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Urban planning in the era of large  
language models
 

Yu Zheng    1,2, Fengli Xu    1, Yuming Lin3,4  , Paolo Santi2,5, Carlo Ratti2, 
Qi R. Wang    6   & Yong Li    1 

City plans are the product of integrating human creativity with emerging 
technologies, which continuously evolve and reshape urban morphology 
and environments. Here we argue that large language models hold large 
untapped potential in addressing the growing complexities of urban 
planning and enabling a more holistic, innovative and responsive approach 
to city design. By harnessing their advanced generation and simulation 
capabilities, large language models can contribute as an intelligent assistant 
for human planners in synthesizing conceptual ideas, generating urban 
designs and evaluating the outcomes of planning efforts.

Urban planning plays a critical role in shaping the quality of life for city 
residents, influencing every aspect of the city, from land use and facility 
placement to transportation and travel1–4. With billions of people living 
in or migrating to cities, developed urban regions require renovation, 
while newly developing urban areas need to be carefully planned to 
accommodate growth5. Historically, urban planning methodologies 
have continually evolved to meet the ever-expanding needs of urban 
environments6–8. Today, as new trends emerge in urban planning, 
planners are confronting critical challenges. First, urban planning 
is increasingly complex within interdisciplinary contexts, extending 
beyond simple spatial layouts to encompass comprehensive factors of 
social equity9,10, environmental resilience11, urban sustainability12 and 
so forth. Addressing this growing complexity demands a deep under-
standing of diverse knowledge across multiple domains. Second, new 
concepts, such as the 15-minute city13–15, which promotes efficient layout 
such that basic urban services are accessible within walking or cycling 
distance, are emerging. Adapting to new concepts, reducing their nega-
tive effects such as potential segregation risk in the 15-minute city13 and 
further translating these theoretical ideas into actionable urban plans 
present a notable challenge that requires strong reasoning capabili-
ties to align tangible geospatial layout with concrete descriptions of 
planning objectives. Third, cities are giant systems involving a large 
number of entities and complicated interactions16–20, which makes the 
evaluation of urban planning particularly challenging21–24. To address 
these challenges, future approaches in urban planning are anticipated 

to empower designers through the integration of cutting-edge tech-
nologies featuring advanced abilities in understanding, reasoning and 
simulating urban dynamics.

Artificial intelligence (AI) has had a substantial impact on the 
processes of creation and design across a wide range of areas and dis-
ciplines. In particular, since the release of ChatGPT in late 2022, large 
language models (LLMs) have demonstrated noteworthy generative 
abilities25–28. Specifically, different from pre-existing AI models that nar-
rowly focus on specific cognitive tasks and application domains, LLMs 
use natural language as a unifying ‘code’ to represent knowledge in a 
wide variety of domains29,30. Through large-scale self-supervised pre-
training on diverse domain data, supervised fine-tuning on instruction 
pairs and post-training based on reinforcement learning, LLMs develop 
superior reasoning capabilities31. With notable examples including the 
recently released DeepSeek-R1 model32 and OpenAI o-series models33,34, 
LLMs are now able to proficiently engage in chatting26,35, writing 
codes36 and even deriving mathematical expressions37,38. Beyond 
natural language, visual large models (VLMs)39,40, such as large diffu-
sion models41,42 that align different modalities by learning from vast 
image-caption datasets, can generate high-quality artworks including 
images41, three-dimensional scenes43,44 and even videos45. Moreover, 
LLM agents integrate external memory, tool usages and planning 
into LLMs, enhancing their ability to accomplish complex tasks in 
an interactive environment46–49, such as robotic manipulation50 and 
social simulation51,52.
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models are trained on limited task-specific datasets, they struggle to 
address the growing interdisciplinary nature of urban planning. As a 
consequence, these models often focus on a narrow range of aspects 
applicable in restricted scenarios, with limited generalizability across 
diverse urban planning tasks. In light of these shortcomings, LLMs, 
with rich embedded knowledge, hold the potential to overcome the 
limitations of smaller models in urban planning.

