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Abstract

Predicting the behavior of complex systems is critical in many scientific and en-
gineering domains, and hinges on the models ability to capture their underlying
dynamics. Existing methods encode the intrinsic dynamics of high-dimensional
observations through latent representations and predict autoregressively. However,
these latent representations lose the inherent spatial structure of spatiotemporal dy-
namics, leading to the predictor’s inability to effectively model spatial interactions
and neglect emerging dynamics during long-term prediction. In this work, we pro-
pose SparseDiff, introducing a test-time adaptation strategy to dynamically update
the encoding scheme to accommodate emergent spatiotemporal structures during
the long-term evolution of the system. Specifically, we first design a codebook-
based sparse encoder, which coarsens the continuous spatial domain into a sparse
graph topology. Then, we employ a graph neural ordinary differential equation to
model the dynamics and guide a diffusion decoder for reconstruction. SparseD-
iff autoregressively predicts the spatiotemporal evolution and adjust the sparse
topological structure to adapt to emergent spatiotemporal patterns by adaptive
re-encoding. Extensive evaluations on representative systems demonstrate that
SparseDiff achieves an average prediction error reduction of 49.99% compared to
baselines, requiring only 1% of the spatial resolution.

1 Introduction
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Figure 1: Adapting probe topologies.

The dynamics of complex systems are driven by the
nonlinear interactions and co-evolution of numerous
components, giving rise to rich emergent spatiotem-
poral structures, as seen in fluid dynamics [1], cli-
mate science [2], and molecular dynamics [3]. Ac-
curate long-term prediction of these systems is cru-
cial for many real-world applications [4, 5]. How-
ever, complex systems are typically observed in
high-dimensional spaces with unknown intrinsic dy-
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namics, making high-fidelity, long-term prediction a challenging and computationally expensive
problem [6, 7, 8].

Data-driven methods offer an equation-free and computationally friendly approach. The core idea
is to build reduced-order models of high-dimensional observations using encoder-decoders, which
project observed states to a low-dimensional latent space for prediction, thereby improving compu-
tational efficiency [6, 9, 10, 11, 12]. However, most existing work employs parameterized neural
network encoders that implicitly encode spatial structure by compressing observational spatial in-
formation into a latent representation vector. This conversion of spatially-correlated data into latent
vectors hinders predictors from effectively understanding and modeling the system’s inherent spa-
tial interactions and structural relationships [5]. For instance, in fluid convection, heat drives fluid to
form rising plumes and sinking cold flows. These specific spatial structures, their relative positions,
and interactions are critical for understanding and predicting convection patterns [13]. Consider-
ing that spatial interaction patterns and emergent structures continuously change during long-term
evolution, losing such information progressively amplifies the misalignment between the encoder-
decoder and predictor in long-term predictions. This leads to a core question: Can we construct a
reduced-order model that preserves crucial spatial structure and continuously adapts to newly emerg-
ing dynamics patterns during prediction?

This work is inspired by a recent finding that the system state in the entire spatial domain can be
effectively reconstructed from sparse observation points [14, 15, 16]. The data disparity between
sparse points and the full spatial grid strongly suggests a promising encoding paradigm: aggregating
the full-space dynamic information onto a much smaller set of sparse probes [17]. These probes and
their spatial topology constitute the dynamical skeleton of the spatiotemporal dynamics, as shown
in Figure 1. In this paradigm, the model is capable of adapting to the system’s latest spatiotemporal
patterns during long-term predictions by dynamically adjusting probe positions and topology based
on the re-encoded predicted states [6, 18]. Nevertheless, achieving effective probe-based aggregation
and adaptive updating in practice faces two key challenges: 1) A lack of theoretical understanding
for aggregating rich spatiotemporal dynamics from a continuous domain into a small set of discrete
probes; 2) Frequent re-encoding during long-term prediction introduces significant computational
overhead and potential accumulation of prediction errors.

To address these challenges, we propose a novel Sparse Diffusion Autoencoder, SparseDiff, consist-
ing of a codebook-based sparse encoder and an unconditional diffusion decoder. The sparse encoder
learns a representative pattern codebook from historical spatiotemporal trajectories, enabling it to
dynamically aggregate and project full-space observational data onto a spatial topology formed by
sparse probes, thus constructing a reduced-order model. On this probe topology, we model spa-
tiotemporal dynamics using a graph neural ordinary differential equation and explicitly introduce a
diffusion term to capture spatial interactions and information propagation among probes. Finally,
we pad the probe predictions to the full spatial domain to serve as the initial state for the diffusion
process, enabling rapid reconstruction of the full spatiotemporal field. SparseDiff’s key innova-
tion and strength lie in its test-time adaptation: during long-term prediction, it utilizes the learned
codebook to re-encode the latest prediction, dynamically adjusting and constructing a probe topol-
ogy better matched to the current system state to continuously adapt to emerging spatiotemporal
patterns. Experimental evaluation on simulated and real-world systems demonstrates that SparseD-
iff outperforms baselines by over 49.99% in long-term predictions, and reliably predicts full-space
spatiotemporal dynamics using less than 1% of grid points as probes.

