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ABSTRACT
Generating mobile traffic in urban contexts is important for net-
work optimization. However, existing solutions show weakness in
capturing complex temporal features of mobile traffic. In this paper,
we propose a Knowledge-Guided Conditional Diffusion model (KG-
Diff) for controllable mobile traffic generation, where a customized
denoising network of diffusionmodel is designed to explore the tem-
poral features of mobile traffic. Specifically, we design a frequency
attention mechanism that incorporates an Urban Knowledge Graph
(UKG) to adaptively capture implicit correlations between mobile
traffic and urban environments in the frequency domain. This ap-
proach enables the model to generate network traffic correspond-
ing to different environments in a controlled manner, enhancing
the model’s controllability. Experiments on one real-world dataset
show that the proposed framework has good controllability and
can improve generation fidelity with gains surpassing 19%.

CCS CONCEPTS
• Networks → Network simulations; • Information systems
→ Spatial-temporal systems.
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Generative model; Diffusion models; Mobile traffic generation
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1 INTRODUCTION
Mobile web applications have become an integral part of people’s
daily lives, with online socializing platforms such as Instagram,
and e-commerce sites like Alipay. As a result, a large volume of
mobile traffic data is generated, providing valuable information on
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network status and human activity. The traffic data captures time-
varying network information from different locations, which can
be used by both researchers to solve within and beyond networking
problems. For example, utilizing the traffic data to develop resource
scheduling/optimization algorithms [4, 9] or inferring demographic
patterns [3] and implementing urban planning [11]. Accessing to
such data is essential for conducting research in different appli-
cations, while the data is limited to a few researchers due to the
complexity and resource-intensiveness of data collection [2], as well
as strict local policies and regulations [7]. Moreover, mobile traffic
data contain sensitive individual or regional information. Sharing
such data poses significant privacy risks and legal implications.
Therefore, researchers face significant challenges in acquiring and
utilizing real-world mobile traffic data for their studies.

One practical and promising solution is to synthesize mobile
traffic data. The primary objective of the solution is to create high-
fidelity, time-varying mobile traffic data in urban contexts, which is
a conditional generation process [15]. It involves information such
as populations, land uses, and Point of Interest (POI) distributions
within the city to serve as conditions to control the generated data.
Through the method, the generated data exhibits similar character-
istics to real-world data given arbitrary contextual features, which
enables researchers to produce their customized network datasets.
Existing studies have made initial efforts to generate mobile traffic
data. For example, Wang et al. [14] utilized a Generative Adversarial
Network (GAN) with causal convolution to capture the temporal
dependencies of network traffic data. Xu et al. [15] proposed a Spec-
traGAN framework that leverages two GANs from both time and
frequency domains to generate mobile traffic data. Gong et al. [5]
used Variational AutoEncoder (VAE) to impute mobile traffic data
in a compressed manner. However, existing studies encounter two
significant limitations that degrade their overall performance.

(i). Traditional generative models such as VAE and GAN strug-
gle to generate network traffic data with high controllability. VAE
compresses origin data into a latent space, which fails to capture
the intricate correlation between conditions and network traffic,
leading to a situation where the conditions cannot effectively con-
trol the model. GAN simultaneously trains two neural networks,
which suffer from instability during the training process and the
phenomenon of mode collapse. These issues result in the models
only generating fixed patterns of network traffic data and failing to
utilize conditional information to enhance the controllability.
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Figure 1: KG-Diff framework for urban mobile traffic generation.

(ii). Existing studies fail to model various periodic features of
mobile traffic. Mobile traffic shows multi-scale periodicity in the
temporal domain. To characterize the periodic patterns and aperi-
odic features, some works manually decompose mobile traffic with
a few fixed patterns, such as daily patterns (with 24 hours) or weekly
patterns [6], while the type of decomposition neglects some small-
scale periods that will reduce the overall fidelity of generated data.
Moreover, there exists a correlation between urban environments
and network traffic. Existing research often overlooks this potential
correlation, leading to a degradation of generation performance.

To mitigate the above limitations, we propose a Knowledge-
Guided conditional Diffusion model (KG-Diff) with a customized
denoising network for generating mobile traffic data in the urban
environment. Our contributions can be summarized as:

• We propose an attention-based approach to incorporate urban
contextual features extracted from an Urban Knowledge Graph
(UKG) into the diffusion model. Unlike GANs/VAEs that generate
data through a single forward propagation process, the attention
approach is applied in each denoising step to fuse conditions with
network traffic. This enhances the control of conditional informa-
tion over the generation process, which tackles the first limitation.

