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ABSTRACT
Crowd simulation acts as the basic component in traffic manage-
ment, urban planning, and emergency management. Most existing
approaches use physics-based models due to their robustness and
strong generalizability, yet they fall short in fidelity since human
behaviors are too complex and heterogeneous for a universal physi-
cal model to describe. Recent research tries to solve this problem by
deep learning methods. However, they are still unable to generalize
well beyond training distributions. In this work, we propose to
jointly leverage the strength of the physical and neural network
models for crowd simulation by a Physics-Infused Machine Learn-
ing (PIML) framework. The key idea is to let the two models learn
from each other by iteratively going through a physics-informed
machine learning process and a machine-learning-aided physics dis-
covery process. We present our realization of the framework with
a novel neural network model, Physics-informed Crowd Simulator
(PCS), and tailored interactionmechanisms enabling the twomodels
to facilitate each other. Specifically, our designs enable the neural
network model to identify generalizable signals from real-world
data better and yield physically consistent simulations with the
physical model’s form and simulation results as a prior. Further, by
performing symbolic regression on the well-trained neural network,
we obtain improved physical models that better describe crowd dy-
namics. Extensive experiments on two publicly available large-scale
real-world datasets show that, with the framework, we successfully
obtain a neural network model with strong generalizability and a
new physical model with valid physical meanings at the same time.
Both models outperform existing state-of-the-art simulation meth-
ods in accuracy, fidelity, and generalizability, which demonstrates
the effectiveness of the PIML framework for improving simulation
performance and its capability for facilitating scientific discovery
and deepening our understandings of crowd dynamics. We release
the codes at https://github.com/tsinghua-fib-lab/PIML.
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1 INTRODUCTION
Crowd simulation, the process of simulating the movements and
interaction dynamics of a large number of people [28], has long
been one of the most significant topics in traffic management, ur-
ban planning, and emergency management [36]. It serves as the
foundation of various important applications, ranging from traf-
fic signal management [23], building architectural design [8], and
crowd evacuation [34]. For example, simulating how crowds move
in public transport interchanges, such as airports and railway sta-
tions, helps us analyze the efficiency and safety of the interchange
when facing large-capacity passenger flows and further facilitates
the optimization of the architecture design. Recently, with the de-
velopment of data science and deep learning, crowd simulation
has become increasingly important because a good simulator is
considered as one of the keys to applying reinforcement learning
in real-world systems [6, 31].

Current crowd simulation methods can be mainly divided into
two categories, including physics-based methods and deep learn-
ing methods [28]. Physics-based methods typically use calibrated
physical models and rules derived from expert knowledge to model
crowd dynamics. For example, the Social Force Model (SFM) [13],
one of the most widely used physical methods, characterizes the
interactions among pedestrians, obstacles, and destinations as dif-
ferent forces and simulates crowd dynamics based on Newtonian
mechanics. This type of method generally achieves robust perfor-
mance across different scenarios, which is why it is widely adopted
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Figure 1: Demonstration of the poor generalizability of
deep learning models. The Mean Absolute Error (MAE) of
two state-of-the-art neural network models’ simulations in-
creases super-linearly, while the social force model increases
sub-linearly.

in state-of-the-art commercial crowd simulators, such as VISSIM1

and MassMotion2. Nevertheless, it is less realistic in characterizing
micro pedestrian behaviors [24] because there is no universal physi-
cal model that can accurately describe human behaviors, given their
complexity and heterogeneity. On the contrary, benefiting from the
strong representation power, deep learning methods are able to learn
the complex and heterogeneous micro crowd dynamics better, such
as collision avoidance. However, methods of this type are typically
hard to generalize to different scenarios [37]. As we show in our
experiments later, many even cannot generalize to simulations with
a longer time than in training settings. For instance, as shown in
Figure 1, as the simulation time grows, the simulation errors of
two state-of-the-art neural network models increase super-linearly,
while that of the social force model increases sub-linearly.

As we demonstrated above, the strength of physics-based meth-
ods and deep learning methods are complementary. Thus, the core
idea of this paper is that if we can propose a framework to leverage
the strengths of both methods, it is possible to achieve realistic and
robust crowd simulation.

Following this novel idea, we propose to use a Physics-Infused
Machine Learning (PIML) framework [20] that enables physics-
based methods and deep learning methods to learn from each other
for crowd simulation. As shown in Figure 2, the framework con-
tains three key components, including the the physical model, deep
learning model, and interaction mechanism for the two models
to learn from each other. These components works with two ba-
sic processes: a physics-informed machine learning process and a
machine-learning-aided physics discovery process. Specifically, the
former process lets the neural network model take advantage of the
physics model’s robustness and generalizability through physics-
informed machine learning [26], a learning philosophy that intro-
duces observational, inductive, or learning biases to constrain the
model’s learning process to physically consistent solutions. Exist-
ing works have proved it effective in microscopic fields such as
modeling molecular dynamics [15], where we know lots of physics.
We extend it to the field where little physics is known in this pa-
per. The latter process enables physical models to learn from the
well-trained deep learning models to improve their capability of

1https://www.ptvgroup.com/en/solutions/products/ptv-viswalk/
2https://www.oasys-software.com/products/pedestrian-simulation/massmotion/

characterizing complex and heterogeneous crowd dynamics. Re-
search has shown that this process can be done automatically with
symbolic regression on the trained neural network model’s com-
ponents [5]. We further suggest that it is better to carry out this
process in a human-machine teaming manner, where researchers
can find better physical models more easily with the assistance of
the well-trained neural network model by symbolic regression on
its components. In this way, as we iterate back and forth between
the two processes, we can potentially obtain a robust and general-
izable neural network model for simulation and discover a better
physical model to deepen our understanding of crowd dynamics at
the same time.

In this work, our principal aim is to realize the PIML framework
for crowd simulation and demonstrate its effectiveness. To this end,
we select the most widely used social force model as our physical
model and demonstrate how we go through the two processes of
the PIML framework. (1) For the physics-informed machine learn-
ing process, we present a novel neural network model, Physical-
informed Crowd Simulator (PCS), with three novel designs. First,
we introduce strong inductive biases by directly basing the neural
network on the social force model and substituting its term that
characterizes pedestrian interactions with a graph network. Second,
we design a student-teacher co-forcing training algorithm to let our
model learn from both the real-world data and the data generated
by the social force model since it provides supervised signals with
long-term generalizability. Third, to facilitate our model to learn
natural micro pedestrian dynamics, we design a collision avoid-
ance learner with a self-supervised collision prediction loss and a
collision focal loss that can effectively identify and upsample the
sparse supervised signal for collision avoidance from the data. (2)
In terms of the machine-learning-aided physics discovery process,
we perform symbolic regression on the learned edge function of
the graph network in the well-trained PCS. To stabilize this process,
we propose a rejection probability-based sampling algorithm and
work in a human-machine teaming manner.

