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Abstract
Ride-hailing services offer convenient travel options in urban trans-

portation. To improve passengers’ experience and platforms’ rev-

enue, plentiful studies usemulti-agent reinforcement learning (MARL)

for efficient order dispatching, controlling each grid with one agent

to balance the supply-demand (drivers-orders) distribution. How-

ever, despite the critical role of cooperation among grids for ef-

ficient dispatching strategies, existing works neglect it or limit

it within neighboring grids. There exist three key challenges in

scaling the cooperation to the whole city: (1) cooperative strate-

gies cause complex interactions among grids, making the grids’

states coupled and complicating the information extraction from

the states for decision-making; (2) cooperation among grids re-

quires both within- and cross-grid dispatching, where the priorities

of these two types of actions are difficult to balance; (3) the value

of cooperation is not only heterogeneous over different pairs of

grids, but also varies temporally, adding difficulty to dynamically

determine the intensities of cooperation for each pair of grids and

obtain the global cooperation rewards. In this paper, we propose

the CoopRide framework to solve the above challenges. We model

the interactions among agents with graphs and utilize graph neural

network (GNN) for efficient information extraction. We uniformly

encode both within- and cross-grid dispatching, enabling flexible

choice of both types of actions in the embedding space. We also
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design to automatically learn the cooperation intensities among

grids, thereby obtaining the cooperative rewards to drive the learn-

ing of global cooperation actions. We conduct experiments in three

real-world datasets with millions of orders, and extensive results

demonstrate the superior performance of CoopRide, outperforming

the state-of-the-art baselines by up to 12.4%. Our source codes are

available at https://github.com/tsinghua-fib-lab/CoopRide.

CCS Concepts
• Computing methodologies→Multi-agent planning; Multi-
agent reinforcement learning; • Applied computing→ Trans-
portation.

Keywords
Multi-agent reinforcement learning, ride-hailing dispatching, coop-

erative decision-making
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1 Introduction
Ride-hailing platforms, e.g., Uber, Lyft, and Didi, have revolution-

ized urban transportation and created enormous commercial value

by providing flexible, convenient, and personalized travel options

for passengers [34]. The ride-hailing platforms involve a large num-

ber of drivers (supply) and orders (demand), which tend to exhibit

an unbalanced spatial distribution [27]. Plentiful of works have

been conducted to find appropriate and efficient dispatching strate-

gies, i.e., matching the drivers with orders, through rule-based
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Figure 1: Comparison among ride-hailing dispatching methods with different cooperation strategies among grids. (a) No
cooperation. Drivers are only dispatched to orders within the same grids. (b) Local cooperation. Drivers can be dispatched to
orders within neighboring grids. (c) Global cooperation (proposed CoopRide). Drivers can be dispatched to orders within the
whole city, satisfying passengers’ demands.

approaches [9, 12, 23], which are beneficial in balancing the sup-

ply and demand, thereby maximizing passengers’ satisfaction and

increasing platforms’ revenue [16]. On the other hand, recent ad-

vancements in reinforcement learning (RL) inspire researchers to

model ride-hailing dispatching as a sequential decision problem

and solve it within the framework of Markov decision process

(MDP) [6, 7, 10, 13, 15, 24, 32, 39], enhancing the strategies’ per-

formance. In a number of RL works, researchers divide the city

into hexagonal grids and control the dispatching in each grid with

one agent, following multi-agent reinforcement learning (MARL)

framework. However, due to the spatial heterogeneity and temporal

variation in supply-demand distribution across the grids and the

great complexity of city-scale mobility, finding efficient dispatch-

ing strategies for satisfying the on-demand needs of ride-hailing

platforms remains a challenging problem.

Intuitively, cooperation among grids is one critical approach to

balance the supply-demand distribution. As illustrated in Figure 1,

some grids have excessive orders but insufficient drivers, e.g., grid

𝐴, while others have redundant drivers but lack orders, e.g., grid

𝐵. Basic RL solutions merely consider dispatching drivers to or-

ders within the same grids, excluding reward signals that motivate

cross-grid cooperation [6, 15, 24]. As a result, each RL agent learns

to maximize the individual benefit of its own grid. Thus, agents

controlling grids with redundant drivers tend to keep the drivers

in their own grids despite their idleness rather than dispatching

them to help other grids. In contrast, agents controlling grids that

lack sufficient drivers cannot serve all orders within their grids in

a timely manner (Figure 1a). To solve this dilemma, researchers

develop local cooperation strategies [7, 10, 13, 39], which reward

the agents to cooperate with their neighboring grids. Still, such

a limited extent of cooperation fails to fully balance the supply-

demand distribution and maintains the problem of missing orders

and idle drivers, especially when clusters of neighboring grids face

the same driver or order redundancy (Figure 1b).

To improve the effectiveness of grid cooperation, we propose ex-

tending the scale of cooperation from neighboring grids to all grids

within the whole city (Figure 1c). However, such global cooperation

faces several major challenges:

• State representation. When learning cooperative strategies,

each agent needs to be informed of the states of its correlated

agents. Also, the actions of each agent affect the states of its cor-

related agents, leading to complex coupling among agent states.

Compared to local cooperation methods, our global cooperation

design correlates each agents with all the rest 𝑁 − 1 agents, re-
sulting in higher dimension and greater coupling complexity of

agents’ states, adding difficulty to effectively extract valuable in-

formation from the states to support the agents’ decision-making.

• Action generation. The cooperative strategy requires agents to
simultaneously dispatch drivers to serve orders within their grids

and move across grid to help other grids. Unlike typical local-

cooperation agents that prior serving orders within their grids

and then consider cross-grid movement [10, 13, 39], the global

cooperation design requires more flexible cross-grid dispatching.