• We further decompose network traffic into multi-scale peri-
ods in the frequency domain. Unlike manually specifying a fixed
number of periods, the frequency-based decomposition adaptively
explores the potential correlations between different periods of
network traffic and urban contextual features, which enhances the
generation fidelity and addresses the second limitation.

• We evaluate the KG-Diff on a real-world dataset. The result
demonstrates the model improves generation fidelity by 19% and
shows good controllability to generate desired traffic patterns.

2 PROBLEM FORMULATION AND METHOD
2.1 Mobile Traffic Generation Problem
Our article focuses primarily on downlink traffic within each BS
communication area. The generation problem of mobile traffic is
defined as: Given a target BS, generating the mobile traffic sequence
S across a period conditioning on urban contextual information C.
However, generating mobile data in an urban environment is not a
straightforward task. The urban environment encompasses various
information such as population, POIs, and regional functions, which
is hard to comprehensively characterize. On the other hand, there

exists complex correlations between urban features and mobile
traffic. Effectively capturing and utilizing the correlation to guide
traffic generation needs to be addressed.

2.2 KG-Diff Framework
The framework is depicted in Figure 1 which includes 4 units.

2.2.1 Urban feature construction unit. We employ Urban Knowl-
edge Graph (UKG) [6, 8, 13], covering entities like BS, POIs, and
functional regions in mobile networks, which integrates geographi-
cal and semantic relations to fully depict urban features. It includes
triplets on factual knowledge as 𝐾 = {ℎ, 𝑡, 𝑟 } that denotes head
entities, tail entities, and linking relations. To effectively extract
context features from the UKG, we leverage a representation learn-
ing method, TuckER[16], to learn the relationships 𝑟 and obtain
latent embeddings of each entity, so that the embeddings can serve
as condition vectors of the denoising network. Specifically, TuckER
measures the plausibility scores for triplet {ℎ, 𝑡, 𝑟 } as

𝑣 (ℎ, 𝑡, 𝑟 ) = W × 𝑒ℎ × 𝑒𝑡 × 𝑒𝑟 , (1)

where 𝑊 ∈ R𝑑×𝑑×𝑑 is the core tensor of the model, 𝑑 and ×𝑖
represent the embedding dimension and the tensor product. The
𝑒ℎ, 𝑒𝑡 ∈ R𝑑 is the learnable vector of UKG entities. By optimizing the
cross-entropy loss between positive triplets and negative triplets,
we can obtain the KG Embedding (KGE) as K = {𝑘𝑏 ∈ R𝑑 } and
input to the frequency mutual attention unit.

2.2.2 Periodical decomposition unit. The unit is responsible for
transforming the network traffic from the time domain to the fre-
quency domain. Denote hidden features as 𝑥𝑛 that is the concatena-
tion of noise data and position embeddings in denosing step 𝑛, we
transform 𝑥𝑛 into frequency-domain Y𝑛 via Fourier transforma-
tion and decompose Y𝑛 into𝑀 frequency bases {Y𝑚}𝑀 and one
residual Y𝑟 . The decomposition process can be expressed as

Y𝑚 = (0, ..., arg 𝑡𝑜𝑝 ( |Y𝑛 |)𝑚𝑓0:(𝑚+1) 𝑓0 , ..., 0), (2)

Y𝑟 = Y𝑛 −
𝑀∑︁
𝑚=1

Y𝑚, where Y𝑛 = F (𝑥𝑛), (3)

where arg 𝑡𝑜𝑝 ( |Y|)𝑚𝑓0:(𝑚+1) 𝑓0 denotes selecting the maximum fre-
quency point in the range from 𝑚𝑓0 to (𝑚 + 1) 𝑓0 based on the
amplitude of Y and the rest frequency components of Y𝑚 are set
as 0, where the F is the Fourier transformation operation.
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2.2.3 Frequency mutual attention unit. The unit extracts the cor-
relations of each frequency basis Y𝑚 and the urban contextual
features 𝑘𝑏 . To achieve this goal, we propose a frequency-based mu-
tual attention mechanism that utilizes scaled dot-product attention:
𝑆𝑐𝑜𝑟𝑒 (𝑄𝑚, 𝐾) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑚𝐾

𝑇

√
𝑑

), 𝐴𝑚 = 𝑆𝑐𝑜𝑟𝑒 (𝑄𝑚, 𝐾)𝑉 , where
𝑄,𝐾,𝑉 represent queries, keys, and values that can be denoted as

𝑄𝑚 =𝑊𝑄 [Y𝑚⊕F (𝑘𝑏 )], 𝐾 =𝑊𝐾 [Y⊕F (𝑘𝑏 )],𝑉 =𝑊𝑉 [Y𝑛⊕F (𝑘𝑏 )],
(4)

where ⊕ denotes the concatenation of tensors,𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are
weights of linear projection. The frequency component of urban
knowledge is passed into the attention process since we argue that
contextual features not only affect mobile traffic in the temporal
domain but also produce dependencies in the frequency domain.