The highlights of this work are summarized as follows:

• We propose SparseDiff, a novel autoencoder that uses sparse probes to construct a reduced-order
model that effectively preserves the spatial structure of spatiotemporal dynamics.

• We introduce a test-time adaptation strategy via re-encoding, allowing the model to dynamically
adapt its probe-based representation to emerging dynamics patterns, significantly improving long-
term prediction accuracy and computational efficiency.

• Experiments demonstrate that SparseDiff significantly outperforms baselines in long-term predic-
tion accuracy and achieves high efficiency by reliably predicting full-space dynamics using only
approximately 1% of grid points as probes. Our code is open-source: https://github.com/
tsinghua-fib-lab/SparseDiff .
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2 Preliminary

2.1 Problem Definition

In this work, we focus on spatiotemporal dynamics du
dt = f(u, x, t, ∂u∂x ,

∂2u
∂x2 , ...) on a 2D regular

spatial domain x ⊂ R2. Such systems can often be formalized as time-dependent partial differential
equations, for example, the Navier-Stokes equations, which include a Laplacian operator term acting
on the spatial domain [19]. Without loss of generality, we address the problem of data-driven model-
ing of system dynamics from historical evolving trajectories U = {u(x, t)}T , thereby extending our
focus to real-world systems like climate dynamics where explicit equations are unknown. In prac-
tice, the spatial domain is discretized into an h ∗ w grid. Consequently, the full-domain observation
state at each timestamp is represented as a tensor u ∈ Rh×w. Given a historical observation trajec-
tory of lookback steps, we predict multiple future steps in an autoregressive manner, forecasting one
step at a time.

2.2 Guided Diffusion for Sparse Reconstruction

Diffusion methods have recently been shown to reliably reconstruct the full spatial domain’s system
state, guided by sparse observations [16, 15, 14]. Diffusion models aim to learn a probabilistic
mapping from a simple prior distribution, such as a standard Gaussian to a complex target data
distribution [20, 21, 22]. This is achieved by defining a forward diffusion process that gradually adds
noise to data instances and training a reverse process to sequentially denoise them. We represent the
original data point as x0. The forward stage transforms x0 into a noisy version xn over n steps,
governed by the equation xn =

√
anx0 +

√
1− anϵn, ϵn and {an} represent the Gaussian noise

and noise schedule [23], respectively. The learned reverse diffusion process models the transition
from noise back to data through a sequence of conditional distributions given by

pθ(xn−1|xn) := N (xn−1;µθ(xn, n), σ
2
nI), (1)

where µθ = 1√
αn

(xn− 1−αn√
1−αn

ϵθ(xn, n)) and {σn} are step dependent constants. The term ϵθ repre-
sents the model’s prediction of the added noise, typically implemented using a parameterized neural
network architecture like a UNet or Transformer. The optimization of this network’s parameters is
performed by minimizing the objective function [23]

Ln = En,ϵn,x0
||ϵn − ϵθ(

√
αnx0 +

√
1− αnϵn, n)||2. (2)

This loss function is derived from the negative log-likelihood Ex0∼q(x0)[−pθ(x0)]. Once trained, the
diffusion model progressively denoises from Gaussian noise to yield high-fidelity data samples. To
guide diffusion in reconstructing the full spatial domain state from K sparse observations M(xK),
Bayes’ rule guides the diffusion gradient direction [24] to be

∇xn log p(xn|M) ≈ − 1√
1− αn

ϵθ − ζ∇xn ||y −M(xK)||22, (3)

where y represents the noise values at the sparse observation points and ζ = 1/σ2.

3 Methodology

In this section, we first introduce the proposed sparse diffusion autoencoder to discover the skeleton
of spatiotemporal dynamics, namely the probe topology. Subsequently, we design a diffusion graph
neural ordinary differential equation on the probe topology to model spatiotemporal dynamics. Fi-
nally, we propose the test-time adaptation strategy to dynamically sense emerging spatiotemporal
patterns in long-term prediction. The overall framework is illustrated in Figure 2.

3.1 Sparse Diffusion Autoencoder

We introduce our approach for discovering the dynamical skeleton of complex systems, utilizing a
codebook-based sparse encoder and a guided diffusion decoder.
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Figure 2: Overall framework of proposed Sparse Diffusion Autoencoder.

3.1.1 Codebook-based Sparse Encoder

To discover the skeleton of spatiotemporal dynamics on the spatial domain, we first identify and
record the rich dynamical patterns inherent in complex systems. Specifically, we maintain a code-
book C containing K codewords for spatiotemporal dynamics, where each codeword c ∈ Rd is
a d-dimensional learnable vector. For a given historical observation u ∈ Rt×h×w, we employ
an encoder E to encode along the time dimension, yielding a d-dimensional representation vector
z ∈ Rd×h×w for the full-domain states. We replace the representation vector z with the most similar
codeword c, which serves as the decoder’s input. The decoder then reconstructs the original observa-
tion û. The encoder-decoder and the codebook are trained by minimizing the objective function [25]

L = logp(u|c) + ||sg[E(u)]− c||22 + β||E(u)− sg[c]||22, (4)

where sg indicates gradient detachment. Through this process, we effectively record the rich spa-
tiotemporal dynamical patterns from the observation trajectories within the pretrained codebook.

