
Learning to Solve Grouped 2D Bin Packing Problems in the
Manufacturing Industry

Wenxuan Ao
Department of Electronic Engineering, BNRist, Tsinghua

University & TsingRoc
Beijing, China

aowx21@mails.tsinghua.edu.cn

Guozhen Zhang
Department of Electronic Engineering, BNRist, Tsinghua

University & TsingRoc
Beijing, China

zgz18@mails.tsinghua.edu.cn

Yong Li
Department of Electronic Engineering, Tsinghua

University
Beijing, China

liyong07@tsinghua.edu.cn

Depeng Jin
Department of Electronic Engineering, Tsinghua

University
Beijing, China

jindp@tsinghua.edu.cn

ABSTRACT
The two-dimensional bin packing problem (2DBP) is a critical op-
timization problem in the furniture production and glass cutting
industries, where the objective is to cut smaller-sized items from a
minimum number of large standard-sized raw materials. In prac-
tice, factories manufacture hundreds of customer orders (sets of
items) every day, and to relieve pressure in management, a com-
mon practice is to group the orders into batches for production,
ensuring that items from one order are in the same batch instead of
scattered across the production line. In this work, we formulate this
problem as the grouped 2D bin packing problem, a bi-level problem
where the upper level partitions orders into groups and the lower
level solves 2DBP for items in each group. The main challenges are
(1) the coupled optimization of upper and lower levels and (2) the
high computational efficiency required for practical application. To
tackle these challenges, we propose an iteration-based hierarchi-
cal reinforcement learning framework, which can learn to solve
the optimization problem in a data-driven way and provide fast
online performance after offline training. Extensive experiments
demonstrate that our method not only achieves the best perfor-
mance compared to all baselines but is also robust to changes in
dataset distribution and problem constraints. Finally, we deployed
our method in the ARROW Home factory in China, resulting in a
4.1% reduction in raw material costs. We have released the source
code and datasets to facilitate future research.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; •
Applied computing→ Industry and manufacturing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599860

KEYWORDS
Grouped bin packing, reinforcement learning, bi-level optimization
ACM Reference Format:
Wenxuan Ao, Guozhen Zhang, Yong Li, and Depeng Jin. 2023. Learning to
Solve Grouped 2D Bin Packing Problems in the Manufacturing Industry. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3580305.3599860

1 INTRODUCTION
In the manufacturing industry, an essential class of tasks is cutting
panels of different sizes out of standard-sized raw materials like
glass, wood, steel, plastic, etc. This is usually formulated as a two-
dimensional bin packing (2DBP) problem, where the panels to be
cut are referred to as items, and the standard-sized raw materials
are referred to as bins. The objective is to find the best way to
arrange and fit the items into the bins without overlap such that the
total number of bins, or bin usage for short, is minimized. As bin
usage directly affects the production cost of a factory, it is crucial
to find optimized packing plans. Over the years, many researchers
have been developing methods for solving 2DBP, including exact
methods [13, 25, 27, 31], heuristic methods [3, 12, 16, 23, 38], and
learning-based methods [7, 21].

However, batched manufacturing, one of the most common prac-
tices in real-life applications, is not considered in the formulation
of 2DBP. Specifically, the orders from the customers, which are
sets of items, are grouped into batches for manufacturing to limit
the maximum number of items in each batch. This is because the
items will be mixed together after the manufacturing step, and in
the assembling step, the workers need to first sort the items by the
orders they belong to and then assemble the items into products,
which would be highly challenging if the batch contained too many
items. For example, if the batch contains 100 orders and each order
contains 100 items, there will be a total of 10,000 items produced
in the manufacturing step. And to assemble an order, the workers
will have to collect the corresponding 100 items from the 10,000
items, which is time-consuming and impractical. Therefore, it is
essential to model the order grouping step and the size constraint in
real-life manufacturing. Additionally, how the orders are grouped
into batches also significantly impacts the final bin packing cost, as

https://doi.org/10.1145/3580305.3599860
https://doi.org/10.1145/3580305.3599860

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenxuan Ao, Guozhen Zhang, Yong Li, and Depeng Jin

it directly decides the input items of the following bin packing step
and also requires optimization.

We formulate the co-optimization of order grouping and bin
packing as grouped 2D bin packing problem (G2DBP), a bi-level
problem where in the upper level, we partition the orders into
groups with item count limit, while in the lower level, we solve
2DBP for the items of each group. There are two main challenges
in solving G2DBP for real-life applications:

• Coupled optimization of upper and lower level: In G2DBP,
the order grouping plan of the upper level determines the
input of the lower level, while the bin packing result of the
lower level determines the objective function that the upper
level tries to minimize. For one thing, the number of possible
order grouping plans is exponential, and it is already chal-
lenging for the upper level to find the optimal grouping plan.
For another thing, due to the NP-hardness of the lower level
bin packing problem [9], the objective function is a complex
and highly nonlinear function of the grouping plan, which
makes it even more challenging to optimize.
• High computational efficiency requirement: In real-life
applications, computational efficiency is as important as the
solution quality, and it is desired for the method to provide
a relatively high-quality solution in a reasonable time. For
the upper-level grouping problem, traditional methods like
simulated annealing [18], tabu search [34], and grouping
genetic algorithm [6] rely on trial and error and cannot
efficiently find good solutions. For the lower level 2DBP,
generative one-pass heuristics are efficient but provide low-
quality solutions, while iterative heuristics provide higher-
quality solutions but are inefficient.

To tackle the challenges, we propose an iteration-based hier-
archical reinforcement learning framework (IHRL) with two rein-
forcement learning agents, GroupRL and PermRL, designed for the
optimization tasks of the upper and lower levels. Specifically, for
the first challenge, we propose a hierarchical encoding scheme and
two modification operators in GroupRL, which enable it to extract
rich information from input features and to iteratively improve
the order grouping plan with the modification operators based on
the feedback from the lower level and the input features. For the
second challenge, we reformulate the bin packing problem as a per-
mutation problem and design PermRL that can learn permutation
strategies from data and provide fast online inference performance.
We summarize our contributions as follows:

• To the best of our knowledge, we are the first to formulate
and solve the grouped 2D bin packing problem in a data-
driven way, which models batched manufacturing, one of
the most common practices in the manufacturing industry.
• We propose an iteration-based hierarchical reinforcement
learning framework for G2DBP, in which we design two
models, GroupRL and PermRL, that are specialized for the
tasks of the upper and lower levels and can learn optimiza-
tion strategies from data.
• We conduct extensive experiments on both real and syn-
thetic datasets. The results show that our method not only
outperforms all baseline methods but is also generalizable

and robust to distribution shift and change of problem con-
straints.
• We deploy our method in the factory of ARROW Home,
China, which greatly improves material utilization and re-
duces the raw material cost by 4.1%.

2 PRELIMINARIES
2.1 Definitions
For clarity, we list the key definitions in the 2D bin packing problem
and grouped 2D bin packing problem as follows:

Bin: we refer to the raw material sheets as bins, which are rect-
angular and all of the same size. We denote the width as𝑊 and
height as 𝐻 .

Item: we refer to the parts or panels that need to be cut from
bins as items, which are also rectangular but with different sizes.
We denote item 𝑖 as 𝑡𝑖 = (𝑤𝑖 , ℎ𝑖), where 𝑤𝑖 and ℎ𝑖 are the width
and height of the item.

Order: an customer order contains a list of items, 𝑜 = {𝑡1, 𝑡2, ...,
𝑡𝑛}, where 𝑛 is the size of the order. The items in the same order
must be manufactured together.

Group: a group is a list of orders,𝐺 = {𝑜1, 𝑜2, ..., 𝑜𝑚}, where𝑚 is
the size of the group. The group is the basic unit of manufacturing.
As the items need to be sorted out for the assembly of each order
after manufacturing, there is a limit on the maximum number of
items a group contains.

