MSAgeneralization compared
with purely imagery-based models?

• RQ4: Can AESPA reveal intra-urban heat disparities across neigh-
borhoods with different socioeconomic characteristics?
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Table 1: LST prediction results on 8 U.S. MSAs. Best results are in bold and the second best results are underlined.

MSA Dallas Washington Miami Boston Seattle Minneapolis St. Louis Pittsburgh
Metrics MAE 𝜌 MAE 𝜌 MAE 𝜌 MAE 𝜌 MAE 𝜌 MAE 𝜌 MAE 𝜌 MAE 𝜌
ResNet 1.7710 0.5966 1.7013 0.4407 1.4232 0.4819 2.2181 0.8292 3.1445 0.3698 2.1117 0.6660 2.0136 0.7714 1.1821 0.7586
Tile2vec 4.6536 0.5492 1.9042 0.4742 5.0082 0.0056 3.0756 0.7829 1.8170 0.6024 2.6846 0.5938 3.8418 0.7851 1.8419 0.6963
UrbanHeat 8.5411 0.4859 6.6003 0.3924 1.5009 0.3966 5.6580 0.8374 6.5082 0.3833 3.1428 0.5626 2.4598 0.6619 3.1477 0.7032
Proxy + Regression 1.7935 -0.1969 1.9574 0.0491 1.8559 0.0628 2.8680 0.4181 2.2315 0.5244 2.3418 -0.0187 2.0517 -0.2260 2.35 0.1713
AESPA 0.8926 0.8499 1.4112 0.6398 1.1817 0.7688 1.1627 0.9049 1.5904 0.7740 1.4763 0.7173 1.3938 0.7800 1.5153 0.6584
w/o Satellite 0.8835 0.8459 1.5637 0.6135 1.1539 0.7578 1.1525 0.9029 2.2495 0.4887 1.5681 0.6159 1.5931 0.7546 1.5367 0.6645
w/o Street View 0.9226 0.8412 1.4486 0.6162 1.1167 0.7877 1.0888 0.9088 1.7926 0.7270 1.6100 0.6289 1.4124 0.7666 1.4746 0.6632
w/o Mobility 0.9840 0.8235 1.5346 0.6041 1.1428 0.7895 1.1464 0.9134 1.6095 0.7789 1.4508 0.6928 1.5398 0.7794 1.4877 0.6375
Satellite Only 0.9265 0.8358 1.5642 0.5546 1.1202 0.7728 1.0660 0.9146 1.9609 0.6904 1.5830 0.6840 1.4387 0.7895 1.6166 0.633
Street View Only 0.9246 0.8469 1.4947 0.6164 1.0432 0.8023 1.1310 0.8985 1.7819 0.7575 1.5301 0.6526 1.3499 0.7814 1.5164 0.6368
w/o ℒ𝑝ℎ𝑦𝑠 0.8951 0.8471 1.4747 0.6147 1.1544 0.7544 1.1045 0.9087 1.6981 0.7478 1.6026 0.6729 1.3897 0.7945 1.4791 0.669
w/o ℒ𝑝𝑟𝑜𝑥𝑦 0.9627 0.8135 1.3726 0.6171 1.0837 0.8089 1.1771 0.8949 1.8172 0.7190 1.7175 0.6280 1.3706 0.8046 1.5032 0.6724
w/o ℒ𝑟𝑎𝑛𝑘 0.9821 0.8083 1.4939 0.6283 1.1190 0.7849 1.1607 0.8892 1.8316 0.7306 1.5867 0.6587 1.4068 0.8104 1.4752 0.6674
w/o Distillation 0.9110 0.8402 1.4570 0.6061 1.1259 0.7536 1.1692 0.9018 1.9119 0.7226 1.6927 0.5633 1.4093 0.7867 1.4446 0.7052