We highlight our contributions as follows:

• To the best of our knowledge, we propose to use a Physics-
Infused Machine Learning (PIML) framework for crowd sim-
ulation for the first time, which integrates the advantage of
both physical and deep learning models to achieve accurate
and generalizable simulations.

• We realize the PIML framework with novel designs, includ-
ing the physics-informed crowd simulator with tailored ar-
chitecture and training algorithms for long-term simulation,
and the interaction mechanisms that enable the physical and
deep learning models to facilitate each other.

• Extensive experiments on two large-scale real-world datasets
demonstrate the effectiveness of the proposed framework.
Specifically, both the neural network and physical model we
obtained from the framework outperform the state-of-the-art
simulation methods by more than 10% on both accuracy and
fedelity. They also show the best ability to generalize beyond
the training distributions. Further ablation study shows the
effectiveness of each design. We validate that enabling the
neural networks and the physical models to learn from each
other is the key to success.
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Machine-Learning-Aided Physics Discovery
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Figure 2: Illustrations of the Physics-Infused Machine Learning (PIML) framework.
• With the framework, we find new social force models with
valid physical meanings that characterize micro crowd dy-
namics better than the original social force model, which
demonstrates this framework’s ability to assist scientific dis-
covery for crowd dynamics.

2 PROBLEM FORMULATION
With all the pedestrians’ initial states, including their positions,
velocities, accelerations, and destinations, together with the envi-
ronment states, including the obstacles’ positions, velocities, and
accelerations, crowd simulation requires the model to output how
pedestrians’ states evolve for an arbitrarily long time. We formulate
it as an iterative prediction problem, that is, the simulator itera-
tively maps pedestrians’ current states to their future states to get
a whole simulation given the environment states. Formally, it can
be formulated as follows,

𝑺𝒕+1𝒑 = 𝑓 (𝑺𝒕𝒑, 𝑺𝒕𝒆). (1)

where 𝑺𝒕𝒑 and 𝑺𝒕𝒆 is the the pedestrians’ states and the environment
states at time 𝑡 . To get physically consistent results, we further
refine this problem by letting the simulator predict the accelerations,
and then we use an Euler integration to update the velocities and
positions based on it, i.e.,

𝑣𝑡+1 = 𝑣𝑡 + Δ𝑡 · 𝑎𝑡+1,
𝑝𝑡+1 = 𝑝𝑡 + Δ𝑡 · 𝑣𝑡+1,

(2)

where 𝑝, 𝑣, 𝑎 represents the position, velocity, and acceleration,
respectively).

3 PHYSICS-INFUSED MACHINE LEARNING
To realize our proposed PIML framework, we need to go through
three key design processes. (1) Start with a physical model that
well-fit the problem. (2) Design a neural network model with strong
inductive biases well matched to the physical model. (3) Design
interaction mechanisms to let the neural network model and the
physical model learn from each other. In this section, we elaborate
on each of our designs.

Note that since our principal aim is to demonstrate the effec-
tiveness of our proposed PIML framework in crowd simulation, we
only develop minimal designs needed for the framework, which
can be easily extended to complicated ones to further improve the
performance.

3.1 Physical Model
In this work, we use the original form of Social ForceModel (SFM) [13],
the most widely adopted model in real-world applications, as our

physical model. It conducts crowd simulation through modeling
the interactions among individuals, obstacles, and destinations as
forces, which can be formulated as follows,

𝑚𝑖𝒂𝑖 = 𝒇𝑖𝐷 +
∑︁

𝑗≠𝑖, 𝑗 ∈P
𝒇𝑗𝑖 +

∑︁
𝑜∈O

𝒇𝑜𝑖 ,

𝒇𝑖𝐷 =𝑚𝑖
𝑣𝑖𝑑𝒏𝑖𝐷 − 𝒗𝑖

𝜏
,

𝒇𝑗𝑖 = 𝜆1𝑒
−𝑑 𝑗𝑖/𝜆2 · 𝒏 𝑗𝑖 ,

𝒇𝑜𝑖 = 𝜆3𝑒
−𝑑𝑜𝑖/𝜆4 · 𝒏𝑜𝑖 ,

(3)

where P and O refers to the set of pedestrians and obstacles, respec-
tively. 𝒇𝑖𝐷 , 𝒇𝑗𝑖 and 𝒇𝑜𝑖 represent the traction force of destination 𝐷 ,
the repulsive force of pedestrian 𝑗 and obstacle 𝑜 on pedestrian 𝑖 ,
respectively. The repulsive force between pedestrian 𝑗 and 𝑖 is cor-
related with the relative distance between them and in the direction
of their relative position. The repulsive force between pedestrian 𝑗

and obstacle 𝑜 takes a similar form. The magnitude and direction
of the traction force 𝒇𝑖𝐷 depend on the desired walking speed 𝑣𝑖𝑑 ,
the unit vector to the target direction 𝒏𝑖𝐷 , and the current velocity
𝒗𝑖 of pedestrian 𝑖 .𝑚𝑖 is the mass of pedestrian 𝑖 , and 𝜏 is the simu-
lation time step. 𝜆1 and 𝜆2 are tunable parameters with a physical
meaning of force intensity and force radius, respectively.

3.2 Neural Network Model
Our core idea that the physics and neural network models can com-
plement each other in crowd simulation is based on the premise that
the designed neural network model can outperform the physical
model on the real-world dataset by learning from both the physical
model and the real-world data. However, this is non-trivial. Besides
the problem of how to design the interaction mechanism that helps
the neural network model learn from the physical model, learning
microscopic crowd dynamics from real-world data is challenging
itself. First, a good simulation requires long-term accuracy. In other
words, the neural network model should have the ability to gener-
alize to scenarios with a time longer than that in the training set,
which is generally difficult. Second, micro human behaviors are
heterogeneous and complex [14]. For example, to avoid collisions,
some people may slow down and wait, while others may speed up
to bypass. Further, the timing people take action to avoid collision
varies. As a result, the supervised signal in the real-world data can
be contradictory when the environment state is the same. Therefore,
how to learn physically consistent results from real-world data is
also challenging.