Bin packing plan: it is a way to arrange and fit the given list of
items on a list of bins such that the edges of the items are parallel
to the edges of the bins and the items do not overlap.

Grouping plan: it is a way to partition the given list of orders
into several groups.

(a) Guillotine cuts (b) Non-guillotine cuts

Figure 1: Guillotine and non-guillotine cuts.

(a) Stage 0 (b) Stage 1

(c) Stage 2 (d) Stage 3

Figure 2: Guillotine cuts with multiple stages.

Learning to Solve Grouped 2D Bin Packing Problems in the Manufacturing Industry KDD ’23, August 6–10, 2023, Long Beach, CA, USA

2.2 Problem Statement
2.2.1 2D Bin Packing. The problem of 2DBP is to find the optimal
bin packing plan of the items that minimizes the number of bins.
Formally, given an infinite number of bins and a list of items, the
objective is to find solution {(𝑏1, 𝑥1, 𝑦1), (𝑏2, 𝑥2, 𝑦2), ..., (𝑏𝑛, 𝑥𝑛, 𝑦𝑛)}
with 𝑏𝑖 , 𝑥𝑖 , 𝑦𝑖 ∈ N to the following optimization problem:

minimize max
1≤𝑖≤𝑛

𝑏𝑖 ,

𝑠 .𝑡 . ∀𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 ∧ 𝑏𝑖 = 𝑏 𝑗 ,

[𝑥𝑖 , 𝑥𝑖 +𝑤𝑖) ∩ [𝑥 𝑗 , 𝑥 𝑗 +𝑤 𝑗) = ∅ ∨
[𝑦𝑖 , 𝑦𝑖 + ℎ𝑖) ∩ [𝑦 𝑗 , 𝑦 𝑗 + ℎ 𝑗) = ∅,

∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,
𝑥𝑖 +𝑤𝑖 ≤𝑊 ∧ 𝑦𝑖 + ℎ𝑖 ≤ 𝐻.

(1)

2.2.2 Grouped 2D Bin Packing. The G2DBP is a bi-level optimiza-
tion problem, where in the upper level, the objective is to find the
optimal grouping plan of the orders, and in the lower level, the objec-
tive is to find the optimal 2DBP solution for each of the groups. The
overall objective is to minimize the total number of bins. Formally,
we denote the orders as 𝑜𝑖 = {𝑡𝑖,1, 𝑡𝑖,2, ..., 𝑡𝑖,𝑛𝑖 }, where 𝑡𝑖, 𝑗 is the 𝑗-th
item in the 𝑖-th order. Given a list of orders G = {𝑜1, 𝑜2, ..., 𝑜𝑚}, the
objective is to find groups𝐺1,𝐺2, ...,𝐺𝐾 ⊆ G that is solution to the
following optimization problem:

minimize
𝐾∑︁
𝑖=1

BP({𝑡 |𝑜 ∈ 𝐺𝑖 , 𝑡 ∈ 𝑜}),

𝑠 .𝑡 . 𝐺1 ∪𝐺2 ∪ ... ∪𝐺𝐾 = G,
∀𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝐾, 𝐺𝑖 ∩𝐺 𝑗 = ∅.

(2)

where BP(·) represents the minimum bin usage of input items
obtained by solving the 2DBP problem in (1).

2.2.3 Guillotine Constraint. In manufacturing, a common con-
straint for 2DBP is that the packing plan must be able to be cut
using only guillotine cuts [28]. As illustrated in Figure 1, the guillo-
tine cuts go from one side all the way to the other side, orthogonal
to either side of the bin. This constraint may be induced by the
manufacturing equipment or the characteristic of the material itself.
For example, wood materials are cut with table saws that move in
one direction and cannot produce non-guillotine T-shape cutting
patterns. And glass materials have to be cut from side to side to
make a clean split. Nonetheless, it is allowed to use multiple stages
of guillotine cuts to produce complex cutting patterns. For example,
we can cut the bin horizontally and split, then cut vertically and
split, etc. But to simplify the manufacturing procedure, the num-
ber of stages of cutting is usually limited to a maximum of three,
with two horizontal cutting stages and one vertical cutting stage in
between, as illustrated in Figure 2.

2.2.4 Shelf Packing Algorithm. In practice, to produce bin packing
plans that satisfy the three-staged guillotine-cut constraint, the shelf
packing algorithm is used to pack the items. The algorithm is based
on the following observations. After the first stage of horizontal
guillotine cuts, the bin is divided into multiple parts referred to as
shelves. And after the second stage of vertical guillotine cuts, each
shelf is divided into multiple blocks. Because there is at most one
more stage of horizontal guillotine cuts, each block may contain

no item (waste block), one item, or multiple items with the same
width.

Given a sequence of items, the shelf algorithm packs them one by
one. It starts with an empty list of bins, shelves, and blocks. When
an item comes, it decides where to put the item by sequentially
performing the following steps:

• Search for a block with the same width of the item and the
height of the remaining space at the top is no less than the
item’s height. If found, put the item on top of the current
items in the block.
• Search for a shelf with a height no less than the height of
the item and the width of the remaining space on the right
is no less than the item’s width. If found, create a new block
with the item and put it to the right of the current blocks in
the shelf.
• Search for a bin where the height of the remaining space
on the top is no less than the item’s height. If found, create
a new shelf with the item and put it on top of the existing
shelves in the bin. Otherwise, add a new bin and put th shelf
at its bottom.

3 METHODOLOGY
3.1 Overall Framework
The overall framework of our method is illustrated in Figure 3.
We design an iteration-based hierarchical reinforcement learning
framework to co-optimize the grouping and the bin packing plans,
given all the customer orders containing the specifications for the
items to be manufactured. First, we take a greedy approach to di-
vide the orders into as few groups as possible under the group size
constraint, and we use this as the initial grouping plan. Then, two
reinforcement learning agents, named GroupRL and PermRL,
iteratively improve the grouping plan and solve bin packing, re-
spectively, with heuristics learned from the data. In the lower level,
PermRL generates bin packing plans for each group by sequentially
selecting the best next item to pack. In the upper level, GroupRL
adjusts the current grouping plan by swapping the orders of two
groups or taking an order from one group and relocating it to an-
other group based on the feedback of the lower-level bin packing
results and the features of the orders and groups. Finally, after mul-
tiple iterations of the improvement loop, we put the best solution
found in the process into production. The items are then catego-
rized and assembled into products according to the customer orders,
ready for packaging and shipping.

3.2 Initial Order Grouping
As the saying goes, a good beginning is half the task. It is important
to provide a good initial grouping plan as the starting point of the
iteration. The objective of order grouping is to divide the given
orders into smaller groups under the size limit and minimize the
total number of used bins of each group. Intuitively, for larger
groups, the bin utilization (the area of the items divided by the area
of the bins) is higher as there are more choices in item selection in
the bin packing step. Following this intuition, we design a greedy
method named Min-Group to minimize the number of groups, or
in other words, to fit as many items as possible into each group.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenxuan Ao, Guozhen Zhang, Yong Li, and Depeng Jin

Factory

Customer Orders

Initialization
Group 1 Group M

Feedback

Assembling

Packaging

Shipping

Our Method

···

Grouping Plan

Bin Packing Results

···

···, , , , , , ?

···

GroupRL: swap / relocate orders in groups

Group u

Group v

PermRL: select the next item to pack
Output：

Candidates：

Probabilities：

··· ···

Order i Order j··· ··· ···

Order k··· ··· ···

···, 0.14, 0.22, 0.50, 0.02, ···

Figure 3: The overall framework of our method in the production pipeline.

Specifically, it first sorts the orders by the number of items in non-
increasing order. And then, for each order, it tries to insert it into
the first group the order fits or create a new group if the order
cannot be inserted into any existing groups. The pseudo-code of
Min-Group is described in Algorithm 1.