In the inference stage, we first discretize the historical observation u into a set of k hit codewords
{ci}ki=1 using pretrained encoder E and codebook C. We define the governing region of each hit
codeword ci as the set of spatial grid points that are mapped to it, denoted as uci . Consequently,
the full spatial domain is divided into k region types by the k hit codewords (a single region type
might consist of dispersed patches). These k regions represent k local-scale spatiotemporal units.
Therefore, we accordingly construct probe set V = {vi ∈ Rl}ki=1 to represent them, where l is the
lookback window size.

For probe vi, we select one spatial grid point from its corresponding codeword’s governing region
uci as its coordinate. We use random selection here instead of averaging, ensuring that the probe falls
within patches even if the patches of its region are spatially dispersed. Subsequently, we average
the historical observation sequences of all grid points within uci to aggregate them as probe states
vi ∈ Rl. Finally, we connect all probes to construct the topological structure G = {V, E}, and assign
different weights eij ∈ E to each edge to characterize the spatial association strength. Specifically,
edge weights eij quantify the spatial association strength from probe vi to probe vj . We consider
the governing region uci associated with vi and spatial neighborhood of every grid point within uci .
We count how many grid points belonging to vj’s governing region ucj appear within the combined
neighborhoods of all points in uci . This count is normalized along all probes to determine the edge
weight eij . Thereby, we obtain the probe topology G of the spatiotemporal dynamics.

3.1.2 Guided Diffusion Decoder

We pretrain an unconditional diffusion model to capture the spatiotemporal patterns of the system
state u. Given the set of probes V , we use these probe values vi as sparse observations to guide
the reconstruction by the diffusion decoder. Existing works [16, 15, 14] typically directly substitute
probe values as the sparse observation M(xK) in Equation 3 to guide reconstruction. However, our
approach differs in that we guide the governing regions uci corresponding to the probes. That is,
our probes represent the dynamical information of the entire governing region, not just single grid
points. Therefore, we use probe value vi to guide diffusion in reconstructing its governing region.
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Specifically, we fill the probe value vi to each grid point within its governing region uci , serving
as M(xK) in Equation 3 to guide reconstruction. Furthermore, considering the computationally
intensive of the denoising process, we use the filled full-space state instead of Gaussian noise as the
starting point for denoising to accelerate the diffusion sampling process.

3.2 Probe-graph Diffusive Predictor

Given the probe topology G and probe states vi, we now predict the spatiotemporal dynamics of the
system. Specifically, we model this process as a neural diffusion process on the graph [26]

ht = h0 +

∫ t

0

(A-I) ∗ hτdτ,

h0 = ϕ(v),

vt = ψ(ht),

where ht refers to the representation at time t, ϕ and ψ are the parameterized encoder and decoders,
and A is the time-varying diffusion coefficient between probes, calculated by a parameterized atten-
tion network. To explicitly model the spatial association strength between probes, we introduce the
edge weights into the calculation of the diffusion coefficient as

a(hi, hj) = softmax(
(WKhi)

TWQhj + WEeij
dk

),

where hi denotes the representation of the ith probe, WQ, WK , and WE are learnable matrices. We
employ a multi-head attention mechanism A = 1

k

∑
k Ak to capture complex dynamical mecha-

nisms.

3.3 Test-time Adapting Prediction

During long-term prediction, complex system dynamics exhibit continuous emergence of spatiotem-
poral patterns, implying time-varying dynamical spatial interactions. Therefore, we continuously
update the predictor during testing to adapt to the latest spatiotemporal dynamics patterns. For
a T -step prediction, the prediction window is divided into N sub-windows {wn}N . We assume
each window possesses specific spatial interactions, with a corresponding probe topology sequence
{Gwn

}N . We update the probe topology at the beginning of each window through re-encoding.
Specifically, at a window transition time, we decode the probe states back to full space. Following
the method in Section 3.1.1, we then re-encode the probe topology G for the latest dynamics within
the current window using encoder E and codebook C. This topology is updated again at the next
transition time.

We design a dynamic update strategy to dynamically determine the window transition time. Instead
of using fixed-length sub-windows, we continuously monitor whether the recent evolution of each
probe remains well-aligned with its assigned codeword in the latent space of the encoder E . Specif-
ically, after each re-encoding, we obtain k hit codewords {ci}ki=1, where each ci ∈ Rd corresponds
to a governing region. For each codeword, a probe vi is randomly selected to represent its region and
forms a probe graph G for prediction. At each prediction step, we compute the latent consistency
score χt by encoding the past T -step trajectory of each probe vi and evaluating its cosine similarity
with the associated codeword ci:

χt =
1

k

k∑
i=1

cos
(
E(vt−T :t

i ), ci
)
.

