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ABSTRACT

The widespread adoption of Low-Rank Adaptation (LoRA) for efficient fine-
tuning of large language models has created demand for scalable parameter gen-
eration methods that can synthesize adaptation weights directly from task descrip-
tions, avoiding costly task-specific training. We present LoRAGen, a structure-
aware method for generating LoRA parameters from natural language descrip-
tions. Through empirical analysis of LoRA libraries, we identify two key struc-
tural properties of LoRA parameter spaces: non-uniqueness of low-rank decom-
position and heterogeneous weight distributions across network modules. These
properties necessitate specialized parameter generation methods rather than gen-
eral weight space learning approaches. LoRAGen employs a latent diffusion
model with two innovations: weight-space supervision on full adaptation matri-
ces to handle decomposition non-uniqueness, and a module-aware Mix-of-Experts
decoder that adapts to module-specific weight distributions. Experiments show
LoRAGen achieves 96.0% performance relative to task-specific LoRAs on FLAN-
T5-large and 72.7% on Gemma-2-2B-Instruct for in-distribution tasks, while ob-
taining 40.2% on zero-shot generation across unseen tasks—surpassing baselines
by nearly 5%. Our work establishes the first structure-aware approach to LoRA
generation with insights into adaptation weight space geometry.

1 INTRODUCTION

Exploring the weight space of neural networks, i.e., the high-dimensional parameter space spanned
by populations of trained networks, has emerged as a powerful paradigm for understanding model
mechanisms and enabling novel applications. Parameter generation, which trains models to produce
weights for target networks, represents a particularly promising direction that has gained significant
attention in recent years (Schürholt et al., 2021b; Schürholt et al., 2022; Schürholt et al., 2024a;
Wang et al., 2024). The rise of large language models (LLMs) has created opportunities to apply
parameter generation techniques in this domain, particularly through Low-Rank Adaptation (LoRA)
(Hu et al., 2022) generation, the direct synthesis of LoRA parameters for efficient fine-tuning. While
traditional LoRA workflows require task-specific training with custom datasets and hyperparame-
ters, creating engineering overhead and limiting reusability (He et al., 2022a; Lv et al., 2024), LoRA
generation enables direct parameter synthesis from natural language task descriptions, improving
scalability and unlocking adaptive model behavior without maintaining extensive adapter libraries.

Recent work generates LoRA parameters conditioned on task identifiers, datasets, or natural lan-
guage task descriptions. A common design involves learning a hypernetwork—a neural network
that generates parameters for another base network (Ha et al., 2016). With advances in deep gen-
erative models, one category of approaches learns a lower-dimensional representation directly from
the weight space and decodes this latent representation into LoRA parameters (Shao et al., 2025b).
However, the underlying encoder-decoder model must encode the entire LoRA parameters at once
into the learned latent representation, which limits the size of LoRA that can be embedded. Another
category learns a conditional diffusion prior over the latent space to generate LoRA parameters from
random noise based on specific task conditions at test time, but these approaches struggle to generate
well-performing LoRA parameters across diverse architectures and datasets (Jin et al., 2024; Liao
et al., 2024; Wu et al., 2024; Soro et al., 2025). A recent work, Text-to-LoRA (T2L) (Charakorn
et al., 2025c), employs a hypernetwork trained to construct LoRA parameters in a single inexpensive
forward pass, enabling zero-shot generation for entirely unseen tasks based on the hypothesis that
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Figure 1: Two empirical observations. Left: Task description embedding similarity versus LoRA
parameter similarity (measured by full adaptation matrix and low-rank decomposition matrix, re-
spectively). Right: Spectral-entropy distributions of LoRA parameters for FLAN-T5-large,
grouped by module type: encoder self-attention, decoder self-attention, and cross-attention.

different LoRAs share the same adaptation mechanism and can be optimized without explicit struc-
ture. However, these methods treat LoRA parameter generation as an instantiation of general weight
space learning approaches Schürholt et al. (2024a); Wang et al. (2024), while lacking a tailored
design specifically for LoRA characteristics.

In this work, we begin with an empirical analysis of a LoRA library built on the Transformer-based
model FLAN-T5-large(Chung et al., 2024) (Figure 1). Our analysis reveals the non-uniqueness
of low-rank decomposition as a key challenge. As shown in Figure 1 (left), we observe a clear
positive correlation between adapter similarity in the weight space and task description embedding
similarity, but we find no correlation between the cosine similarity of low-rank decomposition matri-
ces and task description embedding similarity. This suggests that supervision in the full adaptation
matrix space should generalize better than element-wise reconstruction. However, most LoRA gen-
erators reconstruct low-rank decomposition matrices directly (Ha et al., 2016; Jin et al., 2024; Liao
et al., 2024; Soro et al., 2025; Charakorn et al., 2025c; Lv et al., 2024), which can make training
sensitive to arbitrary rescalings or rotations of the low-rank decomposition matrices that produce the
same full adaptation matrix (Gabrielsson et al., 2024). Additionally, in Figure 1 (right), we identify
significant heterogeneity in LoRA weight distributions across different modules. The spectral-
entropy (Yunis et al., 2024; Roy & Vetterli, 2007) distributions differ systematically by module type
within FLAN-T5-large: encoder self-attention exhibits higher entropy, decoder self-attention
shows the lowest entropy, and cross-attention lies in between, indicating heterogeneous weight dis-
tributions across parts of the base model. However, existing methods typically use a single decoder
across modules (Lv et al., 2024; Charakorn et al., 2025c), which overlooks the module structure
(Ostapenko et al., 2024) and can mismatch the spectral-entropy distributions.

Motivated by the two empirical observations that reveal distinct properties of the LoRA weight
space, we introduce LoRAGen, a method that generates LoRA parameters from natural-language
task descriptions for structure-aware LoRA weight space learning. Specifically, we use a LoRA
weight autoencoder (LAE) to learn a latent space over LoRA parameters and a conditional latent
diffusion model conditioned on natural language task descriptions to generate latent representations
from random noise, followed by a decoder that processes these generated representations to produce
new LoRA parameters. To address the non-uniqueness issue, we supervise the full adaptation matrix
directly rather than the low-rank decomposition matrices, proposing two weight space loss terms: a
direction loss and a spectral loss on the full adaptation matrix. This avoids sensitivity to rescalings
or rotations of low-rank decomposition matrices that yield the same full adaptation matrix, leading
to more consistent and task-relevant weight space learning. To address the heterogeneity of weight
distributions, we introduce a module-aware Mix-of-Experts (MoE) decoder with routing that uses
a structural embedding combining a latent variable with learnable module and layer embeddings.
This allows experts to specialize to the observed module-specific weight distribution patterns while
ensuring a controlled sharing mechanism via the chosen expert pool configuration, facilitating gen-
eralization across different architectures of the base model.
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Our key contributions are: (1) We propose the first structure-aware weight learning method tailored
to the LoRA weight space, enabling effective LoRA parameter generation for diverse downstream
tasks. (2) LoRAGen introduces weight-space losses on the full adaptation matrix to address non-
uniqueness of low-rank decomposition and employs a module-aware MoE decoder to model het-
erogeneous LoRA weight distributions. (3) LoRAGen achieves strong in-distribution LoRA gener-
ation performance close to task-specific LoRAs across architectures: 96.0% on FLAN-T5-large,
72.7% on Gemma-2-2B-Instruct and further achieves 40.2% in zero-shot LoRA generation on
seven unseen tasks, surpassing competitive baselines by nearly 5%.

2 RELATED WORK

Weight Space Learning for Parameter Generation. Research on weight space learning has fol-
lowed two main directions: predicting model properties from trained weights (Schürholt et al.,
2021c; Unterthiner et al., 2020) and generating new parameters for neural networks (Eilertsen et al.,
2020; Schürholt et al., 2022; 2024b). Here, we focus on parameter generation. With advances in
deep generative models, one category of approaches learns a latent representation directly over pop-
ulations of trained models and decodes this latent representation to generate parameters (Berardi
et al., 2022). Another category employs conditional latent diffusion models to generate target pa-
rameters (Peebles et al., 2022; Soro et al., 2024). Recent studies introduce graph-based encoders that
treat networks as graphs and enable parameter generation across architectures (Kofinas et al., 2024).
These approaches have been applied in areas such as meta-learning, transfer learning, and model
compression (Finn et al., 2017; Nava et al., 2022; Wang et al., 2023). Overall, these approaches
exploring parameter generation in weight space (Peebles et al., 2022; Berardi et al., 2022; Schürholt
et al., 2024b) demonstrate the feasibility of parameter generation across architectures and datasets.