3.3 The Lower Level and PermRL
The task of the lower level is to find the optimal packing plan for the
items of each group. As described in Section 2, due to the 3-stage
guillotine cut constraint, we have to arrange the items using the
shelf algorithm, which takes an ordered sequence of items as input

Algorithm 1: The Min-Group Algorithm.
Input: a list of orders O = {𝑂1, ...,𝑂𝑛}, the maximum

number of items of each group𝑀
Output: grouped orders G = {𝐺1, ...,𝐺𝑚} (𝐺𝑖 ⊆ O)

1 O′ = {𝑂 ′1, ...,𝑂
′
𝑛} ← O sorted non-increasingly by size;

2 G = {};
3 for 𝑖 ← 1 to 𝑛 do
4 found← false;
5 for 𝑗 ← 1 to |G| do
6 if |𝑂 ′

𝑖
| +∑𝑂∈𝐺 𝑗 |𝑂 | ≤ 𝑀 then

// Add 𝑂 ′
𝑖
to 𝐺 𝑗

7 𝐺 𝑗 ← 𝐺 𝑗 ∪ {𝑂 ′𝑖 };
8 found← true;
9 break;

10 end
11 end
12 if not found then

// Add new group {𝑂 ′
𝑖
} to G

13 G ← G ∪ {{𝑂 ′
𝑖
}};

14 end
15 end
16 return G;

and returns the 2D bin packing plan. Therefore, the task of the
lower level becomes finding the best permutation of the items to
minimize the number of used bins.

Traditional methods are either sorting-based ones, which sort
the items according to specific properties, or searching-based ones,
which iteratively search for an optimal solution. The sorting-based
methods are faster than searching-based ones but also provide
lower-quality solutions. To achieve a better tradeoff between speed
and quality, we use reinforcement learning to learn from data the
best heuristic to permute the items. In this way, we can produce
higher-quality solutions than sorting-based methods with little
extra time. We formulate the permutation of the items as a Markov
decision process (MDP), where the items are selected one by one.
And we design a reinforcement learning agent, PermRL, with an
encoder-decoder structure [20, 37] to process sequential input and
produce sequential output.

3.3.1 MDP Formulation.

• State: The state includes the size of the bins, the sizes of all
the input items, and the indices of the items selected in the
previous time step.
• Action: Select an item that is not selected in previous time
steps.
• Transition: Add the selected item to the output and mark it
as selected.
• Reward: Reward is defined as the negative bin packing cost
(the number of bins used). And the reward is episodic (only
given in the last step).

3.3.2 Encoder. The encoder encodes the input items into item em-
beddings. We denote the features of the input items as {x1, ..., x𝑛},
where each x𝑖 ∈ R2 is the height and width of the 𝑖-th item nor-
malized by dividing the height and width of the bin. The initial
embeddings of the items are computed as h(0)

𝑖
= 𝑊 (0)x𝑖 + 𝑏 (0) ,

where𝑊 (0) ∈ R𝑀×2, 𝑏 (0) ∈ R𝑀 are trainable parameters and𝑀 is
the embedding dimension. Then we apply 𝐿 multi-head attention
(MHA) layers [36] to the item embeddings to propagate information

Learning to Solve Grouped 2D Bin Packing Problems in the Manufacturing Industry KDD ’23, August 6–10, 2023, Long Beach, CA, USA

among the items. For each layer 𝑙 = 1, 2, ..., 𝐿, the embeddings are
computed as follows,

h(𝑙)1 , h(𝑙)2 , ..., h(𝑙)𝑛 = MHA(h(𝑙−1)1 , h(𝑙−1)2 , ..., h(𝑙−1)𝑛). (3)

For simplicity of notion, the final embedding h(𝐿)
𝑖

of the last
layer is written as h𝑖 in the following.

3.3.3 Decoder. The decoder selects one unselected item at a time,
forming a permutation of the 𝑛 input items after 𝑛 steps. At each
time step 𝑡 , the decoder computes the context vector q𝑡 , updates it
with one step of MHA to obtain q′𝑡 , and computes the probability
of selecting which item by using yet another MHA between q′𝑡 and
item embeddings h𝑖 .

We denote the index of the item chosen at time step 𝑡 as π𝑡 . We
denote the indices of the items chosen up to time step 𝑡 as π1:𝑡
and the rest as π1:𝑡 . The context vector is computed as follows to
capture the global information and history:

q𝑡 = [h∥GRU(hπ1:(𝑡−1))], (4)

where [·∥·] means concatenation, h = 1
𝑛

∑𝑛
𝑖=1 h𝑖 , and GRU(·) rep-

resents the final hidden state of the gated recurrent unit (GRU) after
processing the input sequence. The context vector q𝑡 ∈ R2𝑀 is
split into q1𝑡 , ..., q

𝐻
𝑡 ∈ R2𝑚 for 𝐻 heads, where 𝐻 ·𝑚 = 𝑀 . The item

embeddings h𝑖 are split into h1
𝑖
, ..., h𝐻

𝑖
∈ R𝑚 . The updated context

vector q′𝑡 is computed as follows:

𝑎
𝑗
𝑡,𝑖

=

(𝑊 𝑗

𝑄
q𝑗𝑡)𝑇 (𝑊

𝑗

𝐾
h𝑗
𝑖
)

√
𝑚

if 𝑖 ∉ π1:(𝑡−1) ,

−∞ otherwise.
(5)

𝑎
𝑗
𝑡,𝑖

=
exp𝑎 𝑗

𝑡,𝑖∑𝑛
𝑘=1 exp𝑎

𝑗

𝑡,𝑘

, (6)

q′𝑡 =
𝐻∑︁
𝑗=1

𝑊
𝑗

𝑂

𝑛∑︁
𝑖=1

𝑎
𝑗
𝑡,𝑖
h𝑗
𝑖
, (7)

where𝑊 𝑗

𝑄
∈ R2𝑚×𝑚 ,𝑊 𝑗

𝐾
∈ R𝑚×𝑚 , and𝑊 𝑗

𝑂
∈ R𝑚×2𝑚 are trainable

parameters. Finally, the probability for selecting item 𝑖 at time step
𝑡 is computed as follows,

𝑝𝑡 (𝑖) =
𝐶 · tanh

(𝑊 𝑗

𝑄2q
′
𝑡)𝑇 (𝑊

𝑗

𝐾2h𝑖)√
𝑚

if 𝑖 ∉ π1:(𝑡−1) ,

−∞ otherwise.
(8)

𝑝𝑡 (𝑖) =
exp𝑝𝑡 (𝑖)∑𝑛
𝑘=1 exp𝑝𝑡 (𝑖)

, (9)

where𝑊 𝑗

𝑄2 ∈ R
2𝑀×𝑀 and𝑊 𝑗

𝐾2 ∈ R
𝑀×𝑀 are trainable parame-

ters, and 𝐶 is a clipping coefficient. The probability of outputting
permutation π is

𝑝𝜃 (π) =
𝑛∏
𝑡=1

𝑝𝑡 (π𝑡), (10)

where 𝜃 indicates all the above trainable parameters of the agent.
Following the convention of reinforcement learning, we also

refer to the permutation generated by sampling from (9) at each
step as a rollout of the agent’s policy.

Order 1

Order 2

Order 3

Order 4

Order 5

Order 7

Order 6

Order 8

Order 1

Order 2

Order 3

Order 4 Order 7

Order 6

Order 8

Group 1 Group 2

Group 1 Group 2

Swap

Relocate

Figure 4: The swap and relocate operators.

