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Abstract

Ride-hailing services offer convenient travel options in urban trans-
portation. To improve passengers’ experience and platforms’ rev-
enue, plentiful studies use multi-agent reinforcement learning (MARL)
for efficient order dispatching, controlling each grid with one agent
to balance the supply-demand (drivers-orders) distribution. How-
ever, despite the critical role of cooperation among grids for ef-
ficient dispatching strategies, existing works neglect it or limit
it within neighboring grids. There exist three key challenges in
scaling the cooperation to the whole city: (1) cooperative strate-
gies cause complex interactions among grids, making the grids’
states coupled and complicating the information extraction from
the states for decision-making; (2) cooperation among grids re-
quires both within- and cross-grid dispatching, where the priorities
of these two types of actions are difficult to balance; (3) the value
of cooperation is not only heterogeneous over different pairs of
grids, but also varies temporally, adding difficulty to dynamically
determine the intensities of cooperation for each pair of grids and
obtain the global cooperation rewards. In this paper, we propose
the CoopRide framework to solve the above challenges. We model
the interactions among agents with graphs and utilize graph neural
network (GNN) for efficient information extraction. We uniformly
encode both within- and cross-grid dispatching, enabling flexible
choice of both types of actions in the embedding space. We also
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design to automatically learn the cooperation intensities among
grids, thereby obtaining the cooperative rewards to drive the learn-
ing of global cooperation actions. We conduct experiments in three
real-world datasets with millions of orders, and extensive results
demonstrate the superior performance of CoopRide, outperforming
the state-of-the-art baselines by up to 12.4%. Our source codes are
available at https://github.com/tsinghua-fib-lab/CoopRide.

CCS Concepts

« Computing methodologies — Multi-agent planning; Multi-
agent reinforcement learning; « Applied computing — Trans-
portation.
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1 Introduction

Ride-hailing platforms, e.g., Uber, Lyft, and Didi, have revolution-
ized urban transportation and created enormous commercial value
by providing flexible, convenient, and personalized travel options
for passengers [34]. The ride-hailing platforms involve a large num-
ber of drivers (supply) and orders (demand), which tend to exhibit
an unbalanced spatial distribution [27]. Plentiful of works have
been conducted to find appropriate and efficient dispatching strate-
gies, i.e., matching the drivers with orders, through rule-based
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No cooperation

Dispatching within grids
eg META [15], JDRL [24] /

Local cooperation

Cooperate neighboring grids
e.g. CoRide [7], COD [10]

Gobal cooperation

Cooperate all grids
CoopRide (Ours)

A\

(a) No cooperation

(b) Local cooperation

(c) Global cooperation

Figure 1: Comparison among ride-hailing dispatching methods with different cooperation strategies among grids. (a) No
cooperation. Drivers are only dispatched to orders within the same grids. (b) Local cooperation. Drivers can be dispatched to
orders within neighboring grids. (c) Global cooperation (proposed CoopRide). Drivers can be dispatched to orders within the

whole city, satisfying passengers’ demands.

approaches [9, 12, 23], which are beneficial in balancing the sup-
ply and demand, thereby maximizing passengers’ satisfaction and
increasing platforms’ revenue [16]. On the other hand, recent ad-
vancements in reinforcement learning (RL) inspire researchers to
model ride-hailing dispatching as a sequential decision problem
and solve it within the framework of Markov decision process
(MDP) [6, 7, 10, 13, 15, 24, 32, 39], enhancing the strategies’ per-
formance. In a number of RL works, researchers divide the city
into hexagonal grids and control the dispatching in each grid with
one agent, following multi-agent reinforcement learning (MARL)
framework. However, due to the spatial heterogeneity and temporal
variation in supply-demand distribution across the grids and the
great complexity of city-scale mobility, finding efficient dispatch-
ing strategies for satisfying the on-demand needs of ride-hailing
platforms remains a challenging problem.

Intuitively, cooperation among grids is one critical approach to
balance the supply-demand distribution. As illustrated in Figure 1,
some grids have excessive orders but insufficient drivers, e.g., grid
A, while others have redundant drivers but lack orders, e.g., grid
B. Basic RL solutions merely consider dispatching drivers to or-
ders within the same grids, excluding reward signals that motivate
cross-grid cooperation [6, 15, 24]. As a result, each RL agent learns
to maximize the individual benefit of its own grid. Thus, agents
controlling grids with redundant drivers tend to keep the drivers
in their own grids despite their idleness rather than dispatching
them to help other grids. In contrast, agents controlling grids that
lack sufficient drivers cannot serve all orders within their grids in
a timely manner (Figure 1a). To solve this dilemma, researchers
develop local cooperation strategies [7, 10, 13, 39], which reward
the agents to cooperate with their neighboring grids. Still, such
a limited extent of cooperation fails to fully balance the supply-
demand distribution and maintains the problem of missing orders
and idle drivers, especially when clusters of neighboring grids face
the same driver or order redundancy (Figure 1b).

