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City plans are the product of integrating human creativity with emerging
technologies, which continuously evolve and reshape urban morphology

and environments. Here we argue that large language models hold large
untapped potential in addressing the growing complexities of urban
planning and enabling a more holistic, innovative and responsive approach
to city design. By harnessing their advanced generation and simulation
capabilities, large language models can contribute as an intelligent assistant
for human planners in synthesizing conceptual ideas, generating urban
designs and evaluating the outcomes of planning efforts.

Urban planning plays a critical role in shaping the quality of life for city
residents, influencing every aspect of the city, from land use and facility
placement to transportation and travel*. With billions of people living
inor migratingto cities, developed urbanregions require renovation,
while newly developing urban areas need to be carefully planned to
accommodate growth’. Historically, urban planning methodologies
have continually evolved to meet the ever-expanding needs of urban
environments® . Today, as new trends emerge in urban planning,
planners are confronting critical challenges. First, urban planning
isincreasingly complex within interdisciplinary contexts, extending
beyond simple spatial layouts to encompass comprehensive factors of
social equity®’’, environmental resilience", urban sustainability' and
soforth. Addressing this growing complexity demands a deep under-
standing of diverse knowledge across multiple domains. Second, new
concepts, suchas the 15-minute city” ™, which promotes efficient layout
such thatbasic urbanservices are accessible within walking or cycling
distance, are emerging. Adapting to new concepts, reducing their nega-
tive effects such as potential segregationrisk in the 15-minute city” and
further translating these theoretical ideas into actionable urban plans
present a notable challenge that requires strong reasoning capabili-
ties to align tangible geospatial layout with concrete descriptions of
planning objectives. Third, cities are giant systems involving a large
number of entities and complicated interactions'*2°, which makes the
evaluation of urban planning particularly challenging®2*. To address
these challenges, future approachesinurban planning are anticipated

to empower designers through the integration of cutting-edge tech-
nologies featuring advanced abilities in understanding, reasoning and
simulating urban dynamics.

Artificial intelligence (Al) has had a substantial impact on the
processes of creation and design across a wide range of areas and dis-
ciplines. In particular, since the release of ChatGPT in late 2022, large
language models (LLMs) have demonstrated noteworthy generative
abilities 2%, Specifically, different from pre-existing Almodels that nar-
rowly focus on specific cognitive tasks and application domains, LLMs
use natural language as a unifying ‘code’ to represent knowledge in a
wide variety of domains**°. Through large-scale self-supervised pre-
training on diverse domain data, supervised fine-tuning oninstruction
pairsand post-training based on reinforcement learning, LLMs develop
superior reasoning capabilities®. With notable examplesincluding the
recently released DeepSeek-R1 model** and OpenAl o-series models®**,
LLMs are now able to proficiently engage in chatting*, writing
codes® and even deriving mathematical expressions®”**, Beyond
natural language, visual large models (VLMs)***°, such as large diffu-
sion models*** that align different modalities by learning from vast
image-caption datasets, can generate high-quality artworksincluding
images", three-dimensional scenes*** and even videos*. Moreover,
LLM agents integrate external memory, tool usages and planning
into LLMs, enhancing their ability to accomplish complex tasks in
an interactive environment*®™*°, such as robotic manipulation® and
social simulation®-*2,
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Despite LLMs’ emergent design abilities across various fields,
what remains largely unexplored is the design of the environmentsin
which we live—our cities. Here we advocate for integrating LLMs into
the future collaborative workflows between planners and Al toward
more intelligent city design.

Contemporary urban planning

Two traditional approaches

Since Howard’s Garden City*® proposal in the 1890s, urban planning
has been a critical discipline continuously evolving to meet the chal-
lenges posed by rapid urbanization. Before the 1940s, the planning of
cities was regarded primarily as architectural design at alarger scale™.
As a consequence, planners used to take a physical and esthetic view,
with the planning theories focusing more on the spatial arrangement
of urban structures and functions®’, exemplified by the New Towns
Act in the UK®® and the Urban Renewal Program in the USA®—both
largely adhering to these concepts. However, the ‘physical art’approach
overlooked the social dimensions of city life and did not fully account
for human activities, failing to account for critical issues such as high
crime rates and urban decay®.