Facing these challenges, we design a Physics-informed Crowd
Simulator (PCS) with strong inductive biases. As shown in Figure 3,
it contains three novel designs, including the graph-network-based
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Figure 3: The architecture of our proposed Physics-informed Crowd Simulator (PCS). We base the model on the original social
force model and use a graph network as our backbone to introduce strong inductive biases. We further introduce a collision
avoidance learner and a student-teacher co-forcing training algorithm to equip our model with long-term generalizability and
more realistic micro crowd behaviors.
crowd simulator, the student-teacher co-forcing training algorithm,
and the collision avoidance learner.

3.2.1 Graph-network-based Crowd Simulator (GCS). To en-
sure we get physically consistent results and reduce the difficulty
of the model interaction mechanism’s design, we directly base our
neural network model on the original social force model and replace
its core term, the interaction term that describes how pedestrians
and obstacles interact with each other, with our designed neural
network model. In this way, our model natually fits the underlying
assumptions of social force model and can easily interact with it.

As illustrated in Figure 3(a), the interactions between pedestrians
are close to the interactions of particles in a particle system, where
one dynamically identifies nearby pedestrians in sight and obstacles
and takes proper actions to avoid collisions. As such, we can model
pedestrians and obstacles as nodes and the potential interactions as
directed edges to build a pedestrian graph. Recent work has demon-
strated the effectiveness of using graph networks [12] to model the
interactions in particle systems in many domains, such as simulat-
ing fluid dynamics [3, 30], estimating molecular properties [2], and
simulating deforming surfaces and volumes [25]. We extend this
method to crowd simulation and use Graph Networks (GNs) as our
neural network model’s backbone, which naturally incorporates
strong and physically consistent inductive biases. Specifically, a
graph network can be seen as a message-passing framework that
learns to propagate latent information through graph-structured
data [9]. In general, this process learns two distinct functions: an
edge function that maps the embeddings of a pair of connected
nodes and the embeddings of the corresponding edge to a message,
and a node function that aggregates the messages to a node and
use it to update the node embeddings, i.e.,

𝐺𝑁 (·) = 𝜑𝑛𝑜𝑑𝑒 (𝜑𝑒𝑑𝑔𝑒 (·)) . (4)

This framework is coherent with the physical nature of how pedes-
trians interact. The edge function learns how people pay attention

to each other, and the node function learns how people collectively
consider the environments to make the next move.

In our design, We consider the visual field of each pedestrian
as a sector with a radius of 𝑟𝑠 meters and a central angle of 𝜃𝑠
degrees. The sector locates at the pedestrian’s current location
and is symmetrical about the pedestrian’s heading direction. We
construct a pedestrian graph for each time step with only the links
within the pedestrians’ visual fields. The edge function 𝜑𝑒𝑑𝑔𝑒 takes
each pedestrian’s current state as inputs and first processes it into
relative values by making a difference since only relative values
affect pedestrians’ decisionswhen interactingwith others. Then, the
relative values are fed into a multi-layer perceptron with residual
bypass. Formally, it can be formulated as follows,

𝜑𝑒𝑑𝑔𝑒
(
𝑠𝑖 , 𝑠 𝑗

)
= ResMLP(𝑠 𝑗 − 𝑠𝑖 ), (5)

where 𝑠𝑖 and 𝑠 𝑗 denote the states of pedestrians, and 𝜑𝑒𝑑𝑔𝑒 (𝑠𝑖 , 𝑠 𝑗 )
learns the message that is passed from the pedestrian 𝑣 𝑗 to 𝑣𝑖 . In
terms of the node function, we simply adopt a summation opera-
tion, which assumes that each nearby pedestrian affects the focal
pedestrian independently. We model obstacle boundaries as a dif-
ferent types of nodes spaced 0.1 meters apart with other settings
the same as pedestrians.

3.2.2 Student-TeacherCo-forcing TrainingAlgorithm (STCT).
To acquire long-term generalizability, training with single-step pre-
dictions is not enough because the supervised signals are generally
noisy in real-world pedestrian data. To be more specific, people are
not machines, and they do not always walk in a regular pattern.
Some may just randomly hang around. As such, training on single-
step predictions can easily result in a degenerated model. A feasible
solution is to train on multiple-step rollouts, which is also referred
to as student forcing in the NLP literature [27]. In other words, we
first simulate for 𝑇 steps and use them together to compute losses
and update model parameters. However, this solution is highly
inefficient and very hard to converge. To deal with this problem,
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we propose a student-teacher co-training training algorithm that
integrates the idea of student-forcing [27] and teacher-forcing [10]
mechanisms to train with multiple-step rollouts, as shown in Fig-
ure 3(b). Specifically, to improve sample efficiency and facilitate
convergence, we first pre-train the model with teacher-forcing that
uses the real labels to compute the inputs of each rollout step, and
the corresponding loss L𝑇 is computed as follows,

L𝑇 =
1
𝑁

𝑇∑︁
𝑡=1

L𝑝 (𝜑 (𝒔𝒕−1),𝒑𝒕 ). (6)

where 𝑁 denotes the total number of training samples in 𝑇 time
steps, 𝜑 (·) is the neural network model, and L𝑝 (·) is the prediction
loss function. In this paper, we use the mean square loss calculated
from pedestrians predicted position �̂� and real position 𝒑. Then, we
finetune our model with student-forcing and add design a reverse
long-term discounted factor 𝜆𝑠 to it to make our model focus on
long-term accuracy. In this way, our model is able to deal with the
error accumulation in multiple rollouts and get robust predictions.
Formally, the student training loss L𝑆 can be formulated as follows,

L𝑆 =
1
𝑁

𝑇∑︁
𝑡=1

𝜆𝑇−𝑡𝑠 L𝑝 (𝜑 (𝒔𝒕−1),𝒑𝒕 ), (7)

where 𝑠𝑡−1 denotes the state that calculated from the predictions of
the 𝑡 − 1 time step, and 𝜆𝑠 is the discounted coefficient.