To improve the effectiveness of grid cooperation, we propose ex-
tending the scale of cooperation from neighboring grids to all grids
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within the whole city (Figure 1c). However, such global cooperation
faces several major challenges:

o State representation. When learning cooperative strategies,
each agent needs to be informed of the states of its correlated
agents. Also, the actions of each agent affect the states of its cor-
related agents, leading to complex coupling among agent states.
Compared to local cooperation methods, our global cooperation
design correlates each agents with all the rest N — 1 agents, re-
sulting in higher dimension and greater coupling complexity of
agents’ states, adding difficulty to effectively extract valuable in-
formation from the states to support the agents’ decision-making.
Action generation. The cooperative strategy requires agents to
simultaneously dispatch drivers to serve orders within their grids
and move across grid to help other grids. Unlike typical local-
cooperation agents that prior serving orders within their grids
and then consider cross-grid movement [10, 13, 39], the global
cooperation design requires more flexible cross-grid dispatching.
Therefore, uniformly generating these two kinds of actions and
balancing their priority is critical yet challenging.

Reward calculation. Among all grids across the whole city, the
potential value of cooperation is not only heterogeneous among
different grids but also varies over time. Thus, it is difficult to
dynamically determine the intensities of cooperation and use
them to weigh the individual benefits of all grids to calculate the
global cooperation rewards, which motivate the agents to learn
global cooperation strategies.

Facing these challenges, we propose the CoopRide framework,
which includes joint designs covering state representation, action
generation, and reward calculation, empowering global cooper-
ation among grids. To model the relationships among grids, we
design a graph model of the grids, where node features include
the state of each grid and edge weights reflect the strength of
inflow and outflow among the grids. We employ a graph neural
network (GNN) as the Cooperative State Representation module,
which extracts information from the graph model and passes it
into RL agents. Inside the agents, we propose a Cooperative Action
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Generation mechanism, which projects the tasks of serving orders
within their own grids and moving across grids to help others into a
uniform embedding space. Then, we calculate the priorities of each
task via inner product within the embedding space and dispatch
drivers to tasks sampled according to the priorities. Furthermore,
we design a Cooperative Reward Learning module to automati-
cally capture the varying intensities of cooperation through the
technique of meta-gradient RL [2, 33, 38], dynamically calculat-
ing the global cooperation rewards to drive the policy-learning.
We evaluate CoopRide using three real-world ride-hailing datasets
with millions of orders through extensive experiments. Our results
demonstrate CoopRide’s superior performance, outperforming the
state-of-the-art baselines by up to 12.4%. Our in-depth analyses re-
veal the validity and importance of our global cooperation design.
In summary, our major contributions in this work include:

o We recognize the critical role of cooperation among grids to bal-
ance supply-demand distribution in the ride-hailing system and
thus propose CoopRide, a ride-hailing dispatching framework
that enables global cooperation among all grids in a city.

e We design the components of state representation, action gener-
ation, and reward calculation in the framework of RL, empower-
ing the efficient learning process of dispatching strategies with
global cooperation.

e We evaluate our method through extensive experiments on real-
world datasets. The results show that our method surpasses the
state-of-the-art baselines, and our in-depth analyses prove the
validity and importance of our global cooperation design.

2 Preliminaries

2.1 Problem Formulation

In this paper, we focus on city-scale ride-hailing dispatching prob-
lem. Adhering to industry conventions [7, 29, 30, 32], we employ a
discretized time horizon and geographical area setting. First, the
day is divided into T time slots, denoted as 7~ = {1, 2, ..., T}, where
orders can be submitted to the ride-hailing platform at any time,
but the platform only dispatches orders to drivers at the end of each
time slot. Second, the city is partitioned into N hexagonal grids,
labeled as G = {1, 2, ..., N}, and the locations of drivers and orders
are aligned to the centers of corresponding grids. If matched with
an order, the driver will transport the passengers to the destination
within specified time slots, determined by the distance, and accrue
income based on the order price. Here, we provide a mathematical
definition of the ride-hailing dispatching problem.

DEFINITION 1 (RIDE-HAILING DISPATCHING). Given orders with
price and destination features, denoted as O;; = {Oilt’ oth}, and
drivers D;; in gridi € G at time slott € T, the ride—flailing ’strategy
aims to match the drivers in Dj ; with orders in O to maximize the

revenue derived from order servicing over all grids and all time slots.

