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Spatial planning of urban communities  
via deep reinforcement learning

Yu Zheng    1,2, Yuming Lin1,2, Liang Zhao3, Tinghai Wu3, Depeng Jin1,2 & 
Yong Li    1,2 

Effective spatial planning of urban communities plays a critical role in the 
sustainable development of cities. Despite the convenience brought by 
geographic information systems and computer-aided design, determining 
the layout of land use and roads still heavily relies on human experts. Here 
we propose an artificial intelligence urban-planning model to generate 
spatial plans for urban communities. To overcome the difficulty of diverse 
and irregular urban geography, we construct a graph to describe the 
topology of cities in arbitrary forms and formulate urban planning as a 
sequential decision-making problem on the graph. To tackle the challenge 
of the vast solution space, we develop a reinforcement learning model based 
on graph neural networks. Experiments on both synthetic and real-world 
communities demonstrate that our computational model outperforms 
plans designed by human experts in objective metrics and that it can 
generate spatial plans responding to different circumstances and needs. 
We also propose a human–artificial intelligence collaborative workflow of 
urban planning, in which human designers can substantially benefit from 
our model to be more productive, generating more efficient spatial plans 
with much less time. Our method demonstrates the great potential of 
computational urban planning and paves the way for more explorations in 
leveraging computational methodologies to solve challenging real-world 
problems in urban science.

Urban communities have become centers of innovation, creativity and 
opportunity, attracting people from all walks of life who seek access 
to urban amenities, such as entertainment, education, healthcare 
and employment. Effective spatial planning of urban communities is  
crucial for economic activities and sustainable development of cities,  
playing an important role in shaping the way people interact with  
their environment and with each other, creating unique urban cultures 
and identities. Modern urban planning tends to be vehicle oriented, 
which favors centralized functionalities and automobile-dependent 
transportation, bringing many challenges to the urban life. Despite the 
severe traffic congestion problem, vehicular transportation accounts 

for about 72% of greenhouse gas emissions and over 70% of NO2 emis-
sions in urban areas, which increases the risk of climate change and 
harms residents’ health. In addition, the high car-dependency leads to 
inequality in accessing urban services1,2, such as education and medi-
cal care. Meanwhile, the COVID-19 pandemic since early 2020 also 
reveals the vulnerability of cities during lockdowns, which calls for 
more attention to local production and consumption within communi-
ties compared with traditional long-distance commuting3. Therefore, 
a transformation is anticipated in urban planning, shifting the focus 
from vehicle-oriented approaches to people-oriented ones. This change 
will emphasize local neighborhoods and promote a decentralized and 
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the topology level instead of geometry. Another major challenge of 
spatial planning is the huge solution space and the even larger accom-
panying action space. The action space for a moderate-size community 
can easily surpass 4,000100 (4,000 possible actions per step with 100 
steps in total for a community spatial plan), making exhaustive search 
infeasible. To reduce the action space, we train an AI agent consisting 
of one value network and two policy networks, which searches for 
decent planning strategies by efficient exploration and exploitation 
in the huge action space. Specifically, the value network predicts the 
quality of spatial plans based on the completion of the 15-minute-city 
concept, including the efficiency of transportation, service and ecol-
ogy. The other two policy networks are developed for the AI agent to 
select the locations for land use and roads, respectively. In this way, the 
action space is substantially narrowed down by sampling actions from 
the policy networks and estimating rewards with the value network. To 
obtain effective representations of urban geographic elements, we fur-
ther develop a graph neural network (GNN)-based state encoder29 that 
utilizes message propagation and neighbor aggregation on the urban 
contiguity graph, capturing the spatial relationship between land, road 
segments and junctions. This GNN state encoder is shared across the 
value network and policy networks to facilitate reward prediction and 
location selection. Finally, after massive trials and errors, the AI agent 
is trained to generate spatial plans that are much more efficient than 
those generated by human experts.

We demonstrate the effectiveness of our proposed DRL model 
through extensive experiments on spatial planning. Given the same 
initial conditions and planning constraints, our method substantially 
outperforms state-of-the-art algorithms and human experts, improv-
ing objective metrics on spatial efficiency by over 48.6%. Particularly, 
with existing real-world communities as initial conditions, our model 
can generate land-use renovation plans that remarkably improve resi-
dents’ accessibility to various facilities by over 18.5% compared with 
those generated by human experts. Considering the maturity and 
complexity of the current urban-planning approaches, it is critical 
to demonstrate the possibility that the proposed framework can col-
laborate well with human designers. Therefore, based on the presented 
DRL model, we propose a human–AI collaborative workflow in which 
human designers focus on conceptual prototyping and utilize our 
model to accomplish the heavy and time-consuming planning work. 
We demonstrate that human designers can benefit from the human–AI 
collaborative workflow, which outperforms the fully human-labor 
workflow in both objective planning metrics and subjective blind 
tests consisting of 100 professional human designers, with over 3,000 
times speedup on the time cost. Furthermore, we show that our model 
can learn universal planning skills from simple scenarios and leverage 
them to design in different styles for large-scale complicated planning 
tasks, such as the green community and the service community. Our 
model’s transferability and flexibility make it possible to automate the 
urban-planning process, which can greatly assist human designers and 
make them more productive.

