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Abstract
Crowd simulation holds crucial applications in various do-
mains, such as urban planning, architectural design, and traf-
fic arrangement. In recent years, physics-informed machine
learning methods have achieved state-of-the-art performance
in crowd simulation but fail to model the heterogeneity and
multi-modality of human movement comprehensively. In this
paper, we propose a social physics-informed diffusion model
named SPDiff to mitigate the above gap. SPDiff takes both
the interactive and historical information of crowds in the cur-
rent timeframe to reverse the diffusion process, thereby gen-
erating the distribution of pedestrian movement in the subse-
quent timeframe. Inspired by the well-known social physics
model, i.e., Social Force, regarding crowd dynamics, we de-
sign a crowd interaction module to guide the denoising pro-
cess and further enhance this module with the equivariant
properties of crowd interactions. To mitigate error accumula-
tion in long-term simulations, we propose a multi-frame roll-
out training algorithm for diffusion modeling. Experiments
conducted on two real-world datasets demonstrate the supe-
rior performance of SPDiff in terms of macroscopic and mi-
croscopic evaluation metrics. Code and appendix are avail-
able at https://github.com/tsinghua-fib-lab/SPDiff.

Introduction
Crowd simulation is a process of simulating the movements
of a large number of people in specific scenarios, with a
focus on interaction dynamics (Rasouli 2021). This tech-
nique finds its primary applications in fields such as urban
planning, architectural design, and traffic management. For
example, simulating how crowds move in a building under
different scenarios (i.e., crowd density, flux, etc.) enables
decision-makers to assess and optimize architectural design
accordingly to improve emergency response and evacuation
strategies (Yang et al. 2020).

However, the spatio-temporal crowd trajectories are com-
plex and heterogeneous as human behaviors are often af-
fected by individual preferences and the surrounding en-
vironment. For example, in a shopping mall, individuals
move at different speeds and follow distinct paths based
on their personal interests and the mall’s layout, result-
ing in diverse and intricate movement patterns over time.
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Early approaches (Helbing and Molnar 1995; Van Den Berg
et al. 2011; Sarmady, Haron, and Talib 2010; Henderson
1971) attempted to adopt physical rule-based models to
explain the underlying mechanisms behind the pedestrian
movement, falling within the research domain of social
physics (Jusup et al. 2022). One notable pioneer is the
Social Force Model (SFM) (Helbing and Molnar 1995),
which draws inspiration from physics principles and repre-
sents pedestrians as particles influenced by various forces.
With advanced deep learning, methods inspired by physics-
informed machine learning (Karniadakis et al. 2021) have
achieved state-of-the-art fidelity in crowd simulation. Ex-
amples include the PCS (Physics-informed Crowd Simu-
lator) (Zhang et al. 2022) approach that replaces the core
terms of SFM with GNNs (Graph Neural Networks), and
the NSP (Neural Social Physics) (Yue, Manocha, and Wang
2022) model that designs a learnable SFM with key param-
eters characterized by LSTM (Long Short-Term Memory)
based modules.

On the other hand, the inherent uncertainty of human
behavior gives rise to the indeterminacy of pedestrian tra-
jectories, commonly referred to as the multi-modality of
human movement (Korbmacher and Tordeux 2022). Early
works (Alahi et al. 2016; Mohamed et al. 2020) made
simplistic assumptions, such as Gaussian distributions, to
model this multi-modality. Follow-up approaches utilized
generative models such as Generative Adversarial Net-
works (GANs) (Gupta et al. 2018; Dendorfer, Elflein,
and Leal-Taixé 2021; Kosaraju et al. 2019; Sadeghian
et al. 2019) and Variational Autoencoders (VAEs) (Yue,
Manocha, and Wang 2022; Mangalam et al. 2020; Ivanovic
and Pavone 2019; Chen et al. 2021) to generate multimodal
samples. In recent years, diffusion probabilistic models (Ho,
Jain, and Abbeel 2020) have demonstrated state-of-the-art
performance in various generative tasks. This approach de-
signs a multi-step Markov chain to reconstruct the original
data distribution and generates data by stepwise denoising
the noisy samples along this chain, achieving outstanding
performance in capturing multimodal distributions. How-
ever, when it comes to crowd simulation, current diffusion
model-based solutions (Gu et al. 2022; Mao et al. 2023) are
purely data-driven and thus lack guidance from prior knowl-
edge of human movement.