2.2 Multi-Agent Markov Decision Process

The ride-hailing dispatching problem can be regarded as a sequen-
tial decision and solved following the framework of multi-agent
Markov decision process (MAMDP) [14]. A MAMDP is defined by
the tuple (N, S, A, P,R, y), where N denotes the total number of
agents, and in this work, we control the dispatching in each of the
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N hexagonal grids with one agent. At time step ¢, the global state
st = (s1p,5N) €S =8Stx-- -xSN includes local state of each
agent. The joint action a; = (ars, -+ ,an,) € A = Alx...x AN
consists of the local action of each agent and is obtained from
19 : S — A, the global policy, which is parameterized with
0 = (01, ,0n) and each agent i owns a local policy 7y, for local
action a; ;. Given a state and a joint action, the state transition prob-
ability P : S x A +— S’ outputs a distribution over successor states.
The global one-step reward is the sum of local one-step rewards
from each agent, i.e., R;(st, ar) = Zfil ri(sit, ai,r). The objective is
to find a global policy 7y that maximizes the discounted return G:
G= Zthl Y'R:(s¢, ar), where y is the discount factor.

3 Methods

3.1 System Overview

We illustrate the architecture of CoopRide in Figure 2. We treat
each grid as an agent, and the basic elements of our MARL-based
global-cooperative ride-hailing dispatching are as follows:

State. At time ¢, s;; = [Oi, gi,r] denotes the state of agent i,
consisting of orders’ features O; ; and statistical features of the grid
gi,+, where the latter include the number of drivers and orders in
grid i, as well as statistics of orders.

Action. At time ¢, agent i selects D = min(||D;¢||, ||O; ¢|) orders
from O;; as the action a;; = {of’lt, OE?}. The selected orders
are dispatched to drivers currently in grid i. Following common
assumption [13, 15, 24, 30], drivers in the same grid are regarded
as identical and are randomly matched with selected orders.

Reward. At time t, agent i gets immediate reward r; ;, which is

the total price of orders successfully dispatched. r;; = Zfl):l pr?,

where pf’; denotes the price of order of

Transition. In the next time slot, new orders arrive, and the
drivers dispatched with orders in previous time slots move to desti-
nation grids specified by the orders within a specified number of
time slots, determined by the distance.

To cooperate all grids within the city and maximize the per-
formance of the learned dispatching strategies, we jointly design
a Cooperative State Representation, a Cooperative Action Gen-
eration, and a Cooperative Reward Learning module. First, the
Cooperative State Representation module models the complicated
coupling relationships among the cooperative grids with graphs
and utilizes GNN to encode the states of the grids g; ; into repre-
sentations h; ¢, which contain refined information from the states
to support the decision-making (Section 3.2). Second, the Coopera-
tive Action Generation module takes in orders’ features O; ; and
hi ¢, uniformly encoding both within- and cross-grid dispatching
requirements, and thereby flexibly generate cooperative actions
among grids(Section 3.3). Third, the Cooperative Reward Learning
module automatically learns and calculates the cooperation intensi-
ties among grids based on h;; via the meta-gradient technique. We
use these intensities to weigh the local rewards of each grid, thereby
dynamically obtaining the cooperative rewards, which drive the
learning of global cooperation strategies (Section 3.4).

d
P

3.2 Cooperative State Representation

To effectively extract information from cooperative relationships
among grids, we design a graph-based representation method.
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Figure 2: Overview of the CoopRide framework. The actors take in state representations incorporating grids cooperation
information and generate globally cooperative actions. The actions are updated under the guidance of cooperative rewards

containing dynamically learned cooperation intensity.

Recognizing that interactions among grids arise from cross-grid
movements, we construct grid interaction graphs, including inflow
and outflow graphs, based on the origin-destination (OD) connec-
tions among grids. In both inflow and outflow graphs, each grid
is treated as a node, and the representations of grid features, h; ¢,
are set to be node features. We utilize OD of historical orders to
construct weighted adjacency matrix for the graphs, denoted as
Win, Wour € RNXN respectively. We apply standard normaliza-
tion in graph convolutional network (GCN) [8] to the adjacency
matrix and obtain W;,, and Wy;.

Inspired by [11], we employ a bidirectional diffusion graph con-
volutional network to incorporate directed views of both inflow
to the grids and outflow from the grids. We stack M layers in the
network and denote the parameters of layer M as O, ;n and ©y oy
Finally, the association among grids can be extracted as follows:

), 1

M-1 . m . m
Z ((Win) ht®m,in + (Wout) ht®m,out)
m=0

h; = ReLU (

where hy = {h1;,...hN+} is the joint node feature.

3.3 Cooperative Action Generation

In the cooperation context, there exist two circumstances of cross-
grid movement. First, drivers complete the dispatched orders that
require transporting passengers to different grids and stay in the des-
tination grids after arrival. Second, to balance the supply-demand
distribution, the platform requests drivers to move to different grids
without passengers. We treat the latter as virtual orders with zero
prices and destinations representing relocation targets. If matched
with virtual orders, the drivers and the platform will not earn from
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the relocation themselves but may earn more in the future by serv-
ing more orders in the new grids.