Therefore, uniformly generating these two kinds of actions and

balancing their priority is critical yet challenging.

• Reward calculation. Among all grids across the whole city, the

potential value of cooperation is not only heterogeneous among

different grids but also varies over time. Thus, it is difficult to

dynamically determine the intensities of cooperation and use

them to weigh the individual benefits of all grids to calculate the

global cooperation rewards, which motivate the agents to learn

global cooperation strategies.

Facing these challenges, we propose the CoopRide framework,

which includes joint designs covering state representation, action

generation, and reward calculation, empowering global cooper-

ation among grids. To model the relationships among grids, we

design a graph model of the grids, where node features include

the state of each grid and edge weights reflect the strength of

inflow and outflow among the grids. We employ a graph neural

network (GNN) as the Cooperative State Representation module,

which extracts information from the graph model and passes it

into RL agents. Inside the agents, we propose a Cooperative Action
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Generation mechanism, which projects the tasks of serving orders

within their own grids and moving across grids to help others into a

uniform embedding space. Then, we calculate the priorities of each

task via inner product within the embedding space and dispatch

drivers to tasks sampled according to the priorities. Furthermore,

we design a Cooperative Reward Learning module to automati-

cally capture the varying intensities of cooperation through the

technique of meta-gradient RL [2, 33, 38], dynamically calculat-

ing the global cooperation rewards to drive the policy-learning.

We evaluate CoopRide using three real-world ride-hailing datasets

with millions of orders through extensive experiments. Our results

demonstrate CoopRide’s superior performance, outperforming the

state-of-the-art baselines by up to 12.4%. Our in-depth analyses re-

veal the validity and importance of our global cooperation design.

In summary, our major contributions in this work include:

• We recognize the critical role of cooperation among grids to bal-

ance supply-demand distribution in the ride-hailing system and

thus propose CoopRide, a ride-hailing dispatching framework

that enables global cooperation among all grids in a city.

• We design the components of state representation, action gener-

ation, and reward calculation in the framework of RL, empower-

ing the efficient learning process of dispatching strategies with

global cooperation.

• We evaluate our method through extensive experiments on real-

world datasets. The results show that our method surpasses the

state-of-the-art baselines, and our in-depth analyses prove the

validity and importance of our global cooperation design.

2 Preliminaries
2.1 Problem Formulation
In this paper, we focus on city-scale ride-hailing dispatching prob-

lem. Adhering to industry conventions [7, 29, 30, 32], we employ a

discretized time horizon and geographical area setting. First, the

day is divided into 𝑇 time slots, denoted as T = {1, 2, ...,𝑇 }, where
orders can be submitted to the ride-hailing platform at any time,

but the platform only dispatches orders to drivers at the end of each

time slot. Second, the city is partitioned into 𝑁 hexagonal grids,

labeled as G = {1, 2, ..., 𝑁 }, and the locations of drivers and orders

are aligned to the centers of corresponding grids. If matched with

an order, the driver will transport the passengers to the destination

within specified time slots, determined by the distance, and accrue

income based on the order price. Here, we provide a mathematical

definition of the ride-hailing dispatching problem.

Definition 1 (Ride-Hailing Dispatching). Given orders with
price and destination features, denoted as O𝑖,𝑡 = {𝑜1𝑖,𝑡 , ..., 𝑜

𝐾
𝑖,𝑡
}, and

driversD𝑖,𝑡 in grid 𝑖 ∈ G at time slot 𝑡 ∈ T , the ride-hailing strategy
aims to match the drivers in D𝑖,𝑡 with orders in O𝑖,𝑡 to maximize the
revenue derived from order servicing over all grids and all time slots.

2.2 Multi-Agent Markov Decision Process
The ride-hailing dispatching problem can be regarded as a sequen-

tial decision and solved following the framework of multi-agent

Markov decision process (MAMDP) [14]. A MAMDP is defined by

the tuple (𝑁,S,A, 𝑃, 𝑅,𝛾), where 𝑁 denotes the total number of

agents, and in this work, we control the dispatching in each of the

𝑁 hexagonal grids with one agent. At time step 𝑡 , the global state

𝑠𝑡 = (𝑠1,𝑡 , · · · , 𝑠𝑁,𝑡 ) ∈ S = S1×· · ·×S𝑁 includes local state of each

agent. The joint action 𝑎𝑡 = (𝑎1,𝑡 , · · · , 𝑎𝑁,𝑡 ) ∈ A = A1 × · · · ×A𝑁
consists of the local action of each agent and is obtained from

𝜋𝜃 : S ↦→ A, the global policy, which is parameterized with

𝜃 = (𝜃1, · · · , 𝜃𝑁 ) and each agent 𝑖 owns a local policy 𝜋𝜃𝑖 for local

action 𝑎𝑖,𝑡 . Given a state and a joint action, the state transition prob-

ability 𝑃 : S×A ↦→ S′ outputs a distribution over successor states.

The global one-step reward is the sum of local one-step rewards

from each agent, i.e., 𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 ) =
∑𝑁
𝑖=1 𝑟𝑖 (𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 ). The objective is

to find a global policy 𝜋𝜃 that maximizes the discounted return 𝐺 :

𝐺 =
∑𝑇
𝑡=1 𝛾

𝑡𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 ), where 𝛾 is the discount factor.

3 Methods
3.1 System Overview
We illustrate the architecture of CoopRide in Figure 2. We treat

each grid as an agent, and the basic elements of our MARL-based

global-cooperative ride-hailing dispatching are as follows:

State. At time 𝑡 , 𝑠𝑖,𝑡 = [O𝑖,𝑡 , 𝑔𝑖,𝑡 ] denotes the state of agent 𝑖 ,
consisting of orders’ features O𝑖,𝑡 and statistical features of the grid
𝑔𝑖,𝑡 , where the latter include the number of drivers and orders in

grid 𝑖 , as well as statistics of orders.