Hypernetworks for LoRA Generation. A hypernetwork is a neural network designed to gener-
ate the parameters of another “base” network, providing an indirect encoding of the base model’s
weights (Ha et al., 2016; Zhang et al., 2018; Schug et al., 2025). With the development of deep
generative models, one category of approaches (Shao et al., 2025a) learns conditional latent repre-
sentations of pretrained LoRA parameters for new LoRA parameter generation. Another category
employs conditional latent diffusion priors over latent space (Wu et al., 2024; Jin et al., 2024; Soro
et al., 2024), enabling the generation of task-specific LoRA parameters. Recently, hyperLoRA (Lv
et al., 2024) employs instruction-tuned hypernetworks with constrained loss and demo selection to
produce stable and generalizable adapters. While these approaches have advanced multi-task LLM
adaptation, they typically rely on learned task identifiers, limiting their capacity for zero-shot LoRA
parameter generation to unseen tasks (Ivison & Peters, 2022; Mahabadi et al., 2021; He et al., 2022b;
Schürholt et al., 2021a; Ortiz-Barajas et al., 2024; Lv et al., 2024). Recent work explores natural lan-
guage as conditioning signals for zero-shot generation (Xiao et al., 2023; Ivison et al., 2023; Phang
et al., 2023), with T2L (Charakorn et al., 2025a), DnD (Liang et al., 2025), and LoRA-Gen (Xiao
et al., 2025) utilizing hypernetworks to generate LoRA adapters from textual prompts. However,
existing methods treat LoRA generation as a general weight space learning problem, overlooking
the unique structural properties of LoRA parameter spaces. In contrast, LoRAGen is the first weight
space learning approach that specifically accounts for the structural characteristics of LoRA spaces,
leading to more effective parameter generation.

3 PRELIMINARIES

Low-Rank Adaptation (Hu et al., 2022): Low-rank matrix ∆W serves as a adapter to a base
model. For a pretrained weight matrix W0, the fine-tuned linear transformation is given by h =
W0 +∆W = W0 +BA, where A∈Rr×din and B∈Rdout×r are low-rank decomposition matrices
with r ≪ min{din, dout}. We ignore the module type and layer index of the LoRA parameters
when referring to all LoRA parameters. Therefore we index them by a module type m ∈ M
(e.g., query projection) and a layer index ℓ ∈ {1, . . . , Lm}. A LoRA adapter at each location
(m, ℓ) specifies a low–rank matrix ∆Wm,ℓ = Bm,ℓ Am,ℓ. We denote the low-rank adapter by
∆W :=

{
∆Wm,ℓ

}
m∈M, 1≤ℓ≤Lm

. Note that the low–rank decomposition is not unique: for any
invertible matrix R∈Rrm,ℓ×rm,ℓ , (Bm,ℓR)(R−1Am,ℓ) produces the same low-rank matrix ∆Wm,ℓ.
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Problem setting. We assume an LoRA library of pairs D = {(x(i),∆W (i))}Ni=1, where x(i) is
a natural language description of task t(i) and ∆W (i) = {∆W

(i)
m,ℓ} represents the fine-tuned low-

rank adapter for task t(i). Our goal is to train a LoRA generator using D that produces new LoRA
parameters ∆̂W

′
given a natural language task description x′, where x′ may be either in-distribution

(from D) or out-of-distribution (unseen tasks).

4 THE PROPOSED METHOD: LORAGEN

4.1 DESIGN PRINCIPLES FROM EMPIRICAL OBSERVATIONS

We first summarize two observations (Obs) over a library of low-rank adapters (two panels in Fig-
ure 1), which motivates our tailored design in LoRAGen. The details of observations experiment
implementation is reported at the Appendix A.1.

Obs-1: Non-uniqueness of the low-rank decomposition. Here we focus on the non-uniqueness
property of low-rank decompositions in LORA. Specifically, we examine a LoRA library trained
on FLAN-T5-large. While ∆W is uniquely defined as a full adaptation matrix, its low-rank
decomposition matrices (A,B) is not unique, illustrated in Sec. 3. This property motivates the
following hypothesis: if we supervise the low-rank decomposition matrices (A,B) directly, like
element-wise reconstruction, training becomes sensitive to arbitrary rescalings and rotations that
still yield the same full adaptation matrix ∆W . By supervising the full adaptation matrix itself, we
avoid this ambiguity and directly align the generated adapters with the pretrained adapters in the
full adaptation matrix space, which should lead to more consistent and task-relevant weight space
learning.

We test this hypothesis by computing the pairwise similarity between its LoRA adapter and each of
the other 111 adapters in the FLAN subset for a representative task which is selected from the four
major task categories in the FLAN subset so that it reflects the overall distribution of the dataset
rather than any specific task; further details are reported in Appendix A.1. To measure adapter simi-
larity, we compute the cosine similarity of the concatenation of flattened low-rank A and B matrices
of all layers and flattened ∆W , respectively. To avoid scale mismatch between the two similarity
measures, they are plotted in separate subplots, each fitted with its own least-squares trend line. We
observe a clear positive correlation between the task embedding similarity and the adapter similarity
in the weight space, whereas the similarity measured on the low-rank decomposition matrices ex-
hibits near-zero Spearman coefficients ρ, indicating the lack of correlation. This phenomenon aligns
with the non-uniqueness property of low-rank decompositions in LoRA and suggests that supervi-
sion in the full adaptation matrix space should generalize better than element-wise reconstruction.

Motivated by Obs-1, we therefore introduce adapter-level supervision (Sec. 4.3), where losses are
defined directly in the weight space of ∆W . Concretely, we introduce two weight space loss terms,
combining a direction loss Lang (Eq. 1) that aligns normalized LoRA directions, with a spectral loss
Lspec (Eq. 2) that matches leading singular values. These objectives enforce task-consistent LoRA
generation while remaining robust to the inherent non-uniqueness of low-rank decompositions.

Obs-2: Heterogeneity of LoRA weight distributions. Here we focus on the heterogeneity
of LORA weight distributions across different module types in a transformer-based architecture,
specifically the FLAN-T5-large model, which serves as the base model for LoRA adapters.
For each adapter ∆Wm,ℓ at a module–layer location (m, ℓ), we analyze how its Frobenius en-
ergy is distributed across singular directions. Let {σi} denote the singular values of ∆Wm,ℓ

and define the normalized spectrum pi = σ2
i /

∑
j σ

2
j . We then compute the spectral entropy

Hspec(∆Wm,ℓ) = −
∑

i pi log pi, which quantifies the uniformity of energy over directions: low
entropy indicates that the energy concentrates in a few dominant directions, indicating effectively
lower rank structure, whereas high entropy corresponds to a more even spread of energy (Yunis
et al., 2024; Roy & Vetterli, 2007).

For FLAN-T5-Large, we reports the spectral-entropy distributions for three module types in
FLAN-T5-large: Encoder self-attention, Decode self-attention, and Cross-Attention. We ob-
serve systematic differences across modules: encoder adapters exhibit higher spectral entropy which

4
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Figure 2: Overall framework of LoRAGen. Our approach consists of two stages: First, we train
hypernetwork based on LoRA weight autoencoder to encode and reconstruct LoRA parameters,
and diffusion process conditioned on natural language task descriptions to predict denoised latent.
Second, random noise and un/seen natural language task descriptions are fed into LoRAGen to
generate LoRA parameters, which can be incorporated with the LLM to evaluate downstream tasks.

means energy spread over more directions, decoder self-attention shows the lowest entropy with
more concentrated and effectively lower-rank structure, and cross-attention lies in between. This
pattern implies that LoRA weight distributions are not homogeneous across the network which
means the way energy is distributed over singular directions differs consistently by module type.
More results are reported in Appendix A.3.

Motivated by Obs-2, we employ a module-aware MoE decoder (Sec. 4.4)to match these module-
specific patterns of energy distributions. Specifically, routing is conditioned on a structural embed-
ding that combines a latent variable with learnable module and layer embeddings. The decoder can
operate with either (i) a single shared expert pool for all locations or (ii) separate expert pools per
module type (e.g., encoder attention). Per-module output heads Hm map the gated expert outputs
into LoRA parameters ∆̂Wm,ℓ. This architecture lets experts specialize to the observed module-
specific energy distribution patterns (e.g., lower-entropy/low-rank tendencies in Decoder-Self ver-
sus higher-entropy Encoder), while the router and the chosen pool configuration ensures controlled
sharing mechanism without losing module-specific specialization.

4.2 METHOD OVERVIEW

As shown in Figure 2, the overall framework of LoRAGen can be divided into two stages: First,
we train a hypernetwork, which consists of LoRA weight autoencoder (LAE) and diffusion pro-
cess, to learn the inner structure of LoRA parameters in the LoRA weight space. For LAE(Eϕ,Dθ)
trained on given LoRA parameters ∆W , the encoder Eϕ produces per-location latents with a diago-
nal–Gaussian posterior and the MoE decoder Dθ (Sec. 4.4) decodes latent z to full LoRA paramters
∆̂W . Note that at training LAE stage, we add two weight space losses terms defined on ∆Wm,ℓ

(Sec. 4.3). In the diffusion process, the noised latent is processed by a diffusion transformer condi-
tioned on embeddings of natural language task descriptions to predict denoised latent. The details
of diffusion process is reported in the Appendix A.11.

Second, we feed task descriptions and random noise into the diffusion transformer to produce the
output denoised latents followed by passing by the frozen MoE Decoder from stage-1 to generate
the full LoRA parameters, which can be applied to the LLM to perform the intended task.