2.2.4 Weighted fusion unit. After the frequency attention process,
we obtain 𝑀 hidden representation 𝐻𝑚 and one residual Y𝑟 . To
recover the features back to the time domain while maintaining
the consistency of the amplitude of the original features, the unit
fuses all the𝑀 bases. Meanwhile, we also integrate the KGE 𝑘𝑏 with
the residual traffic in the time domain, to capture the disturbing
features. The overall fusion process can be formulated as

{𝛼𝑚}𝑚=1:𝑀 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑀 |Y𝑚 | + 𝑏𝑀 ), (5)

𝑦𝑇 =𝑊 𝑦 [F −1 (
∑︁
𝑚

𝛼𝑚H𝑚) +𝑊 𝑟F −1 (Y𝑟 ) ⊕ 𝑘𝑏 ], (6)

where𝑊𝑀 , 𝑏𝑀 ,𝑊 𝑦 , and𝑊 𝑟 are learnable parameters. Finally, the
model is optimized recurrently with the objective loss as

𝑚𝑖𝑛𝐿(𝜃 ) =𝑚𝑖𝑛E𝑥0∼𝑞 (𝑥0 ),𝜖∼𝑁 (0,𝐼 ) [| |𝜖 − 𝜖𝜃 (𝑥𝑛, 𝑛 |𝑘𝑏 , 𝑦𝑇 ) | |2], (7)

where 𝑞(𝑥0) is the noise scheduling distribution and 𝜖𝜃 represents
the predicted noise vectors.

The proposed KG-Diff embraces two advantages. First, we con-
struct an UKG that incorporates multiple semantic relations such
as geographical proximity and functional similarity, which can
fully characterize urban complex features. Second, the frequency
attention mechanism decomposes the origin network traffic into
multiple periodic bases, adaptively capturing the implicit correla-
tions between urban context and various periods of network traffic.

3 EVALUATION
We perform experiments on real mobile datasets to evaluate the
fidelity and controllability of the proposed KG-Diff framework.

Dataset.We collect mobile datasets from Beijing, a large city in
China, The dataset covers mobile traffic data from surpassing 19,000
BSs serving over 200,000 users during a week in October 2021. The
dataset has 4 typical types of traffic patterns (pattern 0∼3).

Baselines. We choose the following 6 baselines to evaluate the
effectiveness of our proposed method, which covers traffic genera-
tion models of both GAN-based and diffusion-based methods. (1).
tcnGAN is a manually coded GAN network with Temporal Convo-
lutional Networks (TCNs) [1] as generator and discriminator. (2).
ADAPTIVE [16] is a transfer learning generative framework via
GAN, which utilizes the UKG to align BS embeddings from one
city to another. (3). spectraGAN [15] utilizes two separate GAN net-
works in time and frequency domains to capture periodic patterns.
(4). CSDI is a conditional diffusion model that is trained for time

Table 1: Mobile traffic generation results. Bold numbers de-
note the best and 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒 numbers denote the second-best.
Δ represents an improvement from second-best to best.

Datasets Beijing
Metrics JSD JSD-FO MAE CRPS
tcnGAN 0.2689 ± 0.00312 0.1646 ± 0.00047 0.1028 ± 0.00153 0.5435 ± 0.01745

spectraGAN 0.2582 ± 0.00481 0.2007 ± 0.00041 0.1192 ± 0.00106 0.5655 ± 0.01613
CSDI 0.3055 ± 0.00367 0.1716 ± 0.00049 0.1166 ± 0.00154 0.6918 ± 0.01699

ADAPTIVE 0.2486 ± 0.00295 0.2003 ± 0.00057 0.1139 ± 0.00122 0.4913 ± 0.01232
keCSDI 0.2998 ± 0.00267 0.1670 ± 0.00079 0.1119 ± 0.00153 0.6734 ± 0.01703
keGAN 0.2070 ± 0.00379 0.1587 ± 0.00072 0.1025 ± 0.00044 0.4702 ± 0.015648