In order to flexibly balance the priorities of both real and virtual
orders, we design to uniformly encode them and determine the
priorities in the embedding space via attention mechanism. On the
one hand, we project h;; of each grid into d-dimensional vectors
with an MLP. On the other hand, we project the features of all
orders in each grid into d-dimensional vectors with another MLP.
The vectors respectively serve as keys and queries, denoted as:

Kit = MLPg (hir)  Qf, = MLPQ(of,). (@)
Then, the priority of order k is computed via attention:
T ~k
(Kir)™ Q;
pir(k) = tanh | ———%L 3)

Vd

Considering that the grids’ actions involve choosing multiple or-
ders, we design a multiple sampling approach to select orders based
on p; (k). Moreover, a real order can be selected only once, while
a virtual order can be selected repeatedly, i.e., relocate numerous
drivers to the same grid. Therefore, we design a mixed approach
that combines both with and without replacement sampling, where
the sampling probabilities of orders are computed as:

Mask(k) exp(pi, (k))

519 W Mask (k) exp(pie (K))

pir(k) = (4)

Mask(k) are all initialized to 1, and when oft is sampled, Mask(k)

is set to be 0 if of.‘ ,isa real order, otherwise it remains unchanged.
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3.4 Cooperative Reward Learning

In order to dynamically determine the cooperative reward and drive
the learning process of global cooperation strategies, we consider
the cooperation intensities among agents. The cooperative reward
for agent i is obtained by weighing the local reward of each agent
with the intensities and summing them up as follows:

N
r& = (@ hiorje]., )
j=1

where ® are MLPs with learnable parameters. Then we train agent
i with rgt, which dynamically changes during training. The opti-
mization objective for agent i is:

T

20|

t=1

JE(6;,@) =E (6)

where 7g, denotes the policy network of agent i. At time step ¢, we

compute the advantage function as:
Afy =iy +yVE Gsien) = VE Gsie),

™

where Vl.c is the value network and we denote s;; = [O;;, hit].
Finally, we employ policy gradient [26]:

VoIS (01 ®) = 2| [Vg, log mp, (aielsi)| AG ] ®)
and update the parameters with learning rate a:
0] = 0; +aVg,JC (6;, ). )

We use standard PPO manner [22] to approximate the gradient
and optimize 7g,. Mentioning that we share the parameters of 7y,
and Vl.c among grid agents to reduce computational consumption,
where we denote them as 7y and VC for simplicity.

To automatically learn the cooperation intensities, we optimize
® to maximize the global return via meta-gradient method [2, 19,
33, 38]. The global return is the summation of all agents’ rewards:

N

rtG = Z Tit (10)
i=1
The optimization objective for the cooperation intensities is:
T
JO (01,0, 0n5:®) =E | > rf (11)
t=1

Noticing that J does not explicitly contain the parameters of @,
we take 6; as a bridge, calculating the gradient of J° with respect
to ® with the chain rule:

Vo)C = i [Ve,»]GVqﬁi] .
i=1

For the first term, we simply apply the policy gradient formula:

|6, log 70, (@iclsin)] 4E]. 13)

(12)

Ve )= E

(se.ar)~0;

where s; = {s1,t,...SN ¢}, ar = {avs, ...any and 1y = {ris, . 'Nt )
We compute the global advantage as:

AS =17 + YV (se01) = VO (sp), (14)

where VO is the global value network. We still use standard PPO
to approximate this gradient. For the second term in the chain rule,
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V0;, since 8; again does not explicitly contain the parameters of
®, we utilize the updating of 8; in (9) as a bridge, following:

Vabi = Vo |07 + @V guia ] (071, 0) |

=aVyp [ngld]ic (Hfld, CID)] (15)
C
= a(s,,a],E)~9i HVH?M log ”0;?1‘1 (ai,t|si,t)] Ai,t] .
Thereby, we can combine the two terms to update @ as:
O =D +aVeJC(01,0s ... 0n; D). (16)

3.5 Training Algorithm

We summarize the training process of CoopRide in Algorithm 1,
which is detailed in Appendix A.1. In each episode, the algorithm
starts by generating a trajectory and gathering the corresponding
transitions. Next, we update the policy and value networks of the
grid agents, i.e., mg, and Vl.c. Finally, we update ® and VC to learn
the changing cooperation intensities. The process iterates until
the cooperation strategies and cooperation intensities both reach
convergence. It is worth mentioning that we synchronously update
parameters of the GNN in Section 3.2, treating it as part of any
cascade network that takes h; as input. All the hyper-parameters
used in our implementation are summarized in Appendix A.2 for
reproducibility.

4 Experiments

4.1 Experimental Settings

To thoroughly verify the effectiveness of CoopRide, we conduct
extensive experiments in simulation environment for ride-hailing
dispatching, which is built based on various large-scale real-world
datasets, and we evaluate the performance with widely used metrics
in ride-hailing dispatching task.