5
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4.3 ADAPTER-LEVEL SUPERVISION IN LORA WEIGHT SPACE

Distinct pairs of low-rank decomposition matrices (A,B) produce the same low-rank adapter
∆W . If we choose to generate A and B separately, the LoRA generator must to commit to
a specific decomposition of ∆W , even though many different low-rank decomposition matrices
produce the identical adapter. To avoid this ambiguity induced by non-uniqueness property of
the low-rank decomposition, we directly add supervision signal at the level of low-rank adapter
∆̂Wm,ℓ = Dθ(z)m,ℓ, and introduce two weight space loss terms: (i) a direction loss based on co-
sine similarity that depends on the low-rank adapters after normalizing their Frobenius norm. (ii)
a spectral loss that matches the leading singular values of the predicted and pretrained low-rank
adapters.

Direction loss. Because many pairs of low-rank decomposition matrices (A,B) produce the same
low-rank adapter ∆W , supervising A and B individually can introduce arbitrary differences in the
Frobenius norm of ∆W . To make supervision insensitive to it, we normalize both the predicted and
target low-rank adapters to unit Frobenius norm and compare their directions directly to capture the
per-task direction. Thus we introduce a direction loss that measures the angular mismatch between
the predicted and target low-rank adapters:

Lang(m, ℓ) = 1− ⟨∆̂Wm,ℓ,∆Wm,ℓ⟩F
∥∆̂Wm,ℓ∥F ∥∆Wm,ℓ∥F

. (1)

where ⟨·, ·⟩F denotes the Frobenius inner product and ∥ · ∥F is the Frobenius norm.

Spectral loss. Direction supervision does not capture how the squared Frobenius norm is dis-
tributed across the singular spectrum. Two low-rank adapters can have similar cosine similarity
yet differ in their leading singular values, i.e., in the proportion of the squared Frobenius norm ex-
plained by the top singular directions. To account for this, we introduce a spectral loss that matches
the leading singular values of the two low-rank adapters:

Lspec(m, ℓ) =
∥∥∥σ1:km,ℓ

(
∆̂Wm,ℓ

)
− σ1:km,ℓ

(
∆Wm,ℓ

)∥∥∥
p,ωm,ℓ

(2)

where (i) σi(X) denotes the i-th singular value of X , and σ1:k(X) := (σ1(X), . . . , σk(X)) lists
the top-k values in nonincreasing order; (ii) rm,ℓ is the LoRA rank at location (m, ℓ), and km,ℓ ∈
{1, . . . , rm,ℓ} is the smallest integer such that the top-k singular values of the target low-rank adapter
explain at least a fraction ρ ∈ (0, 1) of its squared Frobenius norm. (iii) ∥u∥p,ω is a weighted ℓp
norm with p ∈ {1, 2}; (iv) ωm,ℓ = (ωm,ℓ,1, . . . , ωm,ℓ,km,ℓ

) are nonnegative normalized singular-
value weights.

Thus, we aggregate these two terms together as follows:

Ladapter(θ, ϕ) = Ez∼qϕ(z|∆W )

[ ∑
m∈M

Lm∑
ℓ=1

λm,ℓ

(
αangLang(m, ℓ) + αspecLspec(m, ℓ)

)]
, (3)

where qϕ(z | ∆W ) is the encoder posterior; αang, αspec > 0 are hyperparameters balancing the two
loss terms; and λm,ℓ≥0 are location weights. Note that Lang aligns direction, while Lspec aligns the
leading spectrum (i.e., the proportion of the squared Frobenius norm explained by the top singular
directions). Thus Ladapter aligns the performance of the specific-task low-rank adapter yet remains
robust to low-rank decompositions.

The overall objective of training LAE is
LVAE(θ, ϕ) = αadapter Ladapter(θ, ϕ) + β DKL

(
qϕ(z | ∆W ) ∥N (0, I)

)
+ λmoe Lmoe(θ), (4)

where αadapter, β, λmoe > 0 are scalar coefficients; Lmoe is the MoE load-balancing auxiliary
loss(Sec. 4.4).

4.4 MODULE-AWARE MOE DECODER

To capture structural heterogeneity across the module types and layers, we further introduce a
module-aware MoE decoder Dθ that can use either a single shared expert pool for all locations
or separate pools per module type (e.g., encoder attention). The notation below treats E as the
number of experts in the active pool used by the current location.

6
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Inputs and routing. For each location (m, ℓ), we form a structural embedding hm,ℓ =
[ zm,ℓ; em; eℓ ] ∈ Rdh , where zm,ℓ ∈ Rdz is the latent variable, em ∈ Rdm and eℓ ∈ Rdℓ are
learnable module and layer embeddings. A router with parameters Wr ∈ RE×dh outputs logits
ℓm,ℓ = Wrhm,ℓ ∈ RE and applies top-K gating:

g(m,ℓ),e =
exp(ℓm,ℓ,e/τ)∑

e′∈Sm,ℓ
exp(ℓm,ℓ,e′/τ)

I[ e ∈ Sm,ℓ ], (5)

where τ > 0 is the temperature, Sm,ℓ ⊂ {1, . . . , E} is the index set of the top-K experts by logit
value, and I[·] is the indicator function (equal to 1 if its argument is true and 0 otherwise).

Experts and per-module heads. Each expert Ee is a small MLP. The gated output feeds a per-
module head Hm:

∆̂Wm,ℓ = Hm(
∑

e∈Sm,ℓ

g(m,ℓ),e Ee(hm,ℓ)), (6)

Note that Hm is a linear map into a vector followed by a reshape to the full LoRA parameters
∆̂Wm,ℓ ∈ Rdout(m,ℓ)×din(m,ℓ). And its parameters are shared across all layers ℓ for the same
module m.

Load-balancing auxiliary loss. To discourage expert collapse we introduce a load-balancing aux-
iliary loss:

Lmoe = max
(
E
∑E

e=1 p̄e f̄e − 1, 0
)
, (7)

where p̄e is the average gating probability, and f̄e is the expected fractional load under top-K rout-
ing. The details implementation of Lmoe is reported at the Appendix A.11.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. In our main experiments, we consider two settings. First, we employ FLAN-T5-large
(Chung et al., 2024), as the base model. We utilize a subset of FLAN following (Lv et al., 2024)
for training and evaluation. Second, we use Gemma-2-2b-Instruct (Team et al., 2024) as the
base model and evaluate on 8 widely used benchmark tasks, including Arc-challenge (ArcC) and
Arc-easy (ArcE) (Clark et al., 2018), BoolQ (Clark et al., 2019), GSM8K (Cobbe et al., 2021),
Hellaswag (HS) (Zellers et al., 2019), OpenBookQA (OQA) (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), and Winogrande (WG) (Sakaguchi et al., 2021). More details about the datasets are
reported in the Appendix. For both settings, we extract task embeddings from natural language
task descriptions using the FLAN-T5-large encoder. Task descriptions for each dataset are fully
generated by LLM, as described in the Appendix A.10. For each dataset, We sample and report the
average performance of 3 set of LoRA weights sampled with LoRAGen.

Baseline Setup. As baselines, we consider task-specific LoRAs, weight-averaged LoRA (Wortsman
et al., 2022). We compare D2NWG (Soro et al., 2024), which is a latent diffusion conditioned
on datasets for LoRAs generation. We also implement T2L (Charakorn et al., 2025b), which is
a hypernetwork that generates LoRAs based on natural language task embedding. Reproduction
details are provided in the Appendix A.11.

5.2 PERFORMANCE COMPARISON

In-distribution LoRA Generation Performance. First, we focus on whether LoRAGen can re-
cover the performance of trained LoRAs (Charakorn et al., 2025c; Brüel-Gabrielsson et al., 2024),
which enables low-rank adaptation with minimal compute requirements. Table 1 reports results on
seven FLAN tasks using natural–language task embeddings from the FLAN-T5-Large encoder.
LoRAGen closely matches the oracle adapters and outperforms D2NWG and T2L on average perfor-
mance . We think that the gain comes from the design of MoE decoder to capture the heterogeneity
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Method AP-Neg AP-Rec AP-Pos QASC-1 QASC-2 WQA-T WQA-A Avg. (acc)

FLAN-T5-Large 49.4 70.7 34.8 23.3 8.9 8.5 62.0 36.8

Average LoRA 96.8 96.5 96.9 99.4 87.3 96.7 97.0 95.8
D2NWG 59.5 87.3 65.9 47.0 31.1 33.4 84.8 58.4
T2L 90.5 94.1 92.7 87.9 76.8 85.5 93.3 88.7

Ours 96.8 96.6 97.1 99.5 87.3 97.1 97.3 96.0

Task-specific LoRAs 97.2 97.0 97.8 99.7 87.3 97.0 97.3 96.2

Table 1: Benchmark performance of LoRAGen on FLAN subset (FLAN-T5-Large backbone).
Bold numbers are used when the performance is higher than the task-specific LoRAs.