Results
General spatial planning performance
We first demonstrate the fundamental spatial planning capability of 
the proposed DRL framework by comparing it with existing baseline 
methods, including rule-based heuristics and genetic algorithm (see 
Supplementary Sections 2.1 and 2.2 for details of the experimental 
setup and baseline methods, respectively), as shown in Table 1. We 
repeated the experiments five times and calculated the P value with t 
test, which illustrates the statistical significance of the improvements 
brought by our proposed model (Table 1). We experiment on both 
synthetic and real-world communities, with quantitative planning 
requirements, such as the area and the number of different land-use 
types (Methods). The synthetic scenario is a square community with a 
side length of 2.4 km under a 4 × 4 grid secondary road initial conditions 

efficient spatial layout. Notably, the concept of a 15-minute city has 
gained increasing popularity in both planning new urban communities 
and renovating existing ones4–8, depicting the future of urban planning 
in which residents can reach essential services within 15 min by walk-
ing or cycling4,9,10, which can substantially improve the accessibility, 
sustainability and equality of urban life.

The 15-minute city represents one of the current urban plan-
ning trends that call for layouts with high spatial efficiency within 
urban communities. As a long-standing engineering task in urbaniza-
tion, urban spatial planning has no general solution in practice, and 
it is often obtained by human designers through multiple rounds of 
analysis, discussion and iteration. To help reduce the heavy burden of 
human designers, spatial planning tools with large-scale data involved 
have been developed, from traditional spreadsheets to the introduc-
tion of geographic information system in the 1970s and to the recent 
advances in adopting artificial intelligence (AI) to perform urban 
analysis and site design. For example, AI helps in the generation of 
building layouts11 and architectural design12. In fact, researchers have 
been thinking of the automation of urban planning for decades13–17, 
and much effort has been made to release urban planners from tedi-
ous tasks, by designing mathematical and computational models for 
cities13–16 and developing planning support tools17. With these meth-
ods addressing the computational part of urban planning, human 
designers can concentrate on the more challenging tasks that require 
creativity and hard work, such as public engagement, land ownership 
and public rights of way. However, existing methods do not address 
the fundamental and challenging sub-task, the specific layout of land 
use and roads, which is more of a computational task, but still depends 
on the experiences and intuition of human experts, far from automa-
tion18,19. Considering current issues and future needs in urban plan-
ning, harnessing the powerful computing capabilities of AI for land use 
and road layout is attractive. First, because of insufficient experience, 
human intuition can be unreliable and suboptimal when optimizing 
multiple objective metrics in a huge solution space, for example, mini-
mizing the distance between various services and residential areas in a 
15-minute city. On the contrary, these quantifiable metrics can be well 
captured by computational AI approaches, especially deep reinforce-
ment learning (DRL) algorithms, which automatically learn from mil-
lions of trials interacting with an environment, gradually approach the 
optimal solution and obtain strategies beyond human ability. Second, 
generating spatial plans solely by human designers is time consuming, 
which takes several weeks of iterations for one single planning task, 
and consequently makes it impossible to meet the demands of rapid 
urbanization. Different from human designers, AI models are more 
generic and efficient. Specifically, well-trained models in one planning 
scenario can generalize to various other scenarios. Meanwhile, spatial 
plans can be obtained through fast model inference, which takes only a 
few milliseconds. Moreover, besides achieving notable performance in 
instant feedback-based decision tasks such as video games20, DRL21–24 
have achieved great success in similar episodic planning tasks that 
previously relied on human experiences and intuitions, such as the 
game of Go25, chemical synthesis26, solving math puzzles27 and chip 
design28. Therefore, utilizing computational AI models to generate 
spatial layouts can play a critical role in urban planning.