When χt drops below a predefined threshold τ , it indicates that many probe representations have
drifted away from their original latent codewords, suggesting a mismatch between the current probe
partition and the evolving system dynamics. In response, we decode the probe graph of the past T
steps back to the full space using the diffusion decoder and recompute the probe topology via re-
encoding. This strategy enables the model to adaptively reallocate codewords and update the graph
structure in accordance with the varying speed and patterns of spatiotemporal evolution.
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Table 1: Average performance of the trajectories predicted from different initial conditions with standard devi-
ation from 10 runs. The best results are highlighted in bold.

Systems Lambda-Omega Navier-Stokes SwiftHohenberg Cylinder-Flow Real-world
RMSE ×10−2 SSIM ×10−1 RMSE ×10−2 SSIM ×10−1 RMSE ×10−2 SSIM ×10−1 RMSE ×10−2 SSIM ×10−1 RMSE ×10−2 SSIM ×10−1

ConvLSTM 5.613± 0.557 9.224± 0.125 30.674± 2.704 4.696± 0.083 9.556± 0.059 9.399± 0.006 11.098± 0.330 5.265± 0.144 13.682± 2.777 7.288± 1.195

FNO 5.138± 0.557 9.170± 0.514 15.992± 1.062 7.262± 1.642 19.693± 5.591 9.614± 0.009 19.854± 25.248 7.583± 0.525 12.639± 3.878 6.775± 1.368

UNet 8.324± 0.497 8.014± 0.393 16.277± 1.582 7.092± 0.837 14.881± 2.789 9.206± 0.225 21.349± 4.903 6.203± 0.196 13.928± 2.855 6.328± 0.974

G-LED 6.506± 0.395 8.992± 0.396 12.334± 0.485 8.095± 0.963 8.214± 0.937 9.572± 0.211 10.021± 0.873 7.059± 0.291 10.304± 2.009 6.768± 0.539

Ours 2.912± 0.187 9.601± 0.218 11.130± 3.241 8.492± 0.793 7.628± 3.102 9.675± 0.192 8.544± 0.239 7.392± 0.171 7.957± 1.207 7.781± 1.034

53.56% 9.05% 38.64% 28.63% 57.42% 1.89% 62.67% 17.39% 37.86% 15.51%

4 Experiments

In this section, we validate the accuracy and efficiency of SparseDiff on simulated PDE systems and
real-world datasets. Furthermore, we evaluate its robustness and generalization ability and examine
the specific contribution of its components through ablation studies.

4.1 Experimental Setup

We conduct experimental validation on four PDE systems, including: 1) Lambda-Omega; 2) Navier-
Stokes; 3) Cylinder Flow; and 4) SwiftHohenberg systems. They encompass complex diffusion
effects, convection terms, and higher-order spatial interaction terms, among other nonlinear dynamic
components. Additionally, we also evaluate SparseDiff’s performance in real-world applications on
an open-source climate record dataset [27]. All models are trained on trajectories with different
initial conditions and predict long-term (more than 100 steps) on new trajectories. Details on the
equations, data generation, and training settings are in Appendix A.

Baselines We compare our method against a set of state-of-the-art spatiotemporal forecasting
models, including operator learning methods, recurrent architectures, and generative frameworks.
Specifically, we consider Fourier Neural Operator (FNO) [28], ConvLSTM [29], UNet [30], and
G-LED [31]. A detailed description of each baseline is provided in Appendix C.

4.2 Main Results

PDE systems Table 1 shows the long-term prediction performance of all models. SparseDiff
achieves the optimal prediction quality in almost all scenarios. This indicates that SparseDiff’s
test-time adaptation enhances long-term prediction by timely sensing of new spatio-temporal dy-
namics. Furthermore, compared to other baselines, another characteristic of SparseDiff is that it
performs dynamic prediction on the probe topology. Other methods predict in the original or uni-
formly downsampled grid space and, unlike SparseDiff, fail to discover the spatial interactions of
complex systems and structure them into an explicit topology to enhance the predictor’s representa-
tional capacity.

G-LED

SparseDiff

FNO

GTa b

Figure 3: Real-world dataset. (a) Prediction visualiza-
tion of different models. (b) RMSE comparison of dif-
ferent models.

Real-world dataset We use the SEVIR
dataset [27] for real-world weather forecast-
ing. Specifically, we select the GOES-16 Chan-
nel 09 (6.9µm) infrared imagery ir069, which
captures mid-level water vapor and is widely
used for storm tracking. Each frame covers a
384× 384 km area at 2 km resolution, yielding
a 192× 192 grid, with a temporal resolution of
5 minutes. Experimental results are shown in
Figure 3, where SparseDiff achieves the most
faithful prediction of complex climate patterns
with the lowest error. This indicates that the
proposed probe-based encoding scheme is of
great value for applications in real-world com-
plex systems, especially in large-scale observational data scenarios in geoscience. SparseDiff en-
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a b c

Figure 4: Ablation studies. Prediction performance with (a) uniform and (b) random probe selection. (c) Impact
of probe topology edge weights on prediction.

codes high-dimensional observations into a sparse probe topology, thus reducing computational
overhead while ensuring accuracy.