Method ArcC ArcE BQ GSM8K HS OQA PIQA WG Avg. (acc)

Gemma-2-2B-Instruct 74.0 89.9 81.0 55.9 55.1 71.2 71.2 51.8 68.8

Average LoRA 75.6 90.1 81.4 56.1 56.5 73.8 72.8 53.9 70.0
D2NWG 74.1 90.0 81.2 56.0 55.1 71.3 71.3 52.0 68.9
T2L 74.3 90.2 81.2 55.9 55.2 71.4 71.5 53.8 69.2

Ours 76.6 90.7 84.1 56.4 64.1 80.2 75.0 54.2 72.7

Task-specific LoRAs 76.7 90.6 84.7 55.9 75.4 80.2 78.0 54.6 74.5

Table 2: Benchmark performance of LoRAGen on 8 benchmark tasks (Gemma-2-2B-Instruct
backbone). Bold numbers are used when the performance is higher than the task-specific LoRAs.

of weight distributions across different module types and layers within the structure-aware LoRA
weight space.

Moreover, we train a separate LoRAGen model for a decoder-only base model
(Gemma-2-2B-Instruct) to assess whether the same structure-aware design generalizes
across architectures. As shown in Table 2, LoRAGen remains competitive or superior to several
baselines and is close to task-specific LoRAs on average performance, indicating that our approach
scales from T5-based adapters to decoder-only adapters. In several tasks, such as ArcE, GSM8K and
OQA, our method even matches or surpasses task-specific adapters, suggesting that adapter-level
supervision captures task-relevant structure rather than memorizing particular LoRA parameters.

LoRA Generation for unseen tasks. Furthermore, we explore whether LoRAGen can generate
LoRA parameters for unseen tasks. We train LoRAGen on 136 tasks of FLAN subset, each with
20 task descriptions. For each task we sample three sets of LoRA weights and report the average
accuracy. As shown in Table 3, LoRAGen achieves the best average accuracy 40.2, outperforming
D2NWG and T2L by +5.2 and +5.0 points, respectively. We observe that D2NWG and T2L recon-
structs pre-trained adapters and struggles to generalize to unseen tasks. This phenomenon is align
with non-uniqueness of the low-rank decomposition, which indicates that if we supervise the low-
rank decomposition matrices directly, training becomes sensitive to arbitrary rescalings and rotations
that still yield the same full adaptation matrix, trending to memorize task-specific LoRA parameters.
Instead of this, our method supervise the full adaptation matrix directly to avoid this ambiguity and
focus on learn task-relevant weight space learning, resulting in better performance to unseen tasks.
Details on computational cost and efficiency are reported in the Appendix A.4.

5.3 ABLATION STUDY

In this section, we ablate the adapter-level supervision and the module-aware MoE decoder on the
seven FLAN tasks (Table 4). Training with the two adapter-level losses Lang and Lspec but with-
out the decoder Dθ achieves an average accuracy of 58.4. In contrast, enabling the decoder while
removing both adapter-level losses and using only the reconstruction loss results in a significant
improvement to an average accuracy of 95.2. This improvement is consistent with Obs. 2: the
module-aware routing and per-module heads in Dθ effectively capture the heterogeneity in weight
distributions across modules and layers, which substantially improves downstream performance.
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Method AP-Rec AP-Pos QASC-1 QASC-2 WQA-T WQA-A Avg. (acc)

FLAN-T5-Large 70.7 34.8 23.3 8.9 8.5 62.0 34.7

D2NWG 71.8 34.4 23.7 9.1 8.3 62.4 35.0
T2L 71.6 34.6 23.3 11.1 8.5 62.0 35.2
Ours 75.1 42.2 28.1 14.5 14.3 67.2 40.2

Table 3: Zero-shot generation performance of LoRAGen trained on the FLAN subset with
FLAN-T5-Large as the base model. Bold numbers are used to represent the best performance.

Lang Lspec Dθ AP-Neg AP-Rec AP-Pos QASC-1 QASC-2 WQA-T WQA-A Avg. (acc)

✓ ✓ ✗ 59.5 87.3 65.9 47.1 31.2 33.4 84.9 58.4
✗ ✗ ✓ 96.8 95.5 97.0 98.2 86.3 95.6 96.7 95.2
✗ ✓ ✓ 49.5 70.9 34.4 23.3 9.1 8.4 62.7 36.9
✓ ✓ ✓ 96.8 96.6 97.1 99.5 87.3 97.1 97.3 96.0

Table 4: Ablation study on FLAN subset. Checkmarks indicate enabled components: direction loss
Lang, spectral loss Lspec, and module-aware MoE decoder Dθ. Bold numbers are used to represent
the best performance.

A counter-intuitive result occurs when Dθ is combined with the spectral loss but the direction loss
is omitted: the average accuracy drops to 36.9. In this case, Lspec only enforces alignment of the
magnitudes of the top-k singular values, without constraining the corresponding directions of the
left and right singular vectors. As a result, the decoder can match the singular-value magnitudes
correctly, but assign them to the wrong directions, which leads to an incorrect weight-space learning
and consequently poor task performance. In the zero-shot setting reported in Appendix A.2, Table 5,
the same combination yields a much larger gain of +3.6 points in average accuracy (from 36.6 to
40.2), again with the largest improvements on QASC-1, QASC-2, and WQA-T, confirming that
adapter-level supervision is particularly important for generalization to unseen tasks.

5.4 DETAILED ANALYSIS

Hyperparameter Analysis. We first analyze the effect of the spectral–energy threshold ρ in the
spectral loss (Figure 8(a) in Appendix A.6). We conduct this experiment under the same setting as
Table 1 Across all tasks, accuracies remain stable as ρ varies from 0.80 to 1.00, with only minor
fluctuations. This shows that the adapter-level supervision is robust to the choice of ρ, since the
leading singular values already capture sufficient spectral information. In practice, we set ρ = 0.85
as it provides a better performance while maintaining stability.

We then examine the hyperparameters of the MoE decoder (Figure 8(b)in Appendix A.6). Here we
compare shared vs. unshared expert pools, different top-K routing choices, and the number of ex-
perts. The results indicate that unshared pools consistently outperform shared ones, and increasing
the number of active experts (top-2 vs. top-1) further improves performance, especially on challeng-
ing multi-choice and QA tasks. The best configuration is unshared, top-1, E = 4, which strikes a
balance between accuracy and computational efficiency.

Structural Embedding Analysis. In this section, we assess the contribution of the structural em-
bedding in the MoE decoder (Figure 8(c) in Appendix A.6). We compare three variants: (i) without
structural embedding (routing only on latent variables), (ii) with structural embedding, and (iii)
an oracle trained with task-specific adapters. The results show that removing structural embeddings
substantially reduces accuracy, particularly on tasks requiring fine-grained reasoning such as QASC-
1/2. Adding structural embeddings closes most of the gap to the oracle, confirming that encoding
module-specific latent is critical for capturing the heterogeneous LoRA weight distributions.

6 CONCLUSION

We presented LoRAGen, a structure-aware approach to LoRA parameter generation grounded in
two empirical observations of the LoRA weight space: non-uniqueness of low-rank decompositions
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and module-wise heterogeneity of weight distributions. Motivated by these observations, we su-
pervise the full adaptation matrix using adapter-level direction and spectral losses, and decode with
a module-aware MoE whose routing leverages structural embeddings with shared or per-module
expert pools. Empirically, LoRAGen produces strong in-distribution adapters across architectures,
closely matching task-specific adapters on FLAN-T5-large and Gemma-2-2B-Instruct and
attains competitive zero-shot performance on unseen tasks from a large LoRA library. Ablation
studies show both adapter-level supervision and module-aware decoding are necessary, and sensitiv-
ity studies indicate robustness to the spectral-energy threshold and gains from unshared pools with
top-K routing.

ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. The research presented in this
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Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Gree-
newald, Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of
loRA adapters with little overhead, 2024. URL https://openreview.net/forum?id=
hHNVn4hFPk.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=0RDcd5Axok.

Yelong He, Shuang Zheng, Yi Tay, Jatin Gupta, Yichong Du, Vamsi Aribandi, Zhen Zhao, Yichong
Li, Zhiyu Chen, Donald Metzler, et al. Hyperprompt: Prompt-based task-conditioning of trans-
formers. In International Conference on Machine Learning, pp. 8678–8690. PMLR, 2022b.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
ICLR 2022, April 2022. URL https://www.microsoft.com/en-us/research/
publication/lora-low-rank-adaptation-of-large-language-models/.

Hamish Ivison and Matthew E. Peters. Hyperdecoders: Instance-specific decoders for multi-task
nlp. In Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 1715–1730,
2022. URL https://aclanthology.org/2022.findings-emnlp.124.

Hamish Ivison, Akshita Bhagia, Yizhong Wang, Hannaneh Hajishirzi, and Matthew E Peters. Hint:
Hypernetwork instruction tuning for efficient zero- and few-shot generalisation. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 11272–11288, 2023.