3.3.4 Training. PermRL is trained with the POMO algorithm [22],
a variant of the REINFORCE algorithm that considers multiple
rollouts with different start points. In each iteration of the training
loop, we randomly generate a problem instance by sampling a
sequence of 𝑁 items from the dataset, and we encode them using
the encoder. At the first step of decoding, we sample 𝐾 ≤ 𝑁 items
according to (9). Then we use each of the 𝐾 items as the first item
and run the remaining 𝑁 − 1 decoding steps to obtain 𝐾 different
rollouts (permutations of the input), π1, ...,π𝐾 . For a permutation
π, We define the reward 𝑅(π) as the negative of the number of bins
used under permutationπ. The policy gradient can be approximated
as follows,

∇𝜃 𝐽 (𝜃) ≈
1
𝑁

𝑁∑︁
𝑖=1
(𝑅(π𝑖) − 𝑅)∇𝜃 log𝑝𝜃 (π𝑖), (11)

where the average reward 𝑅 = 1
𝑁

∑𝑁
𝑖=1 𝑅(π𝑖) is used as the baseline

to reduce the variance. The parameter 𝜃 is updated using the Adam
optimizer [19] with a learning rate of 10−5.

3.4 The Upper Level and GroupRL
To find the best grouping plan for the orders, we iteratively improve
the current order grouping plan by making adjustments based
on the feedback from the lower level. We design a reinforcement
learning agent, GroupRL, to extract helpful information from the
hierarchical input features and learn the best adjustment operations
through training. For the adjustment, we design two operators as
illustrated in Figure 4. The 𝑠𝑤𝑎𝑝 (𝑢, 𝑣, 𝑖, 𝑗) operator swaps the order
𝑖 of group𝑢 with the order 𝑗 of the group 𝑣 . And the 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒 (𝑢, 𝑣, 𝑖)
operator takes the order 𝑖 out of group 𝑢 and inserts it into group 𝑣 .
Theoretically, starting from the initial grouping plan, we can reach
the optimal grouping plan in a finite number of steps with the two
operators.

The MDP can be formulated as follows:
• State: The state includes the current grouping plan, the bin
packing results (utilization of each used bin) of the groups
and orders, the items of the orders, item sizes, the limit on
the maximum number of items contained in a group, and
historical information of previous states and actions.
• Action: Choose 𝑠𝑤𝑎𝑝 (𝑢, 𝑣, 𝑖, 𝑗) or 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒 (𝑢, 𝑣, 𝑖) operator
and determine its parameters.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenxuan Ao, Guozhen Zhang, Yong Li, and Depeng Jin

• Transition: Apply the chosen operator to the current group-
ing plan.
• Reward: Reward is defined as the difference in total bin
packing cost after the transition. The reward is positive for
a decrease in cost, and negative otherwise.

In Section 3.3.4, for PermRL, we use the POMO algorithm that
trains on the rollout level, i.e., sampling complete rollouts for train-
ing, because there is no reward for intermediate actions but only
one reward at the end. For GroupRL, however, there are nonzero re-
wards for intermediate actions. Algorithms that train on transition
level, i.e., sampling transitions of (state, action, reward, next_state)
for training, aremore suitable and can better utilize this fine-grained
information. Therefore, we adopt PPO [35] to train GroupRL, which
is one of the best-performing and most widely used transition-level
algorithms. The model of GroupRL takes an actor-critic structure,
where the actor outputs the probability distribution over the valid
actions at each step, and the critic outputs the value of the state,
which is used as the baseline in the PPO algorithm.

3.4.1 Hierarchical State Encoding. The information in the state is
hierarchical and of variable length: there are a variable number of
groups, each group contains a variable number of orders, and each
order contains a variable number of items. To propagate informa-
tion in the hierarchy from bottom to top, we need to find a function
that maps from this variable length input into fixed-sized output.
The function is also desired to be permutation-invariant as the per-
mutation of the input is meaningless or undefined in our problem.
Intuitively, the function family that meets the above requirements
is composed of aggregate functions like min, max, mean, and their
combinations. This intuition is also proved theoretically in [39].
Therefore, we use the structure of aggregate functions followed by
a multi-layer perceptron (MLP) to distill information across layers
in the hierarchy. Here the MLP is used to learn the combinations
of aggregate functions.

Specifically, we refer to the 𝑖-th group as 𝑔𝑖 , the 𝑗-th order in
𝑔𝑖 as 𝑜𝑖, 𝑗 , and the 𝑘-th item in 𝑜𝑖, 𝑗 as 𝑡𝑖, 𝑗,𝑘 . Similar to that in the
PermRL, we compute the embedding t𝑖, 𝑗,𝑘 ∈ R𝑀 of item 𝑡𝑖, 𝑗,𝑘 as
a linear projection from the normalized height and width of the
item. We denote the bin packing feature of an order or a group 𝛼
as BP(𝛼) = (𝑎, 𝑏, 𝑐) ∈ R3, where 𝑎, 𝑏, 𝑐 are the min, max, mean of
bin utilization (total area of items in the bin divided by the area
of the bin) of the bins in the packing result of 𝛼 . The embedding
o𝑖, 𝑗 ∈ R3𝑀+3 of order 𝑜𝑖, 𝑗 is computed as follows,

o𝑖, 𝑗 = [BP(𝑜𝑖, 𝑗)∥MIN𝑘 (t𝑖, 𝑗,𝑘)∥MAX𝑘 (t𝑖, 𝑗,𝑘)∥MEAN𝑘 (t𝑖, 𝑗,𝑘)], (12)

where MIN, MAX, and MEAN are element-wise operations to ag-
gregate item information. Then, the embedding g𝑖 ∈ R3𝑀+𝐿+3 of
group 𝑔𝑖 is computed as follows,

õ𝑖, 𝑗 =𝑊𝑂
2 tanh(𝑊𝑂

1 o𝑖, 𝑗 + b𝑂1) + b
𝑂
2 , (13)

g𝑖 = [BP(𝑔𝑖)∥MIN𝑗 (õ𝑖, 𝑗)∥MAX𝑗 (õ𝑖, 𝑗)∥MEAN𝑗 (õ𝑖, 𝑗)∥hist𝑖], (14)

where𝑊𝑂
1 ∈ R

(3𝑀+3)×2𝑀 ,𝑊𝑂
2 ∈ R

2𝑀×𝑀 , b𝑂1 ∈ R
2𝑀 , b𝑂2 ∈ R

𝑀

are trainable parameters, hist𝑖 ∈ R𝐿 is a 0-1-encoded history vector
indicating whether group 𝑔𝑖 is selected in the previous 𝐿 steps, 1
for selected and 0 otherwise.

3.4.2 Actor. We denote the action probability as 𝑝 (𝑢, 𝑣, 𝑖, 𝑗). If
𝑗 ≠ −1, it represents the probability of action 𝑠𝑤𝑎𝑝 (𝑢, 𝑣, 𝑖, 𝑗). If
𝑗 = −1, it represents the probability of action 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒 (𝑢, 𝑣, 𝑖). At
each step, the actor computes the probability distribution over the
actions, and chooses the action for the step by sampling or tak-
ing the argmax of the distribution. This could be done by first
enumerating all valid actions that do not violate the group size con-
straint and then computing the probability for each action. How-
ever, this is very inefficient because of the large action space. Using
the fact that 𝑝 (𝑢, 𝑣, 𝑖, 𝑗) = 𝑝 (𝑢, 𝑣)𝑝 (𝑖, 𝑗 |𝑢, 𝑣), we can break this into
two steps: first sample (𝑢′, 𝑣 ′) from 𝑝 (𝑢, 𝑣) and then sample (𝑖′, 𝑗 ′)
from 𝑝 (𝑖, 𝑗 |𝑢′, 𝑣 ′). If there are 𝑃 choices for (𝑢′, 𝑣 ′) and 𝑄 choices
for (𝑖′, 𝑗 ′), this two-step sampling procedure reduces the amount
of computations from 𝑃 ×𝑄 to 𝑃 +𝑄 .