4.3 Ablation Study

We capture a compact low-dimensional skeleton of spatiotemporal dynamics through codebook
learning, thereby improving prediction performance. The contrasting version is uniform down-
sampling or random selection of probes. We also establish heuristic calculation rules for the edge
weights of the probe topology. The contrasting version is an unweighted graph (where all weights
are set to 1). In the following, we ablate these two key components.

Selection of Probes Probes are the most critical components in the SparseDiff framework, as they
serve as the information carriers that represent the coarse-grained structure of the spatiotemporal
dynamics. Their selection fundamentally determines the prediction quality of the entire model. Fig-
ures 4a and b illustrate the prediction performance of SparseDiff on the SwiftHohenberg system
when the probes are selected via spatially uniform and random sampling, respectively. We observe
that even when the number of probes is increased to 1024, these two variants still perform signif-
icantly worse than our method. In contrast, the original version achieves high-quality predictions
with as few as 150 probes. This highlights that our proposed codebook-based sparse encoder not
only compresses the spatial domain effectively but also selects informative and dynamically rep-
resentative probes. It demonstrates a strong ability to extract the low-dimensional spatiotemporal
skeleton where the intrinsic dynamics reside.

Probe-Graph Edge Weights When the edge weight feature is disabled, the edge-feature-aware at-
tention mechanism described in Section 3.2 degenerates into standard inter-node attention that treats
all probe connections equally. Without incorporating the spatial association strength eij , the model
loses the ability to capture relative distances and directional relationships between probes, which are
essential in spatiotemporal systems. As shown in Figure 4c, this leads to a notable performance drop
on the Navier-Stokes system, where accurate modeling of spatial interactions is critical for capturing
fine-grained dynamics.

4.4 Robustness
a b

Figure 5: Robustness experiments. (a) Impact of code-
book size on SparseDiff’s performance on the Navier-
Stokes system. (b) Impact of the noise on SparseDiff’s
performance on the real climate dataset.

Here, we evaluate the robustness of SparseD-
iff to data observation noise and codebook size
settings. Specifically, we first test the predic-
tion performance with different preset code-
book sizes on the Navier-Stokes system. The
codebook size is the upper limit on the number
of activated codewords. It determines the max-
imum number of probes SparseDiff can select
to perceive spatiotemporal dynamics. Experi-
mental results are shown in Figure 5a, where
the prediction accuracy (SSIM) converges after
the codebook size reaches 150. For the Navier-
Stokes system with 128Œ128 resolution, this is
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quite a small number. This indicates that SparseDiff utilizes probes efficiently and achieves superior
prediction with very low computational overhead.

Next, we examine SparseDiff’s robustness to real-world noise. We apply Gaussian noise with vary-
ing percentage intensity to a real-world climate dataset (relative to the original data amplitude).
Experimental results are shown in Figure 5b, where SparseDiff’s performance deteriorates as the
noise increases, but at moderate noise levels, it still outperforms the baseline without noise.

4.5 Generalization

SparseDiff

GTa

b

c

Figure 6: Generalization experiments. Visualized (a)
ground truth and (b) SparseDiff prediction of turbulent
at Re = 660. (c) SSIM as a function of Reynolds num-
ber.

We examine SparseDiff’s out-of-distribution
generalization ability. Specifically, using the
Cylinder Flow system as the experimental sub-
ject, we evaluate SparseDiff’s ability to pre-
dict flows with Reynolds numbers not included
in the training set. For turbulent systems, the
Reynolds number influences the viscous coeffi-
cient, thereby affecting collision frequency. For
fluids with high Reynolds numbers, the flow ex-
hibits chaotic tendencies and is thus difficult to
predict over long periods. We train SparseDiff
on Reynolds numbers less than 500 and predict
on larger Reynolds numbers. Experimental re-
sults are shown in Figure 6, where the baseline
shows rapid performance degradation in out-of-
distribution scenarios, whereas SparseDiff’s performance consistently outperforms the baseline and
exhibits fluctuations. The reason may be that a rich set of spatiotemporal dynamic patterns is
recorded in SparseDiff’s pretrained codebook. Although there are differences in the turbulent dy-
namic behaviors at different Reynolds numbers, local small-scale dynamic patterns share similarities
and are thus recognized by SparseDiff and accurately generalized.

4.6 Trade-off between Accuracy & Efficiency

a b

Figure 7: Trade-off of accuracy & efficiency. Circles
represent SparseDiff, and crosses represent GLED.

Here, we analyze how SparseDiff trades off
between accuracy and efficiency. Specifically,
during testing, SparseDiff can adjust the probe
topology through re-encoding, thus construct-
ing the most suitable form for newly emerg-
ing spatiotemporal dynamics. Frequent adjust-
ments allow for sufficient perception of real-
time dynamics, but the corresponding compu-
tational overhead increases. We conducted
tests at different update intervals on the Navier-
Stokes system, and the results are shown in Fig-
ure 7, where Rollout Step refers to the time in-
dex in the autoregressive prediction sequence,
and each step corresponds to one forward prediction in the rollout process. According to Figure 7a,
accuracy and time overhead exhibit a negative correlation.