4.1 Experimental Settings
Datasets.Weevaluate ourmodel usingmulti-modal urban datasets
collected from 8metropolitan statistical areas (MSAs) in the United
States. These datasets integrate socioeconomic indicators, satellite
and street-view imagery, human mobility patterns, and Land Sur-
face Temperature (LST) records; the details of the datasets can be
found in Appendix A.
Baseline Models. We compare AESPA against following repre-
sentative baselines: (i) ResNet [9] uses an ImageNet-pretrained
ResNet-18 encoder applied separately to satellite and street-view
images, followed by global average pooling and feature concatena-
tion at the tract level. (ii) Tile2Vec [15] employs the same fusion
architecture as the ResNet baseline, but initializes the ResNet-18
encoder with Tile2Vec-pretrained weights. (iii) UrbanHeat [36]
follows a satellite-only design based on multi-scale context. It ex-
tracts satellite tiles centered at the tract centroid with approximate
ranges of 250m and 500m, and apply a cross-attention module to
fuse the two scales before regressing LST. (iv)Proxy+Regression
uses the street-view–derived physical proxies aggregated at the
tract level as input to a linear regression model.
Training and EvaluationMetrics. Training details can be found
in Appendix B. We evaluate tract-level temperature prediction un-
der two protocols: (i) within-MSA prediction, where models are
trained and tested on tracts from the same MSA, and (ii) cross-MSA
prediction, wheremodels are trained on oneMSA and directly eval-
uated on a different held-out MSA.

For both settings, we report two standard metrics on the corre-
sponding test sets: First, the Mean Absolute Error (MAE) measures
the average absolute difference between predicted and observed
daytime LST values, with lower MAE indicating higher accuracy.
Second, we compute the Pearson correlation coefficient 𝜌 between
predicted and observed tract-level temperatures, which quantifies
how well the model preserves the spatial ranking of hotter and
cooler tracts; higher 𝜌 indicates better agreement.

4.2 Performance Evaluation
Overall Performance (RQ1). Table 1 reports within-MSA day-
time LST prediction results across the eight U.S. MSAs. AESPA
achieves the lowest MAE in 7 out of 8 MSAs and the highest or

(a) Groundtruth (b) AESPA (Ours) (c) ResNet (d) UrbanHeat
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Figure 3: Groundtruth (a) and predicted LST of AESPA (b),
UrbanHeat (c) and ResNet (d) in Boston MSA.

second-highest Pearson correlation 𝜌 in all cases. On average, AESPA
reduces MAE from 1.95∘C for the strongest baseline (ResNet) to
1.33∘C (a relative reduction of 32%), while increasing the mean cor-
relation from 0.61 to 0.76. In individual cities, the gains are partic-
ularly pronounced in dense coastal MSAs such as Boston and Seat-
tle, where AESPA lowers MAE by more than 1∘C compared with
ResNet and improves 𝜌 by around 0.1–0.2. Only in Pittsburgh does
ResNet obtain a slightly better performance, but AESPA remains
competitive, indicating that the multimodal design is generally ro-
bust across diverse urban forms.

Figure 3 provides a visual comparison for the BostonMSA.AESPA’s
predictions (b) closely reproduce both the cooler corridors and the
localized hot spots in dense built-up areas visible in the ground-
truth map (a), whereas UrbanHeat and ResNet (c-d) tend to over-
smooth city-centre temperatures and miss cooler pockets embed-
ded within otherwise warm regions. This agreement indicates that
AESPA not only improves numerical accuracy but also better pre-
serves fine-grained differences in heat levels across census tracts.
Ablation Studies (RQ2). The lower part of Table 1 reports abla-
tions that progressively remove AESPA’s key components.We first
examine the role of multimodal fusion. Removing either satellite
or street-view imagery (w/o Satellite, w/o Street View) increases the
average MAE by about 6–10% and reduces the mean tract-level
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0.8499 0.2614 0.5717 0.8215 0.6619 0.4075 0.6139 0.5698

0.5660 0.6398 0.4732 0.7500 0.6196 0.4208 0.5955 0.4942

0.6611 0.3993 0.7688 0.7574 0.6995 0.2715 0.6804 0.5089

0.7820 0.2890 0.5609 0.9049 0.6122 0.3453 0.6075 0.5812

0.5602 0.2419 0.5593 0.7566 0.7740 0.3869 0.6779 0.3963

0.5579 0.2050 0.3524 0.6283 0.5078 0.7173 0.4817 0.5182
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Figure 4: Comparison of performance (Pearson correlation
𝜌) evaluated on cross-MSA experiments of AESPA model.