Action. At time 𝑡 , agent 𝑖 selects𝐷 =𝑚𝑖𝑛(∥D𝑖,𝑡 ∥, ∥O𝑖,𝑡 ∥) orders
from O𝑖,𝑡 as the action 𝑎𝑖,𝑡 = {𝑜𝑘1

𝑖,𝑡
, ..., 𝑜

𝑘𝐷
𝑖,𝑡
}. The selected orders

are dispatched to drivers currently in grid 𝑖 . Following common

assumption [13, 15, 24, 30], drivers in the same grid are regarded

as identical and are randomly matched with selected orders.

Reward. At time 𝑡 , agent 𝑖 gets immediate reward 𝑟𝑖,𝑡 , which is

the total price of orders successfully dispatched. 𝑟𝑖,𝑡 =
∑𝐷
𝑑=1
×𝑝𝑘𝑑

𝑖,𝑡
,

where 𝑝
𝑘𝑑
𝑖,𝑡

denotes the price of order 𝑜
𝑘𝑑
𝑖,𝑡
.

Transition. In the next time slot, new orders arrive, and the

drivers dispatched with orders in previous time slots move to desti-

nation grids specified by the orders within a specified number of

time slots, determined by the distance.

To cooperate all grids within the city and maximize the per-

formance of the learned dispatching strategies, we jointly design

a Cooperative State Representation, a Cooperative Action Gen-

eration, and a Cooperative Reward Learning module. First, the

Cooperative State Representation module models the complicated

coupling relationships among the cooperative grids with graphs

and utilizes GNN to encode the states of the grids 𝑔𝑖,𝑡 into repre-

sentations ℎ𝑖,𝑡 , which contain refined information from the states

to support the decision-making (Section 3.2). Second, the Coopera-

tive Action Generation module takes in orders’ features O𝑖,𝑡 and
ℎ𝑖,𝑡 , uniformly encoding both within- and cross-grid dispatching

requirements, and thereby flexibly generate cooperative actions

among grids(Section 3.3). Third, the Cooperative Reward Learning

module automatically learns and calculates the cooperation intensi-

ties among grids based on ℎ𝑖,𝑡 via the meta-gradient technique. We

use these intensities to weigh the local rewards of each grid, thereby

dynamically obtaining the cooperative rewards, which drive the

learning of global cooperation strategies (Section 3.4).

3.2 Cooperative State Representation
To effectively extract information from cooperative relationships

among grids, we design a graph-based representation method.
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Figure 2: Overview of the CoopRide framework. The actors take in state representations incorporating grids cooperation
information and generate globally cooperative actions. The actions are updated under the guidance of cooperative rewards
containing dynamically learned cooperation intensity.

Recognizing that interactions among grids arise from cross-grid

movements, we construct grid interaction graphs, including inflow

and outflow graphs, based on the origin-destination (OD) connec-

tions among grids. In both inflow and outflow graphs, each grid

is treated as a node, and the representations of grid features, ℎ𝑖,𝑡 ,

are set to be node features. We utilize OD of historical orders to

construct weighted adjacency matrix for the graphs, denoted as

W𝑖𝑛,W𝑜𝑢𝑡 ∈ R𝑁×𝑁 , respectively. We apply standard normaliza-

tion in graph convolutional network (GCN) [8] to the adjacency

matrix and obtain W̃𝑖𝑛 and W̃𝑜𝑢𝑡 .

Inspired by [11], we employ a bidirectional diffusion graph con-

volutional network to incorporate directed views of both inflow

to the grids and outflow from the grids. We stack𝑀 layers in the

network and denote the parameters of layer𝑀 asΘ𝑚,𝑖𝑛 andΘ𝑚,𝑜𝑢𝑡 .
Finally, the association among grids can be extracted as follows:

h𝑡 = ReLU

(
𝑀−1∑︁
𝑚=0

((
W̃𝑖𝑛

)𝑚
h𝑡Θ𝑚,𝑖𝑛 +

(
W̃𝑜𝑢𝑡

)𝑚
h𝑡Θ𝑚,𝑜𝑢𝑡

))
, (1)

where h𝑡 = {ℎ1,𝑡 , ...ℎ𝑁,𝑡 } is the joint node feature.

3.3 Cooperative Action Generation
In the cooperation context, there exist two circumstances of cross-

grid movement. First, drivers complete the dispatched orders that

require transporting passengers to different grids and stay in the des-

tination grids after arrival. Second, to balance the supply-demand

distribution, the platform requests drivers to move to different grids

without passengers. We treat the latter as virtual orders with zero

prices and destinations representing relocation targets. If matched

with virtual orders, the drivers and the platform will not earn from

the relocation themselves but may earn more in the future by serv-

ing more orders in the new grids.

In order to flexibly balance the priorities of both real and virtual

orders, we design to uniformly encode them and determine the

priorities in the embedding space via attention mechanism. On the

one hand, we project ℎ𝑖,𝑡 of each grid into 𝑑-dimensional vectors

with an MLP. On the other hand, we project the features of all

orders in each grid into 𝑑-dimensional vectors with another MLP.