Different from them, this paper comprehensively consid-



ers the two core aspects of crowd simulation and aims to
design a social physics-informed diffusion model, which
has two main challenges. First, how to infuse physical
knowledge regarding human movement into the diffu-
sion model? Different from diffusion models that gradu-
ally reconstruct the observed data distribution from a sim-
ple noise distribution, SFM formulates crowd movements as
a many-particle dynamical system, and physical constraints
are directly imposed on the observed data of every pedes-
trian in each timeframe. Therefore, it is difficult to infuse
this knowledge into the intermediate noisy data along the
diffusion process. In contrast, current physics-guided diffu-
sion models (Xu et al. 2022; Hoogeboom et al. 2022) focus
on devising an equivariant diffusion framework to ensure
that the generated data satisfies the corresponding geomet-
ric equivariance properties, which is distinct from the social
physics knowledge (i.e., SFM) that serves as driving force
of a dynamical system. Second, how to achieve physically
consistent long-term crowd simulations with the diffu-
sion model? Crowd simulation is a task that involves the
generation of data for multiple pedestrians and across multi-
ple timeframes. Existing works generally adopt the one-shot
generation approach of the entire sequence based on diffu-
sion models (Gu et al. 2022; Tevet et al. 2022). However,
one-shot generation cannot effectively incorporate guidance
from SFM at each timeframe for each pedestrian. Moreover,
it can encounter both efficiency and efficacy problems due
to the high-dimensional nature of the generated data. There-
fore, achieving long-term simulation and maintaining phys-
ical consistency is challenging for existing diffusion model-
ing frameworks.

To solve the above two challenges, we propose a con-
ditional denoising diffusion model for crowd simulation
named SPDiff that 1) includes a crowd interaction module
that draws insights from the SFM to guide the denoising pro-
cess, and 2) integrates strong indictive biases of equivariance
properties derived from the many-particle dynamical system
to enhance the model’s generalization ability over transfor-
mations, leading to better performance. Based on two de-
signs, we further develop a multi-frame rollout training algo-
rithm that allows the diffusion model to simulate trajectories
over a defined time window and calculate the accumulated
errors for updating model parameters. The resulting learn-
ing process penalizes the model for being myopic and over-
looking physical consistency in the long term. Experiments
on two real-world datasets demonstrate the significant per-
formance improvement of SPDiff over state-of-the-art base-
lines, up to 18.9-37.2% on a more difficult dataset in terms of
both microscopic and macroscopic simulation realism met-
rics. Further ablation studies validate SPDiff’s generaliza-
tion ability brought by our designed social physics-informed
diffusion framework.

Related Works
Crowd simulation. In crowd simulation, two broad cate-
gories of methods have been identified: physics-based and
data-driven methods (Korbmacher and Tordeux 2022). Early
research focuses primarily on physics-based methods that
utilize empirical social physics rules and equations to model