correlation 𝑃 by roughly 0.06. The degradation is especially pro-
nounced in Seattle and Minneapolis, where MAE increases by up
to 0.66∘C and 𝜌 drops by about 0.30 when one view is removed,
indicating that both nadir-view and street-level cues are needed
to capture complex microclimates in dense, heterogeneous MSAs.
Training single-view variants (Satellite Only, Street View Only) also
underperforms the full model on average, although Street View
Only comes close to AESPA in some MSAs, suggesting that street-
level morphology carries strong predictive power that is further re-
fined by satellite context. When mobility profiles are removed (w/o
Mobility), performance declines more modestly (around 3% higher
MAE and slightly lower 𝜌), but the drop is consistent, confirming
that mobility-informed supervision provides additional signal be-
yond static imagery.

We then investigate the physics-aware objectives. Disabling the
physics-consistency, proxy, or day–night ranking losses (w/oℒphys,
w/o ℒproxy, w/o ℒrank) all lead to worse average performance, with
MAE increasing by 2–6% and 𝜌 decreasing by 0.01–0.02.The largest
degradations occur for w/o ℒproxy and w/o ℒrank, particularly in
Seattle and Minneapolis, indicating that enforcing monotonic re-
lationships with street-view proxies and the day–night ordering
helps stabilize learning in climates with strong diurnal contrast.

Finally, removing the teacher–student distillation (w/o Distilla-
tion) results in an average MAE increase of about 5% and a no-
table drop in 𝜌 (e.g., from 0.72 to 0.56 in Minneapolis), showing
that guidance from the mobility-augmented teacher is important
even for within-MSA prediction. Overall, these ablations support
our design choices: fusing satellite and street-view imagery, in-
corporating lightweight physics-aware losses, and distilling from
a mobility-informed teacher each make complementary contribu-
tions to the accuracy and robustness of AESPA. This suggests that
the distillation process enables the student to internalize essential
behavioral structures while remaining resilient to the noise and
city-specific biases inherent in raw mobility data, ultimately lead-
ing to superior generalization.

a

b

c

Figure 5: Average 𝜌 on cross-MSA experiments with Miami
(a), Seattle (b), and St. Louis (c) as source MSA.

Cross-MSA Prediction (RQ3). Figure 4 summarizes the cross-
MSA performance of AESPA (student). As expected, diagonal en-
tries (train and test on the same MSA) are highest, but most off-
diagonal cells still reach 𝜌 ≈ 0.5–0.7, indicating that amodel trained
in one MSA can recover much of the relative temperature ordering
across census tracts in other MSAs without target labels. Transfers
between climatically similarMSAs (e.g.,Miami→Dallas, Boston→St.
Louis) achieve the strongest correlations, whereas transfers into
Washington and Minneapolis are consistently weaker, suggesting
that these MSAs exhibit more distinctive climatic conditions.

Figure 5 compares AESPA with ablated variants and baselines
by averaging 𝜌 over all targets for three source MSAs. Across Mi-
ami, Seattle, and St. Louis, AESPA attains the highest average cor-
relation and improves over ResNet and UrbanHeat by about 0.05–
0.10. Single-view models (Street Only, Satellite Only) and variants
without physics-aware losses or the proxy module perform notice-
ablyworse, and removing distillation further reduces 𝜌 for all three
sources. These results show that multimodal fusion, lightweight
physics constraints, and teacher–student distillation all contribute
to AESPA’s robustness when transferring to unseen MSAs.
Case Study: Socioeconomic Heat Gradients in Dallas (RQ4).
To examine whether AESPA can reveal intra-urban heat dispar-
ities across socioeconomic groups, we conduct a case study for
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Figure 6: Average LST as a function of Dallas MSA’s
tract-level socioeconomic features, comparing ground truth,
AESPA, and ResNet.