Zhihao Jin et al. Conditional lora parameter generation. arXiv preprint arXiv:2403.12345, 2024.

Marios Kofinas, Boris Knyazev, Yulun Zhang, Yiming Chen, Gertjan Burghouts, Efstratios Gavves,
Cees GM Snoek, and Dingwen Zhang. Graph neural networks for learning equivariant represen-
tations of neural networks. In International Conference on Learning Representations, 2024.

Zhiyuan Liang, Dongwen Tang, Yuhao Zhou, Xuanlei Zhao, Mingjia Shi, Wangbo Zhao, Zekai
Li, Peihao Wang, Konstantin Schürholt, Damian Borth, et al. Drag-and-drop llms: Zero-shot
prompt-to-weights. arXiv preprint arXiv:2506.16406, 2025.

Huanxuan Liao, Shizhu He, Yao Xu, Yuanzhe Zhang, Yanchao Hao, Shengping Liu, Kang Liu,
and Jun Zhao. From instance training to instruction learning: Task adapters generation from
instructions. Advances in Neural Information Processing Systems, 37:45552–45577, 2024.

Chuancheng Lv, Lei Li, Shitou Zhang, Gang Chen, Fanchao Qi, Ningyu Zhang, and Hai-Tao Zheng.
Hyperlora: Efficient cross-task generalization via constrained low-rank adapters generation. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 16376–16393,
2024.

11

https://openreview.net/forum?id=hHNVn4hFPk
https://openreview.net/forum?id=hHNVn4hFPk
https://openreview.net/forum?id=0RDcd5Axok
https://www.microsoft.com/en-us/research/publication/lora-low-rank-adaptation-of-large-language-models/
https://www.microsoft.com/en-us/research/publication/lora-low-rank-adaptation-of-large-language-models/
https://aclanthology.org/2022.findings-emnlp.124


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489, 2021.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Elia Nava, Shogo Kobayashi, Yufei Yin, Raffaello K Katzschmann, and Benjamin F Grewe. Meta-
learning via classifier(-free) diffusion guidance. arXiv preprint arXiv:2210.05639, 2022.

Juan-Gilberto Ortiz-Barajas, Helena Gomez-Adorno, and Thamar Solorio. Hyperloader: Integrating
hypernetwork-based lora and adapter layers into multi-task transformers for sequence labelling.
arXiv preprint arXiv:2407.01411, 2024.

Oleksiy Ostapenko, Zhan Su, Edoardo Ponti, Laurent Charlin, Nicolas Le Roux, Lucas Caccia,
and Alessandro Sordoni. Towards modular llms by building and reusing a library of loras. In
Proceedings of the 41st International Conference on Machine Learning (ICML), volume 235, pp.
38885–38904. PMLR, 2024.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Jason Phang, Yuning Mao, Pengcheng He, and Weizhu Chen. Hypertuning: Toward adapting large
language models without backpropagation. In International Conference on Machine Learning,
pp. 27854–27875. PMLR, 2023.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606–610. IEEE, 2007.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Simon Schug, Seijin Kobayashi, Yassir Akram, Joao Sacramento, and Razvan Pascanu. Attention as
a hypernetwork. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=V4K9h1qNxE.

Konstantin Schürholt, Mostafa Dehghani, Neil Houlsby, and Damian Borth. Hyper-representations:
Learning generative representations of neural network parameters. In International Conference
on Learning Representations (ICLR), 2021a. URL https://openreview.net/forum?
id=HCSgyPUfeDj.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Hyper-representations: Self-
supervised representation learning on neural network weights for model characteristic prediction.
2021b. URL https://api.semanticscholar.org/CorpusID:240070334.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learn-
ing on neural network weights for model characteristic prediction. Advances in Neural Informa-
tion Processing Systems, 34:16481–16493, 2021c.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
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Lang Lspec Dθ AP-Rec AP-Pos QASC-1 QASC-2 WQA-T WQA-A Avg. (acc)

✗ ✗ ✓ 72.7 35.9 24.5 10.4 10.2 65.9 36.6
✓ ✓ ✓ 75.1 42.2 28.1 14.5 14.3 67.2 40.2

Table 5: Zero-shot ablation study on the FLAN subset. Checkmarks indicate enabled components:
direction loss Lang, spectral loss Lspec, and module-aware MoE decoder Dθ. Bold numbers repre-
sent the best performance.

A APPENDIX

A.1 DETAILS FOR OBS-1

As shown in Figure 3, we provide more 9 representative tasks to compare with the remaining 111
tasks on the FLAN subset. These representative tasks are selected so that they cover the three
major task categories present in the FLAN subset: Natural Language Understanding (NLU, 98
tasks), Natural Language Generation (NLG, 9 tasks), and Knowledge & Information Extraction (5
tasks). Specifically, we include five NLU tasks (wikiqa tpqap, wikiqa jeop, fix punct,
true case, word segment), three NLG tasks (duorc tgen, duorc gqba, gem e2e nlg),
and two Knowledge & Information Extraction tasks (wiki bio what, wiki bio comp). This
ensures that the visualization reflects the diversity of the dataset rather than any specific task.

Concretely, for a representative task r and another task t, we define the task similarity as the cosine
similarity between their text-description embeddings e(r) and e(t):

stask(r, t) =
e(r)⊤e(t)

∥e(r)∥2 ∥e(t)∥2
. (8)

For adapter similarity, we consider two variants. Let ∆Wr and ∆Wt be the full adaptation matrices
for tasks r and t, and let Ar, Br and At, Bt be their corresponding low-rank factors. We compute

s∆W (r, t) =
⟨vec(∆Wr), vec(∆Wt)⟩∥∥vec(∆Wr)

∥∥
2

∥∥vec(∆Wt)
∥∥
2

, (9)

and

s(A,B)(r, t) =
⟨vr, vt⟩

∥vr∥2 ∥vt∥2
, vt =

[
vec(At)
vec(Bt)

]
. (10)

We then report the Spearman correlation coefficient ρ between {stask(r, t)} and each of {s∆W (r, t)}
and {s(A,B)(r, t)} over all t.

We found that the full adaptation matrix similarity shows a consistent positive correlation with task
description embedding similarity. This suggests that tasks with more semantically similar descrip-
tions tend to produce more similar LoRAs, highlighting the presence of structure in the LoRA weight
space. This observation also emphasizes the utility of the full adaptation space, as it allows us to
capture and exploit underlying similarities between tasks that may not be immediately apparent from
the low-rank decomposition matrices. By designing weight space loss based on this similarity, we
can better adapt models to generate new LoRA parameters.

A.2 ABLATION STUDY ON ZERO-SHOT GENERATION

We further examine how the adapter-level losses affect zero-shot generalization on the seven FLAN
tasks that are used in Table 1. As summarized in Table 5, enabling only the MoE decoder with a
reconstruction loss (i.e., using Dθ without Lang or Lspec) achieves an average zero-shot accuracy of
36.6. Adding both direction and spectral losses on top of the decoder increases the average accuracy
to 40.2 (+3.6 points), with particularly gains on QASC-1 (+3.6), QASC-2 (+4.1), and WQA-T
(+4.1). These tasks are among the most challenging reasoning benchmarks in our evaluation, so
the improvements provide direct evidence that adapter-level supervision is especially beneficial for
zero-shot generalization.
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Figure 3: Relation between LoRA similarity and task description embedding similarity. Each
panel shows the similarity between a representative task adapter and the other 111 adapters trained
on a FLAN subset y-axis in the weight space against their similarity in the task embeddings space
x-axis. LoRA cosine similarity is measured in two ways: (i) computing cosine on the low-rank
decomposition matrices A and B separately (blue dots); (ii) computing cosine on the full adaptation
matrix ∆W = AB (orange triangles). Legends report the Spearman correlation coefficient ρ.

A.3 WEIGHT DISTRIBUTION ANALYSIS

To further investigate the effect of the module-aware MoE decoder, we analyze the weight distribu-
tions of task-specific LoRAs and the adapters generated by LoRAGen on the same evaluation tasks
as in the main tables. For the encoder–decoder base model FLAN-T5-Large, we use the seven
FLAN tasks reported in Table 1. For the decoder-only base model Gemma-2-2B-Instruct, we
use the eight benchmark tasks reported in Table 2. In each case, we compare three variants: (i) task-
specific (oracle) LoRAs, (ii) LoRAGen (full model), and (iii) LoRAGen without the MoE decoder
(a single shared decoder).

Spectral entropy distribution analysis. For each adapter ∆Wm,ℓ we compute its spectral en-
tropy Hspec(∆Wm,ℓ). For FLAN-T5-Large, Figure 4 shows the distributions of Hspec grouped by
module type (Encoder, Decoder-Self, Cross-Attention) for the three variants above. Task-specific
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adapters exhibit clear heterogeneity: encoder modules have the highest spectral entropy, decoder
self-attention the lowest, and cross-attention lies in between. The adapters generated by the full
LoRAGen model faithfully capture this pattern, indicating that the MoE decoder has learned module-
specific spectral profiles. In contrast, removing the MoE decoder collapses the three module types
into almost identical high-entropy distributions, suggesting that a single shared decoder fails to cap-
ture the heterogeneous energy patterns across modules.