Opportunities brought by LLMs
The past 2 years have seen advancements in LLMs, transforming the 
workflows of human designers with their generative abilities. The fol-
lowing developments provide valuable opportunities to enhance urban 
planning practices:

•	 LLMs possess and leverage vast arrays of transdisciplinary knowl-
edge. Effective urban planning demands a comprehensive under-
standing of various domains, including geography, economics, 
sociology and so forth. The versatile nature of LLMs is crucial for 
addressing such interdisciplinary complexity inherent in urban 
planning. Specifically, LLMs have shown emergent abilities in 
answering complicated questions across different subjects and 
domains. For example, benchmarking results have shown that 
LLMs demonstrate deep knowledge in math90, medicine91, law92 
and finance93. In particular, researchers have observed a scaling 
law where performance substantially surpasses random guess-
ing once LLMs cross a certain threshold of model parameters and 
training data94. Therefore, by increasing model size and pretrain-
ing on larger urban planning datasets, LLMs have the potential to 
process and leverage rich domain knowledge to account for the 
multiple aspects of urban planning.

•	 LLMs are capable of more elaborate reasoning based on concep-
tual instructions. Translating abstract concepts into concrete, 
satisfactory design is a challenging task. Through reinforcement 
learning adopted by the recently released DeepSeek-R1 model32 
and OpenAI o-series models33,34, LLMs can achieve more elaborate 
reasoning to decompose complex tasks into smaller steps. The 
reasoning capabilities can extend beyond a single language modal-
ity and encompass high-dimensional modalities. In particular, 
VLMs have shown good performance in analyzing multi-modal 
contents95–97 and generating highly realistic images41 and videos98 
based on conceptual linguistic instructions, potentially offering 
benefits for designing cities that align with diverse planning con-
cepts. In particular, substantial advancements have been observed 
in understanding urban-related visual images such as satellite 
images95 and street-view images96,97 with VLMs.

•	 LLMs can enhance predictive evaluation and public participation 
in urban planning. LLM agents could perform role-playing with 
heterogeneous and personalized profiles defined by residents 
and planners, enabling predictive simulation of residents’ daily 
activities. Researchers have successfully utilized LLM agents for 
simulations across physical50, social51,52,99 and cyber100 domains, 
indicating large potential for urban simulation that allows for 
more accurate evaluations of urban planning. Also, community 
engagement plays an increasingly crucial role in contemporary 
urban planning, yet traditional planning approaches often fail to 
make public participation accessible. LLMs can help address this 
discrepancy by providing a user-friendly protocol to enhance 
public participation: with capabilities in conducting human-like 
dialog using natural language, LLMs can facilitate an intuitive 
and conversational interface to engage the public. In this way, 
residents, together with planners, can directly interact with LLMs, 
refining urban plans through multiple rounds of discussions.

These advantages of LLMs have led to a series of research projects 
that developed specialized urban LLMs101–110 that feature a deepened 

Despite LLMs’ emergent design abilities across various fields, 
what remains largely unexplored is the design of the environments in 
which we live—our cities. Here we advocate for integrating LLMs into 
the future collaborative workflows between planners and AI toward 
more intelligent city design.

Contemporary urban planning
Two traditional approaches
Since Howard’s Garden City53 proposal in the 1890s, urban planning 
has been a critical discipline continuously evolving to meet the chal-
lenges posed by rapid urbanization. Before the 1940s, the planning of 
cities was regarded primarily as architectural design at a larger scale54. 
As a consequence, planners used to take a physical and esthetic view, 
with the planning theories focusing more on the spatial arrangement 
of urban structures and functions55–59, exemplified by the New Towns 
Act in the UK60 and the Urban Renewal Program in the USA61—both 
largely adhering to these concepts. However, the ‘physical art’ approach 
overlooked the social dimensions of city life and did not fully account 
for human activities, failing to account for critical issues such as high 
crime rates and urban decay62.

After the Second World War, urban planning shifted from an 
artistic practice to a more scientific discipline54,62. This new approach 
regards cities as large, complex systems comprising various intercon-
nected subsystems, and uses well-curated models to account for the 
diverse social aspects of cities7. Rather than creating static designs, 
modern urban planning emphasizes the dynamic processes within 
cities, particularly the daily activities of urban residents63–65. Influential 
approaches include Lindblom’s incremental planning66, Faludi’s plan-
ning theory67 and Healey’s communicative planning68. This ‘analytic 
science’ approach has also inspired contemporary ideas such as the 
concept of the 15-minute city13,14, which advocates for dense, compact 
land use that fosters more equitable, convenient and inclusive urban 
living.