The vectors respectively serve as keys and queries, denoted as:

𝐾𝑖,𝑡 = 𝑀𝐿𝑃𝐾 (ℎ𝑖,𝑡 ) 𝑄𝑘𝑖,𝑡 = 𝑀𝐿𝑃𝑄 (𝑜
𝑘
𝑖,𝑡 ) . (2)

Then, the priority of order 𝑘 is computed via attention:

𝑝𝑖,𝑡 (𝑘) = tanh
©­«
(
𝐾𝑖,𝑡

)𝑇
𝑄𝑘
𝑖,𝑡√

𝑑

ª®¬ . (3)

Considering that the grids’ actions involve choosing multiple or-

ders, we design a multiple sampling approach to select orders based

on 𝑝𝑖,𝑡 (𝑘). Moreover, a real order can be selected only once, while

a virtual order can be selected repeatedly, i.e., relocate numerous

drivers to the same grid. Therefore, we design a mixed approach

that combines both with and without replacement sampling, where

the sampling probabilities of orders are computed as:

𝑝𝑖,𝑡 (𝑘) =
Mask(𝑘) exp(𝑝𝑖,𝑡 (𝑘))∑∥O𝑖,𝑡 ∥

𝑘=1
Mask(𝑘) exp(𝑝𝑖,𝑡 (𝑘))

. (4)

Mask(𝑘) are all initialized to 1, and when 𝑜𝑘
𝑖,𝑡

is sampled, Mask(𝑘)
is set to be 0 if 𝑜𝑘

𝑖,𝑡
is a real order, otherwise it remains unchanged.
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3.4 Cooperative Reward Learning
In order to dynamically determine the cooperative reward and drive

the learning process of global cooperation strategies, we consider

the cooperation intensities among agents. The cooperative reward

for agent 𝑖 is obtained by weighing the local reward of each agent

with the intensities and summing them up as follows:

𝑟𝐶𝑖,𝑡 =

𝑁∑︁
𝑗=1

[
Φ𝑖, 𝑗 (ℎ𝑖,𝑡 )𝑟 𝑗,𝑡

]
, (5)

where Φ are MLPs with learnable parameters. Then we train agent

𝑖 with 𝑟𝐶
𝑖,𝑡
, which dynamically changes during training. The opti-

mization objective for agent 𝑖 is:

𝐽𝐶𝑖 (𝜃𝑖 ,Φ) = E

[
𝑇∑︁
𝑡=1

𝑟𝐶𝑖,𝑡

]
, (6)

where 𝜋𝜃𝑖 denotes the policy network of agent 𝑖 . At time step 𝑡 , we

compute the advantage function as:

𝐴𝐶𝑖,𝑡 = 𝑟
𝐶
𝑖,𝑡 + 𝛾𝑉

𝐶
𝑖 (𝑠𝑖,𝑡+1) −𝑉

𝐶
𝑖 (𝑠𝑖,𝑡 ), (7)

where 𝑉𝐶
𝑖

is the value network and we denote 𝑠𝑖,𝑡 = [O𝑖,𝑡 , ℎ𝑖,𝑡 ].
Finally, we employ policy gradient [26]:

∇𝜃𝑖 𝐽
𝐶
𝑖 (𝜃𝑖 ,Φ) = E

[ [
∇𝜃𝑖 log𝜋𝜃𝑖 (𝑎𝑖,𝑡 |𝑠𝑖,𝑡 )

]
𝐴𝐶𝑖,𝑡

]
, (8)

and update the parameters with learning rate 𝛼 :

𝜃 ′𝑖 = 𝜃𝑖 + 𝛼∇𝜃𝑖 𝐽
𝐶
𝑖 (𝜃𝑖 ,Φ) . (9)

We use standard PPO manner [22] to approximate the gradient

and optimize 𝜋𝜃𝑖 . Mentioning that we share the parameters of 𝜋𝜃𝑖
and 𝑉𝐶

𝑖
among grid agents to reduce computational consumption,

where we denote them as 𝜋𝜃 and 𝑉𝐶 for simplicity.

To automatically learn the cooperation intensities, we optimize

Φ to maximize the global return via meta-gradient method [2, 19,

33, 38]. The global return is the summation of all agents’ rewards:

𝑟𝐺𝑡 =

𝑁∑︁
𝑖=1

𝑟𝑖,𝑡 (10)

The optimization objective for the cooperation intensities is:

𝐽𝐺 (𝜃1, 𝜃2, ..., 𝜃𝑁 ;Φ) = E

[
𝑇∑︁
𝑡=1

𝑟𝐺𝑡

]
. (11)

Noticing that 𝐽𝐺 does not explicitly contain the parameters of Φ,
we take 𝜃𝑖 as a bridge, calculating the gradient of 𝐽𝐺 with respect

to Φ with the chain rule:

∇Φ 𝐽𝐺 =

𝑁∑︁
𝑖=1

[
∇𝜃𝑖 𝐽

𝐺∇Φ𝜃𝑖
]
. (12)

For the first term, we simply apply the policy gradient formula:

∇𝜃𝑖 𝐽
𝐺 = E

(s𝑡 ,a𝑡 )∼𝜃𝑖

[ [
∇𝜃𝑖 log𝜋𝜃𝑖 (𝑎𝑖,𝑡 |𝑠𝑖,𝑡 )

]
𝐴𝐺𝑡

]
, (13)

where s𝑡 = {𝑠1,𝑡 , ...𝑠𝑁,𝑡 }, a𝑡 = {𝑎1,𝑡 , ...𝑎𝑁,𝑡 } and r𝑡 = {𝑟1,𝑡 , ...𝑟𝑁,𝑡 }.
We compute the global advantage as:

𝐴𝐺𝑡 = 𝑟𝐺𝑡 + 𝛾𝑉𝐺 (s𝑡+1) −𝑉𝐺 (s𝑡 ), (14)

where 𝑉𝐺 is the global value network. We still use standard PPO

to approximate this gradient. For the second term in the chain rule,

∇Φ𝜃𝑖 , since 𝜃𝑖 again does not explicitly contain the parameters of

Φ, we utilize the updating of 𝜃𝑖 in (9) as a bridge, following:

∇Φ𝜃𝑖 = ∇Φ
[
𝜃𝑜𝑙𝑑𝑖 + 𝛼∇

𝜃𝑜𝑙𝑑
𝑖
𝐽𝐶𝑖

(
𝜃𝑜𝑙𝑑𝑖 ,Φ

)]
= 𝛼∇Φ

[
∇
𝜃𝑜𝑙𝑑
𝑖
𝐽𝐶𝑖

(
𝜃𝑜𝑙𝑑𝑖 ,Φ

)]
= 𝛼 E
(s𝑡 ,a𝑡 )∼𝜃𝑖

[ [
∇
𝜃𝑜𝑙𝑑
𝑖

log𝜋
𝜃𝑜𝑙𝑑
𝑖
(𝑎𝑖,𝑡 |𝑠𝑖,𝑡 )

]
𝐴𝐶𝑖,𝑡

]
.

(15)

Thereby, we can combine the two terms to update Φ as:

Φ′ = Φ + 𝛼∇Φ 𝐽𝐺 (𝜃1, 𝜃2, ..., 𝜃𝑁 ;Φ) . (16)

3.5 Training Algorithm
We summarize the training process of CoopRide in Algorithm 1,

which is detailed in Appendix A.1. In each episode, the algorithm

starts by generating a trajectory and gathering the corresponding

transitions. Next, we update the policy and value networks of the

grid agents, i.e., 𝜋𝜃𝑖 and 𝑉
𝐶
𝑖
. Finally, we update Φ and 𝑉𝐺 to learn

the changing cooperation intensities. The process iterates until

the cooperation strategies and cooperation intensities both reach

convergence. It is worth mentioning that we synchronously update

parameters of the GNN in Section 3.2, treating it as part of any

cascade network that takes h𝑡 as input. All the hyper-parameters

used in our implementation are summarized in Appendix A.2 for

reproducibility.

4 Experiments
4.1 Experimental Settings
To thoroughly verify the effectiveness of CoopRide, we conduct

extensive experiments in simulation environment for ride-hailing

dispatching, which is built based on various large-scale real-world

datasets, and we evaluate the performance with widely used metrics

in ride-hailing dispatching task.

4.1.1 Dataset. We collect real-world datasets of three cities from

two ride-hailing platforms, Didi Chuxing
1
and NYC Taxi and Limou-

sine Commission (TLC)
2
for experiments, which all contain fea-

tures of massive orders, including order start time, price, origin,

destination, duration, and route distance. These datasets cover dif-

ferent cities and ride-hailing platforms around the world, reflecting

various patterns of global ride-hailing services, and thus are repre-

sentative enough to ensure the reliability and comprehensiveness

of our experimental results.

Table 1: Statistics of the datasets.

City Haikou Chengdu New York

# Grids 100 121 143

# Drivers 1,000 1,500 2,000

# Orders 1,905,810 2,781,660 2,675,520

Time Sept. 2017 Nov. 2019 Sept. 2019

Source Didi Chuxing Didi Chuxing NYC TCL

Following previous works [7, 32], we select the central area of

each city and divide them into hexagonal grids with a radius of

1
https://gaia.didichuxing.com

2
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Table 2: Performance comparison. Each value denotes the mean and standard deviation over 5 repeated runs with different
seeds. In each column, the best results are highlighted in bold and the second best results are underlined.

City Haikou Chengdu New York
Metric Norm. GMV ORR Norm. GMV ORR Norm. GMV ORR

KM 113.67 ± 0.14 57.12% ± 0.12% 103.69 ± 0.03 60.23% ± 0.01% 103.29 ± 0.11 63.58% ± 0.11%

V1D3 119.74 ± 0.12 60.52% ± 0.09% 106.84 ± 0.11 61.57% ± 0.07% 104.84 ± 0.06 64.35% ± 0.08%
RLW 120.62 ± 0.14 61.49% ± 0.10% 107.21 ± 0.08 62.05% ± 0.06% 105.10 ± 0.04 63.55% ± 0.07%

COD 116.80 ± 0.14 59.78% ± 0.08% 105.54 ± 0.12 61.23% ± 0.07% 103.98 ± 0.08 64.25% ± 0.06%
CoRide 118.87 ± 0.09 61.48% ± 0.06% 107.42 ± 0.09 61.89% ± 0.06% 104.70 ± 0.07 63.89% ± 0.07%

CoopRide 124.71 ± 0.03 67.92% ± 0.02% 108.01 ± 0.08 69.75% ± 0.05% 110.97 ± 0.07 71.97% ± 0.07%

approximately 1.4 kilometers. We show detailed statistics about

the datasets in Table 1. Notice that in the real world, one vehicle

typically serves 24h, where numbers of drivers working in turn,

but we regard them as a single ’driver’ in the statistics. Thereby, we

can calculate that the serving time is approximately half an hour

for each order, which is reasonable based on real-world experience.

4.1.2 Simulation Environment. We develop a ride-hailing simulator

following previous works [7, 13], supporting the training and test-

ing of dispatching strategies. The simulator operates in 10-minute

time slots, duringwhich orders are generated by bootstrapping from

the aforementioned datasets. If an order is successfully matched

with a driver, the driver will transport the passenger to the destina-

tion within a few time steps based on the distance. However, if an

order fails to be successfully matched with a driver, it will either

continue waiting to the next time slot for a potential match or be

canceled by probabilities derived from real-world statistics.