We design two neural networks to model 𝑝 (𝑢, 𝑣) and 𝑝 (𝑖, 𝑗 |𝑢, 𝑣)
separately. For 𝑝 (𝑢, 𝑣), We compute it with the embedding of the
groups:

g̃𝑖 =𝑊
𝑔

2 tanh(𝑊 𝑔

1 g𝑖 + b
𝑔

1) + b
𝑔

2, (15)

𝑝 (𝑢, 𝑣) = 𝐶 tanh(𝑊 𝑝

2 tanh(𝑊 𝑝

1 [g̃𝑢 ∥g̃𝑣] + b
𝑝

1) + b
𝑝

2), (16)

𝑝 (𝑢, 𝑣) = exp𝑝 (𝑢, 𝑣)∑
𝑢′,𝑣′ exp𝑝 (𝑢′, 𝑣 ′)

, (17)

where𝑊 𝑔

1 ∈ R
(3𝑀+𝐿+3)×2𝑀 ,𝑊 𝑔

2 ∈ R
𝑀×2𝑀 , b𝑔1 ∈ R

2𝑀 , b𝑔2 ∈ R
𝑀 ,

𝑊
𝑝

1 ∈ R
2𝑀×2𝑀 ,𝑊 𝑝

2 ∈ R
𝑀×2𝑀 , b𝑝1 ∈ R

2𝑀 , b𝑝2 ∈ R
𝑀 are trainable

parameters, and 𝐶 is a clipping coefficient.
For 𝑝 (𝑖, 𝑗 |𝑢, 𝑣), in order to provide a unified account for the

different actions of swap and relocate, we define three scoring
functions S1 (𝑔, 𝑜), S2 (𝑔, 𝑜), and S3 (𝑜1, 𝑜2), which are MLPs that
take group and order embeddings as input and output a real value.
S1 (𝑔, 𝑜) is the score of removing order 𝑜 from group 𝑔. S2 (𝑔, 𝑜) is
the score of inserting order 𝑜 into group 𝑔. S3 (𝑜1, 𝑜2) is the affinity
score of order 𝑜1 and 𝑜2. In this way, we can express the score of
action 𝑠𝑤𝑎𝑝 (𝑢, 𝑣, 𝑖, 𝑗) as follows,

Sswap (𝑢, 𝑣, 𝑖, 𝑗) = S1 (𝑔𝑢 , 𝑜𝑖) + S1 (𝑔𝑣, 𝑜 𝑗) + S2 (𝑔𝑢 , 𝑜 𝑗)
+ S2 (𝑔𝑣, 𝑜𝑖) + S3 (𝑜𝑖 , 𝑜 𝑗) .

(18)

And we express the score of action 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒 (𝑢, 𝑣, 𝑖) as follows,

Srelocate (𝑢, 𝑣, 𝑖) = S1 (𝑔𝑢 , 𝑜𝑖) + S2 (𝑔𝑣, 𝑜 𝑗) . (19)

The action probability is computed as follows,

𝑝 (𝑖, 𝑗 |𝑢, 𝑣) =
{
Sswap (𝑢, 𝑣, 𝑖, 𝑗) if 𝑗 ≠ −1,
Srelocate (𝑢, 𝑣, 𝑖) if 𝑗 = −1.

(20)

𝑝 (𝑖, 𝑗 |𝑢, 𝑣) = exp𝑝 (𝑖, 𝑗 |𝑢, 𝑣)∑
𝑖′, 𝑗 ′ exp𝑝 (𝑖′, 𝑗 ′ |𝑢, 𝑣)

. (21)

3.4.3 Critic. The critic estimates the state value function V(𝑠). We
compute it with the embeddings of the groups in state 𝑠:

V(𝑠) = W𝑐
2
𝑇 tanh(𝑊 𝑐

1 MEAN𝑖 (g̃𝑖) + b1) + 𝑏𝑐2, (22)

where𝑊 𝑐
1 ∈ R

𝑀×𝑀 ,W𝑐
2 ∈ R

𝑀 , b1 ∈ R𝑀 , 𝑏𝑐2 ∈ R are trainable
parameters.

Learning to Solve Grouped 2D Bin Packing Problems in the Manufacturing Industry KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: Performance comparison on the Real, G200, and G100 datasets.

Method Real G200 G100
Bin Usage Gap To LB Time/s Bin Usage Gap To LB Time/s Bin Usage Gap To LB Time/s

LB 2900 0.00% - 2780 0.00% - 741 0.00% -
MG-W 3844 32.55% 0.01 4491 61.55% 0.01 1308 76.52% <0.01
MG-H 3320 14.48% 0.01 3186 14.60% 0.01 915 23.48% <0.01
MG-A 3401 17.28% 0.01 3437 23.63% 0.01 1001 35.09% <0.01
SA-W 3631 25.21% 2.49 4152 49.35% 2.70 1157 56.14% 1.28
SA-H 3198 10.28% 2.38 3088 11.08% 2.69 854 15.25% 1.24
SA-A 3275 12.93% 2.78 3305 18.88% 2.85 919 24.02% 1.35

GGA-W 3536 21.93% 3494.3 3979 43.13% 4805.4 1067 43.99% 2226.8
GGA-H 3172 9.38% 3823.2 3056 9.93% 4741.5 836 12.82% 2109.7
GGA-A 3244 11.86% 4141.7 3244 16.69% 5355.9 890 20.11% 2408.1
Ours 3111 7.28% 18.94 2999 7.88% 22.26 820 10.66% 11.40

Improvement 1.92% 2.10% - 1.87% 2.05% - 1.91% 2.16% -

4 EXPERIMENTS
To demonstrate the effectiveness of our proposed method, we con-
duct extensive experiments on both the real-world dataset and
synthetic datasets generated from real-world data, answering the
following research questions:

• RQ1: How is the performance of our method compared with
other baselines?
• RQ2: How much do the GroupRL and PermRL contribute to
the overall performance?
• RQ3: How robust is our method against the change of input
distribution and constraints?
• RQ4: How is deployment performance in practical applica-
tions?

4.1 Experiment Settings
4.1.1 Datasets and metrics. The real-world dataset Real contains
two weeks of production data with a total number of 2,418 orders
and 81,083 items. The limit on group size is 200. For the training
of our method, we generate a synthetic dataset G200 that mimics
the distribution of the real-world data. We also generate dataset
G100 that cuts the number of items and orders from G200 in half to
compare the performance of the methods when the limit on group
size is reduced to 100. See Appendix A for more details.

We focus on two metrics: bin usage and gap. Bin usage is the
total number of bins used for the given input. Gap is the bin usage
compared to the estimated lower bound of bin usage. The lower
bound (LB) is obtained by removing the group size constraint for the
upper level as well as the guillotine cut constraint for the lower level.
Specifically, we put all orders into one group and use the MaxRect
algorithm for bin packing, the bin usage of which is shown to be
1.005 times the optimal value [16].

4.1.2 Baselines. As there are no available methods that can directly
solve the bi-level G2DBP problem, we select the best methods for
the upper level and lower level and combine them together. For the
lower level shelf bin packing task, we include the Width-First (W),
Height-First (H) and Area-First (A) heuristics [16] that select the
next item with the largest width, height or area. For the upper-level
order grouping task, we include three methods. The first one is
Min-Group (MG), which is described in Section 3.2. The second one

is simulated annealing (SA), which is widely used to solve various
grouping problems [8, 10, 17]. The third one is grouping genetic
algorithm (GGA)[6] with memetic search [24], which is one of
the best-performing methods for the grouping problem [33]. See
Appendix B and C for detailed parameter settings and system setup.