the Dallas MSA. For each census tract, we compute the share of
White, Black, and Hispanic residents and the share of people liv-
ing in poverty, then group tracts into bins by group share and plot
the average daytime LST for ground truth, AESPA, and the best-
performing baseline in Figure 6. The ground-truth curves show
clear socioeconomic gradients: tracts with lower White share and
higherHispanic or poverty share tend to be hotter, while LST peaks
at intermediate Black shares. AESPA closely follows these patterns
in both level and slope, whereas ResNet systematically overesti-
mates temperatures and attenuates several gradients, particularly
at high White shares and low poverty shares. This suggests that
AESPA not only improves overall numerical accuracy but also bet-
ter preserves the underlying relationships between heat exposure
and neighborhood composition, enabling a more faithful charac-
terization of intra-urban heat disparities.

5 Discussions
Our findings show that web-based multimodal data can substan-
tially enhance tract-level estimation of urban land surface tem-
perature. By combining satellite imagery, street-view panoramas,
mobility-derived activity profiles, and physically motivated prox-
ies, AESPA consistently outperforms satellite-only and proxy-only
baselines in bothwithin-MSA and cross-MSA settings.Performance
variations across cities are expected due to differences in urban
morphology, data availability, and imaging conditions. In particu-
lar, methods relying on a single modality may be more sensitive
to city-specific characteristics.The framework fits naturally into
the vision of using web resources to support sustainable and eq-
uitable urban services, complementing emerging open workflows
and dashboards for mapping urban heat and equity risks [7, 33].

These improvements carry direct implications for climate equity
and the Sustainable Development Goals, particularly SDG 10 and
SDG 11 [29]. A growing body of work has documented that lower-
income and raciallymarginalized neighborhoods are systematically
hotter than wealthier, predominantly White areas in U.S. cities [3,
11, 45]. AESPA’s tract-level maps recover similar spatial disparities

from web-based data alone, and its proxy heads attribute elevated
temperatures to combinations of reduced vegetation and canopy,
higher impervious surfaces, and lower shading, consistent with
established urban-climate mechanisms. Coupled with web-based
visualization tools, these outputs could underpin interactive heat-
risk dashboards that help city agencies, NGOs, and communities
identify where heat burdens and adaptation deficits are concen-
trated and which levers (e.g., urban greening, cool roofs, shading)
are most relevant.

Methodologically, AESPA illustrates a pragmatic recipe for physics-
aware multimodal learning in environmental applications. Recent
work on physics-informed machine learning for weather and cli-
mate has shown that embedding domain constraints into neural
networks can improve robustness and interpretability [4, 16, 41,
51]. Instead of relying on detailed forcings or high-resolution 3D
simulators, we encode a small set of well-established physical re-
lationships (e.g., monotonic links between vegetation proxies and
temperature) and a simple day–night ranking constraint as soft
losses within a multimodal encoder. The teacher–student design
further shows how richer modalities such as mobility, increasingly
used to characterize thermal exposure and mobility-heat interac-
tions [26, 44], can be exploited during training and then distilled
into an imagery-only student, improving cross-city generalization
while keeping deployment lightweight and compatible with data-
poor environments.

This work has limitations. Empirically, we focus on eight U.S.
metropolitan areas with high data coverage; however, it remains
to be seen how the framework generalizes to regions with sparse
web data, distinct urban forms, or extreme climates. Furthermore,
the physics-aware components inAESPA are designed as direction-
ally consistent regularization rather than detailed physical simula-
tions. While this maintains computational scalability, these priors
remain relatively coarse and do not explicitly account for temporal
dynamics, extreme heatwaves, or long-term adaptation trends. Fu-
ture work could incorporate additional modalities – such as night-
time lights or semantic 3D information – and integrate richer phys-
ical constraints while preserving model efficiency. Finally, embed-
ding AESPA into interactive web platforms that couple heat esti-
mates with health, energy, or mobility indicators would further
align with the Web4Good agenda. By transforming web-based im-
agery and mobility into transparent, deployable tools, such exten-
sions can better support climate equity and heat risk mitigation.
Ethical Use of Data. Protecting individual privacy is a paramount
consideration throughout our study. The urban imagery data em-
ployed for our model training originates from publicly available
sourceswith privacy-protective licenses 2.These images are coarse-
grained in resolution, preventing the identification of individuals.
Themobility patterns, socioeconomic indicators, and LST are all ag-
gregated at the tract level, ensuring no individual targeting. Conse-
quently, our research complies with ethical data usage standards.
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A Dataset Details

Table 2: Basic statistics of 8 metropolitan statistical areas
(MSAs) in the U.S.