For Gemma-2-2B-Instruct, Figure 5 plots the spectral entropy distributions of decoder
adapters for oracle LoRAs, LoRAGen, and LoRAGen without MoE. Task-specific LoRAs concen-
trate around relatively high entropy values, and the full LoRAGen model shows a very similar,
slightly higher-entropy profile. In contrast, removing the MoE decoder shifts towards lower entropy
and yields a much broader distribution, indicating that the shared decoder fails to match the spectral
distribution of task-specific LoRAs.

Layer-wise cosine similarity analysis. Beyond spectral statistics, we also study the alignment
between generated and task-specific adapters. Figures 6 and 7 report, for each layer and mod-
ule type, the average cosine similarity between the generated adapter and the corresponding task-
specific adapter, averaged over the seven FLAN tasks in Table 1 and the eight benchmark tasks in
Table 2, respectively. With the full LoRAGen model, cosine similarities are consistently positive
for FLAN-T5-Large and Gemma-2-2B-Instruct, indicating that the experts capture mean-
ingful, layer-specific adaptation patterns. In contrast, the model without the MoE decoder yields
similarities that remain close to zero across almost all layers, showing that it fails to recover the
fine-grained per-layer structure even though it can still perform reasonable reconstruction on in-
distribution tasks. Thus, the spectral-entropy and cosine-similarity analyses confirm that the MoE
decoder learns to specialize to module types and their characteristic spectral patterns.

Task-specific  LoRAs Ours Ours (w.o MoE)

Figure 4: Spectral entropy distributions on FLAN-T5-Large. Each group of violins corresponds
to Encoder, Decoder-Self, and Cross-Attention modules, respectively, for task-specific LoRAs (left),
LoRAGen (middle), and LoRAGen without the MoE decoder (right).

A.4 EFFICIENCY OF ADAPTER-LEVEL SUPERVISION

A natural concern is that supervising adapters directly (i.e. losses defined on ∆W = AB⊤ ∈ Rd×d)
could be more expensive than reconstruction on A,B ∈ Rd×r. We clarify that our implementation
avoids any O(d2) complexity by using a quadratic form, and thus remains comparable in cost to
reconstruction loss.

Direction loss. The cosine similarity between two adapters can be computed efficiently as a
quadratic form:

⟨∆W1,∆W2⟩F = tr(A1B
⊤
1 B2A

⊤
2 ) = ⟨A1, (B

⊤
1 B2)A

⊤
2 ⟩F ,

with ∥∆W∥2F = tr(A⊤AB⊤B). This requires only d × r and r × r multiplications, yielding
complexity O(dr2) instead of O(d2). Hence the direction loss is no more expensive than element-
wise reconstruction.

Spectral loss. For the spectral loss, we never compute an SVD of the full d × d adapter. Instead,
we compute a reduced QR decomposition. This reduces the problem to an r × r core matrix K =
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Task-specific  LoRAs Ours Ours (w.o MoE)

Figure 5: Spectral entropy distributions on Gemma-2-2B-Instruct for Decoder-Self module.
Task-specific LoRAs (left), LoRAGen (middle), and LoRAGen without the MoE decoder (right).

Ours Ours (w.o MoE)

Figure 6: Layer-wise cosine similarity between generated and task-specific LoRA adapters on the
FLAN subset with FLAN-T5-Large as the base model. For each module type (rows) and layer
index (x-axis), we plot the average cosine similarity over 7 evaluation tasks. Left: LoRAGen (full
model); right: LoRAGen without the MoE decoder.

RAR
⊤
B , on which we perform SVD. The resulting complexity is O(dr2 + r3), avoiding any O(d2)

cost.

Complexity comparison. Table 6 reports the per-layer complexities. Both direction and spectral
losses are implemented in quadratic or QR decomposition form, avoiding explicit O(d2) cost. The
overhead relative to element-wise reconstruction loss is bounded by a factor of r, which is small in
practice.

A.5 COMPUTATIONAL COST AND RESOURCE USAGE

We will quantify the practical computational cost of LoRAGen and compare it with the baseline
T2L. All experiments for FLAN-T5-Large nad Gemma-2-2B-Instruct are run on a single
NVIDIA A40 GPU (40GB).

Training time. For the in-distribution experiments in Tables 1 and 2, Stage-1 training for T2L and
LoRAGen takes about 2 and 2.5 hours, respectively. For the zero-shot experiments in Table 3, the
total training time of both methods is less than one day on the same A40 GPU.
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Ours Ours (w.o MoE)

Figure 7: Layer-wise cosine similarity between generated and task-specific LoRA adapters on 8
benchmark tasks with Gemma-2-2B-Instruct as the base model. Left: LoRAGen (full model);
right: LoRAGen without the MoE decoder.

Loss term Per-layer complexity

A,B reconstruction O(dr)
Direction (quadratic) O(dr2)
Spectral (QR+SVD core) O(dr2 + r3)

Table 6: Per-layer complexity of different adapter-level supervision terms. Both direction and spec-
tral losses avoid explicit O(d2) cost.

Generator parameter counts. For FLAN-T5-Large, T2L and LoRAGen (Stage 1) have com-
parable generator sizes (50M vs. 53M), while LoRAGen already achieves better zero-shot perfor-
mance. For Gemma-2-2B-Instruct, we intentionally use a larger generator for LoRAGen
(69M) than for T2L (30M) so that the MoE decoder has enough capacity to generate all four types
of LoRA weights, namely qa, qb, va and vb. Notably, the activated parameters of LoRAGen are
15M and 22M per forward pass, respectively.

Memory usage. During LoRA weight autoencoder (LAE) training, enabling the module-aware
MoE decoder introduces about 1000 MiB of additional GPU memory, and the adapter-level losses
introduce about 300 MiB. In practice, the complete LoRAGen training requires roughly 2500 MiB
of extra memory for these components.

A.6 ADDITIONAL RESULTS ON HYPERPARAMETERS AND STRUCTURAL EMBEDDING

The results on hyperparameters and structural embedding analysis are shown in Figure 8.

Figure 8: Performance of LoRAGen with different hyperparameters and removing structural em-
bedding. Here, for the middle figure, s / uns denote shared or unshared MoE experts; t1 / t2 denote
top-1 or top-2 routing strategies; e4 / e8 denote using 4 or 8 experts.
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Table 7: Stage 1: LoRA autoencoder configuration for FLAN-T5-Large.
Item Configuration
Backbone FLAN-T5-Large (encoder–decoder)
Encoder hidden size dmodel = 1024
LoRA rank r = 16
Latent dimension dz = 64 (per module)
Encoder MLP hidden size 128
Decoder type Module-aware MoE, 3 heads (enc, dec-self, cross)
Experts per head E = 4
Active experts top-K = 1 per location
Expert pools Separate pool per module type (no sharing)
Expert MLP input 2dz = 128 (latent + structural embedding)
Expert MLP hidden size 256 (SiLU activation)
Expert MLP output size r · dmodel = 16,384
Gating Softmax, temperature τ = 1.5
MoE aux loss Load-balancing, weight 10−5

Encoder params ≈ 2.1M
Decoder (MoE) params ≈ 50.9M
Total generator params ≈ 53M (≈ 7% of backbone)

Table 8: Stage 1: LoRA autoencoder configuration for Gemma-2-2B-Instruct.
Item Configuration
Backbone Gemma-2-2B-Instruct (decoder-only)
Encoder hidden size dmodel = 2304
LoRA rank r = 8
Latent dimension dz = 64 (per module)
Encoder MLP hidden size 128
Decoder type 4-head MoE for qa, qb, va, vb
qa output size r × din = 8× 2304 = 18,432
qb output size dq,out × r = 2048× 8 = 16,384
va output size 18,432
vb output size dv,out × r = 1024× 8 = 8192
Experts per head E = 4
Active experts top-K = 1 per location
Expert pools Separate pool per head
Expert MLP input 2dz = 128
Expert MLP hidden size 256 (SiLU activation)
Expert MLP output Matching head-specific output sizes above
Encoder params ≈ 5.6M
Decoder (MoE) params ≈ 63.7M
Total generator params ≈ 69.3M (≈ 3–4% of backbone)

A.7 END-TO-END INFERENCE LATENCY WITH GENERATED ADAPTERS

Once a LoRA is generated, we simply load the weights into the base model; at inference time the
runtime is the same as for any standard LoRA fine-tuned model. On an NVIDIA H800, measuring
real evaluation runs, we observe the end-to-end latencies per forward pass shown in Table 11.

The small differences are within standard runtime variability; there is no additional per-token over-
head induced by LoRAGen itself. All extra cost is incurred once per task when sampling a LoRA
adapter set, as discussed in Appendix A.4.