After the Second World War, urban planning shifted from an
artistic practice to amore scientific discipline®*®2, This new approach
regards cities aslarge, complex systems comprising various intercon-
nected subsystems, and uses well-curated models to account for the
diverse social aspects of cities’. Rather than creating static designs,
modern urban planning emphasizes the dynamic processes within
cities, particularly the daily activities of urbanresidents®**. Influential
approachesinclude Lindblom’sincremental planning®®, Faludi’s plan-
ning theory® and Healey’s communicative planning®®. This ‘analytic
science’ approach has also inspired contemporary ideas such as the
concept of the 15-minute city”", which advocates for dense, compact
land use that fosters more equitable, convenient and inclusive urban
living.

Despite their substantial impact on modern urban planning, the
two approaches discussed above are insufficient to address the com-
plexities of citiesin the current era. First, the planning process remains
primarily planner-centered, involving complex concepts and regula-
tions often inaccessible to the general public. This limits effective
public participation of multiple stakeholders, an increasingly crucial
practiceintoday’s urban planning®*’°. Second, the evaluation of urban
planninginthese two approachesis typically coarse-grained, subjective
and qualitative. However, contemporary urban planningincreasingly
demands fine-grained, quantitative and objective feedback to inform
scientific decision-making®?.

Recent advances using pre-LLM Al models

With the unprecedented availability of urban geospatial data, a
data-drivenapproach has emergedto enhance traditionalurban planning
methods with pre-LLM Almodels” 7>, These Almodels feature two main
advantages. First, they have the capability to discover the underlying
rules fromthese rich datasets. These rules guide more accurate predic-
tion of urban spatiotemporal patterns™, enabling the generation of city
designs that closely resemble real-world structures both visually and
statistically”. Generative adversarial networks’ and variational autoen-
coders” are two of these models that are commonly used to synthesize
urban elements, including street networks”, functional zoning”* and
building footprints®**, Second, these models assist in making strategic
decisions to optimize specific metrics that reflect the efficiency and
quality of urban life. Reinforcement learning® is typically employed
to achieve effective urban planning, such as the 15-minute community
layout®*¢, road planning® and metro network expansion®®,

While these Al models have enhanced urban planning in impor-
tantways, their limited scope hinders their ability to fully capture the
complexities of modern cities. Specifically, urban planning requires a
comprehensive understanding of diverse knowledge. As pre-LLM small

models are trained on limited task-specific datasets, they struggle to
address the growing interdisciplinary nature of urban planning. As a
consequence, these models often focus on a narrow range of aspects
applicableinrestricted scenarios, with limited generalizability across
diverse urban planning tasks. In light of these shortcomings, LLMs,
with rich embedded knowledge, hold the potential to overcome the
limitations of smaller models in urban planning.

Opportunities brought by LLMs

The past 2 years have seen advancements in LLMs, transforming the
workflows of human designers with their generative abilities. The fol-
lowing developments provide valuable opportunities to enhance urban
planning practices:

« LLMspossessand leverage vast arrays of transdisciplinary knowl-
edge. Effective urban planning demands a comprehensive under-
standing of various domains, including geography, economics,
sociology and so forth. The versatile nature of LLMs is crucial for
addressing such interdisciplinary complexity inherent in urban
planning. Specifically, LLMs have shown emergent abilities in
answering complicated questions across different subjects and
domains. For example, benchmarking results have shown that
LLMs demonstrate deep knowledge in math®’, medicine”, law®*
and finance®. In particular, researchers have observed a scaling
law where performance substantially surpasses random guess-
ingonce LLMs cross a certain threshold of model parameters and
training data®*. Therefore, by increasing model size and pretrain-
ingonlarger urban planning datasets, LLMs have the potential to
process and leverage rich domain knowledge to account for the
multiple aspects of urban planning.