crowd movements. The Social Force Model (SFM) (Helbing
and Molnar 1995) exemplifies an approach with good gen-
eralizability, representing crowd motion as a many-particle
dynamical system where various forces influence pedestri-
ans. Nevertheless, physics-based methods struggle to accu-
rately capture micro pedestrian motion due to the complex-
ity and indeterminacy of human behaviors, as proven in the
experiments in (Zhang et al. 2022). With the development of
data science and deep learning in recent years, data-driven
crowd simulation methods have been proposed to fit the
distribution of microscopic human motions. For example,
STGCNN (Mohamed et al. 2020) and PECNet (Mangalam
et al. 2020) utilize GNN and VAE, respectively, to predict
the future trajectory distribution of pedestrians. However,
many data-driven methods have limitations regarding gen-
eralizability to different scenarios (Zhang et al. 2022). Re-
cently, physics-informed crowd simulation methods such as
PCS (Zhang et al. 2022) and NSP (Yue, Manocha, and Wang
2022) have achieved state-of-the-art performance. Inspired
by them, we propose a novel social physics-informed dif-
fusion model that combines the strength of generalizability
in physics-based models and the distribution modeling capa-
bilities in generative models. We briefly summarize the main
differences between SPDiff and existing works in Table 1.
Diffusion models. The Denoising Diffusion Probabilistic
Model (DDPM) (Ho, Jain, and Abbeel 2020), standing as
a prominent work in the realm of diffusion model, has
gained widespread usage in the field of generation in re-
cent years. Inspired by concepts from nonequilibrium ther-
modynamics (Sohl-Dickstein et al. 2015), the model adds
noise to original data with a certain distribution through
a diffusion process modeled as a Markov chain. A neu-
ral network model is then trained to reverse the process
and denoise the data, restoring the distribution of the orig-
inal data from the initial noise during sampling. This kind
of model has demonstrated exceptional performance in ar-
eas such as image generation (Ho, Jain, and Abbeel 2020;
Nichol and Dhariwal 2021; Dhariwal and Nichol 2021),
point cloud generation (Luo and Hu 2021), human motion
generation (Tevet et al. 2022) and spatio-temporal data gen-
eration (Yuan et al. 2023; Zhou et al. 2023). As a represen-
tative work in trajectory prediction, MID (Gu et al. 2022)
models human behavior indeterminacy but does not capture
pedestrian interactions. Unlike MID, our approach incorpo-
rates knowledge of social physics, considering real-time in-
teractions and historical information as conditions. We also
design a conditional diffusion framework to perform long-
term simulations with multi-modality. Additionally, we have
developed specific methods for multi-frame rollout training
in our diffusion framework.
Equivariant networks. Problems like multi-body systems
and 3D molecular structures exhibit translation and rotation
symmetries. By infusing symmetry knowledge into deep
learning models, the resulting equivariant networks can have
much higher training efficiency (Satorras, Hoogeboom, and
Welling 2021; Deng et al. 2021; Köhler, Klein, and Noe
2020; Worrall et al. 2017). For example, EGNN (Satorras,
Hoogeboom, and Welling 2021) proposes an equivariant
GNN network architecture that does not require computa-



Models PI1 Guidance Indeterminacy Approach Optimization
STGCNN (Mohamed et al. 2020) ✗ - ✓ GN2 End-to-End
PECNet (Mangalam et al. 2020) ✗ - ✓ VAE End-to-End

MID (Gu et al. 2022) ✗ - ✓ DM3 End-to-End
PCS (Zhang et al. 2022) ✓ SFM ✗ - SFM Pretrained

NSP (Yue, Manocha, and Wang 2022) ✓ SFM ✓ CVAE Multi-staged
SPDiff (proposed) ✓ SFM, Equivariance ✓ DM3 End-to-End

1Physics-informed 2Gaussian Noise 3Diffusion Model

Table 1: Comparison of deep learning based models for crowd simulation.

tionally expensive higher-order representations for predict-
ing a graph’s state information. GeoDiff (Xu et al. 2022) pro-
poses a molecular conformation generation model based on
the diffusion model, which possesses a rotation-translation
equivariance property. Besides incorporating physics guid-
ance from SFM, we further introduce equivariant design into
the designed approach, considering the symmetry exhibited
by the crowd motion that can be regarded as a many-particle
dynamical system.

Preliminaries
Problem Formulation
For a group of N pedestrians, crowd simulation re-
quires consideration of the state of the crowd Qt =
{pt, vt, at, d, ht} at the current timeframe t, which com-
prises the positions pt ∈ RN×2, velocities vt ∈ RN×2,
accelerations at ∈ RN×2, destinations d ∈ RN×2, re-
cent historical trajectories ht = (pt−m:t, vt−m:t, at−m:t) ∈
Rm×N×6(m denotes the history window length), and the po-
sitions of M static obstacles in the environment E ∈ RM×2.
The model Fθ initializes from the initial state and generates
the next moment’s state by entering the current state, i.e.,

Qt+1 = Fθ (Qt, E) , (1)

which is continuously iterated until all individuals in the
crowd reach their respective destinations, completing the
simulation process. To generate physically consistent re-
sults, we make our model directly output the acceleration
at+1 ∈ RN×2 at timeframe t + 1, which is then used to
update the crowd state (position p and velocity v) using
vt+1 = vt + at ·∆t and pt+1 = pt + vt ·∆t.

