
Modeling Persuasion Factor of User Decision for
Recommendation

Chang Liu
Chen Gao∗
Yuan Yuan

Department of Electronic
Engineering, Tsinghua University,

Beijing, China

Chen Bai
Lingrui Luo
Xiaoyi Du
Xinlei Shi

Hengliang Luo
Meituan Inc.,
Beijing, China

Depeng Jin
Yong Li

Department of Electronic
Engineering, Tsinghua University,

Beijing, China

ABSTRACT
In online information systems, users make decisions based on fac-
tors of several specific aspects, such as brand, price, etc. Existing
recommendation engines ignore the explicit modeling of these fac-
tors, leading to sub-optimal recommendation performance. In this
paper, we focus on the real-world scenario where these factors
can be explicitly captured (the users are exposed with decision
factor-based persuasion texts i.e., persuasion factors). Although it
allows us for explicit modeling of user-decision process, there are
critical challenges including the persuasion factor’s representation
learning and effect estimation, along with the data-sparsity prob-
lem. To address them, in this work, we present our POEM (short
for Persuasion factOr Effect Modeling) system. We first propose
the persuasion-factor graph convolutional layers for encoding and
learning representations from the persuasion-aware interaction
data. Then we develop a prediction layer that fully considers the
user sensitivity to the persuasion factors. Finally, to address the
data-sparsity issue, we propose a counterfactual learning-based
data augmentation method to enhance the supervision signal. Real-
world experiments demonstrate the effectiveness of our proposed
framework of modeling the effect of persuasion factors.

CCS CONCEPTS
• Information systems→ Information systems applications.

KEYWORDS
User Persuasion Factor; Recommender Systems; Graph Neural Net-
works; Counterfactual Learning
ACM Reference Format:
Chang Liu, Chen Gao, Yuan Yuan, Chen Bai, Lingrui Luo, Xiaoyi Du, Xinlei
Shi, Hengliang Luo, Depeng Jin, and Yong Li. 2022. Modeling Persuasion
Factor of User Decision for Recommendation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

∗Chen Gao is the corresponding author (chgao96@gmail.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539114

Figure 1: Example of persuasion factor (shown in red box).

’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539114

1 INTRODUCTION
Recommendation engines learn from behavioral history (i.e., user-
item interaction) and various features, including user profiles, item
attributes, and context, which is defined as feature-based recom-
mendation or click-through rate (CTR) prediction [4, 12, 16, 26, 42].
Typical solutions include shallow models such as FM [23], and deep
models such as DeepFM [7], AutoInt [25], etc. For example, FM [23]
exploits pairwise inner product for extracting second-order fea-
ture interactions; AutoInt [25] uses self-attention layers to capture
higher-order feature interactions.

Despite their effectiveness, these models usually work in an
implicit manner, ignoring the explicit modeling of how positive
behavior occurs. One of the main reasons is the lack of real-world
data which can be used to understand how users make decisions. In
the real world, the decision of a user is driven by several factors [37]
and the consumed item also matches several important aspects of
user preferences. For example, in restaurant recommendation sce-
nario, the aspects may include the taste of food, the environment
of the restaurant, the variety of dishes, the price, etc., which affect
the click behavior of users. When it comes to the hotel recommen-
dation, these factors may consist of location, environment, facility,
service quality, etc.

In China’s most popular local life service provider, Meituan, dur-
ing the process of recommending item to users, besides showing
their regular features like name, picture and rating, there is a text
message about the item that is relevant to one of aspects listed above,
and it is intended to urge consumers to click. As shown in Figure 1,
these texts are generated according to the above-mentioned aspects,
which provide us the opportunity of explicit modeling the user de-
cision process. For example, as for facility, there is a corresponding
"Full-equipped Facilities" text. Therefore, we define this kind of text

3366

https://doi.org/10.1145/3534678.3539114
https://doi.org/10.1145/3534678.3539114

KDD ’22, August 14–18, 2022, Washington, DC, USA. Chang Liu et al.

as persuasion factor. In this scenario, we can model the effect of
the persuasion factor on user decision, but however, there are still
three critical challenges as follows.

• First, the encoding and representation of persuasion fac-
tors are difficult. Different from users and items of which the
representations can be easily learned bymany effective ways, per-
suasion factors reflect more fine-grained user decisions. Besides,
they exert effects in a different way compared with attributes of
users and items and are not explicitly reflected by click behav-
iors. Therefore, how to encode persuasion factors and learn their
representations are challenging.
• Second, the effect of persuasion factor on users is com-
plex and heterogeneous. In fact, the specific user or item de-
termines whether the exposed persuasion factor could have an
influence. For example, some users will hardly be influenced by
the exposed texts, and they usually make decisions solely by
themselves. Therefore, simply using a persuasion factor-based
model may not be beneficial for them. In summary, the difference
in sensitivity among different users to persuasion factors is an
essential problem in modeling the effect of persuasion factors.
• Third, the historical data is always sparse. Compared with
normal user-item interaction data, the users’ behavioral log con-
taining exposed persuasion factors are usuallymore sparse, which
makes it more difficult to learn users’ preferences on them, thus
limiting the capability of modeling their effect on user decision.
Hence, it is essential to address the data sparsity issue.

Considering the above issues and challenges, in this work, we
propose a novel solution POEM (short for Persuasion factOr Effect
Modeling) to tackle these problems. Specifically, we first organize
users’ clicks on items under the influence of persuasion factors by
employing the form of graph, where users and items are nodes and
persuasion factors serve as edges. Then we utilize a graph convolu-
tional network to learn representations of users, items, and persua-
sion factors from the structured data. Following that, we present
a user-sensitivity-based prediction that can adaptively assess how
much persuasion factors are influencing users’ ultimate behavior.
As for the third challenge, we propose a counterfactual learning-
based data augmentation method that generates data according
to assumptions we make in the counterfactual world, which can
significantly address the data-sparsity issue. The working pipeline
of POEM is shown in Figure 2, using the features of users and
items, and persuasion factors in the dataset to generate recommen-
dations, while collecting new user behavioral data and adding it to
the dataset for future training. The main contributions of our work
can be summarized as follows.

• We take the pioneering step to approach the problem of modeling
the effect of persuasion factors on user decision for large-scale
recommendation in Meituan, which is an important problem in
real-world applications but has not been well explored.
• We propose a solution that first constructs a graph and deploys
graph convolutional layers to learn representations from the
graph. We further suggest adaptive user sensitivity-based pre-
diction and counterfactual learning to alleviate the data sparsity
problem.

Persuasion Factor
Effect Modeling
Persuasion Factor
Graph Construction

Information Propagation

Click-through Rate
Prediction

Feature Interactions

User-Item-Factor
Sensitivity Modeling

Downstream Real-world
Applications
Recommender

Systems

Online Advertisement

Attribute FeaturesID & Persuasion Factor

User

···

Dataset
Item Keywords Married Edu Gender City Star

Figure 2: Persuasion factor effect modeling application.

Table 1: Notation Table.

Notations Description
x Feature vector.

𝑢, 𝑖, 𝑡 User, item, persuasion factor.
𝑓 , 𝑁𝑓 Graph node, the neighbor of node 𝑓 .

𝑀,𝑁,𝑊 ,𝑄 The number of users, items, persuasion factors, fields.
E𝑢 , E𝑖 , E𝑡 Embedding matrix of users, items and persuasion factors.
e𝑢 , e𝑖 , e𝑡 Embedding of user, item and persuasion factor.

e(𝑖)
𝑓

The 𝑖-th layer embedding of graph nodes.

e(𝑖)
𝑁𝑓

The 𝑖-th layer information of the node 𝑓 ’s neighbors.