Despite their substantial impact on modern urban planning, the 
two approaches discussed above are insufficient to address the com-
plexities of cities in the current era. First, the planning process remains 
primarily planner-centered, involving complex concepts and regula-
tions often inaccessible to the general public. This limits effective 
public participation of multiple stakeholders, an increasingly crucial 
practice in today’s urban planning69,70. Second, the evaluation of urban 
planning in these two approaches is typically coarse-grained, subjective 
and qualitative. However, contemporary urban planning increasingly 
demands fine-grained, quantitative and objective feedback to inform 
scientific decision-making22,23.

Recent advances using pre-LLM AI models
With the unprecedented availability of urban geospatial data, a 
data-driven approach has emerged to enhance traditional urban planning 
methods with pre-LLM AI models71–73. These AI models feature two main 
advantages. First, they have the capability to discover the underlying 
rules from these rich datasets. These rules guide more accurate predic-
tion of urban spatiotemporal patterns74, enabling the generation of city 
designs that closely resemble real-world structures both visually and 
statistically75. Generative adversarial networks76 and variational autoen-
coders77 are two of these models that are commonly used to synthesize 
urban elements, including street networks75,78, functional zoning79–81 and 
building footprints82,83. Second, these models assist in making strategic 
decisions to optimize specific metrics that reflect the efficiency and 
quality of urban life. Reinforcement learning84 is typically employed 
to achieve effective urban planning, such as the 15-minute community 
layout85,86, road planning87 and metro network expansion88,89.

While these AI models have enhanced urban planning in impor-
tant ways, their limited scope hinders their ability to fully capture the 
complexities of modern cities. Specifically, urban planning requires a 
comprehensive understanding of diverse knowledge. As pre-LLM small 

http://www.nature.com/natcomputsci


Nature Computational Science

Perspective https://doi.org/10.1038/s43588-025-00846-1

understanding of urban environments, showcasing the opportunities 
brought to urban planning by LLMs.

Toward LLM-driven urban planning
To bridge the gap, we introduce an LLM-driven planning framework 
that serves as an intelligent assistant to support human planners, inte-
grating AI’s computational power with human expertise and domain 
insights to enhance planning efficiency and decision-making. This 
framework consists of three interconnected components to enhance 
creativity and decision-making, as illustrated in Fig. 1. First, LLMs sup-
port the conceptualization of urban planning by assisting planners in 
developing prototypical ideas and crafting detailed descriptive plan-
ning texts for the site to be designed. Through analyzing textual input, 
such as planning needs, requirements and guidelines, LLMs can help 
identify regions in need of renovation and offer strategic suggestions 
for optimizing urban layout, incorporating diverse knowledge from 
related fields. Second, VLMs facilitate the generation of urban designs 
by transforming planners’ input prompts—reflecting planning con-
cepts and constraints—into detailed visual output, such as layouts and 
cityscapes, all conditioned on user-defined draft plans. Third, an LLM 
agent is employed to evaluate the planning effect, which incorporates 
generated urban plans, demographics and other conditions to simulate 
complex urban dynamics, including human mobility. This approach 
has the potential to provide a quantitative and accurate assessment 
of how residents interact with the city, offering actionable feedback 
for planners. The provided framework creates a blueprint for how 
LLMs can assist planners, where LLMs, VLMs and LLM agents enable a 
systematic and collaborative workflow of conceptualization, genera-
tion and evaluation in urban planning, addressing critical limitations 
of traditional approaches.

Conceptualization
Synthesizing conceptual ideas is the first step in urban design, as it 
sets the foundational tone and overarching vision for the planned city. 

Conceptualization involves the abstract and preliminary arrangement 
of urban functionalities and forms, often depicted through condensed 
textual descriptions, overall morphologies, and critical elements such 
as corridors and hubs tailored for specific purposes. A principled 
approach is essential to achieve effective conceptual design, requiring 
a comprehensive consideration of the complex urban context, includ-
ing geospatial conditions, master plans and guidelines, as well as key 
factors such as environmental sustainability, resilience, social equity 
and economic prosperity. Traditionally, human designers undertake 
this intricate task manually, engaging in discussions, consultations and 
negotiations with multiple stakeholders to refine these concepts. The 
outcome is typically a set of textual documents that clearly articulate 
the motivations and logic behind the prototypical planning concepts. 
However, the conceptualization process is highly time-consuming, 
particularly when relying solely on human effort.