In this work, we propose a DRL-based urban-planning model capa-
ble of generating land use and road layouts for urban communities. 
Compared with chip design28 and the game of Go25, which have regular 
(grid) conditions, spatial planning is more challenging because of the 
existence of different forms of geometries. To tackle the diversity and 
irregularity of urban blocks, we propose an urban contiguity graph to 
describe the topology of urban geometries, with urban geographic ele-
ments as nodes and spatial contiguity as edges. The graph formulation 
allows us to capture the essential spatial relationship in any form of 
community. Consequently, we formulate spatial planning as a sequen-
tial decision-making problem on the graph and conduct planning at 
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(Extended Data Fig. 1). The real-world scenarios are two existing com-
munities, Huilongguan CP-02 (HLG) and Dahongmen (DHM) communi-
ties in Beijing, collected and processed from OpenStreetMap using the 
Python package OSMnx30 and geopandas. Both of the two real-world 
communities have an area of about 4 km2 (Fig. 1a and Supplementary 
Fig. 11a). To inspect the quality of the community plan, we evaluate 
the efficiency of the spatial layout according to the existing literature 
on service31, ecology32 and traffic33–35, which provide a comprehensive 
evaluation regarding the accessibility to basic urban services, the cover-
age of greenness and the efficiency and rationality of the road network. 
Specifically, ‘Service’ measures the layout efficiency of facilities that 

satisfy the different needs of residents (for example, offices, schools 
and hospitals satisfy the needs for work, education and medical care, 
respectively), and we calculate the proportion of facility categories 
that can be accessed within 15 min by walking or cycling. ‘Ecology’ 
focuses on the layout efficiency of parks and green open space, which 
reflects the residents’ physical and psychological needs for greenness, 
and the ecological coverage proportion is calculated as the metric. 
‘Traffic’ measures the efficiency of road transportation, which is a com-
bination of road density and connectivity (see details of the metrics 
in ‘Methods’). All three metrics are in the range of [0, 1] with larger 
values indicating better planning performance, although 1 may not be 
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Fig. 1 | Demonstration of community renovation and a 15-minute city.  
a, Community renovation. We replicate the roads, residential blocks and parks 
from a real-world community and leave other areas as vacant lands for renovation. 
The agent places different types of facilities to maximize the accessibility of 
service for residents in the community. Please refer to Supplementary Table 1 for 
the meanings of different colors. b, A 15-minute city, which means that five basic 
residential needs can be satisfied within 15 min by walking or cycling.  
c, Facility needs. We vary the needs for five different facilities (school, hospital, 
business, office and recreation) that correspond to the five basic services 

(education, medical care, shopping, working and entertainment). We investigate 
low needs (2 counts per facility), medium needs (4 counts per facility), high 
needs (8 counts per facility) and mixed needs (10, 5, 4, 8 and 3 counts for the five 
facilities, respectively). d, Service accessibility performance under different 
needs. We show the 15-min-circle index for the five basic services of the generated 
community plan under different facility needs. The radical value means the 
proportion of residential blocks that can access the corresponding service  
within 15 min.

Table 1 | Comparison with baseline methods

Method Synthetic grid Real-world HLG Real-world DHM

Service Ecology Traffic Service Ecology Service Ecology

Centralized 0.4514 0.6090 0.5199 0.5833 0.5178 0.5533 0.5562

Decentralized 0.4867 0.6624 0.5008 0.6000 0.5549 0.6067 0.5248

GSCA – – – 0.6100 0.4310 0.5355 0.4578

GA 0.5000 0.5008 0.6019 0.5700 0.6312 0.4333 0.5905

DRL with MLP 0.5625 0.7571 0.6857 0.6300 0.7061 0.6621 0.6104

Our method 0.6833** 0.9171** 0.9384** 0.7100* 0.7303* 0.7484** 0.8976**

Improvement over GA (%) 36.66 83.13 55.91 24.56 15.70 72.72 52.01

Improvement over DRL 
with MLP (%)

21.48 21.13 36.85 12.70 3.43 13.03 47.05

Bold values indicate the best performance. We conducted a one-sided t test to evaluate the statistical significance of the performance improvement. *P < 0.1; **P < 0.05
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attainable because of the limitations of the number of functionalities. 
For the synthetic grid community, our model goes through a full cycle 
of two stages, land-use planning and road planning, to accomplish the 
layout of both aspects, whereas for the real-world communities, we 
investigate the task of community renovation, in which the roads are 
already built and our model only needs to accomplish the first stage of 
land-use planning, which involves the layout of multiple facilities such 
as schools and hospitals. This setting is reasonable because rebuild-
ing the existing road network is also rare in actual urban renovation 
projects. Because the road network has not been modified, we do not 
report the traffic metric for real-world communities.