Social Force Model
From an individual perspective, the design of the dynamic
mechanisms guiding pedestrian movement in our model
includes destination attraction, pedestrian-pedestrian inter-
action, and pedestrian-obstacle interaction demonstrated in
Social Force Model (Helbing and Molnar 1995). Particu-
larly, the acceleration of individual i is modeled as a combi-
nation of different kinds of forces, formulated as follows,

miai = fi,dest +
∑

j ̸=i,j∈P
fji,ped +

∑
o∈O

foi,env (2)

where P and O denote the set of pedestrians and the set
of environmental obstacles, respectively. fi,dest, fij,ped, and
fik,env represent the traction force from the destination to

pedestrian i, the repulsive force from pedestrian j to pedes-
trian i, and the repulsive force from obstacle k to pedestrian
i, respectively. The formula for the attractive force is given
as fi,dest = mi

vidniD−vi
τ , where vi is the current velocity,

vid is the desired walking speed, and niD is the direction
towards the destination. mi is a coefficient for individuals
while τ is a global coefficient.

Equivariance and Invariance
We say a model ϕ : X → Y equivariant to transformation
group g ∈ G when:

ϕ(Tg(x)) = Sg(ϕ(x)), (3)

where Tg and Sg are transformations on 2-D vector spaces
X and Y for the abstract group g. Particularly, ϕ(Tg(x)) =
ϕ(x) stands for the invariant property of the function. In
our problem, we consider the translation and rotation trans-
formations on positions of pedestrians and obstacles, which
will only lead to rotation transformations on velocities and
accelerations. One of the embedding modules of our model
is designed to satisfy the above equivariant constraints of po-
sitions, velocities, and accelerations on corresponding trans-
formations.

SPDiff: the Proposed Method
Physics Guided Conditional Diffusion Process
Framework. In crowd simulation, the destinations of pedes-
trians are given as prior knowledge, and the destination trac-
tion force can be directly computed using known informa-
tion at the current state. Based on the original SFM (Helbing
and Molnar 1995), our model only replaces its core terms,
i.e., the repulsive forces

∑
j ̸=i,j∈P fji,ped +

∑
o∈O foi,env ,

to reduce the difficulty of the stochastic prediction. We con-
sider the neighbor pedestrians and obstacles instead of P
and O for every pedestrian.

At each time frame t, a graph network is employed, where
interactions are formed among pedestrians based on proxim-
ity and visibility, depicted in Figure 1. Node messages in the
graph represent the current states of pedestrians, including
positions, velocities, and accelerations at time t. The pro-
posed diffusion model utilizes the graph message and his-
tory states as conditional inputs ct and clean Gaussian noise
yK . It predicts the future accelerations y0 = at+1 for all
existing pedestrians at the next time frame t+1. The pedes-
trians’ states are then updated to simulate their progression



from time t to t+ 1. This iterative process continues for the
entire long-term simulation.

Due to the large number of pedestrians and extended
duration, the generated data size surpasses that of human
and single-pedestrian trajectory data. Coping with this sub-
stantial dataset and simulating the entire motion of large
crowds pose notable challenges in model learning. Fur-
thermore, predicting accelerations for multiple future time-
frames would neglect real-time physics affecting pedestri-
ans’ movements across these frames. Consequently, unlike
prevalent diffusion frameworks used for multi-timeframe
data such as body motion (Tevet et al. 2022) and trajecto-
ries (Gu et al. 2022), we predict the movements for only one
timeframe in each prediction step to ensure the eventual pro-
duction of physics-consistent trajectories.
Diffusion process and conditional reverse process. Sup-
pose the current timeframe is t. As mentioned, we predict
the future acceleration at+1 distribution by setting it as y0.
The forward diffusion process is defined as a Markov chain
y0, ..., yk, ..., yK :

q(y1:K |y0) =
∏K

k=1
q(yk|yk−1),

q(yk|yk−1) = N (yk|
√
1− βkyk−1, βkI),

(4)

where βk are small variance schedulers that control the noise
volume added at each diffusion step k. So when the length
of Markov chain K grows, the distribution of the final vari-
able yK can be approximated to whitened isotropic Gaus-
sian N (0, I). The reverse process (denoising process) is to
recover the distribution of y0 from the pure Gaussian given
the conditions ct formed by interactions and historical in-
formation. The process can be represented by the probabil-
ity distribution p(y0:K |ct) = p(yK)