Figure 2 illustrates how the framework enhances the conceptual-
ization process by integrating LLMs to support human planners and 
boost their productivity. An LLM, exposed to vast textual contents 
from various urban planning-related fields, such as environmental 
science, sociology and economics, is employed within the framework. 
Through large-scale pretraining, the LLM gains extensive knowledge 
across these fields, allowing it to generate informed responses in urban 
planning discussions, complementing the expertise of experienced 
human planners. Then, the framework facilitates the conceptual-
ization process through a conversational iteration between human 
planners and the LLM. In each round of conversation, human planners 
begin by conducting prompt engineering, transforming planning 
needs, requirements, guidelines and other relevant materials into 
informative prompts. The LLM then responds with conceptual ideas, 
offering suggestions on urban forms and functionalities. Leveraging 
its extensive spatiotemporal knowledge of the real world111,112, the 
LLM is able to propose layouts for conceptual elements such as cent-
ers and corridors, while its advanced reasoning abilities allow it to 
navigate complex contexts, including input needs, guidelines and 
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Fig. 1 | ThBYrk. The framework consists of three stages—conceptualization, 
generation and evaluation—driven by an LLM, a VLM and LLM agents. In the 
conceptualization stage, the LLM produces conceptual ideas expressed with 
textual descriptions characterizing urban forms and functionalities. In the 
generation stage, the VLM generates specific and detailed urban visual designs 

such as layouts and cityscapes. In the evaluation stage, LLM agents simulate 
residents’ activities and output quantitative assessments of the planning effect. 
LLM output courtesy of the authors of ref. 146, Elsevier. LLM agent output 
reproduced from ref. 147 under the MIT license. Credit: VLM output, SireAnko, 
Getty Images.
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prior conversations. Post-training and prompting strategies such as 
GraphRAG113 and chain-of-thought114 combined with reinforcement 
learning115 further enhance the LLM’s reasoning capabilities, making it 
more adept at achieving effective planning conceptualization. On the 
basis of the LLM’s responses, human planners can refine the input and 
initiate additional rounds of conversation to revise and improve the 
conceptualization results. Meanwhile, as LLMs may exhibit biases—par-
ticularly toward overrepresented regions or domains in their training 
data116—the involvement of human planners is essential to identify and 
correct potential biases in the generated planning outcomes, ensuring 
that the results remain contextually appropriate and equitable across 
diverse urban environments. Ultimately, this collaborative process 
produces a detailed and satisfactory textual description of urban 
planning concepts, with all prototypical spatial arrangements docu-
mented in output texts that can be further visualized as draft plans. In 
brief, LLMs have the capability to effectively support human planners 
during the conceptualization phase, acting as responsive, human-like 
consultants with transdisciplinary knowledge and reasoning abilities, 
aiding in the synthesis of ideas based on rich domain knowledge and 
contextual information.

To offer an intuitive illustration of the ability of LLMs in handling 
diverse and complex urban planning concepts and planning-related 
text, we tested their performance in qualification exams for profes-
sional human planners117, which cover a comprehensive range of urban 
planning-related disciplines, including transportation, economics, 
geography, sociology, ecology and environment. We evaluated the 
accuracy of questions regarding basic theories and practical know-how 
of urban planning, using the Qwen2 LLM118 of different sizes. The results 
showed that the largest LLM with 70 billion parameters outperformed 
the top 10% of human planners in answering challenging questions 
related to planning concepts, implying the potential for synthesizing 
conceptual ideas in the initial stages of urban planning with LLMs.

Generation
Generating specific urban layouts lies at the core of urban planning, as 
it shapes the spatial organization of cities and influences subsequent 
urban activities. The generation process addresses diverse objectives, 
including land use, road networks, facility locations, public transporta-
tion systems and so forth. Unlike conceptual ideas expressed through 

natural language, urban layouts are described with concrete geospatial 
elements and locations, which require precise representation, often 
in imagery or more accurate vector formats. This process demands 
a principled approach capable of handling contents across multiple 
modalities while capturing the complex interrelationships between 
them. Moreover, urban layouts cannot be generated arbitrarily; they 
must adhere to various constraints such as geography, social dynam-
ics, land ownership and so forth. Thus, controllable generation must 
account for these constraints, such that the final layout aligns seam-
lessly with the initial urban context as well as customized planning 
concepts.