4.1.1 Dataset. We collect real-world datasets of three cities from
two ride-hailing platforms, Didi Chuxing! and NYC Taxi and Limou-
sine Commission (TLC)? for experiments, which all contain fea-
tures of massive orders, including order start time, price, origin,
destination, duration, and route distance. These datasets cover dif-
ferent cities and ride-hailing platforms around the world, reflecting
various patterns of global ride-hailing services, and thus are repre-
sentative enough to ensure the reliability and comprehensiveness
of our experimental results.

Table 1: Statistics of the datasets.

City ‘ Haikou Chengdu New York
# Grids 100 121 143
# Drivers 1,000 1,500 2,000
# Orders 1,905,810 2,781,660 2,675,520
Time Sept. 2017 Nov. 2019 Sept. 2019
Source | Didi Chuxing Didi Chuxing NYC TCL

Following previous works [7, 32], we select the central area of
each city and divide them into hexagonal grids with a radius of

!https://gaia.didichuxing.com
Zhttps://www1.nyc.gov/site/tlc/about/tlc-trip-record- data.page
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Table 2: Performance comparison. Each value denotes the mean and standard deviation over 5 repeated runs with different
seeds. In each column, the best results are highlighted in bold and the second best results are underlined.

City Haikou Chengdu New York
Metric Norm. GMV ORR Norm. GMV ORR Norm. GMV ORR
KM 113.67 £0.14  57.12% +0.12% | 103.69 +£0.03  60.23% + 0.01% | 103.29 £0.11  63.58% £ 0.11%
V1D3 119.74 £ 0.12  60.52% + 0.09% | 106.84 £ 0.11  61.57% + 0.07% | 104.84 £ 0.06  64.35% + 0.08%
RLW 120.62 £ 0.14  61.49% + 0.10% 107.21 £ 0.08 62.05% + 0.06% 105.10 £ 0.04  63.55% + 0.07%
COD 116.80 £ 0.14  59.78% + 0.08% | 105.54 +£0.12  61.23% £ 0.07% | 103.98 +£0.08  64.25% + 0.06%
CoRide 118.87 £0.09  61.48% + 0.06% 107.42 £ 0.09  61.89% + 0.06% 104.70 £ 0.07 63.89% + 0.07%
CoopRide ‘ 124.71 £ 0.03 67.92% + 0.02% ‘ 108.01 £ 0.08 69.75% + 0.05% ‘ 110.97 £ 0.07 71.97% + 0.07%

approximately 1.4 kilometers. We show detailed statistics about
the datasets in Table 1. Notice that in the real world, one vehicle
typically serves 24h, where numbers of drivers working in turn,
but we regard them as a single ’driver’ in the statistics. Thereby, we
can calculate that the serving time is approximately half an hour
for each order, which is reasonable based on real-world experience.

4.1.2  Simulation Environment. We develop a ride-hailing simulator
following previous works [7, 13], supporting the training and test-
ing of dispatching strategies. The simulator operates in 10-minute
time slots, during which orders are generated by bootstrapping from
the aforementioned datasets. If an order is successfully matched
with a driver, the driver will transport the passenger to the destina-
tion within a few time steps based on the distance. However, if an
order fails to be successfully matched with a driver, it will either
continue waiting to the next time slot for a potential match or be
canceled by probabilities derived from real-world statistics.

4.1.3  Metrics. We evaluate the performance of dispatching strate-
gies with two commonly used criterias [7, 10, 15, 24, 39]:

e Gross Merchandise Volume (GMV): GMV characterize the
total daily income of all drivers. We present the normalized GMV,
which is normalized by the Random dispatching.

e Order Response Rate (ORR): ORR is the percentage of passen-
gers successfully matched with drivers.

4.2 Baselines

We compare various baseline methods to evaluate the performance
of our method. First, we include rule-based methods:

e KM [32]: This baseline defines the orders’ prices as the weights
of the order-driver bipartite graph and uses KM algorithm [18]
to maximize the platform’s revenue.

Also, we compare methods that utilize RL to enhance graph-matching-
based order dispatching strategies:

e V1D3 [30]: This baseline method combines bipartite graph match-
ing and probability sampling to learn dispatching strategies with
a value function.

e RLW [3]: This is the SOTA method in this category. On the basis
of V1D3, RLW adds reward smoothing, edge standardization,
and feedback loop based on a UCB algorithm.

Furthermore, we also compare MARL methods for order dispatch-
ing, which consider cooperation among neighboring grids:
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e COD [10]: This method uses mean-field approximation to sim-
plify the local interactions by taking an average over action
among neighboring grids.