∏1
k=K pθ(yk−1|yk, ct),

where yK is the input standard Gaussian noise. Our goal is
to train our reverse model pθ(yk−1|yk, ct) to approximate
to real distribution q(yk−1|yk, y0), which is tractable as it is
conditioned on y0 (Ho, Jain, and Abbeel 2020). To achieve
this, we make our denoising network ŷ0 = fθ(yk, k, ct) pre-
dict the desired clear sample, i.e., the acceleration at+1 it-
self, which allows us to perform our training algorithm intro-
duced in the next section. The reverse distribution becomes:

pθ(yk−1|yk, ct) = q(yk−1|yk, ŷ0)
= q(yk−1|yk, fθ(yk, k, ct))

(5)

Training and Sampling Algorithm
Multi-frame rollout training (MRT) algorithm. In crowd
simulation tasks, the model is required to simulate the tra-
jectories of pedestrians at various continuous timesteps by
relying solely on the initial state information. This makes it
essential that the model be equipped with the ability to gen-
eralize for long-term simulation scenarios. However, train-
ing on single-step predictions is not enough due to the noise
in real-world crowd data. To address this, inspired by student
forcing strategy in sequence generation literatures (Ranzato
et al. 2015), we propose an algorithm that employs a multi-
frame rollout training strategy.When training the model, we
use the model output ŷ0 (treated as ât in training) of the

yK
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Figure 1: The overall framework of SPDiff.
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Figure 2: The detailed parameterization of the denoising
network (fθ).

previous timeframe t − 1 to calculate the conditional infor-
mation ĉt for the model input at the next timeframe t, until
it reaches a chosen training length of time T . We also adopt
a reverse long-term discounted factor λT−t(λ < 1) to make
the model focus on long-term accuracy (Zhang et al. 2022).
Therefore, the corresponding loss function is calculated as
follows:

L = Ek,at
[
∑T

t=1
λT−t ||at − fθ(yk, k, ct−1)||2], (6)

which follows the simple objective function demonstrated in
DDPM (Ho, Jain, and Abbeel 2020). The details of the MRT
in the form of pseudo-codes are provided in Appendix A in
Algorithm 1.
Sampling. At timeframe t, the diffusion model will itera-
tively sample from diffusion step k = K to k = 1, as the
reverse process is also Markovian. In an iteration, the output
of the model fθ(yk, k, ct), i.e., the clean sample ŷ0, is noised
back to yk−1, and the final y0(sampled ât+1) is obtained at
step k = 1, which finishes the acceleration prediction from
timeframe t to timeframe t+1. The pseudo-code is provided
in Appendix A.



Network Parameterization
We present the model fθ(yk, k, ct), as illustrated in Fig-
ure 2, which is primarily composed of two modules: the
crowd interaction module and the history module. The inter-
action information is processed by a module designed with
equivariance property to output 2-dimensional vectors, i.e.,
forces, modeling the interactions of nearby pedestrians for
each pedestrian in the current scene. This force vector fped,
along with the force vector fhist indicating the motion ef-
fects from the history of every pedestrian, is finally added to
the traction force of the destination fdest, yields ŷ0.
Equivariant crowd interaction module. We aim to obtain
equivariant embedding from the interaction messages pro-
vided by the current graph. Following recent equivariant net-
work (Satorras, Hoogeboom, and Welling 2021), we propose
a modified equivariant graph convolution layer (EGCL), and
our module is composed of L layers of EGCL. In the l-
th layer, node embedding hl along with corresponding po-
sition, velocity, and acceleration embeddings pl, vl, al are
used as inputs and are processed to update the respective
embeddings hl+1, pl+1, vl+1, al+1:

mij = ϕe

(
hl
i, h

l
j ,
∣∣∣∣pli − plj

∣∣∣∣2) , (7)

al+1
i = ϕa

(
hl
i

)
yk,i +

∑
j∈N(i)