4.2 Overall Performance (RQ1)
The overall performance of our method and the baseline methods
on the real dataset and synthetic datasets G200 and G100 is shown
in Table 1. In the method column, we use notations like MG-W to
refer to the baseline that uses Min-Group (MG) as the upper-level
method andWidth-First (W) as the lower method. The lower bound
(LB, see Section 4.1.1) of bin usage is also included in the table. The
improvement row is computed by comparing our method with the
strongest baseline. For comparison, SA, GGA, and our method all
run 1,000 searching steps on the test set. The average running time
of the test cases is reported. From the experiment results, we can
observe that:
• Our method achieves the best performance on across all
three datasets. Specifically, for bin usage, our method beats
the best baseline method GGA-H by 1.92%, 1.87%, and 1.91%
on Real, G200, and G100 datasets, respectively. And Our
method beats the second-best baseline SA-H by 2.72%, 2.88%,
and 3.98% on Real, G200, and G100.
• Our method is time-efficient, solving the G2DBP problem
of a day’s production in less than half a minute. While the
bin usage of the GGA-H baseline is close to our method,
GGA-H takes much longer to solve the problem, making it
impractical in factory manufacturing.
• Our method gives solutions closest to the lower bound. Com-
pared with the best baseline, the gap to the lower bound is
reduced by 2.10%, 2.05%, and 2.16% on Real, G200, and G100,
respectively.

4.3 Ablation Study (RQ2)
To demonstrate the importance and contribution of GroupRL (GRL)
and PermRL (PRL) to the final results, we test the performance of
replacing GroupRL with MG, SA, GGA and replacing PermRL with
the best heuristic Height-First (H). The result is shown in Figure 5
and we summarize the observation as follows,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenxuan Ao, Guozhen Zhang, Yong Li, and Depeng Jin

MG-H MG-PRL SA-H SA-PRL GGA-H GGA-PRL GRL-H GRL-PRL
7%

8%

9%

10%

11%

12%

13%

14%

15%

Ga
p

to
 lo

we
r b

ou
nd

14.6%

11.1%

9.9%
9.4%

13.2%

9.8%
9.1%

7.9%

Figure 5: Performance comparison of different combinations
of upper and lower methods on G200.

0 5 10 15 20
Aspect Ratio

0.0

0.1

0.2

0.3

De
ns

ity

(a) G200

0 5 10 15 20
Aspect Ratio

0.0

0.2

0.4

0.6

De
ns

ity

 (b) Square

0 5 10 15 20
Aspect Ratio

0.0

0.1

0.2

De
ns

ity

(c) Strip

0 5 10 15 20
Aspect Ratio

0.0

0.2

0.4

0.6

De
ns

ity

(d) Uniform

Figure 6: The distribution of the aspect ratio of items.

• PermRL learns better strategy than the heuristic. Comparing
the results of 𝑥-H and 𝑥-PRL, we find that PermRL con-
sistently achieves better performance no matter the upper
method, which also demonstrates that the learned strategy is
robust against the distribution shift incurred by the change
of upper-level method.
• GroupRL can effectively utilize lower-level feedback. Com-
paring the results of SA-𝑥 , GGA-𝑥 , and GRL-𝑥 , GroupRL
achieves the best performance and can find better solutions
in the same number of search steps with the knowledge
extracted from input features and feedback.

4.4 Generalization Performance (RQ3)
A common concern about learning methods is whether the heuris-
tics or strategies learned on the training dataset can generalize to
other datasets of different distributions and characteristics. This is
also of practical importance as the distribution of orders and con-
straints may change over time in factory production. If the method
has poor generalizability, it needs to be retrained frequently on new

data, which may cause high maintenance costs and delay factory
production.

To test the generalization performance of our method, we con-
sider two kinds of scenarios. The first scenario is the change in the
distribution of the shape of items. In the dataset G200, the items are
sampled from the empirical distribution of the real-world data. Fig-
ure 6(a) shows the distribution of the aspect ratio (width/height) of
the items in the dataset. We can see that it is a long-tail distribution
with a mix of square-like items and strip-like items. The median
of the distribution is 3.44. We divide the distribution in half at the
median to obtain two distributions for more square-like items and
more strip-like items, respectively. By sampling from these two
distributions, we generate dataset Square and dataset Strip that
have the same number of orders and items as G200 and only differ
in the distribution of item shapes. Besides, we also generate dataset
Uniform, of which the width and height of the items are sampled
from the uniform distribution. The item shape distributions of the
above datasets are shown in Figure 6.

The second scenario is the change of group size limit, which is
also an important parameter in the G2DBP problem. We test our
method trained with a group size limit of 200 on test cases with a
group size limit of 100 and 300. For limit 100, we use dataset G100.
And for limit 300, we use dataset G300, of which the data is the
same as G200 but the group size limit is changed to 300.

We compare our method (trained on G200) with the baselines on
the above 5 test cases. The results are shown in Figure 8. We can see
that even though our method is not specifically trained for any of
those datasets, it still consistently achieves better performance than
any of the baseline methods, which demonstrates that our method
is robust against the unpredictable change in input distribution and
problem constraints that may occur in real-life production.

Figure 7: The interface of our deployed system.

4.5 Deployment Performance (RQ4)
We deployed our method in the factory of ARROW Home, one of
the leading brands in customized furniture manufacturing. In the
past, the orders of the day were grouped manually by the workers
according to their experience. For example, they may try to put as
many orders as possible in a group without exceeding the group
size limit and put orders with similar shapes of items into the same
group. This process is both tedious and inefficient. And on days
with tight schedules, it gets even worse. Now with our method inte-
grated in the production system, as shown in Figure 7, the workers

Learning to Solve Grouped 2D Bin Packing Problems in the Manufacturing Industry KDD ’23, August 6–10, 2023, Long Beach, CA, USA

MG-H SA-H GGA-H Ours

(a) Square

0%
2%
4%
6%
8%

10%
12%
14%

11.4%

8.5% 7.6%
6.7%

MG-H SA-H GGA-H Ours

(b) Strip

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

15.5%

10.1% 9.1% 8.1%

MG-H SA-H GGA-H Ours

(c) Uniform

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

15.3%

11.8% 11.0%
9.4%

MG-H SA-H GGA-H Ours

(d) G100

0%

5%

10%

15%

20%

25%

30%

23.5%

15.2%
12.8%

10.9%

MG-H SA-H GGA-H Ours

(e) G300

0%
2%
4%
6%
8%

10%
12%
14%

11.6%

8.4% 7.9%
6.1%

Figure 8: Performance comparison on five transfer test cases in terms of the gap to lower bound.

can create new grouping plan by simply selecting the orders to be
manufactured from the order pool. Then our method will process
the order information and output the optimized production plan
with details in seconds. After confirmation, the orders are manu-
factured according to the plan. In two weeks of test production,
the average utilization of each bin is improved from 70% to 73%,
reducing the total cost of raw materials by 4.1%, which will save
1.2 million dollars in a year for the total cost of 30 million dollars.

5 RELATEDWORK
We discuss the related works on two aspects: bin packing problem
and grouping problem.

Bin packing problem (BP) is one of the most widely studied
problems in the area of operation research, as many mathematical
or real-world problems can be formulated as BPPs. Generally, there
are two kinds of objects in a BP: bins and items. The objective of
the BP is to pack all the items into the bins while conforming to
certain constraints. The simplest form of BP is the one-dimensional
BP (1DBP), where the items can be thought of as balls with different
weights, the bins are containers with a fixed maximum capacity,
and the constraint is that the total weight of the balls in the bin
cannot exceed the capacity of the bin. Naturally, BP can be extended
to 2D or 3D where the items and bins are 2D or 3D objects, and the
constraint is that the items must fit inside the bin without overlap.