A.8 SCALABILITY ANALYSIS
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Table 9: Stage 1: losses and training schedule for both backbones.
Item Configuration
Adapter-level losses Direction loss Ldir and spectral loss Lspec on ∆W
Loss weights 1.0 for Ldir, 2.0 for Lspec
Optimizer AdamW
Learning rate 1.115× 10−3

Gradient accumulation Factor 8
Max epochs 1000
Complexity details See Appendix A.4

Table 10: Stage 2: latent diffusion over adapter latents.
Item Configuration
Latent sequence length (FLAN-T5) L = 288 (one token per LoRA location)
Latent sequence length (Gemma-2-2B) L = 96 (one token per LoRA location)
Denoiser architecture 1D Transformer
Denoiser layers 4
Model dimension 256
Input/output dimension dz = 64
Conditioning Task embedding + module/layer embeddings
Diffusion steps T = 500
Noise schedule Linear β schedule
Objective v-prediction with ℓ2 loss
Optimizer AdamW
Learning rate 8× 10−5

Batch size 32
Training steps 100k

In this section, we evaluate the scalability of LoRAGen with respect to both the number of LoRA
locations and the LoRA rank. In the experiments, we define the total generation latency as the
combined time taken for three parts: (1) Encoding (Enc.): The time taken to encode the input task
description and map it to the latent space. (2) Diffusion (Diff.): The time taken to perform diffusion
sampling over the latent space. (3) Decoding (Dec.): The time taken to decode the latent vector
back into the LoRA parameters.

Scaling with the number of locations. We evaluate the performance of LoRAGen as the number
of LoRA locations increases. We performed scaling tests on Gemma-2-2B (rank r = 8, T = 500
diffusion steps), varying the number of LoRA locations L across values 24, 48, 72, 96 and measured
the total latency.

From these results presented in Table 12, we observe that the total latency remains low even as
the number of LoRA locations increases. Even for the configuration with 96 locations, the total
latency stays below 0.6 seconds, which is negligible compared to training a task-specific LoRA
from scratch. The performance remains stable with negligible fluctuations in accuracy across
different L values, further confirming the efficiency of LoRAGen in scaling with the number of
locations.

Scaling with LoRA ranks. We evaluate the scaling of LoRAGen with respect to LoRA rank r.
We keep the latent dimension fixed at dz = 64 and reuse the same decoder/denoiser widths. The
scaling experiment was conducted on the Gemma-2-2Bmodel with L = 96 locations and T = 500
diffusion steps for rank r ∈ {8, 16, 32}.
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Table 11: End-to-end latency per forward pass with oracle vs. LoRAGen-generated LoRA adapters
on an NVIDIA H800.

Base model & adapter Task Mean latency (ms)
FLAN-T5-Large, r = 16, oracle LoRA AP-Rec 42.10

FLAN-T5-Large, r = 16, LoRAGen LoRA AP-Rec 40.33
Gemma-2-2B, r = 8, oracle LoRA GSM8K 206.55

Gemma-2-2B, r = 8, LoRAGen LoRA GSM8K 130.85

Table 12: Latency and accuracy scaling with LoRA locations. Avg. Acc. (%) reports the average
accuracy on benchmark tasks as in Table 2.

LoRA locations L Enc. / Diff. / Dec. latency (ms) Total gen. latency (ms) Avg. Acc. (%)

24 0.25 / 563.6 / 5.2 569.0 72.5
48 0.25 / 566.9 / 5.5 572.6 72.4
72 0.40 / 562.7 / 5.6 568.7 72.6
96 0.40 / 569.6 / 5.7 575.7 72.7

As shown in Table 13, the total generation latency remains stable even as the LoRA rank in-
creases. The MoE decoder structure remains unchanged, with only the final linear projections
scaling with r. The average accuracy shows negligible fluctuations, indicating that increasing the
LoRA rank does not introduce significant performance degradation. These results suggest that our
design is sufficiently flexible to handle larger ranks without requiring a redesign of the architecture.

In summary, the total generation latency remains low even as we increase the number of LoRA lo-
cations, and LoRA rank scaling does not necessitate any architectural changes. The small changes
in latency are well within acceptable limits and do not hinder the performance of the model. These
findings demonstrate the scalability and efficiency of LoRAGen in real-world applications.

A.9 TRAINING AND EVALUATION DATASETS FOR ZERO-SHOT GENERATION

As shown in Figure 9 and Figure 10, we conduct zero-shot generation experiment on 136 training
tasks and 7 evaluating tasks from FLAN subset. These evaluated tasks are seperate from the training
datasets.

A.10 TASK DESCRIPTIONS GENERATED BY A LARGE LANGUAGE MODEL

We automate task description generation for each task by leveraging Deepseek1. We query its model
with carefully constructed prompts that incentivize diversity to facilitate downstream generalization
as shown in Figure 11. In particular, we generate 20 descriptions per task. Figure 12 presents
representative examples of task descriptions employed in our experiments.

A.11 DETAILS OF EXPERIMENT SETUP

More details about the diffusion architecture, baseline settings hyperparameter settings, training
details and implementation of weight space loss and module-aware MoE decoder can be found in
the anonymous repository https://anonymous.4open.science/r/LoRAGen-02C0.

A.12 LLM USAGE

We utilized ChatGPT-4o 2 to refine the content based on our original writing. All revised text
was subsequently reviewed and verified by us. The natural language task descriptions we used are
generated by DeepSeek 3. All code has undergone comprehensive testing to ensure its reliability.

1https://www.deepseek.com
2https://chatgpt.com
3https://www.deepseek.com
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Table 13: Latency and accuracy scaling with LoRA rank. Avg. Acc. (%) reports the average
accuracy on benchmark tasks as in Table 2.

Rank r Enc. / Diff. / Dec. (ms) Total gen. latency (ms) Avg. Acc. (%)

8 0.40 / 573.5 / 5.7 579.6 72.7
16 0.49 / 567.5 / 6.2 574.2 72.8
32 0.64 / 575.6 / 6.5 582.7 72.7
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  "lorahub_flan_t5_large-race_middle_Taking_a_test",