1

dij

(
pli − plj

)
ϕp (mij) , (8)

vl+1
i = vli + al+1

i , pl+1
i = pli + vl+1

i , (9)

mi =
∑

j∈N(i)

mij , hl+1
i = ϕh

(
hl
i,mi

)
, (10)

where ϕ are MLPs and N(i) denotes the neighborhood of
the node i presented in the graph. dij denotes the distance
of node i and j. yi,k is the ith pedestrian’s acceleration to be
denoised in the noisy data input yk. Initial node embedding
h0 are the embeddings from the norms of the input veloci-
ties and accelerations(||v0|| and ||a0||), which are invariant.
p0, v0, a0 are the current positions,velocities and accelera-
tion of the nodes(pedestrians), which are equivariant. If hl is
invariant while pl, vl, and al are equivariant, it can be proven
that the corresponding output of the update to layer l + 1
also satisfies the same property. Proof can be found in the
appendix. In the last EGCL layer (EGCL*), only Eq.7 and
Eq.8 are used, outputting the 2-dim vector aLi as the force
from interactions of nearby pedestrians on pedestrian i.
History module. In crowd simulation, the movement of
pedestrians can often be influenced by their historical tra-
jectories. This can be attributed to the prior knowledge that
humans tend to avoid changing their movement too much
to conserve energy. Therefore, in each simulation iteration,
we collect each pedestrian’s movement states(position, ve-
locity, acceleration) over the previous 8 frames as input
ht ∈ R8×N×6. The 8-length sequence is upsampled using
linear layers and then encoded using an LSTM, which out-
puts the hidden embedding of the last token, decoded by an
MLP, as shown in the following formula:

fhist = MLP(LSTM(Linear(ht))). (11)

Experiments
Experiment Setup
Datasets. We conduct crowd simulation evaluation exper-
iments of the model on two open-source datasets: the GC
and the UCY datasets. The two datasets differ in scenarios,
scale, duration, and pedestrian density, allowing us to ver-
ify the model’s generalization performance. Following the
approach of PCS (Zhang et al. 2022), we select trajectory
data with rich pedestrian interactions (> 200 pedestrians per
minute) of 300s duration from the GC dataset and 216s du-
ration from the UCY dataset for training and testing. Please
refer to Appendix B for detailed information.
Baseline methods. We divide the baseline methods into
physics-based, data-driven, and physics-informed methods.
Within the physics-based methods, we choose the widely-
used Social Force Model (SFM) (Helbing and Molnar 1995)
and Cellular Automaton(CA) (Sarmady, Haron, and Talib
2010) for comparison. Within the data-driven methods, we
select three representative approaches recently published,
including STGCNN (Mohamed et al. 2020) which utilizes
graph convolutional neural networks to compute a spatio-
temporal embedding, PECNet (Mangalam et al. 2020) which
uses VAE to sample multi-modal endpoints and MID (Gu
et al. 2022) which is based on the diffusion framework to
model indeterminacy. For physics-informed methods, we se-
lect PCS (Zhang et al. 2022), whose backbone is graph net-
works, and NSP (Yue, Manocha, and Wang 2022), based on
sequence prediction models combined with CVAE. The de-
tails of the implementation of baselines are in Appendix B.
Experiment settings. We temporally split the datasets into
training and testing sets, with a training-to-testing ratio of
4:1 for the GC dataset and 3:1 for the UCY dataset. We as-
sess the performance using four metrics. To measure the mi-
croscopic simulation accuracy compared to the ground truth,
we employ the Mean Square Error (MAE) and the Dynamic
Time Warping (DTW), which is commonly used to mea-
sure time-dependent sequences’ similarity and is a reliable
metric for assessing trajectory similarity in shape. As per-
forming quantitative validation is also essential (Wang, On-
drej, and O’Sullivan 2017; He et al. 2020), we test on the
#Col (number of collisions), characterizing the simulation’s
realness. At a macroscopic level, we consider the distribu-
tion aspect and selected Optimal Transport (OT) (Villani
2021) and Maximum Mean Discrepancy (MMD) (Gretton
et al. 2012), widely used in measuring the distribution sim-
ilarity of simulated physical processes (Sanchez-Gonzalez
et al. 2020), to measure the difference between the simu-
lated trajectory distribution and the ground truth. We also
evaluate the visualization performances of our method and
some baselines, which can be found in supplementary ma-
terials. We have full details on metrics and implementations
in Appendix B.