We also compare with the best-performing baseline, G-LED. It can enhance long-term prediction
accuracy by decoding and re-encoding at intervals, but its accuracy ceiling is lower than SparseDiff,
and its time overhead is much greater than SparseDiff. Our adaptive re-encoding strategy proposed
in Section 3.3 achieves a balance between accuracy and efficiency, as shown by the red star in
Figure 7a.

4.7 Comparison of Graph Construction Schemes

To validate our proposed region-aware edge weighting scheme, we compare it against two primary
baseline categories: (a) Learnable Graph Construction: The Graph Kernel Network (GKN) [32], a
method designed for learnable graph construction; and (b) Heuristic Alternatives: Using the same
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GRAND predictor but replacing our learned eij with static graph structures, including k-nearest
neighbors (kNN) based on Euclidean coordinates (k = 20% of probe count), and spectral clustering
followed by kNN in the embedding space. Table 2: Comparison of different graph

construction methods.

Method RMSE ×10−2

Ours 2.873
GKN 4.210
GRAND + kNN 3.287
GRAND + spectral 3.019

We report the average RMSE over a 100-step autoregressive
prediction on the LO system. As shown in Table 2, our region-
aware edge scheme yields significantly better performance
than both the learnable GKN and the heuristic variants. This
demonstrates that explicitly encoding region-level adjacency
improves the expressiveness of the model for probe-based dy-
namics.

5 Related Work

5.1 Encoding Dynamics of Complex Systems

Discovering the low-dimensional latent space containing the intrinsic dynamics of complex systems
represents a core challenge in long-term prediction. To accelerate spatiotemporal dynamical system
prediction, some earlier studies focus on approximating solutions on coarse grids. Lee et al. [7] uti-
lize Gaussian processes and diffusion maps to coarse-grain high-resolution microscopic observations
into coarse-scale PDEs. Bar-Sinai et al. [33] employ uniform grid downsampling of the continuous
spatial domain for specific nonlinear partial differential equations. This coarse-grid approach has
inspired several recent works [31, 34]. With advancements in representation learning, autoencoders
have been employed to data-drivenly uncover the low-dimensional latent space of high-dimensional
observations [6, 35]. Prediction models such as recurrent neural networks [6] and neural opera-
tors [9] operate directly within the low-dimensional space constructed by autoencoders. To ensure
the latent space aligns with physical intuition, existing research suggests integrating autoencoders
with physical priors [36]. Li et al. [11] restrict the output semantics of the encoder by specifying
timescales and intrinsic dimensions. Wu et al. [10] combine delay embeddings with feature em-
beddings to discover the low-dimensional manifold of high-dimensional observations. Additionally,
some work [37] learns the latent coordinates of partial differential equations through autoencoders
to reveal governing equations. In contrast to these methods, our proposed probe topology adaptively
senses spatial structure, without enforcing a regular grid. This explicitly preserves the tight spatial
correlations of spatiotemporal dynamics with a high compression ratio.

5.2 Generative Modeling for Complex Systems

Diffusion models have performed remarkably well in generative tasks, with their significant achieve-
ments in video synthesis [38, 39] and time series modeling [40, 41] inspiring numerous studies in
complex system dynamics prediction. Some works [42, 15] have utilized large-scale pre-trained
diffusion models to reconstruct high-fidelity data from lower-fidelity samples or sparse measure-
ment data. Physics knowledge is also integrated. For example, known partial differential equations
provide physical constraints (PDE loss) for the denoising step, improving accuracy [43]. Beyond
reconstruction, diffusion models have also been applied to generate specific dynamical data. Li et
al. [44] propose a machine learning approach for generating single-particle trajectory data in high
Reynolds number three-dimensional turbulence. Lienen et al. [13] treat turbulence simulation itself
as a generative task, employing diffusion models to capture the distribution of turbulence induced by
unseen objects and generate high-quality samples for downstream applications. Other strategies fo-
cus on directly embedding dynamics or prediction processes into the diffusion mechanism. Cachay
et al. [45] align the temporal evolution axis of spatiotemporal dynamics with diffusion process steps,
replacing noise injection with temporal interpolation and the denoising operation with prediction.
G-LED [31], a more direct approach, incorporates system states as prediction targets and utilizes
predicted future frames as conditions to guide the diffusion model in reconstructing the original
high-fidelity states. Li et al. [5] embed multiscale features as conditioning for Diffusion model-
ing, while [46] dynamically adjust the number of denoising steps based on dynamical timestamps.
Compared to these methods, we introduce a novel sparse encoder working in tandem with a diffu-
sion decoder. This combination not only reveals the low-dimensional spatial structure of long-term
dynamics but also enables test-time adaptation to emerging spatiotemporal dynamics.
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6 Conclusion