3.2.3 Collision Avoidance Learner. With the above designs, we
found that our model still fails to learn complex collision avoidance
behaviors from the real-world data. After an in-depth analysis of
the data, we found the reason is that people only take least efforts
to avoid collisions [38]. For example, two people walking towards
each other only need to take a small lateral movement to avoid the
collision even without slowing down. As a result, the supervised
signal of collision avoidance, i.e., the lateral movement, is very small
compared to the supervised signal of moving forwards, which leads
to degenerated models.

To facilitate our model to capture the dynamic collision avoid-
ance behaviors, we introduce two designs, as shown in Figure 3(c).
First, we designed a collision focal loss that upsamples the colli-
sion signals from the data. Specifically, for simplicity, we use the
direction pointing from the first step of the training rollout to the
last step to approximate pedestrians’ heading direction. Then, we
calculate the mean square distance error between the predictions
and labels in the orthogonal direction as the collision focal loss,
which can be formulated as follows,

L𝑐 =
1
𝑁

𝑇∑︁
𝑡=1

(
𝜆𝑐

(
�̂�𝒕 − 𝒑𝒕

)
· 𝒏

)2
, (8)

where 𝒏 represents the unit vector on the orthogonal direction, and
𝜆𝑐 represents the focal coefficient. Second, we design an auxiliary
collision prediction task that feeds the learned messages into a two-
layer MLP with a softmax layer to predict whether two pedestrians
will collide in the next second if their states keep the same. The
intuition of this task is to introduce a self-supervised signal from
the data to help the model distinguish the currently interacting
pedestrians so that it can focus on the collision avoidance behaviors
better. We use binary cross-entropy loss for training, which can be
formulated as follows,

L𝑐𝑝 =
1
𝑁

𝑇∑︁
𝑡=1

𝜆𝑐𝑝

(
𝒚𝒕𝒄 log(�̂�𝒕𝒄 ) + (1 −𝒚𝒕𝒄 )log(1 − �̂�𝒕𝒄 )

)2
, (9)

where 𝒚𝒄 represents the true collision label calculated from data,
and �̂�𝒄 is the predicted collisions.

3.3 Interaction Mechanisms
Physics-informed Machine Learning. To enable the neural net-
work model to learn from the physical model, we extend existing
physical-informed machine learning methods [17, 26] to crowd
simulation, where we only know little physics and the existing
physical models, such as the social force model, are only a rough
approximation of the real-world scenarios. Specifically, we replace
the supervised labels in our designed teacher-forcing training stage
from real-world data to the data generated by the physical model.
Compared with the real-world data with heterogeneous and noisy
signals, the physical model provides homogeneous signals with
long-term generalizability. As such, although the physical model
itself may not be able to perfectly describe the real situation, learn-
ing from it gives our neural network model a perfect initial point
to learn from real-world data. In this way, after finetuned in the
student-forcing stage on the real-world data, the neural network
model can learn to better approximate the real-world data with
physically consistent representations, which can inform the physi-
cal model in turn.

Machine-Learning-Aided Physics Discovery. After training,
we obtain a neural network model that encodes physical laws closer
to reality than the original social force. Thus, if we can decode
the law from the well-trained network, we can potentially find
a better physical model and deepen our understanding of crowd
dynamics. Inspired by previous work [5], this process can be done
by performing symbolic regression on the learned edge functions
of our model. Specifically, we use a bottleneck design for the edge
function, i.e., we set the output to be a 2-dimensional vector, so
that the learned messages have a straightforward physical meaning:
forces. We consider operators, including +,−,×, /, exp, and cos, and
use a high-performance symbolic regression package PySR [4]. We
fit the magnitude and the degree of the learned forces separately.

However, directly applying the existing method is highly unsta-
ble and typically comes up with meaningless results. The reasons lie
in two aspects. First, different from the previous work’s scenario, we
do not know the exact form of the underlying physics expressions.
Thus, we are not sure what variables should be included in the sym-
bolic regression. Directly including all possible variables results
in a latent space too large to find a good solution [33]. Second, as
we illustrated before, the interactions are sparse in the data, which
results in highly unbalanced samples for symbolic regression.

To handle the first problem, we propose to use a human-machine
teaming approach in the physics discovery procedure. Specifically,
we let experts specify several sets of possible combinations of oper-
ators and input variables. Then, for each combination, the symbolic
regression solver returns a list of possible equations with their fit-
ting MSE. Finally, the experts jointly evaluate the equations and
select one that achieves both interpretability and accuracy to be
the improved physical model. We finetune the parameters on the
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GC UCY
Groups Models MAE OT MMD Collision MAE OT MMD Collision

Physics-based Models SFM [13] 1.259 2.114 0.015 622 2.539 6.571 0.129 434
CA [32] 2.708 5.499 0.062 1492 8.336 79.42 2.022 4504

Data-driven Models
Social-STGCNN [22] 7.669 20.31 0.613 > 9999 8.304 23.31 0.698 > 9999
Social-GAN [11] 7.513 25.21 0.387 > 9999 8.698 54.54 0.557 > 9999
Social-LSTM [1] 6.922 11.34 0.345 > 9999 7.291 16.41 0.476 > 9999

Ours

PCS 1.097 1.774 0.015 558 2.330 6.250 0.109 264
(+13%) (+16%) (+3.3%) (+10%) (+8.2%) (+4.9%) (+16%) (+39%)

MLAPM 1.136 1.740 0.012 398 2.406 6.383 0.125 204
(+9.8%) (+17.7%) (+22%) (+36%) (+5.2%) (+2.9%) (+3.1%) (+53%)

PCS/IM 2.666 6.498 0.103 616 5.657 21.78 0.426 730
MLAPM/IM (SFM) 1.259 2.114 0.015 622 2.539 6.571 0.129 434
Table 1: The performance evaluation results on the GC and UCY datasets.

real-world dataset to get the best fit. To solve the second problem,
we develop a sampling algorithm based on the assumption that
the learned forces are an injective function of the inputs. It first
divides the samples into𝑚 groups according to the volume of the
forces. After that, each group is sampled according to a rejection
probability formulated as follows,

𝑝𝑘 = 1 − log(𝑁𝑘 )2/𝑁𝑘 , (10)

where 𝑝𝑘 and𝑁𝑘 represent the rejection probability and the number
of samples of the 𝑘th group, respectively. Note that the key to the
success of physics discovery is the aid of the neural network model
because it provides the supervised signal of how two different
people interact with each other for symbolic regression solver,
which does not exist in the raw data.