» LLMsare capable of more elaborate reasoning based on concep-
tual instructions. Translating abstract concepts into concrete,
satisfactory designis achallenging task. Through reinforcement
learning adopted by the recently released DeepSeek-R1 model*
and OpenAl o-series models***, LLMs can achieve more elaborate
reasoning to decompose complex tasks into smaller steps. The
reasoning capabilities can extend beyond a single language modal-
ity and encompass high-dimensional modalities. In particular,
VLMs have shown good performance in analyzing multi-modal
contents™ ”” and generating highly realistic images* and videos”™
based on conceptual linguistic instructions, potentially offering
benefits for designing cities that align with diverse planning con-
cepts. Inparticular, substantial advancements have been observed
in understanding urban-related visual images such as satellite
images” and street-view images’*” with VLMs.

« LLMscanenhance predictive evaluationand public participation
in urban planning. LLM agents could perform role-playing with
heterogeneous and personalized profiles defined by residents
and planners, enabling predictive simulation of residents’ daily
activities. Researchers have successfully utilized LLM agents for
simulations across physical®’, social’*>*° and cyber'°° domains,
indicating large potential for urban simulation that allows for
more accurate evaluations of urban planning. Also, community
engagement plays an increasingly crucial role in contemporary
urban planning, yet traditional planning approaches often fail to
make public participation accessible. LLMs can help address this
discrepancy by providing a user-friendly protocol to enhance
public participation: with capabilities in conducting human-like
dialog using natural language, LLMs can facilitate an intuitive
and conversational interface to engage the public. In this way,
residents, together with planners, candirectly interact with LLMs,
refining urban plans through multiple rounds of discussions.

These advantages of LLMs have led to a series of research projects
that developed specialized urban LLMs'*'° that feature a deepened
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Fig.1| ThBYrk. The framework consists of three stages—conceptualization,
generation and evaluation—drivenby an LLM, a VLM and LLM agents. In the
conceptualization stage, the LLM produces conceptual ideas expressed with
textual descriptions characterizing urban forms and functionalities. In the
generation stage, the VLM generates specific and detailed urban visual designs
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such as layouts and cityscapes. In the evaluation stage, LLM agents simulate
residents’ activities and output quantitative assessments of the planning effect.
LLM output courtesy of the authors of ref. 146, Elsevier. LLM agent output
reproduced fromref. 147 under the MIT license. Credit: VLM output, SireAnko,
Getty Images.

understanding of urban environments, showcasing the opportunities
brought to urban planning by LLMs.

Toward LLM-driven urban planning

To bridge the gap, we introduce an LLM-driven planning framework
thatservesas anintelligent assistant to support human planners, inte-
grating Al's computational power with human expertise and domain
insights to enhance planning efficiency and decision-making. This
framework consists of three interconnected components to enhance
creativity and decision-making, as illustrated in Fig. 1. First, LLMs sup-
port the conceptualization of urban planning by assisting plannersin
developing prototypical ideas and crafting detailed descriptive plan-
ning texts for the site to be designed. Through analyzing textual input,
such as planning needs, requirements and guidelines, LLMs can help
identify regionsin need of renovation and offer strategic suggestions
for optimizing urban layout, incorporating diverse knowledge from
related fields. Second, VLMs facilitate the generation of urban designs
by transforming planners’ input prompts—reflecting planning con-
cepts and constraints—into detailed visual output, suchaslayouts and
cityscapes, all conditioned on user-defined draft plans. Third,an LLM
agentis employed to evaluate the planning effect, which incorporates
generated urban plans, demographics and other conditions to simulate
complex urban dynamics, including human mobility. This approach
has the potential to provide a quantitative and accurate assessment
of how residents interact with the city, offering actionable feedback
for planners. The provided framework creates a blueprint for how
LLMs can assist planners, where LLMs, VLMs and LLM agents enable a
systematic and collaborative workflow of conceptualization, genera-
tion and evaluation in urban planning, addressing critical limitations
of traditional approaches.

Conceptualization
Synthesizing conceptual ideas is the first step in urban design, as it
sets the foundational tone and overarching vision for the planned city.