In the LLM-driven urban planning framework, VLMs assist human 
planners in the urban layout generation process, as illustrated in 
Fig. 3a. To fully harness the multi-modal content-generation capabili-
ties of VLMs, we propose first constructing a large-scale conditional 
text-to-image generation dataset tailored toward urban design, which 
includes the basemap, layouts and corresponding planning descrip-
tion texts collected from existing cities. Using this dataset, we can 
fine-tune modern VLMs specifically for urban layout tasks. For example, 
standard VLMs such as CLIP39 can be integrated with generative models 
and fine-tuned on the urban design task. Meanwhile, the fine-tuning 
process can be efficiently achieved through low-rank adaption119. 
Fine-tuned VLMs then map planning descriptions of textual prompts 
by human planners to visual urban designs, including land-use zoning 
layout (Fig. 3b), building footprint (Fig. 3c) and three-dimensional 
urban scene120 (Fig. 3d). It is worth noting that controllable generation 
is essential for assisting planners and designers, where techniques 
such as ControlNet121 and DreamBooth122 can be employed to gener-
ate urban layouts that comply with the geospatial constraints of the 
built environment.

Not all urban design can be computationally generated, and we 
anticipate VLMs to serve as critical planning support tools such as GIS 
once did. For example, planners can iteratively refine the prompts 
based on the generated designs for further improvement—wherein dis-
cussions with policymakers and other stakeholders play a critical role 
in aligning urban plans with broader public interests. The multi-modal 
and controllable generation capabilities of VLMs have the potential 
to enable an agile and flexible urban design process, freeing human 
planners from labor-intensive layout tasks and allowing them to focus 
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Fig. 2 | Conceptualization in LLM-driven urban planning. Planners conduct 
prompt engineering to devise informative prompts stating the needs, 
requirements and guidelines of urban planning. LLMs pretrained on diverse 
domains of data are adopted to respond to planners’ prompt, with enhanced 

prompting and reasoning strategies such as GraphRAG and chain-of-thought. 
Conceptual ideas expressed with textual descriptions are output to assist human 
planners in accomplishing draft plans. Credit: map, reklamlar, Getty Images.

http://www.nature.com/natcomputsci


Nature Computational Science

Perspective https://doi.org/10.1038/s43588-025-00846-1

more on refining conceptual ideas, developing innovative solutions 
and coordinating different stakeholders.

Evaluation
Evaluating urban planning is crucial for measuring its impact, delivering 
actionable feedback and guiding future improvements. Traditionally, 
this evaluation has been subjective, depending on personal judgment 
such as expert opinions and stakeholder interviews. Quantitative met-
rics—such as economic indicators and environmental quality—have 
often been limited in scope or used only in specific contexts, making 
it difficult to compare outcomes objectively or provide consistent, 
data-driven feedback. In addition, the evaluation is typically conducted 
after the design and construction, thus leaving insufficient room for 
improvements. To address this, a more predictive approach is needed to 
facilitate evaluation in advance, typically involving multi-dimensional 
simulations of urban life within city digital twins22,23,123–126. In particular, 
human activities vary widely depending on demographic character-
istics and are deeply interconnected, further complicating accurate 
simulations.

Figure 4 illustrates the LLM-driven evaluation process of urban 
planning using LLM agents, which could allow more accurate bottom- 
up simulation of daily experiences and behaviors of urban residents, 
generating outputs that provide detailed, quantitative insights into 
how different planning scenarios may affect city life, including mobility 

patterns, facility usage and so forth. These agents, equipped with 
advanced decision-making abilities, could simulate everyday activities 
in the city environment, surpassing traditional agent-based simulation 
tools. First, LLM agents can be personalized with diverse demographic 
profiles, such as gender, occupation and age, each representing unique 
roles with heterogeneous needs and activities, to fully leverage their 
role-playing capabilities51 for comprehensive evaluation. Second, LLM 
agents come equipped with tools that enhance the effectiveness of 
simulations. Within urban context, geospatial tools such as navigation 
and Google Places API can be utilized to determine routes between loca-
tions, and simulate real-world mobility patterns. Third, LLMs possess 
memory, allowing them to store historical behaviors, observations 
and interactions with other agents. To accelerate and scale up urban 
simulation based on LLM agents, it is essential to adopt prompt optimi-
zation strategies127 to address the computational and communication 
challenges. This memory enables reflection and adaptive learning, 
improving the simulation of complex urban dynamics over time. As a 
result, LLM-driven evaluation in urban planning could provide more 
accurate and quantitative feedback on how residents will interact 
with the city, effectively coupling simulation and decision-making for 
continuous iterations.