Modeling the long-term dynamics of complex systems is a challenging problem. Data-driven meth-
ods are often constrained by the difficulty in explicitly preserving the inherent spatial interactions
of spatiotemporal dynamics in latent vectors. This information loss is exacerbated by new patterns
that continuously emerge during the system’s long-term evolution. Therefore, we propose a novel
Sparse Diffusion Autoencoder, SparseDiff, a prediction framework that preserves the system’s spa-
tial structure and adapts at test-time. SparseDiff coarsens the full spatial domain state into a probe
topology by means of discrete codebook learning to construct a compact skeleton of spatiotemporal
dynamics. The pretrained codebook is able to capture the rich dynamic patterns of complex sys-
tems. Once training is complete, SparseDiff can adjust the probe topology to adapt to emerging
dynamic patterns during testing and without updating weights. On the probe topology, we design
an edge-weight-aware graph neural diffusion ordinary differential equation to model spatiotemporal
dynamics, thereby predicting the future states of the probes and guiding the diffusion model to effi-
ciently reconstruct back to the full spatial domain. Experiments on simulated and real-world systems
show that SparseDiff can achieve optimal long-term prediction and exhibits excellent robustness and
generalization ability.

Limitation & Future Work SparseDiff’s spatiotemporal dynamics module relies on the percep-
tion of edge weights, therefore the rules for calculating weights will affect its long-term prediction
quality. Furthermore, the state initialization of probes is achieved through average aggregation,
which may lose high-frequency information at a few grid points. Future research will focus on
end-to-end graph structure learning and probe initialization strategies.
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Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

A Data Generation

Below, we provide an overview of the dynamics and data generation process for each complex
system. LambdaOmega (LO) system is governed by{

u̇t = µu∆u+ (1− u2 − v2)u+ β(u2 + v2)v

v̇t = µv∆v + (1− u2 − v2)v − β(u2 + v2)u,
(5)

where ∆ is the Laplacian operator. Here, we set µv and µv to 0.5, while β is 1.0.

Navier-Stokes (NS) system is governed by:

ω̇t + (u · ∇)ω = ν∆ω + f, (6)

∇2ψ = −ω, (7)

u = (u, v) =

(
∂ψ

∂y
, −∂ψ

∂x

)
, (8)

ω = (∇× u) · ẑ =
∂v

∂x
− ∂u

∂y
, (9)

where f = A (sin (2π(x+ y + s)) + cos (2π(x+ y + s))) is the driving force, and ν is the vis-
cosity coefficient. Parameter values used in this simulation are set as follows: ν = 1.0, forcing
amplitude A = 0.1, and phase shift s = 0.

Swift-Hohenberg (SH) system is simulated as:

∂u

∂t
= ru− 2∆u−∆2u+ gu2 − u3, (10)

where r is the linear instability parameter, g controls the strength of the quadratic nonlinearity, and
∆2 denotes the biharmonic operator. In this system we set r to 0.7 and g 1.0 separately.

Cylinder flow (CY) system is governed by:
u̇t = −u · ∇u− 1

α
∇p+ β

α
∆u,

v̇t = −v · ∇v + 1

α
∇p− β

α
∆v.

(11)

where α is set to 1.0, and β corresponds to the dynamic viscosity µ as defined in Equation 12.

The systems under study are simulated across a diverse range of initial conditions. Temporal down-
sampling by a factor of 10 and 25 are applied to the LO and NS systems separately to reduce
redundancy, while all the systems are spatially rescaled to a uniform 128× 128 resolution.

The Cylinder flow system is modeled via the lattice Boltzmann method (LBM) [6], capturing com-
plex vortex shedding phenomena governed by the Navier-Stokes equations in the presence of a
cylindrical obstacle. The simulation operates on a lattice velocity grid, where relaxation dynamics
are dictated by the kinematic viscosity and the Reynolds number. To ensure data quality, we begin
recording after the flow reaches a statistically steady turbulent regime. The outputs are resampled
in time by a factor of 300 and spatially interpolated to a 128 × 64 grid. We generate 50 training
and 20 testing trajectories across varying flow conditions, with Reynolds numbers uniformly sam-
pled: 10 training samples in the range Re ∈ [100, 500] and 10 out-of-distribution (OOD) samples in
Re ∈ [500, 1000]. Based on the relation

µ =
ρUmD

Re
(12)
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where ρ = 1, Um = 0.08, and D = 0.2, the corresponding dynamic viscosity spans µ ∈ [3.2 ×
10−5, 1.6× 10−4] for training and µ ∈ [1.6× 10−5, 3.2× 10−5] for OOD cases.

To standardize input scales and facilitate stable training, we apply min-max normalization indepen-
dently across all channels.

B Model Architecture

Our model is composed of three key modules: a Codebook-based Sparse Encoder for spatiotemporal
discretization, a Probe-graph Diffusive Predictor for latent dynamics modeling, and a Guided Dif-
fusion Decoder for reconstructing full-resolution system states. Below, we detail the architectural
settings used in each component.

# --- Sparse Encoder ---
hidden_dim = 1024 # hidden dimension of MLP
embedding_dim = 512 # Latent dimension (d)
num_embeddings = M # Codebook size , hyperparameter

# --- Diffusive Predictor ---
input_steps = 10 # number of lookback steps
feature_dim = 256 # Feature dimension
num_heads = 8 # Attention heads for calculating Matrix A
ODE_method = ’rk4 ’ # Numerical solver for ODE integration

# --- Unconditioned Diffusion ---
n_channels = 128 # Base number of channels
ch_mults = [1, 2, 2] # Channel multiplier for each resolution level
is_attn = [False , False , True] # Whether to apply self - attention
dropout = 0.1 # Dropout rate in residual blocks
n_blocks = 2 # Number of residual blocks per resolution level

Table 3: Trainable parameter counts (in millions).