Conceptualizationinvolves the abstract and preliminary arrangement
of urban functionalities and forms, often depicted through condensed
textual descriptions, overallmorphologies, and critical elements such
as corridors and hubs tailored for specific purposes. A principled
approachis essential to achieve effective conceptual design, requiring
acomprehensive consideration ofthe complex urban context, includ-
ing geospatial conditions, master plans and guidelines, as well as key
factors such as environmental sustainability, resilience, social equity
and economic prosperity. Traditionally, human designers undertake
thisintricate task manually, engaging in discussions, consultations and
negotiations with multiple stakeholderstorefine these concepts. The
outcomeis typically a set of textual documents that clearly articulate
the motivations and logic behind the prototypical planning concepts.
However, the conceptualization process is highly time-consuming,
particularly when relying solely on human effort.

Figure 2illustrates how the framework enhances the conceptual-
ization process by integrating LLMs to support human planners and
boost their productivity. An LLM, exposed to vast textual contents
from various urban planning-related fields, such as environmental
science, sociology and economics, is employed within the framework.
Through large-scale pretraining, the LLM gains extensive knowledge
acrossthese fields, allowingit to generate informed responsesinurban
planning discussions, complementing the expertise of experienced
human planners. Then, the framework facilitates the conceptual-
ization process through a conversational iteration between human
plannersandthe LLM. In each round of conversation, human planners
begin by conducting prompt engineering, transforming planning
needs, requirements, guidelines and other relevant materials into
informative prompts. The LLM then responds with conceptual ideas,
offering suggestions on urban forms and functionalities. Leveraging
its extensive spatiotemporal knowledge of the real world™'?, the
LLM s able to propose layouts for conceptual elements such as cent-
ers and corridors, while its advanced reasoning abilities allow it to
navigate complex contexts, including input needs, guidelines and
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Fig.2| Conceptualization in LLM-driven urban planning. Planners conduct
prompt engineering to devise informative prompts stating the needs,
requirements and guidelines of urban planning. LLMs pretrained on diverse
domains of data are adopted to respond to planners’ prompt, with enhanced

Sociology

> ‘

in the

An innovation corridor at

A business hub near

/

10}
~

Large-scale
pretraining

Economic

®

prompting and reasoning strategies such as GraphRAG and chain-of-thought.
Conceptualideas expressed with textual descriptions are output to assist human
plannersin accomplishing draft plans. Credit: map, reklamlar, Getty Images.

prior conversations. Post-training and prompting strategies such as
GraphRAG™ and chain-of-thought'* combined with reinforcement
learning™ further enhance the LLM’s reasoning capabilities, making it
more adept at achieving effective planning conceptualization. On the
basis of the LLM’s responses, human planners canrefine the input and
initiate additional rounds of conversation to revise and improve the
conceptualizationresults. Meanwhile, as LLMs may exhibit biases—par-
ticularly toward overrepresented regions or domainsin their training
data"*—the involvement of human plannersis essential to identify and
correct potential biases inthe generated planning outcomes, ensuring
that the results remain contextually appropriate and equitable across
diverse urban environments. Ultimately, this collaborative process
produces a detailed and satisfactory textual description of urban
planning concepts, with all prototypical spatial arrangements docu-
mented in output texts that can be further visualized as draft plans.In
brief, LLMs have the capability to effectively support human planners
during the conceptualization phase, acting as responsive, human-like
consultants with transdisciplinary knowledge and reasoning abilities,
aiding in the synthesis of ideas based on rich domain knowledge and
contextual information.

To offer anintuitive illustration of the ability of LLMs in handling
diverse and complex urban planning concepts and planning-related
text, we tested their performance in qualification exams for profes-
sional human planners'’, which cover acomprehensive range of urban
planning-related disciplines, including transportation, economics,
geography, sociology, ecology and environment. We evaluated the
accuracy of questions regarding basic theories and practical know-how
of urban planning, using the Qwen2 LLM"® of different sizes. The results
showed that the largest LLM with 70 billion parameters outperformed
the top 10% of human planners in answering challenging questions
related to planning concepts, implying the potential for synthesizing
conceptualideasin the initial stages of urban planning with LLMs.