4 EXPERIMENTS
4.1 Experiment Setup
4.1.1 Datasets. We evaluate our proposed model on two public
large-scale real-world datasets, including the GC3 dataset and the
UCY4 dataset. These two datasets differ in the scene, scale, pedes-
trian density, pedestrian demographics, and pedestrian behavior
patterns. The GC dataset is a large pedestrian trajectories dataset
from a public transport interchange with 12684 annotated trajecto-
ries from a one-hour video. We took 5 minutes out of it with rich
pedestrian interactions for training and testing. The UCY dataset
is from an outdoor scene at a university containing 528 annotated
pedestrian trajectories from a 216-second video. Please refer to
Appendix Section A.1 for more details.

4.1.2 Baseline Methods. We compare our framework with five
state-of-the-art models from two categories, including physics-
based models and data-driven models. Physics-based models in-
clude the Social Force Model (SFM) [13] and the Cellular Automaton
(CA) [32], which are widely used in the state-of-the-art commercial
crowd simulators. Data-driven methods include Social-LSTM [1],
Social-GAN [11], and Social-STGCNN [22], which are the state-
of-the-art methods that integrate the recent advance in sequence
prediction models, generative adversarial networks, and graph neu-
ral networks to model crowd trajectories. Please refer to Appendix
Section A.2 for details.

3https://www.dropbox.com/s/7y90xsxq0l0yv8d/cvpr2015_pedestrianWalkingPathDataset.rar
4https://paperswithcode.com/dataset/ucy

4.1.3 Experiment Settings and Reproducibility. For the GC
dataset, we use three minutes for training, one for validation, and
one for testing. For the UCY dataset, we use 108 seconds for training,
54 seconds for validation, and 54 seconds for testing. We use four
widely adopted metrics, including the Mean Absolute Error (MAE),
characterizing microscopic simulation accuracy, Optimal Transport
divergence (OT) and Maximum Mean Discrepancy (MMD), mea-
suring the differences between the generated simulation and the
ground truth, and #Collision, characterizing the simulation’s fidelity
in terms of the collision avoidance behaviors. We perform a grid
search on all the hyperparameters for all models. For reproducibility,
we make our codes available5, and further implementation details
are given in Appendix A.3.

4.2 Overall Performance Comparison
To examine the effectiveness of our proposed framework, we com-
pare the performance of the Physics-informed Crowd Simulator
(PCS) and the Machine-Learning-Aided Physical Model (MLAPM)
with different types of state-of-the-art baselines on two large large-
scale datasets in Table 1. We also compare them with its ablation
version that removes the interaction mechanism, where the phys-
ical model and the neural network model do not learn from each
other. Here, we summarize key observations and insights as follows:

The Superior Performance of PCS and MLAPM: Both PCS
and MLAPM outperform all state-of-the-art baselines across all
four evaluation metrics on both datasets. Specifically, taking PCS
as an example, it provides a relative performance gain of 13%, 16%,
3.3%, and, 10% on the GC dataset and 8.2%, 4.9%, 16%, and, 39%
on the UCY dataset, in terms of MAE, OT, MMD, and #Collisions,
respectively, which demonstrates the effectiveness of our proposed
model. Further, MAE, OT, and MMD measure whether our model
gives accurate simulations from both micro and macro perspectives,
while #Collisions reflects the simulations’ fidelity. The consistent
superior performance across all metrics suggests that our method
improves both accuracy and fidelity.

The Effectiveness of the PIML Framework: Removing the
interaction mechanisms directly leads to the failure of both the
neural network and the physical model. Specifically, the MAE of
the neural network model and the physical model increase 59% and

5https://github.com/tsinghua-fib-lab/PIML
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GC2 UCY
Groups Models MAE OT MMD Collision MAE OT MMD Collision

Physics-based Models SFM [13] 1.545 2.998 0.033 338 2.435 6.535 0.133 358
CA [32] 2.900 5.952 0.112 1404 8.511 80.10 2.067 4618

Data-driven Models
Social-STGCNN [22] 7.691 24.61 0.509 > 9999 7.763 19.06 0.5719 > 9999
Social-GAN [11] 8.948 44.18 0.581 > 9999 6.884 32.25 0.512 > 9999
Social-LSTM [1] 6.889 14.63 0.387 > 9999 7.744 19.04 0.569 > 9999

Ours
PCS 1.500 2.910 0.036 330 2.327 6.165 0.107 296

(+2.9%) (+2.9%) (−9.1%) (+2.4%) (+4.4%) (+5.7%) (+20%) (+17%)

MLAPM 1.394 2.765 0.029 218 2.366 6.268 0.123 208
(+9.8%) (+7.8%) (+12%) (+36%) (+2.8%) (+4.1%) (+7.5%) (+42%)

Table 2: The generalization performance of the models trained on GC dataset.
9.8% in the GC dataset and 59% and 5.2% in the UCY dataset, respec-
tively, when the interaction mechanism is removed. The results
support our core idea that physical models and neural networks can
complement each other in crowd simulation, and we can improve
them both by the proposed PIML framework.

The Different Advantages of Neural Network and Physical
Models: Although PCS and MLAPM achieve comparable perfor-
mance, they show advantages in different aspects. On both datasets,
PCS reaches higher MAE, while MLAPM yields a better collision
performance, which is reasonable since neural network models
excel at learning large-scale data, and the physical models naturally
generate physically consistent results.

Analyses on the Baselines’ Performance. All physics-based
baselines outperform data-driven baselines. The key reason is that,
neural networks models typically have a poor generalization perfor-
mance compared with knowledge-based models, especially when
the simulation time is much longer than that of the training settings.
On the contrary, our neural network model generalizes well, which
further demonstrates our designs’ effectiveness.

4.3 Physics Discovery
With the well-trained neural network model, we perform symbolic
regression on the learned edge function characterizing the interac-
tion among pedestrians and successfully find formulas with valid
physical meanings. Specifically, on the GC dataset, the best formula
fitted on the trained PCS takes the following form,𝒇𝒊𝒋 = 𝜆1𝑒

(−𝑑 𝑗𝑖/𝜆2+𝜆3cos(𝜃𝑑𝑗𝑖 −𝜃𝑣𝑗𝑖 )+𝜆4cos(𝜃𝑑𝑗𝑖 −𝜃𝑣𝑗𝑖 )𝑑 𝑗𝑖 ) ,

𝜃 𝑓𝑖 𝑗 = 𝜃𝑑 𝑗𝑖
+ 𝛿,

(11)

where 𝑑 𝑗𝑖 , 𝜃𝑑 𝑗𝑖
, 𝜃𝑣𝑗𝑖 are the relative distance between pedestrian

𝑖 and 𝑗 , the direction of the relative position, and the direction of
the relative velocity, respectively, with 𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝛿 as the
formula’s coefficients.