4.1.3 Metrics. We evaluate the performance of dispatching strate-

gies with two commonly used criterias [7, 10, 15, 24, 39]:

• Gross Merchandise Volume (GMV): GMV characterize the

total daily income of all drivers. We present the normalized GMV,

which is normalized by the Random dispatching.

• Order Response Rate (ORR): ORR is the percentage of passen-

gers successfully matched with drivers.

4.2 Baselines
We compare various baseline methods to evaluate the performance

of our method. First, we include rule-based methods:

• KM [32]: This baseline defines the orders’ prices as the weights

of the order-driver bipartite graph and uses KM algorithm [18]

to maximize the platform’s revenue.

Also, we comparemethods that utilize RL to enhance graph-matching-

based order dispatching strategies:

• V1D3 [30]: This baselinemethod combines bipartite graphmatch-

ing and probability sampling to learn dispatching strategies with

a value function.

• RLW [3]: This is the SOTA method in this category. On the basis

of V1D3, RLW adds reward smoothing, edge standardization,

and feedback loop based on a UCB algorithm.

Furthermore, we also compare MARL methods for order dispatch-

ing, which consider cooperation among neighboring grids:

• COD [10]: This method uses mean-field approximation to sim-

plify the local interactions by taking an average over action

among neighboring grids.

• CoRide [7]: This SOTA MARL baseline treats each grid as one

worker agent and cooperates workers by setting local managers

to control workers. It uses the attention mechanism to represent

the interaction among workers and managers.

4.3 Overall Performance
We train the global cooperation dispatching strategieswith CoopRide,

where the training process takes approximately one day on a single

NVIDIA RTX 3090 GPU, and we show the changing and converging

of normalized GMV during the training process, in Appendix A.3.

We show the performance comparison with baselines Table 2. The

results illustrate that our method consistently outperforms all base-

lines, achieving a maximum 5.5% increase regarding GMV in the

New York dataset and a maximum 12.4% increase regarding ORR

in the Chengdu dataset.

We can observe that all categories of baselines fail to dispatch

orders efficiently enough. On the one hand, some baselines perform

well regarding OOR but perform bad regarding GMV. This indicates

that they fail to serve long-range orders, which are relatively rare

but expensive, and merely focus on short-range orders that are

common but cheap. Therefore, they serve more orders, improv-

ing the OOR, but miss orders with high income, leading to a bad

GMV. On the other hand, other baselines can improve the GMV

but perform mediocrely on OOR. It is intuitive that they focus too

much on the expensive long-range orders to earn more, but miss a

large number of cheap but common short-range orders. In contrast,

our method reaches supreme performance regarding both GMV

and ORR, suggesting the validity of our global cooperation design,

which enables the model to balance all types of orders.

4.4 Ablation Study
To provide a comprehensive understanding of the key components

of our method, we conducted a series of ablation experiments to

investigate the effects of different components:

• w/o Coop. State Representation: We substitute the GNN with

simple MLP for encoding the grid features.

• w/o Coop. Action Generation: We substitute our action gen-

eration design with the approach used in CoRide [7], where the

actors only learn order preferences of the grids without embed-

ding orders’ features into a uniform space.
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Table 3: Ablation studies. Each value denotes the mean and standard deviation over 5 runs with different seeds. The best results
in each column are highlighted in bold.

City Haikou Chengdu New York
Metric Norm. GMV ORR Norm. GMV ORR Norm. GMV ORR

w/o Coop. State Representation 96.77 ± 0.15 58.88% ± 0.06% 90.30 ± 0.07 58.31% ± 0.08% 89.81 ± 0.13 62.26% ± 0.06%
w/o Coop. Action Generation 121.84 ± 0.13 65.86% ± 0.05% 106.02 ± 0.12 66.51% ± 0.06% 108.42 ± 0.11 69.43% ± 0.06%
w/o Coop. Reward Learning 120.49 ± 0.09 65.36% ± 0.04% 105.92 ± 0.06 65.73% ± 0.05% 106.75 ± 0.06 68.45% ± 0.05%

Full Design 124.71 ± 0.03 67.92% ± 0.02% 108.01 ± 0.08 69.75% ± 0.05% 110.97 ± 0.07 71.97% ± 0.07%

• w/o Coop. Reward Learning: We neglect the variation of co-

operation intensities and directly train all grid agents with the

global return, which turns out to be standard MAPPO [37].

We report the evaluation results on three datasets in Table 3. It

is evident that the absence of any component leads to performance

degradation while removing the Cooperative State Representation

module makes agents suffer the most. This proves the necessities of

each component of our algorithm, and ultimately, the full version

yields the best performance.

4.5 Effectiveness of Cooperation
In this section, we provide in-depth analyses of the effectiveness of

our global cooperation design. Taking the dataset of Haikou as an

example, we first present changes in the mean cooperation intensity

of all agents throughout the training process in Figure 3. We aggre-

gate the cooperation intensity based on the distance among grids,

where 𝑦-hop refers to grids that can be reached by passing through

at least𝑦 other grids. For example, 0-hop is the grid itself, and 1-hop

contains its direct neighbors. We find that the training process can

be roughly divided into several stages according to the changes

in the mean cooperation intensity. In the initial stage, the agents

focus on learning strategies that benefit themselves (0-hop). As the

training proceeds to the next stage, the cooperation intensity of

1-hop, i.e., cooperation among neighbors, becomes dominant. Con-

tinuing the training process, the weight of selfishness decreases

monotonically while the cooperation intensities among distant

grids gradually increase. Eventually, all cooperation intensities con-

verge, establishing a stable global cooperation that covers various

extents. This indicates that our method can automatically learn

cooperation from local to global, progressively learning strategies

from simple to complex.
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Figure 3: Changes in mean cooperation intensity among
agents during the training process.