𝜔/W The attention weight/transition matrix.
Θ Trainable parameters.
_ 𝐿2 regularization hyperparameter.

O𝑓 /O𝑐𝑓 Factual/Counterfactual dataset.
O𝑐𝑓1/O𝑐𝑓2 Counterfactual dataset according to assumption 1/2.

• We collect two real-world datasets for evaluation and release
them to benefit the community. The extensive experimental re-
sults show the superiority of our proposed approach. Compared
with existing methods, our method makes significant improve-
ment on several metrics. In addition, we conduct ablation studies
to validate the efficacy of designs in our model. We also illustrate
the advantages of our model in terms of explainable recommen-
dations by modeling the effect of persuasion factors on user
decisions in large-scale recommendation scenarios.

2 PROBLEM FORMULATION
The feature-based recommendation (also known as click-through
rate (CTR) prediction) is formulated as predicting a binary target 𝑦
from a feature vector X, which is composed of the user profile and
item attributes. In this work, we innovatively propose to consider
the effect of persuasion factors on user decisions. Therefore, we
formulate our problem as follows:

• Input: The feature vector x𝑖 𝑗 ∈ R𝑛 of the 𝑖-th user and the 𝑗-th
item, and persuasion factor 𝑡 of the 𝑗-th item shown to the 𝑖-th
user.
• Output: The probability of the 𝑖-th user click on the 𝑗-th item,
i.e., 𝑦𝑖 𝑗 , under the condition of x𝑖 𝑗 and 𝑡 .

3367

Modeling Persuasion Factor of User Decision for Recommendation KDD ’22, August 14–18, 2022, Washington, DC, USA.

3 METHODOLOGY
Wepropose an effectivemethod entitled POEM (short for Persuasion
factOr Effect Modeling) to model the effect of persuasion factors
on user decisions. Figure 3 illustrates the holistic design of POEM,
which consists of three key components:
• Persuasion-factor Graph Convolutional Layer. We propose
to encode persuasion factors that influence users’ decisions, along
with users and items, as embeddings. In order to better learn rep-
resentations from the brand new form of data, which consists
of persuasion factors, we first construct a unified graph then
propose graph convolutional layers based on information propa-
gation.
• User-sensitivity Based Prediction. To tackle the heterogeneity
of users’ sensitivity to external influence, we propose tomodel the
sensitivity to persuasion factors for each user in the prediction
process.
• Signal-enhanced Counterfactual Learning. To address the
challenge of data sparsity, we propose a counterfactual learning-
based technique for data augmentation.

3.1 Persuasion-factor Graph Convolutional
Layer

3.1.1 Unified Embedding Layer. Suppose that we have𝑊 kinds
of disentangled and independent persuasion factors, for the 𝑖-th
persuasion factor, we define its one-hot vector as 𝑡𝑖 . We then project
its one-hot vector to latent embeddings, and the embedding matrix
of persuasion factors E𝑡 can be denoted as follows,

E𝑡 = [e𝑡1 ; e𝑡2 ; · · · ; e𝑡𝑊], (1)

where E𝑡 ∈ R𝑊 ×𝑑 and 𝑑 denotes the embedding size. Then the
embedding of the 𝑖-th persuasion factor can be denoted as e𝑡𝑖 = 𝑡𝑖E𝑡 .

Similarly, the one-hot vectors are 𝑢 𝑗 for the 𝑗-th user and 𝑖𝑘 for
the 𝑘-th item. Following the paradigm of existing recommendation
models [11, 15], we also represent users and items by embeddings,
which have the same embedding size 𝑑 as persuasion factors, for-
mulated as follows,

E𝑢 = [e𝑢1 ; e𝑢2 ; · · · ; e𝑢𝑀],
E𝑖 = [e𝑖1 ; e𝑖2 ; · · · ; e𝑖𝑁],

(2)

where e𝑢 𝑗
∈ R𝑑 and e𝑖𝑘 ∈ R𝑑 denote the embedding of the 𝑗-

th user and the 𝑘-th item, respectively. Here 𝑀/𝑁 denotes the
number of users/items. Following the similar rule, we compute
embeddings of the 𝑗-th user and the 𝑘-th item as e𝑢 𝑗

= 𝑢 𝑗E𝑢 ,
e𝑖𝑘 = 𝑖𝑘E𝑖 , respectively.

3.1.2 Graph convolutional layer. Persuasion factors reflect more
fine-grained user decisions. Besides, they exert effects in a differ-
ent way compared with attributes of users and items and are not
explicitly reflected by click behaviors. To address this problem, we
leverage representation learning [6, 18, 21, 29, 30, 40] based on the
graph to model psychological persuasion factors.

However, learning effective embeddings of persuasion factors
is not trivial. Here we propose a graph convolutional network
(GCN) [5, 9, 14]-based solution to facilitate the embedding learning.
Graph Construction We construct a heterogeneous graph to rep-
resent the user-item interaction affected by persuasion factors. The
graph contains two kinds of nodes (users and items) and multiple

edges (persuasion factors). Specifically, an edge 𝑡𝑘 is added between
user𝑢𝑖 and item 𝑖 𝑗 if the 𝑖-th user𝑢𝑖 clicks on the 𝑗-th item 𝑖 𝑗 under
the 𝑘-th persuasion factor 𝑡𝑘 . In this way, we are able to utilize
GCN to represent user-item interactions influenced by persuasion
factors, which is more efficient and explainable than conventional
feature interaction models.
Information Propagation As mentioned before, we characterize
the interaction between user 𝑢𝑖 and item 𝑖 𝑗 under persuasion factor
𝑡𝑘 as a triplet (𝑢𝑖 , 𝑡𝑘 , 𝑖 𝑗). In the real-world scenario, a user will click
on multiple items and an item will also be clicked by many users.
Therefore, a node in the graph can be contained in several triplets.
Taking 𝑖1

𝑡1←→ 𝑢1
𝑡2←→ 𝑖2 and 𝑖4

𝑡5←→ 𝑢1
𝑡2←→ 𝑖2 as an example,

𝑢1 combines information from 𝑖1 and 𝑖4 via 𝑡1 and 𝑡5, respectively,
and passes them to 𝑖2 as its neighbor, which can be simulated by
propagating information from 𝑖1 and 𝑖4 to 𝑖2, enriching its represen-
tation. Inspired by existing works [9, 14, 17, 27, 31?], we perform
information propagation between a node and its neighbors, which
is shown in Figure 4.

From the perspective of graph convolutional network, the em-
beddings of users and items defined in Equation (2) are also layer-0
node embeddings in the graph, which can be reformulated as:

E(0)𝑢 = [e(0)𝑢1 ; e
(0)
𝑢2 ; · · · ; e

(0)
𝑢𝑀],

E(0)
𝑖

= [e(0)
𝑖1

; e(0)
𝑖2

; · · · ; e(0)
𝑖𝑁
] .

(3)

Similarly, the embeddings of persuasion factors defined in Equa-
tion (1) are also edge embeddings in the graph. For a node 𝑓 in
the graph, N𝑓 = {(𝑡, 𝑏) | (𝑓 , 𝑡, 𝑏) ∈ G} denotes the set of triplets
where 𝑓 is involved. To represent the first-order connectivity of the
node 𝑓 , taking layer-0 as an example, the information from all its
neighbors can be formulated as

e(0)N𝑓
=

1
|N𝑓 |

∑︁
(𝑡,𝑏) ∈N𝑓

e𝑡 ⊙ e(0)
𝑏
. (4)

For simplicity, we omit the subscripts of nodes in Equation (4),
where e𝑡 is the embedding of persuasion factor 𝑡 , e(0)

𝑏
is the layer-0

embedding of node𝑏 (users or items), e(0)
𝑁𝑓

is the layer-0 information
of the neighbors of node 𝑓 . |N𝑓 | denotes the cardinality of the
neighbor triplet set N𝑓 .