KG-Diff (Ours) 0.1956 ± 0.00435 0.1455 ± 0.00069 0.0855 ± 0.00190 0.4315 ± 0.01535
Δ 5.83% 9.07% 19.88% 8.97%

series imputation and prediction [12]. (5). keCSDI is a manually
coded generative model based on CSDI, where we expand the side
information with urban knowledge 𝑘𝑔 learned from the UKG. (6).
The Knowledge-Enhanced GAN (keGAN) [6] is a hierarchical GAN
framework that divides urban mobile traffic into daily patterns
and weekly patterns, conditioning on the concatenation of UKG
embeddings and input noise vectors.

Metrics. We choose Jensen–Shannon Divergence (JSD) and Con-
tinuous Ranked Probability Score (CRPS) [10] to assess the distri-
bution fidelity. The first-order of JSD (JSD-FO) [6] is utilized to
evaluate the model’s stability. Besides, we select Mean Absolute
Error (MAE) as the metric to investigate the generation accuracy.

3.1 Mobile Traffic Generation
Table 1 shows the experimental result of the proposed method and
all other baselines. KG-Diff achieves the best performance with
a maximum improvement of 19.88%. Generally speaking, keGAN
performs the second-best in the temporal domain, since it specifies a
priori knowledge about the periods with daily and weekly patterns
and generates mobile traffic by utilizing the identified patterns.

We then test the quality of generated mobile traffic and the
ability to capture the small-scale periods, as shown in Figure 2.
From a microscopic perspective, the spectraGAN and keGAN fail
to capture the small-scale periods of traffic data while the KG-Diff
can well depict the small-scale periods. The spetralGAN generated
data without knowledge guidance, causing the algorithm unable to
capture the typical periods of traffic data. The keGAN artificially
selected fixed periods, which fails to capture "small-scale" periods in
the frequency domain. The KG-Diff utilizes the frequency attention
mechanism, which not only captures a fixed 24-hour period but
also adaptively captures small-scale network traffic periods.

3.2 Control on Mobile Pattern Generation
We then investigate the model’s controllability. After the training
process converges, we input pattern-wise urban knowledge into
the model as test data. For example, in our dataset, the mobile
traffic of BS indexed {381, 746} have the corresponding pattern of
0. We input the corresponding KG embeddings into the model and
analyze whether the generated samples belong to pattern 0. We
select four well-trained models: CSDI, keGAN, keCSDI, and KG-
Diff, where the results are depicted in Figure 3. It can be observed
that CSDI cannot accurately generate traffic data aligned with the
target pattern without urban knowledge. For keGAN, although the
model inputs urban knowledge as a condition, the model suffers
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(a) Generated samples of spectraGAN. (b) Generated samples of keGAN (c) Generated samples of KG-Diff

Figure 2: Comparison of mobile traffic generation. KG-Diff can capture both daily and small-scale patterns of mobile traffic.

(a) Samples of CSDI (b) Samples of keGAN

(c) Samples of keCSDI (d) Samples of KG-Diff

Figure 3: Controllability of generating patterns. Each row with 4
squares represents the quantity of each generated pattern after
inputting a real pattern. The darker the color of the square, the
greater the number of generated patterns. KG-Diff can generate
corresponding patterns that are consistent with real patterns.

from a mode collapse issue that only learns patterns 2 and 3. For
diffusion model-based methods, they exhibit strong controllability
under the conditions: as shown in Figure 3 (c), (d), they are capable
of generating patterns 0, 1, and 3. While keCSDI can’t generate
pattern 2 since it only captures periodic features in the temporal
domain, struggling to capture the long-term correlations between
different time points solely via the temporal domain. In contrast, the
proposed KG-Diff conveys KGE in both the temporal and frequency
domains. Through frequency domain attention mechanisms, it can
better extract the correlations among different periods, enhancing
the model’s controllability.

4 CONCLUSION
In this paper, we propose the KG-Diff framework to generate urban
mobile traffic. We design a denoising network with a frequency at-
tention mechanism conditioning on the environment features that
id constructed via the UKG. The framework adaptively captures
the correlations between urban contextual features and different
periods of network traffic. Our evaluation of a real-world dataset
shows our scheme surpasses generation baselines by up to 19.88%.
Additionally, KG-Diff successfully captures the correlation between
urban contexts and mobile traffic, allowing for controllable genera-
tion of traffic patterns with different environmental data.
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