CoRide [7]: This SOTA MARL baseline treats each grid as one
worker agent and cooperates workers by setting local managers
to control workers. It uses the attention mechanism to represent
the interaction among workers and managers.

4.3 Overall Performance

We train the global cooperation dispatching strategies with CoopRide,
where the training process takes approximately one day on a single
NVIDIA RTX 3090 GPU, and we show the changing and converging
of normalized GMV during the training process, in Appendix A.3.
We show the performance comparison with baselines Table 2. The
results illustrate that our method consistently outperforms all base-
lines, achieving a maximum 5.5% increase regarding GMV in the
New York dataset and a maximum 12.4% increase regarding ORR
in the Chengdu dataset.

We can observe that all categories of baselines fail to dispatch
orders efficiently enough. On the one hand, some baselines perform
well regarding OOR but perform bad regarding GMV. This indicates
that they fail to serve long-range orders, which are relatively rare
but expensive, and merely focus on short-range orders that are
common but cheap. Therefore, they serve more orders, improv-
ing the OOR, but miss orders with high income, leading to a bad
GMUV. On the other hand, other baselines can improve the GMV
but perform mediocrely on OOR. It is intuitive that they focus too
much on the expensive long-range orders to earn more, but miss a
large number of cheap but common short-range orders. In contrast,
our method reaches supreme performance regarding both GMV
and ORR, suggesting the validity of our global cooperation design,
which enables the model to balance all types of orders.

4.4 Ablation Study

To provide a comprehensive understanding of the key components
of our method, we conducted a series of ablation experiments to
investigate the effects of different components:

o w/o Coop. State Representation: We substitute the GNN with
simple MLP for encoding the grid features.

e w/o Coop. Action Generation: We substitute our action gen-
eration design with the approach used in CoRide [7], where the
actors only learn order preferences of the grids without embed-
ding orders’ features into a uniform space.



CoopRide: Cooperate All Grids in City-Scale Ride-Hailing Dispatching with Multi-Agent Reinforcement Learning

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Table 3: Ablation studies. Each value denotes the mean and standard deviation over 5 runs with different seeds. The best results

in each column are highlighted in bold.

City Haikou Chengdu New York
Metric Norm. GMV ORR Norm. GMV ORR Norm. GMV ORR
w/o Coop. State Representation | 96.77 +0.15 58.88% + 0.06% 90.30 £ 0.07 58.31% + 0.08% 89.81+£0.13 62.26% £ 0.06%
w/o Coop. Action Generation 121.84 £0.13  65.86% + 0.05% | 106.02 +0.12  66.51% + 0.06% | 108.42+0.11  69.43% + 0.06%
w/o Coop. Reward Learning 120.49 £ 0.09  65.36% £ 0.04% | 105.92+£0.06 65.73% £ 0.05% | 106.75+0.06  68.45% + 0.05%
Full Design 124.71+£0.03  67.92% +0.02% | 108.01 £0.08 69.75% +0.05% | 110.97 +£0.07 71.97% + 0.07%

e w/o Coop. Reward Learning: We neglect the variation of co-
operation intensities and directly train all grid agents with the
global return, which turns out to be standard MAPPO [37].

We report the evaluation results on three datasets in Table 3. It
is evident that the absence of any component leads to performance
degradation while removing the Cooperative State Representation
module makes agents suffer the most. This proves the necessities of
each component of our algorithm, and ultimately, the full version
yields the best performance.

4.5 Effectiveness of Cooperation

In this section, we provide in-depth analyses of the effectiveness of
our global cooperation design. Taking the dataset of Haikou as an
example, we first present changes in the mean cooperation intensity
of all agents throughout the training process in Figure 3. We aggre-
gate the cooperation intensity based on the distance among grids,
where y-hop refers to grids that can be reached by passing through
at least y other grids. For example, 0-hop is the grid itself, and 1-hop
contains its direct neighbors. We find that the training process can
be roughly divided into several stages according to the changes
in the mean cooperation intensity. In the initial stage, the agents
focus on learning strategies that benefit themselves (0-hop). As the
training proceeds to the next stage, the cooperation intensity of
1-hop, i.e., cooperation among neighbors, becomes dominant. Con-
tinuing the training process, the weight of selfishness decreases
monotonically while the cooperation intensities among distant
grids gradually increase. Eventually, all cooperation intensities con-
verge, establishing a stable global cooperation that covers various
extents. This indicates that our method can automatically learn
cooperation from local to global, progressively learning strategies
from simple to complex.
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Figure 3: Changes in mean cooperation intensity among
agents during the training process.

Besides, we look into the effect of the maximum cooperation
extent. In figure 4, we use the dataset of New York as an example
and limit the maximum cooperation extent, observing an evident
performance degradation. This proves the significant superiority
of our global cooperation design over the local cooperation solu-
tions. Also, we neglect the variation of cooperation intensities as in
Section 4.4 and also change the maximum cooperation extent. The
results again demonstrate the significance of global cooperation
compared to local ones and echo the importance of the dynamic
learning of cooperation intensities. It is worth mentioning that
when the maximum cooperation extent is limited to 0-hop, both
curves degenerate to the IPPO [1] algorithm.