To get the next layer representation of a node in the graph, we
aim to aggregate the information from its neighbor and its current
embedding. Formally, for the layer-1 embedding of node 𝑓 , we have

e(1)
𝑓

= 𝑓 (e(0)N𝑓
, e(0)
𝑓
), (5)

where 𝑓 (·) is the aggregation function.
For the implementation of function 𝑓 (·), we havemultiple choices,

inspired by the existing works [9, 14?] and considering the complex
effect from neighbors, we have:

𝑓 (e(0)N𝑓
, e(0)
𝑓
) = LeakyReLU(W1 (e(0)N𝑓

+ e(0)
𝑓
))

+LeakyReLU(W2 (e(0)N𝑓
| |e(0)
𝑓
))

(6)

where W1 and W2 are trainable transformation matrices.
Multi-layer Propagation Following the same rule, we can stack
more layers to capture the higher-order connectivity on the graph.

3368

KDD ’22, August 14–18, 2022, Washington, DC, USA. Chang Liu et al.

User-i ID

Item-j ID

Keywords of Persuasion Factor

ID & Persuasion Factor

Married: Yes

Gender: Male

Edu: Bachelor

Category: Hotel

Star rating: 4

···

Input

GCN
Encoder

Embedding
Layer

FM

MLP

FC FC FC

User-Factor-Item
Graph

Construction

Persuasion-factor Graph Convolutional Layer

Factor Embedding

ID Embedding

Features Embedding

MLP

FC FC FC

FM

Information Propagation

W
e
ig

h
te

d
S

u
m

Sigmoid

𝝎

ෝ𝒚𝒊𝒋
𝒕

ෝ𝒚𝒊𝒋
𝒇

ෝ𝒚

S-MLP

FC FC

User-sensitivity Based Prediction

Persuasion Factor
Influence Modeling Module

Feature Interaction ModuleAttribute Features

One-Hot
Encoder

Task A : persuasive
tactics identification

One-hot Vector

Figure 3: The persuasion-factor graph convolutional layer and user-sensitivity based prediction of our proposed model POEM.

𝒊𝟏 𝒊𝟐 𝒊𝟓……

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒓𝟏𝒓𝟏
𝒓𝟐

𝒓𝟐

𝒓𝟑

𝒓𝟐𝒊𝟏 𝒊𝟐 𝒊𝟓……

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒓𝟏𝒓𝟏
𝒓𝟐

𝒓𝟐

𝒓𝟑

𝒓𝟐

𝒖𝟏 𝒑𝟐 𝒑𝟓……

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒓𝟏𝒓𝟏
𝒓𝟐

𝒓𝟐

𝒓𝟑

𝒓𝟐
𝒖𝟏 𝒑𝟐 𝒑𝟓……

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒓𝟏𝒓𝟏
𝒓𝟐

𝒓𝟐

𝒓𝟑

𝒓𝟐𝒖𝟏 𝒖𝟐 𝒖𝟓……

𝒊𝟏 𝒊𝟐
𝒊𝟑

𝒕𝟑
𝒕𝟏

𝒕𝟒
𝒕𝟐

𝒊𝟒 𝒊𝟓 𝒊𝟗……

𝒖𝟏 𝒖𝟐 𝒖𝟑

𝒕𝟐𝒕𝟓
𝒕𝟑

𝒕𝟏
𝒕𝟑

Graph Convolutional Layer

𝒍 = 𝟏
𝒍 = 𝟐
𝒍 = 𝟑

𝒍 = 𝟏
𝒍 = 𝟐
𝒍 = 𝟑

𝒕𝟐

𝒕𝟐

Figure 4: A detailed illustration of information propagation.

For the 𝑙-th layer embedding of node 𝑓 , we can calculate it similarly
as follows,

e(𝑙−1)N𝑓
=

1
|N𝑓 |

∑︁
(𝑡,𝑏) ∈N𝑓

e𝑡 ⊙ e(𝑙−1)
𝑏

,

e(𝑙)
𝑓

= 𝑓 (e(𝑙−1)N𝑓
, e(𝑙−1)
𝑓
) .

(7)

Utilizing multi-hop propagation to capture high-order connections
also makes better use of the information from collaborative filtering,
which benefits the representation learning of nodes (users and
items) and edges (persuasion factors).

After propagating for 𝑙-layers, the representation of users, items
and persuasion factors can be formulated as

E(𝑙)𝑢 = [e(𝑙)𝑢1 , e
(𝑙)
𝑢2 , · · · , e

(𝑙)
𝑢𝑀],

E(𝑙)
𝑖

= [e(𝑙)
𝑖1
, e(𝑙)
𝑖2
, · · · , e(𝑙)

𝑖𝑁
],

E𝑡 = [e𝑡1 , e𝑡2 , · · · , e𝑡𝑊] .

(8)

In conclusion, graph convolutional network serves as an en-
coder for users, items, and persuasion factors in our model, where
information propagation significantly contributes to learning their
representations.

3.2 User-sensitivity Based Prediction
3.2.1 Base Model. We construct our base model with widely used
feature-based recommendation models [1, 2, 7, 11, 25]. It takes input

feature vector x = [x1, x2, · · · , x𝑄] and generates embedding for
the 𝑖-th field via

g𝑖 = x𝑖G𝑖 , (9)

where G𝑖 ∈ R𝐾𝑖×𝑑 denotes the embedding matrix of the 𝑖-th field,
𝐾𝑖 denotes the number of features in the 𝑖-th field and 𝑑 denotes
the embedding size. Overall embedding matrix of base model can
be formulated as

G = [G1;G2; · · · ;G𝑄] . (10)

Then we calculate the prediction score with𝐺 and other parameters
Θ of the model, formulated as

𝑦 = 𝜓 (x|G,Θ), (11)

where 𝑦 is the prediction score,𝜓 refers to the union of prediction
models such as FM [23] and MLP. The base model consists of three
modules: feature embedding layer, feature interaction layer and
MLP layer.

3.2.2 Prediction Module. We divide the prediction score into two
parts, one of which comes from feature interaction module and the
other from persuasion factor influence modeling module. Specifi-
cally, we treat user profile and item attributes as normal features
and put them into the feature interaction module, where IDs of user
and item are also involved as features. For prediction, the feature
interaction module consists of a base model. However, the user
and item ID embeddings are extracted from the graph convolu-
tional layer’s output rather than the feature embedding layer of
base model. We denote the prediction score between the 𝑖-th user
and the 𝑗-th item from the feature interaction module as 𝑦 𝑓

𝑖 𝑗
.

The persuasion factor influence modeling module also consists
of a base model without feature embedding layer independent
of the feature interaction module. Its input is the embedding of
user ID, item ID, and persuasion factor, extracted from the graph
convolutional layer. As mentioned before, persuasion factors reflect
more fine-grained user decisions and exert effects in a different
way compared with attributes of users and items. Therefore, before
using embeddings to perform high-order feature interactions, we

3369

Modeling Persuasion Factor of User Decision for Recommendation KDD ’22, August 14–18, 2022, Washington, DC, USA.

first conduct embedding projection for user and item, formulated as:

e
′
𝑢 = e(𝑙)𝑢 + 𝜎 (e

(𝑙)
𝑢 ⊙ e𝑡) ⊙ e(𝑙)𝑢 ,

e
′
𝑖 = e(𝑙)

𝑖
+ 𝜎 (e(𝑙)

𝑖
⊙ e𝑡) ⊙ e(𝑙)

𝑖
,

(12)

then the final representation of the user, item and persuasion factor
change to e

′
𝑢 , e

′
𝑖
and e𝑡 , respectively, and we input them to the

feature interaction layer and MLP layer of the persuasion factor
influence modeling module. Similarly, we denote the prediction
score between the 𝑖-th user and the 𝑗-th item from the persuasion
factor influence modeling module as 𝑦𝑡

𝑖 𝑗
.