Overall Performance
As shown in Table 2, we present the results of SPDiff and the
baseline methods on two real-world datasets. SPDiff outper-
forms other existing methods, showing a relative improve-
ment of 6.5%-13.5% on the MAE, OT, and MMD metrics



GC UCYGroup Models MAE OT MMD DTW #Col MAE OT MMD DTW #Col #Params

CA 2.7080 5.4990 0.0620 - 1492 8.3360 79.4200 2.0220 - 4504Physics-based SFM 1.2590 2.1140 0.0150 - 622 2.5390 6.5710 0.1290 - 434
STGCNN 8.1608 15.8372 0.5296 5.1438 2076 7.5121 18.7721 0.5149 5.1695 1348 7.6K
PECNet 2.0669 4.3054 0.0397 0.7431 1142 3.9674 16.1412 0.1504 2.0986 1092 2.1MData-driven

MID 8.4257 35.1797 0.3737 4.2773 1620 8.2915 47.8711 0.4384 4.7109 1076 2.5M
PCS 1.0320 1.5963 0.0126 0.4378 764 2.3134 6.2336 0.1070 0.9887 238 0.6M
NSP 0.9884 1.4893 0.0106 0.3329 734 2.4006 6.3795 0.1199 0.9965 380 2.5MPhysics-informed
Ours 0.9116 1.3925 0.0092 0.3332 810 1.8760 4.0564 0.0671 0.7541 372 0.2M

※ The results of CA and SFM are directly copied from (Zhang et al. 2022) without evaluating DTW.

Table 2: Overall performance comparison.

for the GC dataset. On the UCY dataset, it achieves an
improvement of 18.9%-37.2% across all metrics. Specifi-
cally, we have the following observations. First, our method,
guided by SFM, outperforms physics-based methods, ex-
hibiting better fitting of pedestrian movement distributions
using real-world data compared to pure social physics equa-
tions. Second, our model surpasses data-driven methods
by incorporating social physics. Particularly, SPDiff out-
performs the diffusion-based MID thanks to our design of
the training mechanism applied to the diffusion framework.
Among the data-driven models proposed for trajectory pre-
diction tasks, only PECNet shows a comparable perfor-
mance due to its dedicated design for handling trajectory
endpoints. Third, it is notable that physics-informed meth-
ods outperform all three categories, highlighting the signifi-
cance of physics-informed approaches in crowd simulation.
By successfully applying the diffusion model to crowd sim-
ulation, our method outperforms the other two on most met-
rics, with the only deficiency observed in #Col.

As can be seen, most methods performed better on the GC
dataset than the UCY dataset, indicating that the GC dataset
is easier to fit since pedestrians in the UCY dataset have a
larger variance of speed (See Appendix). Meanwhile, our
method exhibits better improvement in UCY than in GC,
demonstrating the superior ability of our model to handle
difficult-to-learn datasets.

In addition, we compare the number of trainable pa-
rameters of the DL-based methods and show that our
method achieves the best performance while utilizing only
8%/33% of parameters compared with competitive baselines
NSP/PCS. This owes to the equivariant design that reduces
the parameter cost of learning the rotation-equivariant inter-
action information.

Rollout Error Analysis of the Simulation
To further investigate simulation performance in each de-
tailed timeframe, we examine the variations of the distribu-
tional metrics OT and MMD during the simulation rollout.
Figure 3 illustrates the results on GC and UCY datasets in
comparison to the baselines PECNet and NSP, which per-
form the best in their categories. The figures reveal oscillat-
ing trends in the metrics with alternating increases and de-
creases. The increases can be attributed to the cumulative er-
ror generated during the multi-frame rollout. Meanwhile, the
distributional error at the pedestrian endpoints diminishes as
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Figure 3: Rollout error as a function of frames, using OT and
MMD as metrics.

the pedestrians are set to their real endpoints at their final
appearance in the simulation.

The following observations can be gleaned: 1) Data-
driven methods (PECNet), show a higher accumulation of
errors over a longer duration. In contrast, physics-informed
methods (SPDiff and NSP), which integrate constraints de-
rived from physical knowledge, can control error accumu-
lation within a certain range. 2) Our approach has lower
cumulative error over time than the physics-informed NSP
method, which is strongly constrained by SFM equations
and relies only on historical trajectory information for mod-
eling multi-modality. In contrast, our diffusion model, not
rigidly confined by SFM representations, can learn more
realistic distributions from the data and effectively model
multi-modality by leveraging both historical trajectories and
interaction information.

Moreover, to examine our model’s generalizability be-
yond its training distributions, we test the performance
on some scenarios picked from the SDD(Standford Drone
Dataset) dataset using methods trained on the GC dataset
and prove the good generalizability of SPDiff. Details and
results can be found in the supplementary materials.