—e— CoopRide 0.74| == CoopRide
% 112 w/o Coop.Reward Learning 0.72 w/o Coop.Reward Learning —
110
9 108 0.70
® o 0.68
N 106 g .
S 104 0.66
ou
Z 100 i
98 0.60
0-hop 1-hop 2-hop  3-hop all 0-hop 1-hop 2-hop  3-hop all
Maximum Cooperation Extent Maximum Cooperation Extent
(a) Effect on Normalized GMV (b) Effect on ORR

Figure 4: Effect of the maximum cooperation extent.

4.6 Scalability

To assess the capability of our algorithm in scaling up to scenarios
with more drivers and orders, we conduct scalability experiments
using the Haikou dataset. We construct the 'double’ and ’triple’
datasets by sampling drivers and orders with replacements from the
original dataset. We compare our method with rule-based methods
and RLW, the best baseline in the Haikou dataset. As shown in
Table 4, our algorithm consistently outperforms the baseline across
different scales of drivers and orders. Therefore, our algorithm
demonstrates the capability in scaling up, indicating great potential
for deployment in real-world city-scale ride-hailing platforms.

4.7 Strategy Visualization

To intuitively understand the learned strategies, we visualize the
situations in New York after dispatching by RLM and CoopRide
in Figure 5. It illustrates that RLM results in a substantial supply-
demand gap, identified as the dark region in the lower left corner,
especially. Also, the dispatching strategies lack systematic coop-
eration among grids, where the correlations only concentrate on
neighboring grids. In contrast, our approach reduces this gap by
global cooperation, which correlates both nearby and distant grids,
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Table 4: Scalability performance. Each value denotes the mean and standard deviation over 5 repeated runs with different seeds.

In each column, the best results are highlighted in bold.

Dataset Scale Origin Double Triple
Metric Norm. GMV ORR Norm. GMV ORR Norm. GMV ORR
KM 113.67 +£0.14  57.12% £ 0.12% | 114.35+0.08  53.14% £ 0.05% | 114.49+0.07 56.09% + 0.06%
RLW 120.62 +0.14  61.49% +0.10% | 124.88£0.08  60.68% +0.05% | 121.70 £0.03  62.74% + 0.03%
CoopRide 124.71+£0.03 67.92% + 0.02% | 127.29 £0.06 69.09% + 0.06% | 124.24 +0.03 70.09% + 0.01%

balancing the distribution of drivers and orders. For detailed visual-
izations regarding more cities, please refer to Appendix A.4.
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Figure 5: Visualizations in New York after dispatching by
RLM and CoopRide. (a) (b) Gaps between supply and demand,
where grids with larger gaps exhibit darker color. (c) (d) Cross-
grid movements related to a representative grid, where lines
with darker color indicate larger volumes of movements.

5 Related Works

5.1 Ride-Hailing Dispatching

Ride-hailing dispatching is a long-standing research problem. Con-
ventional rule-based solutions [9, 12, 23] in ride-hailing systems
tackle the problem via expert experience, leading to sub-optimal
performance. Recently, the optimization of order dispatching has
been explored by applying RL methods [6, 7, 10, 13, 15, 24]. On the
one hand, some researchers apply RL for order dispatching by treat-
ing each driver as an independent agent [6]. On the other hand, it is
more typical to divide the city into grids and control the dispatching
in each grid with one grid agent, reducing the number of agents
and accelerating the learning progress [13, 15, 24]. However, the
above methods exclude reward signals that motivate the learning of
cooperation among agents, leading to greedy choices of each driver
or grid, which hinders the global benefit. To cope with this issue,
other researchers develop grid-based MARL approaches to asso-
ciate cooperation among neighboring agents [7, 10]. Different from
these existing studies, we investigate global cooperation among all
grid-agents in city-scale order dispatching, which maximizes the
effectiveness of the learned strategy.
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5.2 Multi-Agent Reinforcement Learning

Initial MARL methods directly put together multiple individual
agents to adapt to multi-agent settings, such as independent Q-
learning [28] and independent PPO [1]. The advanced MARL meth-
ods can be mainly categorized into two streams [36], value decom-
position (VD) and centralized training and decentralized execution
(CTDE). The VD methods [20, 25, 31] decompose the joint value
function to each individual agent, addressing the credit assignment
problem in multi-agent tasks, e.g. SMAC [21]. The CTDE frame-
work [4, 17] learns a centralized critic to optimize the decentralized
actors, which generate actions based on local observations.