  "lorahub_flan_t5_large-dream_baseline",

  "lorahub_flan_t5_large-sciq_Multiple_Choice_Closed_Book_",

  "lorahub_flan_t5_large-quoref_Guess_Answer",

  "lorahub_flan_t5_large-ropes_plain_no_background",

  "lorahub_flan_t5_large-wiki_qa_found_on_google",

  "lorahub_flan_t5_large-quail_context_question_description_answer_id",

  "lorahub_flan_t5_large-wiki_hop_original_generate_subject_and_object",

  "lorahub_flan_t5_large-duorc_ParaphraseRC_answer_question",

  "lorahub_flan_t5_large-quail_context_description_question_answer_text",

  "lorahub_flan_t5_large-race_middle_Select_the_best_answer_generate_span_",

  "lorahub_flan_t5_large-social_i_qa_Show_choices_and_generate_answer",

  "lorahub_flan_t5_large-quoref_Context_Contains_Answer",

  "lorahub_flan_t5_large-quartz_read_passage_below_choose",

  "lorahub_flan_t5_large-ropes_background_situation_middle",

  "lorahub_flan_t5_large-wiqa_effect_with_string_answer",

  "lorahub_flan_t5_large-duorc_ParaphraseRC_decide_worth_it",

  "lorahub_flan_t5_large-wiki_qa_Topic_Prediction_Question_and_Answer_Pair",

  "lorahub_flan_t5_large-wiki_qa_Topic_Prediction_Question_Only",

  "lorahub_flan_t5_large-duorc_SelfRC_title_generation",

  "lorahub_flan_t5_large-quail_context_question_description_answer_text",

  "lorahub_flan_t5_large-race_high_Write_a_multi_choice_question_options_given_",

  "lorahub_flan_t5_large-quoref_Given_Context_Answer_Question",

  "lorahub_flan_t5_large-quail_no_prompt_text",

  "lorahub_flan_t5_large-wiki_qa_Jeopardy_style",

  "lorahub_flan_t5_large-wiqa_does_the_supposed_perturbation_have_an_effect",

  "lorahub_flan_t5_large-ropes_plain_background_situation",

   "lorahub_flan_t5_large-wiki_hop_original_generate_object",

  "lorahub_flan_t5_large-kilt_tasks_hotpotqa_complex_question",

  "lorahub_flan_t5_large-kilt_tasks_hotpotqa_final_exam",

  "lorahub_flan_t5_large-wiqa_what_is_the_final_step_of_the_following_process",

  "lorahub_flan_t5_large-ropes_prompt_bottom_hint_beginning",

  "lorahub_flan_t5_large-race_middle_Select_the_best_answer",

  "lorahub_flan_t5_large-quail_description_context_question_answer_text",

  "lorahub_flan_t5_large-social_i_qa_Check_if_a_random_answer_is_valid_or_not",

  "lorahub_flan_t5_large-ropes_prompt_mix",

  "lorahub_flan_t5_large-ropes_given_background_situation",

  "lorahub_flan_t5_large-sciq_Multiple_Choice_Question_First",

  "lorahub_flan_t5_large-wiki_hop_original_choose_best_object_affirmative_1",

  "lorahub_flan_t5_large-race_middle_Select_the_best_answer_no_instructions_",

  "lorahub_flan_t5_large-quoref_Answer_Friend_Question",

  "lorahub_flan_t5_large-wiki_hop_original_explain_relation",   

    "lorahub_flan_t5_large-duorc_SelfRC_question_answering",

  "lorahub_flan_t5_large-ropes_prompt_beginning",

  "lorahub_flan_t5_large-sciq_Direct_Question_Closed_Book_",

  "lorahub_flan_t5_large-race_high_Taking_a_test",

  "lorahub_flan_t5_large-quoref_Find_Answer",

  "lorahub_flan_t5_large-duorc_ParaphraseRC_extract_answer",

  "lorahub_flan_t5_large-wiki_qa_Decide_good_answer",

  "lorahub_flan_t5_large-duorc_ParaphraseRC_title_generation",

  "lorahub_flan_t5_large-quoref_Found_Context_Online",

  "lorahub_flan_t5_large-sciq_Direct_Question",

  "lorahub_flan_t5_large-wiki_hop_original_choose_best_object_interrogative_2",

  "lorahub_flan_t5_large-wiki_qa_exercise",

  "lorahub_flan_t5_large-ropes_background_new_situation_answer",

  "lorahub_flan_t5_large-wiki_hop_original_choose_best_object_affirmative_3",

  "lorahub_flan_t5_large-quartz_having_read_above_passage",

  "lorahub_flan_t5_large-ropes_prompt_bottom_no_hint",

  "lorahub_flan_t5_large-quail_context_question_answer_description_text",

  "lorahub_flan_t5_large-social_i_qa_Generate_the_question_from_the_answer",

  "lorahub_flan_t5_large-duorc_SelfRC_decide_worth_it",

  "lorahub_flan_t5_large-quartz_use_info_from_paragraph_question",

  "lorahub_flan_t5_large-quail_no_prompt_id",

  "lorahub_flan_t5_large-quoref_Read_And_Extract_",

  "lorahub_flan_t5_large-race_high_Is_this_the_right_answer",

  "lorahub_flan_t5_large-quail_context_question_answer_description_id",

  "lorahub_flan_t5_large-wiqa_effect_with_label_answer",

  "lorahub_flan_t5_large-web_questions_potential_correct_answer",

  "lorahub_flan_t5_large-race_middle_Write_a_multi_choice_question_options_given_",

  "lorahub_flan_t5_large-wiqa_which_of_the_following_is_the_supposed_perturbation",

  "lorahub_flan_t5_large-duorc_SelfRC_movie_director",

  "lorahub_flan_t5_large-wiki_qa_Topic_Prediction_Answer_Only",

  "lorahub_flan_t5_large-wiqa_what_might_be_the_last_step_of_the_process",

  "lorahub_flan_t5_large-wiqa_what_is_the_missing_first_step",

  "lorahub_flan_t5_large-wiki_hop_original_choose_best_object_affirmative_2",

  "lorahub_flan_t5_large-duorc_ParaphraseRC_movie_director",

  "lorahub_flan_t5_large-duorc_SelfRC_answer_question",

  "lorahub_flan_t5_large-wiki_hop_original_generate_subject",

  "lorahub_flan_t5_large-quail_description_context_question_answer_id",

  "lorahub_flan_t5_large-sciq_Multiple_Choice",

  "lorahub_flan_t5_large-quoref_What_Is_The_Answer",

  "lorahub_flan_t5_large-social_i_qa_Show_choices_and_generate_index",

  "lorahub_flan_t5_large-quoref_Answer_Question_Given_Context",

  "lorahub_flan_t5_large-ropes_read_background_situation",

  "lorahub_flan_t5_large-duorc_SelfRC_extract_answer",

  "lorahub_flan_t5_large-race_high_Select_the_best_answer",

  "lorahub_flan_t5_large-para_crawl_enes",

  "lorahub_flan_t5_large-newsroom",

  "lorahub_flan_t5_large-gem_web_nlg_en",

  "lorahub_flan_t5_large-paws_wiki",

  "lorahub_flan_t5_large-quarel_testing_students",

  "lorahub_flan_t5_large-quarel_logic_test",

  "lorahub_flan_t5_large-quarel_choose_between",

  "lorahub_flan_t5_large-quarel_do_not_use",

  "lorahub_flan_t5_large-quarel_heres_a_story"

Training Tasks

Figure 9: Training tasks from FLAN dataset used for training the LoRAGen model
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Validation Tasks

    "lorahub_flan_t5_large-amazon_polarity_User_recommend_this_product",

  "lorahub_flan_t5_large-amazon_polarity_Is_this_product_review_positive",

  "lorahub_flan_t5_large-qasc_is_correct_1",

  "lorahub_flan_t5_large-qasc_is_correct_2",

  "lorahub_flan_t5_large-wiki_qa_Is_This_True_",

  "lorahub_flan_t5_large-wiki_qa_automatic_system"

Figure 10: Validation tasks used during the training the LoRAGen model
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Prompt
## Objective
For every LoRA adapter directory, construct a clean list of task descriptions and turn them into a single sentence-level 
embedding.  
The generator reads curated descriptions from YAML, applies light normalization, matches them by name, and averages T5 
sentence embeddings.

## Inputs
- **--yaml_root**: directory with one subfolder per task; each contains `metadata.yaml` with a descriptions list.  
- **--logs_root**: Stage-1 checkpoint tree (used to load the VAE encoder for latents; text generation is file-driven).
## Options
- **--strip_generic**: remove leading boilerplate like “The task is / involves / requires …”.  
- **--text_pooling {mean, first}**: sentence pooling for T5 (mean is mask-aware and default).

## Procedure
1. **Scan YAML repository**  
   For each subfolder under `yaml_root`, load `metadata.yaml` and read descriptions. Skip if missing.
2. **Optional light normalization**  
   If `--strip_generic`, strip only the leading boilerplate using a regex and keep the substantive remainder.
3. **Build multi-key alias map**  
   Register the cleaned descriptions under:  
   - `<entry>`  
   - `lorahub_flan_t5_large-<entry>`  
   - `lorahub_flan_t5_large_<entry>`
4. **Iterate LoRA adapters**  
   For each `…/flan_t5_large_lora/<task_key>/adapter_model.bin`, resolve descriptions by probing name variants (prefix 
removal and `-`/`_` swaps).  
   - **Fallback**: if no hit, use `[task_key]` as the only description and log the miss.
5. **Encode with T5**  
   - Tokenize each description, run `T5EncoderModel`.  
   - Pool to a sentence vector via:  
     - mean pooling (default), or  
     - first token pooling.  
   - Average across all descriptions → one 1024-d text embedding per task.
6. **Normalize save key**  
   Drop `lorahub_flan_t5_large-/_` prefix to form the canonical task name and save:  
   ```json
   {
     "task_name": "<canonical_name>",
     "text_embedding": "<1024-d tensor>",
     "latent": "<288 x latent_dim tensor>"
   }
## Output
One PyTorch file per experiment, e.g.:  
 e_000996_with_task_name_vae_task_172_latent_288_64_embed_1024.pt
Mapping canonical task names to averaged text embeddings (plus latents produced in the same pass).

Figure 11: The prompt template used by our pipeline for task descriptions.
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Task descriptions

adversarial_qa_dbert_answer_the_followi

• The task involves reading a passage and answering a question based on the information provided in the text.

• The task requires identifying specific details from a given passage to answer a question.

• The task is about locating exact information within a text to respond to a direct question.

adversarial_qa_dbidaf_answer_the_following_q

• The task is to locate the answer to a question within a provided passage.

• The task requires finding the exact words or phrases in a passage that answer a question.

• The task is about answering questions by referring to specific details in a text.

adversarial_qa_droberta_question_context_answer

• The task requires matching questions with relevant facts from the given context.

• The task is about locating key details in a text to answer a direct question.

• The task involves reasoning about a passage to derive the correct answer.

adversarial_qa_dbert_based_on

• The task involves finding specific information in a given text to answer a direct question.

• The task requires identifying key details from a passage that directly respond to a question.

• The task is about locating exact answers within a provided context based on a question.

Figure 12: Examples of task descriptions generated by our pipeline.

25


	Introduction
	Related Work
	Preliminaries
	The Proposed Method: LoRAGen
	Design Principles from Empirical Observations
	Method Overview
	Adapter-level Supervision in LoRA Weight Space
	Module-Aware MoE Decoder

	Experiments
	Experimental Setup
	Performance Comparison
	Ablation Study
	Detailed Analysis

	Conclusion
	Appendix
	Details for Obs-1
	Ablation Study on Zero-shot Generation
	Weight Distribution Analysis
	Efficiency of Adapter-level Supervision
	Computational Cost and Resource Usage
	Additional Results on Hyperparameters and Structural Embedding
	End-to-end inference latency with generated adapters
	Scalability Analysis
	Training and Evaluation Datasets for zero-shot generation
	Task Descriptions generated by a Large Language Model
	Details of Experiment Setup
	LLM Usage