3.2.3 Fusion Strategy. The effect of persuasion factors on user is
heterogeneous. Considering this situation, there is an exploiting
balance between prediction scores from two parts defined in Sec-
tion 3.2.2. Formally, the final prediction score between the 𝑖-th user
and the 𝑗-the item, i.e., 𝑦𝑖 𝑗 , can be formulated as follows:

𝑦𝑖 𝑗 = 𝜔𝑦
𝑡
𝑖 𝑗 + (1 − 𝜔)𝑦

𝑓

𝑖 𝑗
, (13)

where 𝜔 is a learnable weight, 𝜔 ∈ [0, 1] and 𝜔 ∈ R. 𝜔 can also be
seen as the sensitivity to persuasion factor of user 𝑢𝑖 when fixing
the item and the persuasion factor.

To adaptively learn the weight 𝜔 , we utilize a fully connected
layer and the sigmoid function to limit its scale. Specifically, 𝜔 of
the user 𝑢𝑖 under the 𝑗-th item and the 𝑘-th persuasion factor can
be formulated as:

𝜔 = 𝜎 (MLP(e(𝑙)𝑢𝑖 | |e
(𝑙)
𝑖 𝑗
| |e𝑡𝑘)), (14)

where we denote the MLP we use as S-MLP (short for Sensitivity-
MLP). The structure of S-MLP is a hyperparameter, 𝜎 (·) is sigmoid
function and e(𝑙)𝑢𝑖 , e(𝑙)

𝑖 𝑗
, e𝑡𝑘 denote the embeddings of the 𝑖-th user,

the 𝑗-th item, and the 𝑘-th persuasion factor extracted from graph
convolutional layer, respectively.

3.3 Signal-enhanced Counterfactual Learning
In real-world scenarios, the sparsity of exposed persuasion factors
hinders effective learning of users’ corresponding preferences. To
tackle this issue, we present a counterfactual learning-based data
augmentation technique to address this problem.

We define the treatment 𝑟 as whether a persuasion factor exists
and the outcome 𝑦 as whether a user will click on the item recom-
mended to him/her. If a persuasion factor exists, the decision of
the user to click may be influenced by it. Then we can denote the
outcome under 𝑟 = 0 as𝑦𝑟0 and the outcome under 𝑟 = 1 as𝑦𝑟1 . One
of the crucial causes of data sparsity is the absence of counterfactual
data. In the factual scenario, the persuasion factor can either exist
(𝑟 = 1) or not (𝑟 = 0), so we can only observe the outcome under the
treatment that has taken place. Then we denote the outcome we
observe in collected data as the factual outcome 𝑦𝑓 and unobserved
outcome in the opposite treatment as the counterfactual outcome
𝑦𝑐 𝑓 .

Inspired by in-depth analysis of the effect of persuasion factor
on user decision, we propose to solve the challenge from the root
by counterfactual data augmentation based on causal knowledge.
According to our analysis, we propose the following two reasonable
assumptions:

ASSUMPTION 1: If a user clicks on an item (𝑦𝑓 = 1) without
the existence of persuasion factor (𝑟 = 0), we assume that the user
will still be likely to click on the item (𝑦𝑐 𝑓 = 1) when a persuasion
factor matching the item exists (𝑟 = 1).
ASSUMPTION 2: If a user does not click on an item (𝑦𝑓 = 0) with
the existence of persuasion factor (𝑟 = 1), we assume that the user
will not click on the item (𝑦𝑐 𝑓 = 0) when the persuasion factor does
not exist (𝑟 = 0).

The click behavior matching the first assumption is more re-
lated to the intrinsic interests of users. If the persuasion factor were
exposed, it would enhance the possibility of clicking (i.e., the coun-
terfactual label is 1). The users matching the second assumption
will not click even if there is a persuasion factor, which means they
do not like the item. If the persuasion factor were removed, it would
further reduce the possibility of click (i.e., the counterfactual label is
0). Then we can generate counterfactual data based on the observed
dataset and assumptions, formulated as follows,

O𝑐 𝑓1 = {𝑦
(𝑢 𝑗 ,𝑖𝑘)
𝑐 𝑓

= 𝑦
(𝑢 𝑗 ,𝑖𝑘)
𝑟1 = 1|𝑦 (𝑢 𝑗 ,𝑖𝑘)

𝑓
= 𝑦
(𝑢 𝑗 ,𝑖𝑘)
𝑟0 = 1, (𝑢 𝑗 , 𝑖𝑘) ∈ O𝑓 },

O𝑐 𝑓2 = {𝑦
(𝑢 𝑗 ,𝑖𝑘)
𝑐 𝑓

= 𝑦
(𝑢 𝑗 ,𝑖𝑘)
𝑟0 = 0|𝑦 (𝑢 𝑗 ,𝑖𝑘)

𝑓
= 𝑦
(𝑢 𝑗 ,𝑖𝑘)
𝑟1 = 0, (𝑢 𝑗 , 𝑖𝑘) ∈ O𝑓 },

O𝑐 𝑓 = O𝑐 𝑓1 ∪ O𝑐 𝑓2 ,
(15)

where 𝑢 𝑗 and 𝑖𝑘 represent the 𝑗-th user and the 𝑘-th item in the
dataset. O𝑐 𝑓1 and O𝑐 𝑓2 represent the counterfactual datasets we
construct according to the two assumptions, O𝑐 𝑓 represents coun-
terfactual data and O𝑓 represents the factual data we observe. In
this way, we can obtain counterfactual labeled data, which well
addresses the data-sparsity problem and can be used for training to
improve model performance.

3.4 Model Optimization
To optimize the prediction of interactions between users and items,
our loss function is Log loss with 𝐿2 regularization to prevent over-
fitting, which is defined as follows:

L = − 1
𝑁

𝑁∑︁
𝑗=1
(𝑦 𝑗 𝑙𝑜𝑔(𝑦 𝑗) + (1 − 𝑦 𝑗)𝑙𝑜𝑔(1 − 𝑦 𝑗)) + _ | |Θ| |2, (16)

where 𝑦 𝑗 and 𝑦 𝑗 are ground truth and estimated CTR, respectively.
Here 𝑗 is the index of training instance, and 𝑁 is the number of
training samples. _ is the hyperparameter to control the 𝐿2 regu-
larization term. Θ represents all trainable parameters in our model,
including embeddings, weights of MLPs, attention weight 𝜔 , etc.,
and | | · | |2 denotes the 𝐿2-regularization term.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Dataset. We conduct our experiments on two million-scale
datasets collected in two time periods, from the real-world local
service-providing application Meituan, widely downloaded and
used in China. Most of the records in these datasets contain persua-
sion factors, which is an advantage that existing public datasets do
not have. To supply further research, we have released our datasets

3370

KDD ’22, August 14–18, 2022, Washington, DC, USA. Chang Liu et al.

Table 2: Statistics of two datasets.