Generation

Generating specific urbanlayouts lies at the core of urban planning, as
it shapes the spatial organization of cities and influences subsequent
urban activities. The generation process addresses diverse objectives,
includingland use, road networks, facility locations, public transporta-
tion systems and so forth. Unlike conceptual ideas expressed through

naturallanguage, urban layouts are described with concrete geospatial
elements and locations, which require precise representation, often
inimagery or more accurate vector formats. This process demands
aprincipled approach capable of handling contents across multiple
modalities while capturing the complex interrelationships between
them. Moreover, urban layouts cannot be generated arbitrarily; they
must adhere to various constraints such as geography, social dynam-
ics, land ownership and so forth. Thus, controllable generation must
account for these constraints, such that the final layout aligns seam-
lessly with the initial urban context as well as customized planning
concepts.

Inthe LLM-driven urban planning framework, VLMs assist human
planners in the urban layout generation process, as illustrated in
Fig. 3a. To fully harness the multi-modal content-generation capabili-
ties of VLMs, we propose first constructing a large-scale conditional
text-to-image generation dataset tailored toward urban design, which
includes the basemap, layouts and corresponding planning descrip-
tion texts collected from existing cities. Using this dataset, we can
fine-tune modern VLMs specifically for urbanlayout tasks. Forexample,
standard VLMs such as CLIP* can be integrated with generative models
and fine-tuned on the urban design task. Meanwhile, the fine-tuning
process can be efficiently achieved through low-rank adaption™.
Fine-tuned VLMs then map planning descriptions of textual prompts
by human planners to visual urban designs, including land-use zoning
layout (Fig. 3b), building footprint (Fig. 3c) and three-dimensional
urbanscene' (Fig. 3d). Itisworth noting that controllable generation
is essential for assisting planners and designers, where techniques
such as ControlNet" and DreamBooth'* can be employed to gener-
ate urban layouts that comply with the geospatial constraints of the
built environment.

Not all urban design can be computationally generated, and we
anticipate VLMs to serve as critical planning support tools such as GIS
once did. For example, planners can iteratively refine the prompts
based onthe generated designs for furtherimprovement—wherein dis-
cussions with policymakers and other stakeholders play acritical role
inaligning urban plans with broader publicinterests. The multi-modal
and controllable generation capabilities of VLMs have the potential
to enable an agile and flexible urban design process, freeing human
planners fromlabor-intensive layout tasks and allowing them to focus
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Fig.3|Plan generation in LLM-driven urban planning. a, Fine-tuning VLMs to
develop urban design skills using large-scale datasets collected from real-world
planning solutions containing imagery design and textual descriptions. Planners
craft prompts describing their requirements and conceptual ideas, based on
which fine-tuned VLMs generate urban design, conditioning on the basemap

to meet geospatial restrictions. b-d. Generated results from initial layout and
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planners’ prompts by VLMs in different scenarios, including land-use zoning
layout (b), building footprint (c) and three-dimensional urban scene (d). Panel ¢
reproduced from ref. 148 under an Open Data Commons Open Database License.
Credit: panel a (bottom left), diane555, Getty Images; panel a (bottom right) and
panel b, Diane Labombarbe, Getty Images; panel d, JoenStock, Getty Images.

more on refining conceptual ideas, developing innovative solutions
and coordinating different stakeholders.

Evaluation

Evaluating urban planningis crucial for measuringitsimpact, delivering
actionable feedback and guiding future improvements. Traditionally,
thisevaluation hasbeen subjective, depending on personaljudgment
suchas expert opinions and stakeholder interviews. Quantitative met-
rics—such as economic indicators and environmental quality—have
often been limited in scope or used only in specific contexts, making
it difficult to compare outcomes objectively or provide consistent,
data-driven feedback. Inaddition, the evaluationis typically conducted
after the design and construction, thus leaving insufficient room for
improvements. To address this, amore predictive approachis needed to
facilitate evaluationinadvance, typically involving multi-dimensional
simulations of urban life within city digital twins****'**"¢ In particular,
human activities vary widely depending on demographic character-
istics and are deeply interconnected, further complicating accurate
simulations.