Compared with the original social force model, there are two
new terms. First, the new term cos(𝜃𝑑 𝑗𝑖

− 𝜃𝑣𝑗𝑖 )𝑑 𝑗𝑖 characterizes
whether there is a risk of collision between two pedestrians, and
the interaction forces are positively correlated with the risk, which
makes physical sense. Second, the formula also suggests a small
deflection angle between the direction of the force and the direc-
tion of the relative position, which echos previous work [35] that
demonstrates that the deflection angle describes a more natural
collision avoidance behavior. More details on the physics discovery
are given in Appendix A.5.

4.4 Generalizability
To examine whether our proposed method can generalize well
beyond its training distributions, we test the performance of all
methods trained on the GC Dataset on the UCY dataset and a new
time period of the GC dataset, which we referred to as GC2 Dataset.
Both datasets have a data distribution fundamentally different from
the original GC dataset, and the degree of the differences is different.
As shown in Table 3, comparedwith the GC dataset, the GC2Dataset
has a different pedestrian density, average pedestrian speed, and
pedestrian distribution. On top of these, the UCY dataset also differs
in scenarios and pedestrian demographics.

We show the results in Table 2. Both PCS and MLAPM outper-
form all the baselines on both datasets, which demonstrates their
strong generalizability. In particular, the neural networkmodel, PCS,
achieves a comparable generalization performance to the physical
model, MLAPM, and it even achieves a better MAE on the UCY
dataset, which suggests the effectiveness of the PIML framework.

4.5 Ablation Study
In addition to the interaction mechanism, we further examined how
different parts of our designs, including the Student-Teacher Co-
forcing Training Algorithm, and the Collision Avoidance Learner,
contribute to the performance. To this end, we consider four vari-
ants of our proposed methods, including PINNSF w/o STCT-Teacher,
PINNSF w/o STCT-Stududent, PINNSF w/o CAL-Lcp, and PINNSF w/o
CAL-Lc. For each of the variants, we remove or replace one of the
key designs. Specifically, in terms of the STCT, w/o STCT-Teacher
and w/o STCT-Student stands for replacing the training algorithm
with only student forcing and only teacher forcing, respectively. In
terms of the CAL, w/o CAL-Lcp and w/o CAL-Lc means removing
the collision prediction loss and removing the collision focal loss,
respectively.

We report the evaluation results in Figure 4, and we have the
following three key observations: First, removing any of the compo-
nents results in a certain level of performance decrease compared
with the full model, which suggests that all the designed compo-
nents are effective. Second, the STCT successfully combines the
advantage of the student-forcing and the teacher-forcing algorithm.
Specifically, training the model with the student-forcing algorithm
is fast yet results in bad simulation performance. On the contrary,
training with teacher-forcing yields a comparable performance
with the full model, yet the training takes 7 to 10 times longer than
the full model with STCT. Third, both the Collision Prediction Loss
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UCY

GC

Figure 4: The ablation study on different modules of PCS.

(a)

(b)

(c)

Figure 5: A Case Study on the learned collision avoidance
behaviors of (a) SFM, (b) PCS, and (c) MLAPM.

and the Collision focal loss facilitate the model to capture pedes-
trians’ dynamic collision avoidance behaviors and yield a more
realistic simulation. To be specific, removing CAL-Lcp and CAL-Lc
results in a performance decrease of 42.3% and 26.8% in terms of
#Collisions on the GC dataset, and 22.7% and 26.5% on the UCY
dataset, respectively. This observation indicates that the supervised
signal for collision avoidance is indeed sparse, and finding ways to
identify and amplify it is indeed an effective approach.

4.6 Case Study
To further validate whether our model learns a more natural colli-
sion avoidance behavior, we conduct a case study on the model’s
rollout simulations on the test set of the GC dataset. We visualize
the simulation results of the SFM, PCS, and MLAPM and present
the results in Figure 5. As we can see, in the initial frame, pedes-
trian No.66 and pedestrian No.63 are about to collide, and the three
models generate different simulations. In the SFM’s simulation, the
two pedestrians collide first and quickly separate as if they were
bounced off. This is a typical problem of the social force model,
and the reason is that pedestrians are modeled as elastic balls. On
the contrary, in the simulation generated by PCS or MLAPM, the

two persons naturally passed by, which demonstrates our model’s
capability to yield more realistic simulations.

5 RELATEDWORK
5.1 Microscopic Crowd Simulation
Microscopic crowd simulation models can be mainly divided into
two categories, including physics-based methods and deep learn-
ing methods [28]. Physics-based methods typically use calibrated
physical models, such as forces and fluid dynamics, to model the
interactions between individuals [7, 13, 24] or groups of pedestri-
ans [16]. These methods generally yield a robust performance with
strong generalizability, yet they fall short in fidelity. With the devel-
opment of deep learning, many researchers seek to use it to improve
simulation performance. For example, some research uses the latest
advancement such as GANs and GCNs to predict pedestrians’ future
behaviors [11, 22]. Nevertheless, they still fail to yield generalizable
simulations. In this work, we jointly leverage the strength of the
physical and neural network models for crowd simulation through
a Physics-Infused Machine Learning framework, which achieves
accurate and generalizable simulations.

5.2 Physics-informed Machine Learning
Physics-informed machine learning is a rising research topic that
tries to integrate the governing physical laws into machine learning
models to help them generate physically consistent predictions [17].
Existing methods typically make a model physics-informed by in-
troducing observational, inductive, or learning biases to guide the
models’ designing and learning process [17]. Researchers have
demonstrated its effectiveness in microscopic fields such as mod-
eling molecular dynamics [15] and fluid dynamics [19], where we
know lots of physics. In this work, we extend it to crowd simulation,
where little physics is known.