Dataset-A Dataset-B
#Instance 5, 571, 683 5, 542, 104
#Users 2, 280, 880 2, 270, 021
#Items 109, 893 112, 335

#Type of persuasion factors 14 14
#Fields 14 14

to benefit the community1. The statistics of two utilized datasets
are reported in Table 2.
• Dataset-A. The dataset is collected fromMeituan, which consists
of exposure data during the users’ browsing for hotels. The labels
in the dataset indicate whether the user clicks the provided hotel
("1" for click). Each instance in the dataset also includes user-
profiles and item attributes, such as the age group, gender, hotel
category and star ratings. There are also persuasion factors in
some instances, which is significant for the modeling of their
effects.
• Dataset-B.Meituan also collects this dataset but in a different
time period, consisting of exposure data during the users’ brows-
ing for hotels. The feature fields of this dataset are similar to
Dataset-A, but it covers different users and items.

4.1.2 Baselines. To illustrate the effectiveness of POEM, we com-
pare the performance with other feature-based models which are
feasible to be deployed for real-world application. In baseline mod-
els, persuasion factors are treated as common features.
• LR is a linear regression model to combine all input features for
CTR prediction.
• NFM[11] introduces a Bi-Interaction Pooling layer to capture the
second-order feature interaction and replace the FM module. It
also contains a deep neural network to model high-order feature
interactions to enhance prediction performance.
• PNN [22] defines a product layer which exploits inner product
and outer product to capture high-order feature interactions.
• DeepFM [7] ensembles factorization machines and deep neural
networks to capture both low and high order feature interactions
to better fit the relationship between input features and labels.
• AutoInt [25] extends multi-head self-attentive network with
residual connections to capture the correlation between different
fields.
• DCN [28], i.e., DeepCrossNet, improves theWide part of Wide &
Deep [1] by using Cross Network to perform feature interactions,
which avoids manual feature selection.
• xDeepFM [15] includes a Compressed Interaction Network,
which produce high-order cross features by using outer product
of stacked feature matrix. The model combines the Compressed
Interaction Network and Deep Neural Networs for CTR predic-
tion.
• AFN [2] is capable to automatically learn the specific order of
high-order feature interactions, avoiding the huge computational
effort and weak correlation that may arise when constructing
high-order features.

4.1.3 Metrics. We adopt two widely-used and accepted metrics
in CTR prediction tasks, AUC (Area Under the ROC curve) and

1https://github.com/tsinghua-fib-lab/POEM.

Logloss (cross entropy). These two metrics evaluate model perfor-
mance through different perspectives.
• AUCmeasures the probability that a model will score a randomly
chosen positive item higher than a randomly chosen negative
item. It concerns more about the order of predicted instances,
reflecting the model’s capability to distinguish between positive
and negative samples.
• Logloss measures the distance between the predicted score and
true label for each instance. Our proposed method also aims to
minimize Logloss in Equation (16), so we also use it as a straight-
forward metric.
It is worth mentioning that a slightly higher AUC or lower

Logloss at 0.001-level is considered significant for recommendation
tasks, which is emphasized by many previous works [1, 7, 25, 28]. In
our real-world application scenarios in Meituan, a relatively small
improvement in offline datasets will lead to a much more significant
increasing on onlinemetrics, which has also been verified by Google
and many existing works [1, 7].

4.1.4 Implementation Details. We implement our model in Py-
Torch. We first shuffle each dataset and select the early 80% as the
training set, middle 10% as the validation set, and the last 10% as
the test set. For a fair comparison, the number of learnable parame-
ters should be the same in different models, so we empirically fix
the feature embedding size to 8 in all embedding-based methods.
Considering the relatively large data volume, we set the batch size
to 50000. For AutoInt [25], we use three interaction layers, and
the number of hidden units is 64. For each interaction layer, there
are two attention heads. For xDeepFM [15], we use two interac-
tion layers following the default settings. For AFN [2], we set the
number of hidden units of the logarithmic neuron to 128 for its bet-
ter performance. After all network structures are fixed, we deploy
a grid search to achieve optimal performance on our dataset. To
prevent models from overfitting, we also apply a grid search for
dropout rate in {0.0, 0.1, · · · , 0.8} for two datasets and find that it
has a limited effect on final results. We also adopt a careful grid
search of learning rate in {10−4, 10−3, 10−2} and the coefficient of
𝐿2 normalization in {10−5, 10−4, · · · , 10−1}. We use the Adam op-
timizer and Xavier initialization for model parameters. Moreover,
early stopping is used. We stop training when the validation per-
formance does not increase for two successive valid epochs. We
conduct several experiments on two dataset using different models
and obtained average experimental results with different random
seeds.

4.2 Overall Performance
We show the performance of all models in Table 3. From the exper-
imental data, we can conclude as follows.
• Our proposedmodel steadily achieves the best performance.
Our proposed model can achieve the highest AUC and the lowest
LogLoss on both datasets. Specifically, POEM improves over the
best baseline w.r.t. AUC by 0.0087, LogLoss by 0.0082 on Dataset-
A, and improves over w.r.t. AUC by 0.0070, LogLoss by 0.0162 on
Dataset-B. However, this is only compared to the numerically op-
timal value. According to Table 3, no baseline model can achieve
the best AUC and the best LogLoss simultaneously. If we consider
the model with the highest AUC as the best baseline, our model

3371

https://github.com/tsinghua-fib-lab/POEM

Modeling Persuasion Factor of User Decision for Recommendation KDD ’22, August 14–18, 2022, Washington, DC, USA.

Table 3: Overall performance comparison.

Model Dataset-A Dataset-B

AUC LogLoss AUC LogLoss
LR 0.5377 0.3216 0.5238 0.3029

NFM [11] 0.6342 0.3138 0.6327 0.3322
PNN [22] 0.6429 0.2816 0.6407 0.4052

DeepFM [7] 0.6359 0.3389 0.6327 0.3813
AutoInt [25] 0.6356 0.3617 0.6375 0.3583
DCN [28] 0.6435 0.3128 0.6389 0.3176

xDeepFM [15] 0.6414 0.3654 0.6444 0.2995
AFN [2] 0.6362 0.3001 0.6303 0.2931

POEM (Ours) 0.6522 0.2734 0.6514 0.2769
Imp. +0.0087 -0.0082 +0.0060 -0.0162

will improve over w.r.t. LogLoss by 0.0394 on Dataset-A, where
the best baseline is DCN. Our model improves over w.r.t. LogLoss
by 0.0226 on Dataset-B, where the best baseline is xDeepFM. If we
consider the model with the lowest LogLoss as the best baseline,
under this perspective, our model can improve over w.r.t. AUC by
0.0093 on Dataset-A, where the best baseline is PNN. Our model
improves over w.r.t. AUC by 0.0211 on Dataset-B, where the best
baseline is AFN.
• Necessity and significance of modeling the effect of per-
suasion factors on user decision. Compared with other rec-
ommendation models that treat persuasion factors as a common
feature, our model considers the specific influence of persuasion
factors on user-item interactions. POEM achieves the best per-
formance w.r.t. AUC and LogLoss by fine-grained modeling the
effect of persuasion factors from different perspectives.
• Failure to properly model the effect of persuasion factors
will have a relatively large impact on model performance.
On other widely-used benchmark datasets like Criteo, Avazu and
Movielens, AutoInt [25] and AFN [2] are relatively the best base-
lines. However, although they have a complex feature interaction
structure, they do not perform well on our dataset. On Dataset-A,
AFN cannot beat DCN. On Dataset-B, AFN also cannot perform
better than xDeepFM, w.r.t. AUC. The performance of AutoInt is
also not so outstanding on both datasets. These results indicate
that special designs are acquired to consider the effect of persua-
sion factors and utilizing only conventional feature interaction
structure may lead to sub-optimal results. Our model adopts a
graph convolutional network to explicitly represent the effect of
persuasion factors along with user-sensitivity based prediction
and counterfactual learning, which steadily achieves the best
performance.