Besides, we look into the effect of the maximum cooperation

extent. In figure 4, we use the dataset of New York as an example

and limit the maximum cooperation extent, observing an evident

performance degradation. This proves the significant superiority

of our global cooperation design over the local cooperation solu-

tions. Also, we neglect the variation of cooperation intensities as in

Section 4.4 and also change the maximum cooperation extent. The

results again demonstrate the significance of global cooperation

compared to local ones and echo the importance of the dynamic

learning of cooperation intensities. It is worth mentioning that

when the maximum cooperation extent is limited to 0-hop, both

curves degenerate to the IPPO [1] algorithm.

(a) Effect on Normalized GMV (b) Effect on ORR

Figure 4: Effect of the maximum cooperation extent.

4.6 Scalability
To assess the capability of our algorithm in scaling up to scenarios

with more drivers and orders, we conduct scalability experiments

using the Haikou dataset. We construct the ’double’ and ’triple’

datasets by sampling drivers and orders with replacements from the

original dataset. We compare our method with rule-based methods

and RLW, the best baseline in the Haikou dataset. As shown in

Table 4, our algorithm consistently outperforms the baseline across

different scales of drivers and orders. Therefore, our algorithm

demonstrates the capability in scaling up, indicating great potential

for deployment in real-world city-scale ride-hailing platforms.

4.7 Strategy Visualization
To intuitively understand the learned strategies, we visualize the

situations in New York after dispatching by RLM and CoopRide

in Figure 5. It illustrates that RLM results in a substantial supply-

demand gap, identified as the dark region in the lower left corner,

especially. Also, the dispatching strategies lack systematic coop-

eration among grids, where the correlations only concentrate on

neighboring grids. In contrast, our approach reduces this gap by

global cooperation, which correlates both nearby and distant grids,
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Table 4: Scalability performance. Each value denotes the mean and standard deviation over 5 repeated runs with different seeds.
In each column, the best results are highlighted in bold.

Dataset Scale Origin Double Triple
Metric Norm. GMV ORR Norm. GMV ORR Norm. GMV ORR

KM 113.67 ± 0.14 57.12% ± 0.12% 114.35 ± 0.08 53.14% ± 0.05% 114.49 ± 0.07 56.09% ± 0.06%
RLW 120.62 ± 0.14 61.49% ± 0.10% 124.88 ± 0.08 60.68% ± 0.05% 121.70 ± 0.03 62.74% ± 0.03%

CoopRide 124.71 ± 0.03 67.92% ± 0.02% 127.29 ± 0.06 69.09% ± 0.06% 124.24 ± 0.03 70.09% ± 0.01%

balancing the distribution of drivers and orders. For detailed visual-

izations regarding more cities, please refer to Appendix A.4.

(a) Supply-demand gap of RLW (b) Supply-demand gap of CoopRide 

(c) Cross-grid movements of RLW (d) Cross-grid movements of CoopRide 

Figure 5: Visualizations in New York after dispatching by
RLM and CoopRide. (a) (b) Gaps between supply and demand,
where grids with larger gaps exhibit darker color. (c) (d) Cross-
grid movements related to a representative grid, where lines
with darker color indicate larger volumes of movements.

5 Related Works
5.1 Ride-Hailing Dispatching
Ride-hailing dispatching is a long-standing research problem. Con-

ventional rule-based solutions [9, 12, 23] in ride-hailing systems

tackle the problem via expert experience, leading to sub-optimal

performance. Recently, the optimization of order dispatching has

been explored by applying RL methods [6, 7, 10, 13, 15, 24]. On the

one hand, some researchers apply RL for order dispatching by treat-

ing each driver as an independent agent [6]. On the other hand, it is

more typical to divide the city into grids and control the dispatching

in each grid with one grid agent, reducing the number of agents

and accelerating the learning progress [13, 15, 24]. However, the

above methods exclude reward signals that motivate the learning of

cooperation among agents, leading to greedy choices of each driver

or grid, which hinders the global benefit. To cope with this issue,

other researchers develop grid-based MARL approaches to asso-

ciate cooperation among neighboring agents [7, 10]. Different from

these existing studies, we investigate global cooperation among all

grid-agents in city-scale order dispatching, which maximizes the

effectiveness of the learned strategy.

5.2 Multi-Agent Reinforcement Learning
Initial MARL methods directly put together multiple individual

agents to adapt to multi-agent settings, such as independent Q-

learning [28] and independent PPO [1]. The advanced MARL meth-

ods can be mainly categorized into two streams [36], value decom-

position (VD) and centralized training and decentralized execution

(CTDE). The VD methods [20, 25, 31] decompose the joint value

function to each individual agent, addressing the credit assignment

problem in multi-agent tasks, e.g. SMAC [21]. The CTDE frame-

work [4, 17] learns a centralized critic to optimize the decentralized

actors, which generate actions based on local observations.

When considering cooperation among agents, conventionalMARL

algorithms simply sum up the agents’ local rewards to obtain the

cooperative reward [4]. Besides, various existing works utilize

the mean-field algorithm, which approximates high-dimensional

states with averaged vectors, to simplify the interactions among

agents [5, 35]. Different from them, we hire GNN to model the

interactions among agents, and we employ the meta-gradient tech-

nique [2, 33, 38] to automatically learn the cooperation intensity

among agents from a global view, thereby dynamically calculat-

ing the cooperative reward. Our designs ensure a more efficient

learning of global cooperation strategies.