5.3 Machine-learning-aided Physical Discovery
Using neural networks to aid scientific discovery is an emerging
field. It originates from the current dilemma of scientific domains
that the collected observational data grows much faster than our
ability to analyze and further understand them [29]. Neural net-
works excel at learning in high-dimensional data, and thus it is
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possible to leverage it for scientific discovery [21]. Previous work
has successfully recovered known formulas, such as Newton force
laws, by conducting symbolic regression on learned neural net-
work models with strong inductive biases [5, 18]. We adapt this
method to find new formulas in unknown fields by proposing a
rejection probability-based sampling algorithm and working in a
human-machine teaming manner.

6 CONCLUSION
In this work, we propose a PIML framework for crowd simulation.
It jointly leverages the strength of the physical and neural network
models by enabling them to learn from each other. Extensive exper-
iments show that with the framework, we are able to get a neural
network model with strong generalizability and a new physical
model with valid physical meanings. Since the principal aim of
this work is to prove the effectiveness of the framework, we only
developed minimal designs and went through the PIML iteration
for a single round. Future work could consider going through more
iterations to further improve the simulation performance and de-
signing better interaction mechanisms. Finally, we also suggest the
potential for the PIML framework to generalize to fields beyond
crowd simulation.
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(a) GC (b) UCY

Figure 6: The snapshots of two datasets.
Statistics GC GC2 UCY
Average duration of a trajectory (s) 11.02 11.72 13.25
Average #Pedestrian per minute (min−1) 203 111 132
Pedestrian density (m−2) 0.094 0.055 0.058
Average speed (m · s−1) 1.155 1.132 1.072
Std of the average speed (m · s−1) 0.565 0.534 0.646

Table 3: The basic statistics of the datasets.

A APPENDIX FOR REPRODUCIBILITY
To support the reproducibility of the results in this study, we elabo-
rate on the dataset details, baselines, the experiment settings, and
the implementation details of our model. We further give more
details on the symbolic regression results.

A.1 Dataset Statistics
To evaluate our models, we introduce two large-scale real-world
datasets that differ in the scene, scale, pedestrian density, pedestrian
demographics, and pedestrian behavior patterns. The basic statistics
of all four datasets are shown in Table 3, and the details of the
datasets are as follows:

GC: The GC dataset is built on a one-hour crowd surveillance
video. It annotates the walking routes of 12684 pedestrians on
a 30m × 35m square in image coordinates. We take a range of
20m×20m, duration of 5-minute space-time slice out of it, which has
rich pedestrian interactions for training and testing. As our models
are based on the physical laws, we need the pedestrian positions in
real-world coordinates but not image coordinates. Therefore, we
perform a projective transformation to transform the coordinates.
Specifically, we choose the four vertices of the square shown in
Figure 6(a), estimate its length and width with the average height
of pedestrians, and get the positions of these four vertices in real-
world coordinates. With four points’ positions in two coordinates,
we can calculate the transform matrix and map all points in image
coordinates to real-world coordinates. We further fine-tune the
previously estimated lengths and widths until the round obstacle in
the middle of the snapshot looks round in real-world coordinates.
As GC dataset is captured at 1.25Hz (Δ𝑡 = 0.8s), which is too long
for Euler integration and will introduce huge error, we perform
cubic interpolation with SciPy to reduce the time step to 0.08s.

UCY: The UCY dataset is composed of three sequences, but as
we focus on long-term simulation in this work, we only choose
the sequence of university students which has a long duration and
is rich in pedestrian interactions. We also perform a projective
transformation taking the four vertices shown in Figure 6(b) of the
rectangular street in Figure 6(b) as reference points, and perform
cubic interpolation to reduce time step from 0.4s to 0.08s.

A.2 Baselines
As all existing data-driven models need an observed sequence as
input, for a fair comparison, we permit all models to observe each
pedestrian for 25 steps.

Physics-based Models:
• Social Force Model (SFM): For SFM, we let it observe each
pedestrian for 25 steps and calculate the mean speed of
each pedestrian as their desired walking speeds respectively,
which makes it perform better than the classical SFM, in
which all pedestrians have the same desired speed deter-
mined manually.

• Cellular Automaton (CA): For CA, We calculate movement
probabilities based on how pedestrian cells move in the grid
for the initial 25 steps to imitate their different desired walk-
ing speeds. We also divide the grid according to the size of
the scene, to make the side length of the cells in the grid
is 0.5m, which is roughly the occupied area of a standing
pedestrian.

Data-driven Models: For all three data-driven models, We use
their official implementations, convert our data to their accepted
data format, and train the model with the observation length of
25 time steps. We then perform grid searches on the learning rate,
batch size, and predicted length. Specifically, we search the learn-
ing rates ∈ [10−4, 10−2], batch sizes 𝑖𝑛{64, 128, 256} and predicted
length ∈ {8, 25}. We also deal with the dynamic entry and exit of
pedestrians with zero padding when testing their performance on
long-term simulation. Specifically, we set the position of pedestrians
not in the scene currently to zero.

• Social-LSTM6: This network predicts each pedestrian’s tra-
jectory with a correlative LSTM unit, and introduces an
aggregation layer that enables LSTMs to share hidden-states
with other spatially nearby LSTMs.

• Social-GAN7: This model is a Generative Adversarial Net-
work (GAN) composed of an RNN Encoder-Decoder gen-
erator and an RNN based encoder discriminator, and also
introduces an aggregation layer in the generator. As this
model can only generate a trajectory sequence of the given
length in a single prediction, we take its predicted sequence
as the new observe sequence and rollout to the end.

• Social-STGCNN8: Instead of using the aggregation layers,
this network model the pedestrian trajectories as a spatio-
temporal graph, and model the social interactions between
the pedestrians with graph edges. Same as Social-GAN, we
take its predicted sequence as the new observe sequence and
rollout to the end.