It is important to recognize that human behavior is inherently 
uncertain and cannot be fully captured by deterministic agent-based 
simulations128. To address this limitation, it is essential to develop 
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Fig. 3 | Plan generation in LLM-driven urban planning. a, Fine-tuning VLMs to 
develop urban design skills using large-scale datasets collected from real-world 
planning solutions containing imagery design and textual descriptions. Planners 
craft prompts describing their requirements and conceptual ideas, based on 
which fine-tuned VLMs generate urban design, conditioning on the basemap 
to meet geospatial restrictions. b–d. Generated results from initial layout and 

planners’ prompts by VLMs in different scenarios, including land-use zoning 
layout (b), building footprint (c) and three-dimensional urban scene (d). Panel c 
reproduced from ref. 148 under an Open Data Commons Open Database License. 
Credit: panel a (bottom left), diane555, Getty Images; panel a (bottom right) and 
panel b, Diane Labombarbe, Getty Images; panel d, JoenStock, Getty Images.
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evaluation benchmarks that explicitly incorporate uncertainty and 
contextual variability. For instance, recent studies have drawn on 
behavioral economics theories to evaluate LLM-based decision-making 
under uncertain conditions, accounting for diverse socio-demographic 
factors129. In parallel, stochastic modeling approaches130 can be inte-
grated with LLM agents to better reflect the randomness and variability 
in human behavior—such as the probabilistic nature of pedestrian 
movements and decision-making processes131.

To demonstrate the effectiveness of the above evaluation 
approach, we employed LLM agents to simulate facility visitation of two 
communities in New York and Chicago, and compared the simulation 
results with real mobility data2. The frequently visited locations by LLM 
agents closely mirrored the ground-truth hotspots observed in empiri-
cal human mobility data. Meanwhile, quantitative metrics such as the 
15-minute usage13 of different types of urban facility, which measures 
whether these services are accessible within 15 minutes of walking or 
cycling by simulation, were also consistent with the ground truth for 
communities in both New York and Chicago. These results indicate 
that LLM agent simulations could predict how residents will use the 
planned city, offering useful feedback on the quality of urban planning.

Limitations
Despite the promises, transforming the above blueprint into practi-
cal tools within the urban planning workflow faces several technical 
challenges. First, to build reliable LLMs, millions or billions of training 
samples are often required, as evidenced by the scaling laws in LLMs 
where emergent intelligence is realized only when training data sur-
pass a critical threshold132. While remote-sensing data, such as satellite 
images and crowd-sourced platforms, has lowered barriers to accessing 
urban functionality details133,134—such as land-use types, road networks 
and points of interest—there remains an urgent need for high-quality 
urban design data. This includes spatial layouts and corresponding 
descriptive texts, which are typically owned by governments and design 
firms under strict access restrictions. We encourage the urban planning 
community to increase data availability by creating open, collaborative 
platforms for sharing and exchanging urban design data.

Second, besides data accessibility, the substantial computational 
resources required to train LLMs and VLMs—often necessitating large 
number of advanced graphics processing units—also remain pro-
hibitively expensive for most researchers and practitioners in urban 
planning. Therefore, the development of computationally efficient 
variants of LLMs is essential to reduce training costs. In particular, it 

is a promising direction to build smaller, specialized LLMs tailored to 
urban planning, as specialized LLMs usually require far fewer param-
eters than general-purpose counterparts135, which can substantially 
lower the barrier to LLM adoption and make it more widely available 
to practitioners. It is also worth noting that computational challenges 
exist in LLM agent-driven evaluation of urban planning, especially when 
simulating large urban populations at the individual level22. To address 
this, simulation can be conducted for a carefully sampled subset of the 
population, the results of which can then be statistically extrapolated 
to the whole population136. Meanwhile, smaller, specialized or distilled 
LLMs can be employed to reduce computational cost for agent simula-
tion rather than using massive general-purpose LLMs.

Third, to evaluate the effect of LLMs in urban planning, it is crucial 
to perform accurate simulations of human activities. However, human 
activities exhibit large uncertainty and divergent patterns in different 
timescales from daily routines to multi-year trends. Estimating these 
patterns is particularly complicated when considering longer time 
spans, which typically displays larger uncertainty as it involves factors 
such as population change that fundamentally influence the urban 
dynamics137–139. Therefore, it poses additional challenges to the usage 
of LLM agents for evaluating urban plans, both in terms of modeling the 
intricate decision-making processes of urban residents and managing 
the substantial computational complexity of large-scale, high-fidelity 
simulations.