When considering cooperation among agents, conventional MARL
algorithms simply sum up the agents’ local rewards to obtain the
cooperative reward [4]. Besides, various existing works utilize
the mean-field algorithm, which approximates high-dimensional
states with averaged vectors, to simplify the interactions among
agents [5, 35]. Different from them, we hire GNN to model the
interactions among agents, and we employ the meta-gradient tech-
nique [2, 33, 38] to automatically learn the cooperation intensity
among agents from a global view, thereby dynamically calculat-
ing the cooperative reward. Our designs ensure a more efficient
learning of global cooperation strategies.

6 Conclusions

In this paper, we propose the CoopRide framework that empow-
ers global cooperation among all grids in city-scale ride-hailing
dispatching. We model the cooperative interactions among agents
using graphs and design a GNN to extract valuable information
for decision-making. We create a uniform encoding mechanism
for within- and cross-grid dispatching, enabling flexible coopera-
tion balancing both types of actions. We also design a automatic
learning mechanism for the cooperation intensities among grids,
based on which we dynamically calculate the cooperative rewards
that drive the learning of global cooperation. We conducted ex-
tensive experiments and in-depth analyses on various real-world
datasets, proving the effectiveness of our method, which achieves
superior performance compared with baselines. Our work illus-
trates CoopRide’s great potential in practical applications, provid-
ing optimized dispatching strategies for ride-hailing platforms in
the real world.
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A Appendix
A.1 Training Algorithm

The training process of CoopRide is summarized in Algorithm 1.

Algorithm 1 Training algorithm of CoopRide.

Require: Environment, data buffer D, grid policy network my and

value network VC, cooperation intensity network ® and global
value network VO,

1: for iteration=1,...,ITER do
2 Clear buffer D.
3 Store current policy 7gota < 7.
4 fort=1,...T do
5: Sample a; from sy, observe r; and next states s;41.
6 Store (s;, az, Iy, S¢4+1) into buffer D.
7. end for
8.  Compute AE ,AC following (7) and (14) for all transitions.
9:  Compute rl.ct for all transitions in D with ®.
10 for epoch:’ 1,.., Kp do
11 Shuffle buffer D and slice it into mini-batches.
12: fori=1,..,Ndo
13: Update gy using the mini-batches following (9).
14: Update V€ minimizing ”rict + yVC(si’H.l) - Vc(si,t)”.
15: end for ’
16:  end for
172 forepoch =1,..,Kp do
18: Shuffle buffer D and slice it into mini-batches.
19: Update ® using the mini-batches following (16).
20: Update VC minimizing ||rtG +yVG(sta1) = VO (sp)]l.
21:  end for
22: end for

A.2 Implementation Details for Reproducibility

We perform experiments using Python 3.9 and Pytorch 2.1 with
NVIDIA GeForce RTX 3090 GPUs. Here, we provide detailed values
of the hyper-parameters used in the experiments for reproducibility
in Table 5. For more details, please refer to our open-source code at
https://github.com/tsinghua-fib-lab/CoopRide.
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Table 5: Implementation Details.

Hyper-parameter Notation Value
Network initialization - Orthogonal
Number of layers in GNN 2
Hidden state dimension of GNN - 64
Dimension of grid state representations - 64
Hidden state dimensions in MLPg - [128,128]
Number of layers in MLPg - 2
Hidden state dimensions in MLPg - [128,128]
Number of layers in MLPg - 2
Hidden state dimensions in ® - [128,128]
Number of layers in ® - 2
Dimension of uniform embeddings d 128
Learning rate of grid policy network g a le-3
Learning rate of grid value network V¢ o le-3
Learning rate of ® a le-3
Learning rate of global value network Vg o le-3
Mini batch size B 1000
Grid actors optimization epoch Ky 1
Cooperative intensities optimization epoch Ko 1
Optimizer - Adam
Optimizer epsilon le-5
Number of training steps - 0.2M
Discount factor Y 0.97
Gradient clip norm in PPO - 10
GAE in PPO A 0.95
Clip ratio in PPO € 0.2
Entropy coefficient in PPO - 0.005

A.3 Learning Curves

We show the changing and converging of normalized GMV during
the training process on different datasets in Figure 6. The curves
illustrate stable training process and good convergence of our

method.
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Figure 6: Changing and converging of normalized GMV dur-
ing the training process in (a) Haikou, (b) Chengdu, and (c)

New York.
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A.4 Extended Visualizations

In Figure 7, we visualize the situations in all three cities after dis-
patching by baseline methods and CoopRide. The visualizations
illustrate that the baseline methods all result in a substantial supply-
demand gap, identified as the dark regions. In contrast, our approach
reduces this gap by global cooperation.
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Figure 7: Gaps between supply and demand. (a)-(d) Haikou, (e)-(h) Chengdu, (i)-(I) New York. Grids with larger gaps exhibit
darker color.
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