GC UCY
MAE OT MMD DTW MAE OT MMD DTW

Ours 0.9116 1.3925 0.0092 0.3332 1.8760 4.0564 0.0671 0.7541
w/o Social Physics 3.3102 13.6530 0.0637 1.6517 3.5404 12.9325 0.1541 2.0016
w/o History Variant 1.0834 1.8482 0.0154 0.3883 2.3340 6.2837 0.1171 1.1055

w/o Multistep Rollout Training 1.0214 1.6790 0.0141 0.4032 NC NC NC NC

Table 3: Ablation study on different parts of model design (“NC” denotes “not converged”).
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Figure 4: Top: Test performance under different training
sample sizes on the UCY dataset. Bottom: Test performance
under different training epochs on the UCY dataset.

Ablation Study
Effect of network modules. We further explore the per-
formance contribution of each key design of our approach
to investigate their necessity, and we consider four vari-
ants, as shown in Table 3. The w/o history variant removes
the history module and the corresponding inputs, while the
w/o social physics variant excludes modules related to so-
cial physics knowledge(crowd interaction module and so-
cial force guidance). And finally, the w/o Multistep Roll-
out Training variant only utilizes a single timeframe of the
model output for loss calculation and gradient descent.

We present the performance results of the aforementioned
version in Table 3. Note that without MRT, the metrics can-
not converge on the UCY dataset. As can be seen, removing
any components leads to a certain decrease in performance,
demonstrating the effectiveness of each design. Most impor-
tantly, the largest performance loss is observed when remov-
ing the design related to social physics guidance, highlight-
ing the necessity of incorporating social physics knowledge
in crowd simulation. Compared with social physics, the his-
tory module is less important as human motions highly de-
pend on the current context instead of history. Finally, in
the UCY dataset, which is more challenging to fit, the met-
rics fail to converge without employing the MRT algorithm,
demonstrating the necessity of the long-term training tech-
niques employed in the diffusion framework.

Effect of equivariant design. To investigate the impact of
the inductive bias brought by the equivariant design, we con-
ducted a performance comparison of SPDiff with two degen-
erations on the equivariant crowd interaction module: 1) an
invariant GNN module, which simply replaces EGCLs with
modified GCLs(Graph Convolutional Layers) encoding the
relative state information to ensure invariance, and 2) a non-
equivariant crowd interaction module inspired by that of
PCS (Zhang et al. 2022). This module adopts a multi-layer
perceptron with residual bypass (ResMLP) to encode the rel-
ative state information between pedestrians and their neigh-
bors. We replace the multiple EGCLs with this design in
the non-equivariant crowd interaction encoder and adjust
the number of parameters at a comparable level. We present
their test performance under different training samples and
epochs w.r.t MAE and OT on the UCY dataset, covering mi-
croscopic and macroscopic error evaluation.

As shown at the top of Figure 4, our method consistently
outperforms the modified model with the non-equivariant in-
teraction module under nearly all training sample ratios and
remains the performance even when using 5% of the train-
ing data. Specifically, at 5%, SPDiff exhibits very little MAE
degradation compared to the 100% point, with a maximum
decrease of only 2.5%. Meanwhile, the equivariant design
has gained at most 13.2% of increase in MAE and 22% of
improvement in OT compared to the non-equivariant design,
illustrating that our model possesses enhanced generaliza-
tion ability over rotations with the help of the equivariant
design. Bottom figures also show the better performance of
our model compared with the invariant and non-equivariant
at each converged point, with a 1.6% of increase in MAE,
a 4.1% of increase in OT and a 13.7% of increase in MMD
compared to the second best. Moreover, it can be gleaned
that models leveraging equivariance or invariance converge
faster than the non-equivariant(also non-invariant) module,
demonstrating the training efficiency improvement brought
by our equivariant design.

Conclusion
This paper proposes a novel conditional denoising diffusion
model SPDiff that can effectively leverage interaction dy-
namics for crowd simulation with a physics-guided diffusion
process. Motivated by the well-known SFM, our equivariant
crowd interaction module and multi-frame rollout training
algorithm achieve macro-and-micro realism and long-term
consistency in simulation. Experiments on two real-world
datasets demonstrate SPDiff’s superiorities in achieving the
best performance with fewer parameters.
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