Figure 4 illustrates the LLM-driven evaluation process of urban
planning using LLM agents, which could allow more accurate bottom-
up simulation of daily experiences and behaviors of urban residents,
generating outputs that provide detailed, quantitative insights into
how different planning scenarios may affect city life, including mobility

patterns, facility usage and so forth. These agents, equipped with
advanced decision-making abilities, could simulate everyday activities
inthe city environment, surpassing traditional agent-based simulation
tools. First, LLM agents can be personalized with diverse demographic
profiles, suchas gender, occupationand age, each representing unique
roles with heterogeneous needs and activities, to fully leverage their
role-playing capabilities™ for comprehensive evaluation. Second, LLM
agents come equipped with tools that enhance the effectiveness of
simulations. Within urban context, geospatial tools such as navigation
and Google Places APl canbe utilized to determine routes between loca-
tions, and simulate real-world mobility patterns. Third, LLMs possess
memory, allowing them to store historical behaviors, observations
and interactions with other agents. To accelerate and scale up urban
simulation based on LLM agents, it is essential to adopt prompt optimi-
zationstrategies'” to address the computational and communication
challenges. This memory enables reflection and adaptive learning,
improving the simulation of complex urban dynamics over time. As a
result, LLM-driven evaluation in urban planning could provide more
accurate and quantitative feedback on how residents will interact
with the city, effectively coupling simulation and decision-making for
continuous iterations.

Itisimportant to recognize that human behavior is inherently
uncertain and cannot be fully captured by deterministic agent-based
simulations'®. To address this limitation, it is essential to develop
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evaluation benchmarks that explicitly incorporate uncertainty and
contextual variability. For instance, recent studies have drawn on
behavioral economics theories to evaluate LLM-based decision-making
under uncertain conditions, accounting for diverse socio-demographic
factors'”. In parallel, stochastic modeling approaches™® can be inte-
grated with LLM agents to better reflect the randomness and variability
in human behavior—such as the probabilistic nature of pedestrian
movements and decision-making processes™'.

To demonstrate the effectiveness of the above evaluation
approach, weemployed LLM agents to simulate facility visitation of two
communitiesin New York and Chicago, and compared the simulation
results with real mobility data”. The frequently visited locations by LLM
agents closely mirrored the ground-truth hotspots observed inempiri-
calhuman mobility data. Meanwhile, quantitative metrics such as the
15-minute usage® of different types of urban facility, which measures
whether these services are accessible within 15 minutes of walking or
cycling by simulation, were also consistent with the ground truth for
communities in both New York and Chicago. These results indicate
that LLM agent simulations could predict how residents will use the
planned city, offering useful feedback on the quality of urban planning.

Limitations

Despite the promises, transforming the above blueprint into practi-
cal tools within the urban planning workflow faces several technical
challenges. First, tobuild reliable LLMs, millions or billions of training
samples are often required, as evidenced by the scaling laws in LLMs
where emergent intelligence is realized only when training data sur-
passacritical threshold™?, While remote-sensing data, such as satellite
images and crowd-sourced platforms, has lowered barriersto accessing
urban functionality details”*"**—such as land-use types, road networks
and points of interest—there remains an urgent need for high-quality
urban design data. This includes spatial layouts and corresponding
descriptive texts, which are typically owned by governments and design
firmsunder strict access restrictions. We encourage the urban planning
community toincrease data availability by creating open, collaborative
platforms for sharing and exchanging urban design data.

Second, besides data accessibility, the substantial computational
resourcesrequired to train LLMs and VLMs—often necessitatinglarge
number of advanced graphics processing units—also remain pro-
hibitively expensive for most researchers and practitioners in urban
planning. Therefore, the development of computationally efficient
variants of LLMs is essential to reduce training costs. In particular, it

isa promising direction to build smaller, specialized LLMs tailored to
urban planning, as specialized LLMs usually require far fewer param-
eters than general-purpose counterparts™, which can substantially
lower the barrier to LLM adoption and make it more widely available
to practitioners. Itis also worth noting that computational challenges
existinLLM agent-driven evaluation of urban planning, especially when
simulating large urban populations at the individual level”>. To address
this, simulation canbe conducted for a carefully sampled subset of the
population, the results of which can then be statistically extrapolated
to thewhole population™®. Meanwhile, smaller, specialized or distilled
LLMs canbe employed to reduce computational cost for agent simula-
tion rather than using massive general-purpose LLMs.