For 2DBP, several methods have been proposed over the years.
The non-learning-based methods can be categorized into exact
and heuristic methods. The exact methods usually either solve BP
though enumeration of packing patterns [13, 27] or turn BP into
a mixed integer programming (MIP) problem and solve the MIP
[25, 31]. As even 1DBP, the simplest form of BP, is NP-hard [9],
current exact methods can only be applied to small-scale problems.
In cases where the problem scale is large or speed is preferred
over finding the exact optimum, heuristic methods are more of-
ten used. The bottom-left heuristic [3] pack the items one by one
into the lowest and leftmost position. The MaxRect algorithm [16]
maintains a list of maximal rectangles in the remaining space and
sequentially packs items into the best one. These heuristics can
be further combined with tabu search [38], simulated annealing
[23], genetic algorithm [12], and other meta-heuristics to improve
performance. However, in our problem setting, the simple sorting
heuristics cannot provide high-quality solutions. At the same time,
more sophisticated methods do not meet the high computational ef-
ficiency requirement, as the lower level is queried frequently by the
upper level in bi-level optimization. To achieve a better tradeoff be-
tween quality and speed, we design a reinforcement learning model
for learning from data how to sort items based on their features.

As for learning-based methods, the existing works mainly focus on
solving online 3DBP [14, 15, 30, 40] or 2DBP without the guillotine
constraint [7, 21], which cannot be applied in our problem.

Grouping problem refers to a class of combinatorial optimiza-
tion problems where a finite set G is partitioned into mutually
disjoint subsets 𝐺1,𝐺2, ...,𝐺𝐾 (called groups). For different applica-
tions, there are different objective functions and constraints on the
groups. For example, the 1DBP can be thought of as a grouping
problem where G is the set of items and the groups 𝐺𝑖 are the
bins. The objective is to minimize the number of groups, and the
constraint is that the sum of the items in a group may not exceed
a limit. Similar to the bin packing problem, for most settings of
objective functions and constraints, the corresponding grouping
problem is NP-hard, and heuristic methods are studied more often.
The heuristic methods include variable neighborhood search (VNS)
[1, 5, 29], simulated annealing [11, 18], tabu search [32, 34], group-
ing genetic algorithm (GGA) [4, 6] and particle swarm optimization
(PSO) [2, 26]. According to the experiments of the survey [33], GGA
is the best-performing method among them. Different from previ-
ous works, the grouping problem in our setting is a bi-level problem
where the objective function of the grouping is implicitly defined
by the lower level optimization problem and is highly non-linear,
challenging for existing methods to optimize. In our work, we de-
sign a reinforcement learning model to better utilize the feedback
from the lower level and extract knowledge from input features to
effectively search for the optimal solution.

6 CONCLUSIONS
In this paper, we formulated the grouped 2D bin packing problem
that arises from the batch manufacturing constraint in the manu-
facturing industry, which is a bi-level problem and the upper-level
optimization of order grouping is coupled with the lower-level 2D
bin packing of the items in the orders. We solve the problem in a
data-driven way and propose an iteration-based hierarchical rein-
forcement learning framework with two reinforcement learning
models, GroupRL and PermRL, that learn the best strategies for
the optimization problems from the data. We conduct extensive
experiments on both real and synthetic datasets to demonstrate the
effectiveness of our method in terms of optimization results, compu-
tational efficiency, and the ability for trained models to generalize
to unseen datasets. We also deploy our method in the production
system of ARROW Home, and the online results show that our
method improves the average bin utilization from 70% to 73% and
reduces the cost of raw materials by 4.1%, which means a saving of
1.2 million dollars a year.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenxuan Ao, Guozhen Zhang, Yong Li, and Depeng Jin

REFERENCES
[1] Yassine Adouani, Bassem Jarboui, and Malek Masmoudi. 2018. A Variable Neigh-

borhood Search with Integer Programming for the Zero-One Multiple-Choice
Knapsack Problem with Setup. In International Conference on Variable Neighbor-
hood Search.

[2] Emel Kizilkaya Aydogan, Yılmaz Delice, Ugur Özcan, Cevriye Gencer, and Özkan
Bali. 2019. Balancing stochastic U-lines using particle swarm optimization. Jour-
nal of Intelligent Manufacturing 30 (2019), 97–111.

[3] Brenda S. Baker, Edward G. Coffman, and Ronald L. Rivest. 1980. Orthogonal
Packings in Two Dimensions. SIAM J. Comput. 9 (1980), 846–855.

[4] Jose Alejandro Cano. 2019. Parameters for a Genetic Algorithm: An Application
for the Order Batching Problem. IBIMA Business Review (2019).

[5] Ivan A. Davydov and Yury A. Kochetov. 2015. VNS-based heuristic with an
exponential neighborhood for the server load balancing problem. Electron. Notes
Discret. Math. 47 (2015), 53–60.

[6] Emanuel Falkenauer. 1994. A New Representation and Operators for Genetic
Algorithms Applied to Grouping Problems. Evolutionary Computation 2 (1994),
123–144.

[7] Jie Fang, Yunqing Rao, Xusheng Zhao, and Bing Du. 2023. A Hybrid Reinforce-
ment Learning Algorithm for 2D Irregular Packing Problems. Mathematics
(2023).

[8] Kamyla Maria Ferreira and Thiago Alves de Queiroz. 2018. Two effective simu-
lated annealing algorithms for the Location-Routing Problem. Appl. Soft Comput.
70 (2018), 389–422.

[9] M. R. Garey and David S. Johnson. 1978. Computers and Intractability: A Guide
to the Theory of NP-Completeness.

[10] Fernando Garza-Santisteban, Roberto Sánchez-Pámanes, Luis Antonio Puente Ro-
dríguez, Iván Amaya, José carlos Ortíz-Bayliss, Santiago Enrique Conant-Pablos,
and Hugo Terashima-Marín. 2019. A Simulated Annealing Hyper-heuristic for
Job Shop Scheduling Problems. 2019 IEEE Congress on Evolutionary Computation
(CEC) (2019), 57–64.

[11] Fernando Garza-Santisteban, Roberto Sánchez-Pámanes, Luis Antonio Puente Ro-
dríguez, Iván Amaya, José carlos Ortíz-Bayliss, Santiago Enrique Conant-Pablos,
and Hugo Terashima-Marín. 2019. A Simulated Annealing Hyper-heuristic for
Job Shop Scheduling Problems. 2019 IEEE Congress on Evolutionary Computation
(CEC) (2019), 57–64.

[12] José Fernando Gonçalves. 2007. A hybrid genetic algorithm-heuristic for a two-
dimensional orthogonal packing problem. Eur. J. Oper. Res. 183 (2007), 1212–1229.

[13] Eleni Hadjiconstantinou and Nicos Christofides. 1995. An exact algorithm for
general, orthogonal, two-dimensional knapsack problems. European Journal of
Operational Research 83 (1995), 39–56.

[14] Jie Jia, Huiliang Shang, and Xiong Chen. 2022. Robot Online 3D Bin Packing
Strategy Based on Deep Reinforcement Learning and 3D Vision. 2022 IEEE
International Conference on Networking, Sensing and Control (ICNSC) (2022), 1–6.

[15] Yuan Jiang, Zhiguang Cao, and Jie Zhang. 2021. Learning to Solve 3-D Bin Packing
Problem via Deep Reinforcement Learning and Constraint Programming. IEEE
transactions on cybernetics PP (2021).

[16] Jukka Jylänki. 2010. A thousand ways to pack the bin-a practical approach
to two-dimensional rectangle bin packing. retrived from http://clb. demon.
fi/files/RectangleBinPack. pdf (2010).

[17] R. Kamalakannan, R. Sudhakara Pandian, and Pl. Sivakumar. 2019. A simulated
annealing for the cell formation problem with ratio level data. International
Journal of Enterprise Network Management (2019).

[18] T. Kampke. 1988. Simulated annealing: Use of a new tool in bin packing. Annals
of Operations Research 16 (1988), 327–332.

[19] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014).

[20] Wouter Kool, Herke van Hoof, and Max Welling. 2018. Attention, Learn to Solve
Routing Problems!. In International Conference on Learning Representations.