4.3 Ablation Study
To further measure the role of each designed component, we per-
form several ablation experiments. Our proposed method POEM
contains four special designs: persuasion-factor graph convolu-
tional network, embedding projection, user-sensitivity based pre-
diction and signal-enhanced counterfactual learning. To study the
effectiveness of these designs, we remove these modules in turn to
verify their contribution to the model performance.

The experimental results on two datasets are reported in Figure 5.
We also present the specific results in Table 4 for visual comparison,

Table 4: Ablation Study for the designs of POEM.

Model Dataset-A Dataset-B

AUC LogLoss AUC LogLoss
POEM (Ours) 0.6522 0.2734 0.6514 0.2769
GCN𝑤/𝑜 0.6313 0.2875 0.6350 0.3007
Projection𝑤/𝑜 0.6518 0.2775 0.6459 0.2925
CF𝑤/𝑜 0.6494 0.3079 0.6448 0.2957
Sensitivity𝑤/𝑜 0.6480 0.2992 0.6438 0.2995

where GCN𝑤/𝑜 , Projection𝑤/𝑜 , Sensitivity𝑤/𝑜 and CF𝑤/𝑜 , denote
the removal of the four modules, respectively.

• Effectiveness of GCN Encoder. We compare the performance
between themodel with GCNEncoder for the embedding of users,
items and persuasion factors and the model only with Xavier
embedding initialization. The results show that the model with
GCN Encoder outperforms the other model w.r.t. AUC by 0.0209,
w.r.t. LogLoss by 0.0141 on Dataset-A, w.r.t. AUC by 0.0164, w.r.t.
LogLoss by 0.0238 on Dataset-B, which is a significant perfor-
mance drop according to existing works [1, 7, 25, 28]. By utilizing
GCN Encoder, we explicitly model the effect of persuasion factors
in the form of graph, and the idea of collaborative filtering is also
applied in the process of information propagation. In general,
GCN Encoder is an essential part of our proposed model.
• Effectiveness of Embedding Projection. Without embedding
projection, the performance on all metrics declines to a certain
degree. The results show that the model without embedding
projection decreases w.r.t. AUC by 0.0004, w.r.t. LogLoss by 0.0041
on Dataset-A, w.r.t. AUC by 0.0055, w.r.t. LogLoss by 0.0156 on
Dataset-B, which is relatively significant. It demonstrates the
importance of embedding projection in fine-grained modeling
the relations between user, item and persuasion factors.
• Effectiveness of Sensitivity Modeling. After compare our pro-
posed method with the model which has fixed attention weight,
we find that the proposed method performs better w.r.t. AUC
by 0.0042, w.r.t. LogLoss by 0.0258 on Dataset-A, w.r.t. AUC by
0.0076, w.r.t. LogLoss by 0.0226 on Dataset-B. The experimental
results verify our theory that the effect of persuasion factor is
complex and heterogeneous. Naive method will lead to signif-
icant decline on overall performance. It is essential to assign
individual attention weight for each data instance.
• Effectiveness of Counterfactual Learning. We compare the
performance between the model training with extra counterfac-
tual data and the model training with only original data. From
the results, we find that the model with counterfactual data aug-
mentation outperforms the model training only on original data
w.r.t. AUC by 0.0028 , w.r.t. LogLoss by 0.0345 on Dataset-A, w.r.t.
AUC by 0.0066, w.r.t. LogLoss by 0.0188 on Dataset-B. The signifi-
cant improvement in performance illustrates that counterfactual
learning-based data augmentation is a reasonably effective way
to address the data sparsity problem, contributing to modeling
the effect of persuasion factors.

4.4 Explainable Recommendation
Researchers and developers in the industry have been paying more
attention to the explainability of deep learning-based recommender

3372

KDD ’22, August 14–18, 2022, Washington, DC, USA. Chang Liu et al.

0.630

0.635

0.640

0.645

0.650

0.655

0.660

A
U

C

Proposed
w/o Projection
w/o CF
w/o Sensitivity
w/o GCN

(a) AUC on Dataset-A

0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

Lo
gL

os
s

Proposed
w/o Projection
w/o CF
w/o Sensitivity
w/o GCN

(b) LogLoss on Dataset-A

0.630

0.635

0.640

0.645

0.650

0.655

0.660

A
U

C

Proposed
w/o Projection
w/o CF
w/o Sensitivity
w/o GCN

(c) AUC on Dataset-B

0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

Lo
gL

os
s

Proposed
w/o Projection
w/o CF
w/o Sensitivity
w/o GCN

(d) LogLoss on Dataset-B

Figure 5: Ablation studies on two datasets.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Location
Facility
Roomtype
Food

(a) Layer-0 user embeddings

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Location
Facility
Roomtype
Food

(b) Layer-3 user embeddings

Figure 6: In-depth analysis for user embeddings using t-SNE.

systems in recent years [25], since more explainable models al-
low for more consistent performance. In this part, we use specific
case studies to illustrate that our model is explainable with respect
to prediction results. For the sake of simplicity, we will take the
performance of model on Dataset-A as the example.

For each user, we filter out his click records from the dataset,
while observing the persuasion factor conditions under which these
clicks occur. For instance, if the maximum amount of the user’s
clicks is from the presence of service persuasion factor, we regard
this user as a service-concern user. From this perspective, each user
can be regarded as concerned a certain kind of persuasion factor.
We want to investigate whether our model can learn the persuasion
factor that each user concerns, and distinguish difference prefer-
ences on persuasion factors between users. To solve this problem,
we conduct experiments by in-depth analysis for user embeddings.

We select four groups of users which concern about four types
of persuasion factors, location, facility, roomtype and food, in hotel
recommendation scenario, respectively. We use t-SNE to shrink
the embeddings of these users into 2-D plane. From Figure 6, we
find that before information propagation (layer-0 user embeddings),
the embeddings of four groups of users is randomly distributed
throughout the 2-D plane. However, after using the graph convolu-
tional layer, we can see that the embedding of users (layer-3 user
embeddings) who concern about the same type of persuasion factor
are almostly clustered together in 2-D spatial regions. We also find
that for users who concern about the same persuasion factor, the
embeddings are also not too close to each other in the 2-D plane. It
is explainable because, in addition to preference about persuasion
factors, users still vary in other features, leading to the difference
of their embeddings. Overall, our model is capable to express users’

preferences on persuasion factors, while also well reflecting the dif-
ferences among users, which is critical for better recommendation
performance.

5 RELATEDWORK
Click-through rate prediction. Click-through rate prediction is
of great importance for many Internet business companies that
provide services to users and it is also a significant research field
in recommender systems [13, 19, 23, 24, 38]. Deep neural networks
(DNN)-based CTR prediction [3, 33, 41] has become a paradigm
in this research area nowadays. A common approach is to embed
features to learnable dense vectors then use deep neural networks
for feature interactions. Qu et al. [22] introduce product layer before
DNN to perform complex and adequate feature interactions. He
et al. [11] replace product layer with bi-interaction pooling layer
for feature interactions, and Yang et al. [35] use field-aware and
attention mechanism to conduct feature interactions. However, a
significant disadvantages of using DNN for higher-order feature
interactions is implicit, and even the elements within the same field
embedding vector will influence each other. Then, other models [15,
25, 28] try to not rely on DNN but explicitly achieve finite-order
feature interactions to improve the performance.