Third, toevaluate the effect of LLMs in urban planning, itis crucial
to performaccurate simulations of humanactivities. However, human
activities exhibit large uncertainty and divergent patternsin different
timescales from daily routines to multi-year trends. Estimating these
patterns is particularly complicated when considering longer time
spans, whichtypically displays larger uncertainty asitinvolves factors
such as population change that fundamentally influence the urban
dynamics™” ", Therefore, it poses additional challenges to the usage
of LLM agents for evaluating urban plans, both in terms of modeling the
intricate decision-making processes of urban residents and managing
the substantial computational complexity of large-scale, high-fidelity
simulations.

Last, real-world application of LLMs in urban planning needs to
account for various biases, inboth the training dataand algorithms, as
wellas model outputs. In particular, several specialized LLMs have been
proposed to address urban-related tasks, such as mobility prediction'”,
traffic signal control'® and spatial navigation'*>. These LLMs rely on
large-scale urban data during pretraining and fine-tuning, which typi-
cally contain substantial bias. For example, large cities tend to generate
much more data, which can make LLMs biased toward these population
centers, resulting in suboptimal performance when applied to smaller,
less representative cities. In particular, recent research™ has shown
that LLMs are geographically biased, especially for locations with
lower socioeconomic conditions. Meanwhile, social biases related to
demographicssuchasgender andracial bias have also been observed
in LLM-generated content'°*2, posing notable challenges for their
deployment in real-world scenarios. Therefore, understanding and
mitigating the bias in LLMs is essential to enhance their availability to
awider range of practitioners and residents, and to ensure that these
models can be applied equitably across diverse urban environments.
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Inthis regard, careful curation of training dataand the implementation
of algorithmic fairness techniques such as specialized fine-tuning'**
will be essential to mitigate the negative impacts of bias in urban
applications. Moreover, future work should explore participatory
design approaches that actively involve local stakeholders, ensuring
that LLM-driven tools are not only technically robust but also socially
inclusive and contextually grounded in diverse urban environments.

Toaddress these limitations, an LLM-driven urban planning frame-
work can be validated through extensive case studies and ablation
analyses across diverse contexts, ranging from large metropolitan
areas to smaller, less-represented cities, reducing the impact of data
quality and biases on model performance and ensuring the equitable
and effective deployment of LLMs in urban planning. In addition,
as benchmarking LLMs gains momentum in other fields**'**, urban
planning needs to develop its own benchmark to objectively evaluate
LLM performance.

Final remarks

The practical implementation of LLM-driven urban planning is not a
simple technical issue, but involves challenges beyond technical fea-
sibility and is also shaped by policy and societal considerations'®. For
instance, the integration of LLM-driven tools may require updates to
existing planning policies and regulatory frameworks toaccommodate
new methodologies. In the meantime, the computational resources
needed for implementing LLMs can limit accessibility—particularly
for small municipalities or organizations with limited technical infra-
structure. In addition, the acceptance of LLM-driven urban planning
depends on trust from multiple stakeholders including policymak-
ers, urban designers and the public. Planners may remain skeptical of
Al-generated urban plans, raising concerns about their interpretabil-
ity, transparency and alignment with human-centered urban values.
A collaborative approach, where human planners and LLMs work in
synergy, can help leverage Al'scomputational strengths while ensuring
that urban plans align with human values and societal needs. Future
research should explore human-in-the-loop methods to ensure the
transparent and trustworthy generation of urban plans by LLM, and
provideactionable strategies to guide and regulate their usage in urban
planning practices.

Planners translate human creativity into tangible urban designs
that shape vibrant cities, and LLMs can provide planners with more
effective tools to enhance creativity and boost productivity. Through-
out history, the adoption of advanced technologies has redefined how
urban spaces are utilized and how cities are designed. Our Perspec-
tive advocates for a collaborative workflow in which planners push
the boundary of urban planning with LLMs connecting existing data,
toolsandresources. We believe that the effective integration of LLMs
promises to substantially benefit urban planning, paving the way for
more efficient, inclusive and sustainable cities that better serve the
needs of their residents, and shaping a future where the potential of
humaningenuity is fully realized in the urban environments we create.
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