6 Conclusions
In this paper, we propose the CoopRide framework that empow-

ers global cooperation among all grids in city-scale ride-hailing

dispatching. We model the cooperative interactions among agents

using graphs and design a GNN to extract valuable information

for decision-making. We create a uniform encoding mechanism

for within- and cross-grid dispatching, enabling flexible coopera-

tion balancing both types of actions. We also design a automatic

learning mechanism for the cooperation intensities among grids,

based on which we dynamically calculate the cooperative rewards

that drive the learning of global cooperation. We conducted ex-

tensive experiments and in-depth analyses on various real-world

datasets, proving the effectiveness of our method, which achieves

superior performance compared with baselines. Our work illus-

trates CoopRide’s great potential in practical applications, provid-

ing optimized dispatching strategies for ride-hailing platforms in

the real world.
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A Appendix
A.1 Training Algorithm
The training process of CoopRide is summarized in Algorithm 1.

Algorithm 1 Training algorithm of CoopRide.

Require: Environment, data buffer 𝐷 , grid policy network 𝜋𝜃 and

value network𝑉𝐶 , cooperation intensity network Φ and global

value network 𝑉𝐺 .

1: for iteration= 1, ..., 𝐼𝑇𝐸𝑅 do
2: Clear buffer 𝐷 .

3: Store current policy 𝜋𝜃𝑜𝑙𝑑 ← 𝜋𝜃 .

4: for 𝑡 = 1, ...,𝑇 do
5: Sample a𝑡 from 𝜋𝜃 , observe r𝑡 and next states s𝑡+1.
6: Store ⟨s𝑡 , a𝑡 , r𝑡 , s𝑡+1⟩ into buffer 𝐷 .

7: end for
8: Compute 𝐴𝐶

𝑖,𝑡
, 𝐴𝐺 following (7) and (14) for all transitions.

9: Compute 𝑟𝐶
𝑖,𝑡

for all transitions in 𝐷 with Φ.

10: for epoch= 1, ..., 𝐾𝑝 do
11: Shuffle buffer 𝐷 and slice it into mini-batches.

12: for 𝑖 = 1, ..., 𝑁 do
13: Update 𝜋𝜃 using the mini-batches following (9).

14: Update 𝑉𝐶 minimizing ∥𝑟𝐶
𝑖,𝑡
+ 𝛾𝑉𝐶 (𝑠𝑖,𝑡+1) −𝑉𝐶 (𝑠𝑖,𝑡 )∥.

15: end for
16: end for
17: for epoch = 1, ..., 𝐾Φ do
18: Shuffle buffer 𝐷 and slice it into mini-batches.

19: Update Φ using the mini-batches following (16).

20: Update 𝑉𝐺 minimizing ∥𝑟𝐺𝑡 + 𝛾𝑉𝐺 (s𝑡+1) −𝑉𝐺 (s𝑡 )∥.
21: end for
22: end for

A.2 Implementation Details for Reproducibility
We perform experiments using Python 3.9 and Pytorch 2.1 with

NVIDIA GeForce RTX 3090 GPUs. Here, we provide detailed values

of the hyper-parameters used in the experiments for reproducibility

in Table 5. For more details, please refer to our open-source code at

https://github.com/tsinghua-fib-lab/CoopRide.

Table 5: Implementation Details.

Hyper-parameter Notation Value

Network initialization – Orthogonal

Number of layers in GNN M 2

Hidden state dimension of GNN – 64

Dimension of grid state representations – 64

Hidden state dimensions in𝑀𝐿𝑃𝐾 – [128,128]

Number of layers in𝑀𝐿𝑃𝑄 – 2

Hidden state dimensions in𝑀𝐿𝑃𝐾 – [128,128]

Number of layers in𝑀𝐿𝑃𝑄 – 2

Hidden state dimensions in Φ – [128,128]

Number of layers in Φ – 2

Dimension of uniform embeddings 𝑑 128

Learning rate of grid policy network 𝜋𝜃 𝛼 1e-3

Learning rate of grid value network𝑉𝐶 𝛼 1e-3

Learning rate of Φ 𝛼 1e-3

Learning rate of global value network𝑉𝐺 𝛼 1e-3

Mini batch size 𝐵 1000

Grid actors optimization epoch 𝐾𝑝 1

Cooperative intensities optimization epoch 𝐾Φ 1

Optimizer – Adam

Optimizer epsilon – 1e-5

Number of training steps – 0.2M

Discount factor 𝛾 0.97

Gradient clip norm in PPO – 10

GAE in PPO 𝜆 0.95

Clip ratio in PPO 𝜖 0.2

Entropy coefficient in PPO – 0.005

A.3 Learning Curves
We show the changing and converging of normalized GMV during

the training process on different datasets in Figure 6. The curves

illustrate stable training process and good convergence of our

method.
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(a) Haikou

(b) Chengdu

(c) New York

Figure 6: Changing and converging of normalized GMV dur-
ing the training process in (a) Haikou, (b) Chengdu, and (c)
New York.

A.4 Extended Visualizations
In Figure 7, we visualize the situations in all three cities after dis-

patching by baseline methods and CoopRide. The visualizations

illustrate that the baseline methods all result in a substantial supply-

demand gap, identified as the dark regions. In contrast, our approach

reduces this gap by global cooperation.
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(a) Random, Haikou (b) KM, Haikou (c) RLW, Haikou (d) CoopRide, Haikou

(e) Random, Chengdu () KM, Chengdu (g) RLW, Chengdu (h) CoopRide, Chengdu

(i) Random, New York (j) KM, New York (k) RLW, New York (l) CoopRide, New York

Figure 7: Gaps between supply and demand. (a)-(d) Haikou, (e)-(h) Chengdu, (i)-(l) New York. Grids with larger gaps exhibit
darker color.
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