[21] Olyvia Kundu, Samrat Dutta, and S. Kumar. 2019. Deep-Pack: A Vision-Based
2D Online Bin Packing Algorithm with Deep Reinforcement Learning. 2019 28th
IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN) (2019), 1–7.

[22] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Seungjai Min, and
Youngjune Gwon. 2020. POMO: Policy Optimization with Multiple Optima for
Reinforcement Learning. ArXiv abs/2010.16011 (2020).

[23] T. W. Leung, Chi Kin Chan, and Marvin D. Troutt. 2003. Application of a mixed
simulated annealing-genetic algorithm heuristic for the two-dimensional orthog-
onal packing problem. Eur. J. Oper. Res. 145 (2003), 530–542.

[24] Shengcai Liu, Ke Tang, and Xin Yao. 2020. Memetic Search for Vehicle Routing
with Simultaneous Pickup-Delivery and Time Windows. ArXiv abs/2011.06331
(2020).

[25] Andrea Lodi, Silvano Martello, and Daniele Vigo. 2004. Models and Bounds for
Two-Dimensional Level Packing Problems. Journal of Combinatorial Optimization
8 (2004), 363–379.

[26] Vahid Mahmoodian, Armin Jabbarzadeh, Hassan Rezazadeh, and Farnaz Barzin-
pour. 2019. A novel intelligent particle swarm optimization algorithm for solving
cell formation problem. Neural Computing and Applications 31 (2019), 801–815.

[27] Silvano Martello and Daniele Vigo. 1998. Exact Solution of the Two-Dimensional
Finite Bon Packing Problem. Management Science 44 (1998), 388–399.

[28] Óscar Oliveira, Dorabela Gamboa, and Elsa Silva. 2022. An introduction to
the two-dimensional rectangular cutting and packing problem. International
Transactions in Operational Research (2022).

[29] Zeping Pei, Zhuan Wang, and Yiwen Yang. 2019. Research of Order Batching
Variable Neighborhood Search Algorithm based on Saving Mileage. Proceedings
of the 3rd International Conference on Mechatronics Engineering and Information
Technology (ICMEIT 2019) (2019).

[30] Aaron Valero Puche and Sukhan Lee. 2022. Online 3D Bin Packing Reinforce-
ment Learning Solution with Buffer. 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2022), 8902–8909.

[31] Jakob Puchinger and Günther R. Raidl. 2007. Models and algorithms for three-
stage two-dimensional bin packing. Eur. J. Oper. Res. 183 (2007), 1304–1327.

[32] Jin Qin, Xianhao Xu, QinghuaWu, and T. C. Edwin Cheng. 2016. Hybridization of
tabu search with feasible and infeasible local searches for the quadratic multiple
knapsack problem. Comput. Oper. Res. 66 (2016), 199–214.

[33] Octavio Ramos-Figueroa, Marcela Quiroz-Castellanos, Efrén Mezura-Montes,
and Oliver Schütze. 2020. Metaheuristics to solve grouping problems: A review
and a case study. Swarm Evol. Comput. 53 (2020), 100643.

[34] Daniel Schermer, Mahdi Moeini, and Oliver Wendt. 2019. A hybrid VNS/Tabu
search algorithm for solving the vehicle routing problem with drones and en
route operations. Comput. Oper. Res. 109 (2019), 134–158.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. ArXiv abs/1707.06347 (2017).

[36] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. ArXiv abs/1706.03762 (2017).

[37] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In
NIPS.

[38] LijunWei, Andrew Lim, andWenbin Zhu. 2011. A Skyline-Based Heuristic for the
2D Rectangular Strip Packing Problem. In International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems.

[39] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan
Salakhutdinov, and Alex Smola. 2017. Deep Sets. ArXiv abs/1703.06114 (2017).

[40] Hang Zhao, Qijin She, Chenyang Zhu, Y. Yang, and Kai Xu. 2020. Online 3D Bin
Packing with Constrained Deep Reinforcement Learning. ArXiv abs/2006.14978
(2020).

Learning to Solve Grouped 2D Bin Packing Problems in the Manufacturing Industry KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A SYNTHETIC DATASETS
The dataset Real contains two weeks of production data. From
the statistics, we find that the number of orders of each day is be-
tween 100 and 300 and roughly follows the Gaussian distribution
N(200, 40). Therefore, we generate the synthetic dataset by sam-
pling the number of orders of each day from Gaussian distribution
N(200, 40) and discard samples less than 100 or greater than 300.
The items in each order are sampled from the empirical distribution
of all the items in the real-world dataset. The synthetic dataset
G200 contains 1,000 days for training and 10 days for testing. G100
is obtained from G200 by cutting the number of items and orders
of each day in half.

B BASELINES
The methods we use for the upper-level order grouping task are as
follows.
• MG It is described in Section 3.2 and used for the initial-
ization in our method. It tries to minimize the bin usage by
minimizing the number of groups.
• SA It is widely used to solve various grouping problems. We
use a linear cooling schedule. At each step 𝑡 , the temperature
𝑇 = 1− 𝑡

𝑁
where 𝑁 is the total number of steps. It generates

state transition proposal 𝑠′ by randomly applying the swap
and relocate operators on current state 𝑠𝑡 . The probability
of accepting this transition is 𝑝 = min(1, exp((cost(𝑠𝑡) −
cost(𝑠′))/𝑇)). If accepted, 𝑠𝑡+1 ← 𝑠′; otherwise 𝑠𝑡+1 ← 𝑠𝑡 .
• GGA[6] It is one of the best-performing methods for the
grouping problem. In the genetic algorithm setting, we start
with a population of 16 randomly generated solutions (order

grouping plans) and perform 𝑁 steps of evolution. At each
step, we generate the child population by randomly select-
ing parents to perform crossover operation. The groups in
the parents are recombined, removing repeated orders and
reinserting missing orders to their best group (in the sense of
minimum cost increase) in a greedy manner. We also use the
memetic search technique to educate the child population
through local search, which reduces the cost of the child by
repeatedly finding and applying swap or relocate operator
that leads to a lower cost.

C SYSTEM SETUP AND REPRODUCIBILITY
The experiments are conducted on a Linux server with an Intel(R)
Xeon(R) Gold 6342 CPU @ 2.80GHz, NVIDIA GeForce RTX 3090
GPU, and 128GB of device memory. We train the GroupRL model
for 10,000 epochs (∼2 days) and train the PermRL model for 5,000
epochs (∼4 hours). We implement all the baselines and our method
with Python3 and Pytorch. We have also released the code, trained
models, and datasets to facilitate reproduction and future research:
https://github.com/tsinghua-fib-lab/G2DBP.

For the parameters of the PermRL and GroupRL models, we use
grid searches to determine the best settings for the final models.
In PermRL, we choose the embedding dimension𝑀 = 32 from {16,
32, 64}, choose the number of the MHA layers 𝐿 = 3 from {0, 1, 2,
3}, choose the number of attention heads 𝐻 = 4 from 2,4,8. The
clipping coefficient 𝐶 in (8) and (16) is set as 10. In GroupRL, we
set the embedding dimension𝑀 = 32, the length of action history
𝐿 = 10. The scoring functions S1, S2, and S3 are 4-layered MLPs
with the hidden dimensions set to be {32, 32}.

https://github.com/tsinghua-fib-lab/G2DBP

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Problem Statement

	3 Methodology
	3.1 Overall Framework
	3.2 Initial Order Grouping
	3.3 The Lower Level and PermRL
	3.4 The Upper Level and GroupRL

	4 Experiments
	4.1 Experiment Settings
	4.2 Overall Performance (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Generalization Performance (RQ3)
	4.5 Deployment Performance (RQ4)

	5 Related Work
	6 Conclusions
	References
	A Synthetic Datasets
	B Baselines
	C System Setup and Reproducibility