MSA Average LST (∘C) #Census Tracts

Dallas 40.7 1,312
Washington 33.57 1,359
Miami 37.7 1,216
Boston 31.54 1,003
Seattle 31.82 718
Minneapolis 31.29 785
St. Louis 34.88 615
Pittsburgh 30.52 711

StudyAreas.We focus on 8metropolitan statistical areas (MSAs)
in the U.S. and take census tract as our basic spatial unit.TheMSAs
areDallas-FortWorth-Arlington, TXMetroArea (shortened as “Dal-
las”),Washington-Arlington-Alexandria, DC-VA-MD-WVMetroArea
(“Washington”),Miami-Fort Lauderdale-Pompano Beach, FLMetro
Area (“Miami”), Boston-Cambridge-Newton, MA-NH Metro Area
(“Boston”), Seattle-Tacoma-Bellevue, WA Metro Area (“Seattle”),
Minneapolis-St. Paul-Bloomington,MN-WIMetroArea (“Minneapo-
lis”), St. Louis,MO-ILMetroArea (“St. Louis”), Pittsburgh, PAMetro
Area (“Pittsburgh”). Socioeconomic indicators for each census tract
are gathered from the 2019 American Community Survey (ACS) 5-
year estimates3.

Urban Imagery. Urban imagery is collected from web-based
mapping platforms. For every census tract, we obtain one nadir-
view satellite tile covering the tract and its immediate surround-
ings from Esri4 and resize it to 256 × 256 pixels for model input.
In addition, we sample up to 40 street-view panoramas along pub-
lic roads within each tract. These panoramas are downloaded via
the Google Street ViewAPI5 and pre-processed (cropping, resizing,
and normalization) before being encoded into tract-level visual rep-
resentations.

Mobility Data.Humanmobility data are derived from the Safe-
Graph Weekly Patterns6 product for August to October 2019. For
each census tract, we aggregate the hourly visitor counts of all
points of interest (POIs) located within the tract into a 7 × 24 his-
togram. Summing over POIs and normalizing the histogram by
its total count yields a 168-dimensional mobility profile m, which
characterizes the distribution of visits to that tract over a week on
average.

LSTData.Tract-level LST is sourced from the United States Sur-
face Urban Heat Island database [2]. We extract summer daytime
LST as the prediction target; the mean LST values for the eight
MSAs are detailed in Table 2. While different modalities operate at
varying native temporal resolutions, all dynamic signals are tem-
porally aggregated to match the prediction horizon. Consequently,
the model learns integrated heat exposure patterns within a consis-
tent temporal window rather than modeling fine-grained, instan-
taneous dynamics.

B Implementation Details
All models are trained for up to 30 epochs on a single NVIDIAA100
GPU. We first train the teacher model and then distill its knowl-
edge into the student model. Optimization is performed with the
AdamW optimizer [24], using a learning rate of 1 × 10−4 and a
weight decay of 0.05, together with early stopping based on vali-
dation performance. For the teacher stage, we set the loss weights
to 𝜆phys = 0.05, 𝜆proxy = 0.0, and 𝜆rank = 0.1. For the student
stage, we use 𝜆phys = 0.2, 𝜆proxy = 0.3, 𝜆rank = 0.1, 𝜆kd = 0.1,
and 𝜆fd = 0.05. Within each MSA, data are split into 60%, 20%,
and 20% of tracts for training, validation, and testing, respectively.
We repeat all experiments with five random splits and report the
average performance on test sets.

3https://www.census.gov/programs-surveys/acs
4https://learn.arcgis.com/en/projects/download-imagery-from-an-online-database/
5https://developers.google.com/maps/documentation/streetview/overview
6https://docs.deweydata.io/docs/advan-research-weekly-patterns
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