Last, real-world application of LLMs in urban planning needs to 
account for various biases, in both the training data and algorithms, as 
well as model outputs. In particular, several specialized LLMs have been 
proposed to address urban-related tasks, such as mobility prediction101, 
traffic signal control102 and spatial navigation103. These LLMs rely on 
large-scale urban data during pretraining and fine-tuning, which typi-
cally contain substantial bias. For example, large cities tend to generate 
much more data, which can make LLMs biased toward these population 
centers, resulting in suboptimal performance when applied to smaller, 
less representative cities. In particular, recent research116 has shown 
that LLMs are geographically biased, especially for locations with 
lower socioeconomic conditions. Meanwhile, social biases related to 
demographics such as gender and racial bias have also been observed 
in LLM-generated content140–142, posing notable challenges for their 
deployment in real-world scenarios. Therefore, understanding and 
mitigating the bias in LLMs is essential to enhance their availability to 
a wider range of practitioners and residents, and to ensure that these 
models can be applied equitably across diverse urban environments. 
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Fig. 4 | Evaluation in LLM-driven urban planning. An LLM agent is adopted 
to simulate daily activities and mobility of community residents, given the 
generated urban plan. Agents make decisions on their activity and mobility 
according to the input personalized profile and their historical memory. 

Quantitative metrics such as travel distance and facility usage can be calculated 
based on the simulated results, providing tangible feedback to planners and the 
LLM and VLM for further iteration. Credit: map, filo, Getty Images.
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In this regard, careful curation of training data and the implementation 
of algorithmic fairness techniques such as specialized fine-tuning142 
will be essential to mitigate the negative impacts of bias in urban 
applications. Moreover, future work should explore participatory 
design approaches that actively involve local stakeholders, ensuring 
that LLM-driven tools are not only technically robust but also socially 
inclusive and contextually grounded in diverse urban environments.

To address these limitations, an LLM-driven urban planning frame-
work can be validated through extensive case studies and ablation 
analyses across diverse contexts, ranging from large metropolitan 
areas to smaller, less-represented cities, reducing the impact of data 
quality and biases on model performance and ensuring the equitable 
and effective deployment of LLMs in urban planning. In addition, 
as benchmarking LLMs gains momentum in other fields143,144, urban 
planning needs to develop its own benchmark to objectively evaluate 
LLM performance.

Final remarks
The practical implementation of LLM-driven urban planning is not a 
simple technical issue, but involves challenges beyond technical fea-
sibility and is also shaped by policy and societal considerations145. For 
instance, the integration of LLM-driven tools may require updates to 
existing planning policies and regulatory frameworks to accommodate 
new methodologies. In the meantime, the computational resources 
needed for implementing LLMs can limit accessibility—particularly 
for small municipalities or organizations with limited technical infra-
structure. In addition, the acceptance of LLM-driven urban planning 
depends on trust from multiple stakeholders including policymak-
ers, urban designers and the public. Planners may remain skeptical of 
AI-generated urban plans, raising concerns about their interpretabil-
ity, transparency and alignment with human-centered urban values. 
A collaborative approach, where human planners and LLMs work in 
synergy, can help leverage AI’s computational strengths while ensuring 
that urban plans align with human values and societal needs. Future 
research should explore human-in-the-loop methods to ensure the 
transparent and trustworthy generation of urban plans by LLM, and 
provide actionable strategies to guide and regulate their usage in urban 
planning practices.

Planners translate human creativity into tangible urban designs 
that shape vibrant cities, and LLMs can provide planners with more 
effective tools to enhance creativity and boost productivity. Through-
out history, the adoption of advanced technologies has redefined how 
urban spaces are utilized and how cities are designed. Our Perspec-
tive advocates for a collaborative workflow in which planners push 
the boundary of urban planning with LLMs connecting existing data, 
tools and resources. We believe that the effective integration of LLMs 
promises to substantially benefit urban planning, paving the way for 
more efficient, inclusive and sustainable cities that better serve the 
needs of their residents, and shaping a future where the potential of 
human ingenuity is fully realized in the urban environments we create.
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