In recent years, graph neural network (GNN) has been widely
noticed and utilized in the field of CTR prediction. Ying et al. [36]
combine random walks and graph convolutions to generate item
embeddings. Ouyang et al. [20] focus on cold-start ads and build
a graph to connect old and new ads and adaptively distill useful
information. Guo et al. [8] utilize dual graph embedding to alle-
viate feature sparsity and user behavior sparsity problem. He et
al. [10] build hypergraphs to yield modal-specific representations of
users and micro-videos to better capture user preferences. Besides,
we model the effect of persuasion factors on user decision with
GCN, which enables better model performance and much more
explainability.
Counterfactual learning-based data augmentation. Counter-
factual learning is an effective method to implement data augmen-
tation, which is a common way to address data sparsity problem.
Wang et al. [32] develop a counterfactual learning-based sampler
model to generate new user behavior sequences based on the ob-
served ones. Zhang et al. [39] model counterfactual data distri-
bution to identify noisy and indispensable behaviors and replace
dispensable and indispensable concepts within the original concept
behaviors. Xiong et al [34] investigate the influence of feature-level

3373

Modeling Persuasion Factor of User Decision for Recommendation KDD ’22, August 14–18, 2022, Washington, DC, USA.

interests on user decisions as well as augment training samples
by intervening the feature-level interests of users in a counterfac-
tual manner. In our work, we make reasonable assumptions about
user behaviors and utilize counterfactual learning to generate ef-
fective new training samples, which contributes a lot to overall
performance.

6 CONCLUSION
In this work, we handle recommendation from a brand new per-
spective, modeling the effect of persuasion factors, which has not
been well explored by existing works, and propose an effective
method POEM. We first build a graph where users and items are
nodes and persuasion factors are edges, then perform information
propagation by graph convolutional networks to learn their rep-
resentations. After that, considering the heterogeneity between
users and items, we present user-sensitivity based prediction. We
also propose a counterfactual-based data augmentation method
to alleviate data-sparsity problem. Extensive experiments verify
the effectiveness of our model and the effect of persuasion factors,
which is a new field that is worthy of further research.

ACKNOWLEDGMENT
This work is supported in part by National Key Research and Devel-
opment Program of China under 2020YFA0711403, and by National
Natural Science Foundation of China under 61972223, 61971267 and
U1936217. This work is also supported by Meituan.

REFERENCES
[1] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[2] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020. Adaptive
Factorization Network: Learning Adaptive-Order Feature Interactions.
arXiv:1909.03276 [cs.LG]

[3] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
youtube recommendations. In Recsys. 191–198.

[4] Yufei Feng, Fuyu Lv, Weichen Shen, MenghanWang, Fei Sun, Yu Zhu, and Keping
Yang. 2019. Deep session interest network for click-through rate prediction.
arXiv preprint arXiv:1905.06482 (2019).

[5] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, et al. 2021. Graph Neural
Networks for Recommender Systems: Challenges, Methods, and Directions. arXiv
preprint arXiv:2109.12843 (2021).

[6] Martin Grohe. 2020. word2vec, node2vec, graph2vec, x2vec: Towards a theory of
vector embeddings of structured data. In SIGMOD. 1–16.

[7] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[8] Wei Guo, Rong Su, Renhao Tan, Huifeng Guo, Yingxue Zhang, Zhirong Liu,
Ruiming Tang, and Xiuqiang He. 2021. Dual Graph enhanced Embedding Neural
Network for CTR Prediction. arXiv:2106.00314 [cs.IR]

[9] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1025–1035.

[10] Li He, Hongxu Chen, Dingxian Wang, Shoaib Jameel, Philip Yu, and Guandong
Xu. 2021. Click-Through Rate Prediction with Multi-Modal Hypergraphs. In
CIKM. 690–699.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. arXiv:1708.05031 [cs.IR]

[12] Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combining fea-
ture importance and bilinear feature interaction for click-through rate prediction.
In Recsys. 169–177.

[13] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware
factorization machines for CTR prediction. In Recsys. 43–50.

[14] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[15] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature inter-
actions for recommender systems. In SIGKDD. 1754–1763.

[16] Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang.
2019. Feature generation by convolutional neural network for click-through rate
prediction. InWWW. 1119–1129.

[17] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-aware
message-passing gcn for recommendation. InWWW. 1296–1305.

[18] Shang Liu,Wanli Gu, Gao Cong, and Fuzheng Zhang. 2020. Structural relationship
representation learning with graph embedding for personalized product search.
In CIKM. 915–924.

[19] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.
Ad click prediction: a view from the trenches. In SIGKDD. 1222–1230.

[20] Wentao Ouyang, Xiuwu Zhang, Shukui Ren, Li Li, Kun Zhang, Jinmei Luo, Zhaojie
Liu, and Yanlong Du. 2021. Learning Graph Meta Embeddings for Cold-Start Ads
in Click-Through Rate Prediction. In SIGIR.

[21] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. Pinnersage: Multi-modal user embedding framework
for recommendations at pinterest. In SIGKDD. 2311–2320.

[22] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In ICDM.
IEEE, 1149–1154.

[23] Steffen Rendle. 2010. Factorization machines. In ICDM. IEEE, 995–1000.
[24] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting

clicks: estimating the click-through rate for new ads. InWWW. 521–530.
[25] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,

and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In CIKM. 1161–1170.

[26] Zhulin Tao, Xiang Wang, Xiangnan He, Xianglin Huang, and Tat-Seng Chua.
2020. Hoafm: A high-order attentive factorization machine for CTR prediction.
Information Processing & Management 57, 6 (2020), 102076.

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[28] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In ADKDD. 1–7.

[29] Weiqing Wang, Hongzhi Yin, Xingzhong Du, Wen Hua, Yongjun Li, and Quoc
Viet Hung Nguyen. 2019. Online user representation learning across heteroge-
neous social networks. In SIGIR. 545–554.

[30] XiangWang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. 2018. Tem:
Tree-enhanced embedding model for explainable recommendation. In WWW.
1543–1552.

[31] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu,
Xiangnan He, and Tat-Seng Chua. 2021. Learning Intents behind Interactions
with Knowledge Graph for Recommendation. InWWW. 878–887.

[32] Zhenlei Wang, Jingsen Zhang, Hongteng Xu, Xu Chen, Yongfeng Zhang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. Counterfactual data-augmented se-
quential recommendation. In SIGIR. 347–356.

[33] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. InWSDM. 495–503.

[34] Kun Xiong, Wenwen Ye, Xu Chen, Yongfeng Zhang, Wayne Xin Zhao, Binbin
Hu, Zhiqiang Zhang, and Jun Zhou. 2021. Counterfactual Review-based Recom-
mendation. In CIKM. 2231–2240.

[35] Yi Yang, Baile Xu, Shaofeng Shen, Furao Shen, and Jian Zhao. 2020. Operation-
aware neural networks for user response prediction. Neural Networks 121 (2020),
161–168.

[36] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974–983.

[37] Yuan Yuan, Fengli Xu, Hancheng Cao, Guozhen Zhang, Pan Hui, Yong Li, and
Depeng Jin. 2021. Persuade to click: Context-aware persuasion model for online
textual advertisement. TKDE (2021).

[38] Li Zhang, Weichen Shen, Shijian Li, and Gang Pan. 2019. Field-aware Neural Fac-
torization Machine for Click-Through Rate Prediction. arXiv:1902.09096 [cs.LG]

[39] Shengyu Zhang, Dong Yao, Zhou Zhao, Tat-Seng Chua, and Fei Wu. 2021.
Causerec: Counterfactual user sequence synthesis for sequential recommen-
dation. In SIGIR. 367–377.