Model SparseDiff FNO ConvLSTM UNet G-LED
Encoder Predictor Diffusion

Params (M) 2.3× 10−2 1.32 25.8 23.90 5.47 10.91 26.3

C Baseline Implementation

We provide a brief description of the baseline methods used for comparison in our experiments.
These methods represent a diverse set of state-of-the-art approaches for modeling spatiotemporal
dynamics. Their corresponding trainable parameter counts are summarized in Table 3.

• FNO [28]: Fourier Neural Operator leverages fast Fourier transforms to model spatially
continuous operators, enabling efficient learning of solution mappings for partial differen-
tial equations. It is widely adopted for learning complex physical dynamics.

• ConvLSTM [29]: ConvLSTM integrates convolutional structures into recurrent networks,
allowing spatial correlations to be preserved while capturing temporal dependencies. It is
a standard baseline for video and sequence-based spatial forecasting tasks.

• UNet [30]: UNet employs an encoder-decoder structure with skip connections to effec-
tively combine global context and local details. It is particularly suitable for dense predic-
tion tasks involving structured outputs.

• G-LED [31]: G-LED is a generative latent evolution model that models temporal dynamics
using autoregressive attention in latent space, and reconstructs full-resolution outputs using
a Bayesian diffusion model. It achieves strong performance on high-dimensional physical
systems.
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D Additional Results

D.1 Application to Irregular or Sparse Spatial Domain

While our current implementation operates on 2D regular grids, SparseDiff can be applied to irregu-
lar or sparse spatial data by first transforming the inputs into a regular grid through interpolation or
zero-filling, enabling processing within the same framework.

To validate this, we conduct two experiments:

a. Sparse sampling on Navier-Stokes system: On the Navier-Stokes system, we randomly sam-
ple only 10% of grid points. These sparse samples are then interpolated onto a 128×128 regular
grid before being fed into SparseDiff. Despite the sparsity, SparseDiff outperforms baselines that
are given full-resolution inputs, as shown in Table 4.

Table 4: Sparse sampling on the Navier-Stokes system. We report average metrics of 100 prediction steps.

Method RMSE ×10−2 ↓ SSIM ×10−1 ↑
FNO (full grid) 15.99 7.26
G-LED (full grid) 12.33 8.10
SparseDiff (full grid) 11.39 8.36
SparseDiff (10% observations) 12.27 8.19

b. Irregular 2D wave equation dataset [47]: We also evaluate SparseDiff on the 2D wave equa-
tion with observations sampled on irregular meshes. These inputs are first completed onto regular
grids using interpolation within observed regions and zero-filling in excluded regions before being
processed by the model. Compared to FNO, SparseDiff maintains stable prediction accuracy (Ta-
ble 5).

Table 5: Results on the irregular 2D wave equation dataset [47] of 100 prediction steps.

Method RMSE ×10−2 ↓ SSIM ×10−1 ↑
FNO 23.76 7.81
SparseDiff 15.58 8.25

While these results demonstrate practical applicability to irregular or sparse inputs, we acknowledge
certain limitations of this approach:

• For highly non-uniform spatial distributions, interpolating to a uniform grid can be problem-
atic. Also, the sparse observation may be too under-sampled to allow reliable interpolation,
leading to unnecessary computational cost or significant reconstruction errors.

• If the distribution of spatial inputs shifts between training and testing, performance may
degrade, as our current model lacks coordinate-querying capabilities (unlike operator-
learning models such as neural operators), and cannot generalize across arbitrary spatial
layouts.

Nevertheless, the core design of SparseDiff is not inherently tied to regular grids. The key innovation
of SparseDiff lies in its latent probe representation, which aggregates and models regional dynamics
through sparse, learnable units. This representation is inherently flexible and does not require regular
spatial structures.

The main constraint stems from the UNet-based diffusion decoder, which requires regular-grid input.
However, this is a design choice rather than a fundamental limitation of the method. In future work,
the diffusion decoder could be replaced with architectures that naturally support irregular domains,
such as Graph Neural Networks. Alternatively, it could be substituted with other super-resolution
models, including transformer-based approaches and operator-learning models, to further extend
SparseDiff to irregular spatial settings.
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D.2 Visualization

We provide long-term prediction visualizations on three representative systems: NS, SH, and CY.
For each case, the left column shows the ground truth, the middle column presents the prediction
reconstructed via the diffusion decoder, and the right column shows the vanilla reconstruction by
directly filling each codeword region with its corresponding probe value.

(a) CY system (b) NS system

(c) SH system
Figure 8: Long-term prediction results on three representative systems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Can be found at the last paragraph of the introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Can be found at the limitation paragraph of the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Can be found in the data generation and supplementary materials sections of
the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Answer: [Yes]

Justification: The attached file submitted contains the code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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