A.3 PCS Implementation Details
PCS is based on graph network models, and we construct the graph
based on each pedestrian’s visual field. In the implementation, we
set the sector-based visual fields’ radius 𝑟𝑠 as 4 meters and the
central angle 𝜃𝑠 as 180 degrees. For the fully-connected layers with
6https://github.com/quancore/social-lstm
7https://github.com/agrimgupta92/sgan
8https://github.com/abduallahmohamed/Social-STGCNN
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residual bypass in the edge function, we use a node embedding
size of 128. During training, we set the rollout steps as a hyper-
parameter with its values ranging from 5 - 15 time steps, i.e., 0.4s -
1.2s. Intuitively, this parameter determines the temporal receptive
field of our model. Thus, if the value is too small, the learning pro-
cess will be strongly affected by the random noise in each time step
and cannot take advantage of the designed student-training stage.
We jointly optimize all the designed losses, including the position
prediction loss, the collision prediction loss, and the collision focal
loss through the Adam optimizer. We also add an 𝑙2 regularization
of 1𝑒 − 6 and a dropout rate of 0.5 to prevent overfitting. To find
the best hyper-parameters, we perform a grid search on the learn-
ing rate, batch size, 𝑙2 regularization coefficient, and dropout rate
in both the student-forcing training and teacher-forcing training
stages. Specifically, we search learning rate ∈ [1𝑒 − 3, 1𝑒 − 6], batch
size ∈ {32, 64, 128}, 𝑙2 regularization coefficient ∈ [1𝑒−3, 1𝑒−6]. All
the evaluated models are implemented with Pytorch and trained on
a server with two CPUs (AMD Ryzen 2990WX * 2) and four GPUs
(NVIDIA GeForce RTX 2080 * 4). Note that all the training time we
reported in the paper is trained on two GPUs with the server.

A.4 Evaluation Metrics
Mean Absolute Error (MAE): It can be expressed as follows:

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

∥p̂𝑖 − p𝑖 ∥2 , (12)

where𝑁 denotes the total number of predicted instances, p̂𝑖 denotes
the prediction of the pedestrian position and p𝑖 denotes the real
position, and the ∥·∥2 is the 𝑙2 norm of a given vector.

Optimal Transport (OT): It measures the distance between two
distributions as the minimum cost to transport from distribution 𝑃

to distribution 𝑄 . Specifically, it has the form as

𝑂𝑇 (𝑃 ∥𝑄) = inf
𝜋

∫
𝑋×𝑌

𝜋 (𝑥,𝑦)𝑐 (𝑥,𝑦)d𝑥d𝑦,

𝑠.𝑡 .

∫
𝑌

𝜋 (𝑥,𝑦)d𝑦 = 𝑃 (𝑥),
∫
𝑋

𝜋 (𝑥,𝑦)d𝑥 = 𝑄 (𝑦),
(13)

where𝜋 (𝑥,𝑦) can be approximated from 𝑃 (𝑥) and𝑄 (𝑦) by Sinkhorn
Algorithm9. In this work, We use 2D Wasserstein distance, i.e.
𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥22, and 𝑋 ≡ 𝑌 is the simulation duration, 𝑃,𝑄 :
R→ R2 is the prediction trajectory and the true trajectory.

Maximum Mean Discrepancy (MMD): It takes the maximum
difference between two distributions’ moments in any order as
their distance. This metric can be calculated by kernel embedding
of distributions and implemented easily on PyTorch10.

#Collision: We count two pedestrians with a distance less than
0.5m as a collision and take the summation of collisions in all
frames as #Collision. But considering that pedestrians could walk
with their friends, to whom they won’t keep a large social distance,
We take the pair of pedestrians that have a collision in more than 2
seconds as friends and do not count the collisions between them
into #Collision.
9https://dfdazac.github.io/sinkhorn.html
10https://github.com/easezyc/deep-transfer-learning/blob/master/MUDA/MFSAN/MFSAN_3src/mmd.py

A.5 Detailed Results of Physics Discovery
After training, we obtain a neural network model that encodes
physical laws closer to reality than the original social force. We
then perform symbolic regression on the learned edge functions of
our model to find a better physical model and deepen our under-
standing of crowd dynamics. We try to perform symbolic regression
in cartesian coordinates, yet obtain no valid results. Thus, we pro-
pose to perform symbolic regression in polar coordinates and fit
the magnitude and the degree of the learned forces separately. We
assume that interaction is determined only by relative quantities,
and give the variable set including:

• Relative position d𝑗𝑖 : Including the magnitude 𝑑 𝑗𝑖 and the
degree 𝜃𝑑 𝑗𝑖

of the relative position between two pedestrians,
i.e. the coordinates of a pedestrian in the polar coordinates
which takes the direction of a given pedestrian’s velocity as
the polar axis.

• Relative velocity v𝑗𝑖 : Including the magnitude 𝑣 𝑗𝑖 and the
degree 𝜃𝑣𝑗𝑖 of the relative velocity between two pedestrians.

• Relative acceleration a𝑗𝑖 : Including the magnitude 𝑎 𝑗𝑖 and
the degree 𝜃𝑎 𝑗𝑖

of the relative acceleration between two
pedestrians.

• Cosine of the angle between relative position and rela-
tive velocity cos(𝜃𝑑 𝑗𝑖

−𝜃𝑣𝑗𝑖 ): This variable provides a rough
estimate of the possibility of collision between two pedestri-
ans.

• Collision flag in 1 second coll𝑗𝑖 : This item is set to 1 when
two pedestrians with relative position d𝑗𝑖 , relative velocity
v𝑗𝑖 , and zero acceleration will collide in 1 second, and is set
to 0 when they will not collide.

As directly including all possible variables results in a latent
space too large to find a good solution, we let experts specify several
sets of possible combinations of operators and input variables. For
example, we obtain the best fit on the UCY dataset with a symbol
set of 𝑑𝑖 𝑗 , 𝑣𝑖 𝑗 , cos(𝜃𝑑𝑖 𝑗 − 𝜃𝑣𝑖 𝑗 ), and a operator set of +, −, ×, / and
exp. Here, we report the best formula fitted on the UCY dataset:f𝑖 𝑗  = 𝜆1𝑒

coll𝑗𝑖×𝑑 𝑗𝑖/𝜆2+𝜆3coll,

𝜃 𝑓𝑖 𝑗 = 𝜃𝑑 𝑗𝑖
+ 𝛿,

(14)

where 𝜆1, 𝜆2, 𝜆3 and 𝛿 are the formula’s coefficients. Compared
with the original social force model, the coll𝑗𝑖 item acts as a switch.
Specifically, when two pedestrians will collide in 1 second, coll𝑗𝑖
will be 1 and the magnitude of the force will have the same form as
original social force, suggesting that pedestrians will react strongly
to avoid predictable collisions. When two pedestrians will not col-
lide in 1 second, coll𝑗𝑖 will be 0 and the magnitude of the force will
be a constant, meaning that pedestrian will not pay extra attention
on others who will not generate collision. The formula also suggests
a small deflection angle between the direction of the force and the
direction of the relative position, which can give a more natural
collision avoidance behavior.
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