[40] Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, and
Lizhen Cui. 2020. Gcn-based user representation learning for unifying robust
recommendation and fraudster detection. In SIGIR. 689–698.

[41] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint deep modeling of users
and items using reviews for recommendation. InWSDM. 425–434.

[42] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In AAAI, Vol. 33. 5941–5948.

3374

https://arxiv.org/abs/1909.03276
https://arxiv.org/abs/2106.00314
https://arxiv.org/abs/1708.05031
https://arxiv.org/abs/1902.09096

KDD ’22, August 14–18, 2022, Washington, DC, USA. Chang Liu et al.

A APPENDIX FOR REPRODUCIBILITY
A.1 Additional Results of Case Study
For items, we can also deploy a similar approach to analyze their
embeddings. Assuming that the maximum amount of the clicks
belong to the item is under the presence of the environment per-
suasion factor, we regard this item as an environment-matching
item. We also select four groups of items which match four per-
suasion factors, facility, roomtype, soundproof and price. According
to the same analysis as user embeddings, we present the results
in Figure 7. From the results, our model also achieves a balance
between modeling the item persuasion factor matching relations
and its individual attributes.

A.2 Hyper-parameter Study
In this section, we explore the impact of different hyperparameters
on the proposed model for two datasets. The hyperparameters in-
clude the number of propagation layers, aggregator and Sensitivity-
MLP structure. Other hyperparameters such as node dropout rate
and message dropout rate also affect the performance of model
based on our further research, but we omit the results due to the
space limit.

A.2.1 Effect of the Number of Propagation Layers. We test the per-
formance of different numbers of propagation layers, also called
hops. Based on the existing works [9, 31?], we search for optimal
hops in {1, 2, 3, 4, 5, 6} to find the most suitable number of propaga-
tion layers. The results are shown in Figure 8.

From the results, we can find that our proposed model can
achieve relatively higher performance with three propagation lay-
ers w.r.t. a higher AUC and a lower LogLoss on Dataset-A, w.r.t. a
competitive AUC and much lower LogLoss on Dataset-B. Although
the model with two propagation layers achieves the highest AUC
on Dataset-B, but its performance of LogLoss is much worse. The
phenomenon about the effect of number of propagation layers
on model performance is understandable and explainable. If we
only have few propagation layers, only low-order connectivity, i.e.,
nearest neighbors, can contribute to information propagation, lim-
iting the amount of information. However, if we stack too many
propagation layers, the performance of our model can also be ad-
versely affected. Since the nodes in the graph obtain information
from its neighbors, too many propagation layers could make all
nodes aggregate information from almost all other nodes in the
graph, making embeddings of nodes indistinguishable, and this is
the over-smoothing of graph representations. Hence, considering
the need for information propagation and prevent from overfitting,
we empirically recommend to use three propagation layers.

A.2.2 Effect of Aggregator. We also analyze the influence of ag-
gregator on the performance of our model, just using one part of
our aggregation function (add or concatenate) and the results are
shown in Table 5. We find thatMixed Aggregator outperforms other
two aggregators significantly. Mixed Aggregator combines the ad-
vantages of the other two approaches for information aggregation,
so it should be a relatively better aggregator choice.

A.2.3 Effect of Sensitivity-MLP Structure. The structure of Sensitivity-
MLP contains three aspects: the number of neurons per layer, the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Facility
Roomtype
Soundproof
Price

(a) Layer-0 item embeddings

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Facility
Roomtype
Soundproof
Price

(b) Layer-3 item embeddings

Figure 7: In-depth analysis for item embeddings using t-SNE.

1 2 3 4 5 6
hops

0.637

0.640

0.642

0.645

0.647

0.650

0.652

A
U

C

Dataset - A
Dataset - B

(a) AUC

1 2 3 4 5 6
hops

0.275

0.280

0.285

0.290

0.295

0.300

Lo
gL

os
s

Dataset - A
Dataset - B

(b) LogLoss

Figure 8: Performance of different propagation layers.

Table 5: Performance of different aggregators.

Model Dataset-A Dataset-B

AUC LogLoss AUC LogLoss
Add 0.6491 0.2824 0.6471 0.2848
Concat 0.6495 0.2840 0.6476 0.2838
Mixed 0.6522 0.2734 0.6514 0.2769

depth of hidden layers and the shape of neural networks. They are
all hyperparameters that we need to adjust.
• Effect of the number of neurons per layer. We search the
number of neurons per layer in {64,128,256,512}. Increasing the
number of neurons per layer introduces more learnable param-
eters. We present model performance with different number of
neurons in Figure 9. Experimental results show that 64-128 neu-
rons are relatively better choices for two datasets. The reason is
that an overly complex model is prone to overfitting the training
data, which could explain the decrease of performance when the
number of neurons becomes large.
• Effect of the depth of hidden layers. We search the depth
of hidden layers in {2,3,4,5}, and show the results in Figure 10.
We find that our model can reach the best performance when
the hidden layer is shallow. As the hidden layers get deeper, the
model starts to behave worse. Specifically, two hidden layers are
appropriate choice for both datasets. This kind of phenomenon
is also due to overfitting.
• Effect of the shape of neural networks. Existing works [7]
point out that the shape of neural network has an impact on
the performance of the model. We test three different shapes of
networks: increasing, constant and decreasing network. During

3375

Modeling Persuasion Factor of User Decision for Recommendation KDD ’22, August 14–18, 2022, Washington, DC, USA.

64 128 256 512
Neurons

0.645

0.646

0.647

0.648

0.649

0.650

0.651

0.652

0.653

A
U

C

Dataset - A
Dataset - B

(a) AUC

64 128 256 512
Neurons

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

Lo
gL

os
s

Dataset - A
Dataset - B

(b) LogLoss

Figure 9: Performance of different neurons per layer.

2 3 4 5
Layers

0.644

0.646

0.648

0.650

0.652

A
U

C

Dataset - A
Dataset - B

(a) AUC

2 3 4 5
Layers

0.275

0.278

0.280

0.283

0.285

0.288

0.290

0.293

Lo
gL

os
s

Dataset - A
Dataset - B

(b) LogLoss

Figure 10: Performance of different depth of hidden layers.

Table 6: Performance of different neural network shapes.

Model Dataset-A Dataset-B

AUC LogLoss AUC LogLoss
Constant 0.6522 0.2734 0.6514 0.2769
Increasing 0.6483 0.2893 0.6515 0.2892
Decreasing 0.6505 0.2706 0.6497 0.2817

our test, we fix the number of hidden layers as two and the
number of total neurons as 128. Then the three kinds of network
shape are: increasing (32,96), constant (64,64) and decreasing
(96,32). As we can see in Table 6, the constant shape of neural
network achieves relatively better performance. However, we can
also know from the results that the decreasing shape of neural
network gets a lower LogLoss on Dataset-A than the constant
shape. Then these is a balance: if you are more concerned about
AUC (like ranking tasks), you should choose the constant network
shape. If a lower LogLoss is what you need (requires accuracy of
CTR prediction), then the decreasing network shape will meet
your demand without losing too much AUC.

3376

	Abstract
	1 Introduction
	2 PROBLEM FORMULATION
	3 Methodology
	3.1 Persuasion-factor Graph Convolutional Layer
	3.2 User-sensitivity Based Prediction
	3.3 Signal-enhanced Counterfactual Learning
	3.4 Model Optimization

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Performance
	4.3 Ablation Study
	4.4 Explainable Recommendation

	5 Related Work
	6 Conclusion
	References
	A APPENDIX FOR REPRODUCIBILITY
	A.1 Additional Results of Case Study
	A.2 Hyper-parameter Study