We first compare our model with two rule-based heuristics, cen-
tralized and decentralized approaches. From the results in Table 1, 
we can observe that the centralized heuristic is outperformed by our 
model in all three metrics: service from 0.6833 to 0.4514 (−33.94%), 
ecology from 0.9171 to 0.6090 (−33.60%) and traffic from 0.9384 
to 0.5199 (−44.60%) in the synthetic case; service from 0.7100 to 
0.5833 (−17.85%) and ecology from 0.7303 to 0.5178 (−29.10%) in the 
real-world HLG case; and service from 0.7484 to 0.5533 (−26.07%) and 
ecology from 0.8976 to 0.5562 (−38.03%) in the real-world DHM case, 
reflecting the drawbacks of the current urban-planning approaches 
that highly depend on long-distance transportation. Meanwhile, 
although the decentralized heuristic outperforms the traditional 
centralized method with respect to most metrics: service from 0.4514 
to 0.4867 (+7.82%) and ecology from 0.6090 to 0.6624 (+8.77%) 
in the synthetic case; service from 0.5833 to 0.6000 (+2.86%) and 
ecology from 0.5178 to 0.5549 (+7.16%) in the real-world HLG case; 
and service from 0.5533 to 0.6067 (+9.65%) and ecology from 0.5562 
to 0.5248 (−5.65%) in the real-world DHM case, it is still much worse 
than our DRL approach: service from 0.6833 to 0.4867 (−28.77%), 
ecology from 0.9171 to 0.6624 (−27.77%) and traffic from 0.9384 
to 0.5008 (−46.63%) in the synthetic case; service from 0.7100 to 
0.6000 (−15.49%) and ecology from 0.7303 to 0.5549 (−24.02%) in 
the real-world HLG case; and service from 0.7484 to 0.6067 (−18.93%) 
and ecology from 0.8976 to 0.5248 (−41.53%) in the real-world DHM 
case, indicating that handcrafted rules are inadequate to achieve an 
effective layout with optimal efficiency.

The above heuristics are based on fixed and non-optimizable 
rules, whereas results show that neither centralized nor decentralized 
rules may be optimal. Thus, we further include an optimizable baseline 
method based on the widely used genetic algorithm (GA). Results in 
Table 1 show that GA indeed outperforms the two rule-based heuris-
tics on traffic efficiency for the synthetic community with substantial 
relative improvements from 0.5008 to 0.6019 (+20.19%), showing the 
advantage of optimizable parameters over fixed density-first rules. 
However, the spatial efficiency of land use attained by GA is roughly 
the same as or even worse than the two heuristics, much worse than our 
DRL approach: service from 0.6833 to 0.5000 (−26.83%), ecology from 
0.9171 to 0.5008 (−45.39%) and traffic from 0.9384 to 0.6019 (−35.86%) 
for the synthetic community; service from 0.7100 to 0.5700 (−19.72%) 
and ecology from 0.7303 to 0.6312 (−13.57%) for the real-world HLG 
community; and service from 0.7484 to 0.4333 (−42.10%) and ecology 
from 0.8976 to 0.5905 (−34.21%) for the real-world DHM community. It 
is worthwhile to notice that GA is tested as a sub-module in the whole 
framework because it is difficult for GA to express the problem of 
block division. We also include a geometric set-coverage model with 
adaptions for single-step planning (GSCA). However, as the planning 
conditions are dynamically changing with newly planned land use, 
the geometric set-coverage approximation cannot capture well the 
long-term spatial efficiency, with its performance similar to the GA and 
rule-based heuristics, substantially outperformed by DRL approaches. 
The results illustrate the intrinsic complexity of the planning task, 
as well as the necessity of parametric value estimation and effective 
exploration in a reduced action space, which is accomplished in the 
proposed DRL framework.

To verify the effectiveness of our designed graph model and GNN, 
we introduce another DRL baseline that replaces the GNN with a multi-
layer perceptron (MLP) model. Results in Table 1 show that GNN plays an 
essential role, improving the efficiency of spatial layout substantially: 
service from 0.5625 to 0.6833 (+21.5%), ecology from 0.7571 to 0.9171 
(+21.1%) and traffic from 0.6857 to 0.9384 (+36.9%) for the synthetic 
community; service from 0.6300 to 0.7100 (+12.7%) and ecology from 
0.7061 to 0.7303 (+3.4%) for the real-world HLG community; and service 
from 0.6621 to 0.7484 (+13.0%) and ecology from 0.6104 to 0.8976 
(+47.1%) for the real-world DHM community. The spatial relationship 
between different geographic elements (lands, roads and junctions) 
directly reflects the actual planning performance, such as the contigu-
ity between residential areas and facilities. In our framework, we use 
GNN to capture such relationships, and the message-passing mecha-
nisms in GNN effectively extract the neighborhood information for 
each node. Therefore, the obtained embedded representations from 
GNN summarize well the current planning conditions and efficiency, 
which benefits the training of better value prediction and policy opti-
mization. Please refer to Supplementary Section 2.3 for details on the 
comparison with baseline methods. Meanwhile, the number of GNN 
layers and the dimension of node embedding also play important 
roles in the planning performance: for example, too many GNN layers 
can lead to over-smoothing but too few may exhibit limited ability in 
capturing topological information (see the detailed hyper-parameter 
study in Supplementary Section 2.8).

Demonstration of planning a 15-minute city
The 15-minute city means that most residential needs can be satis-
fied within 15 min by walking or cycling (Fig. 1b), which will reduce the 
dependency on vehicular transportation and achieve a more accessible, 
equitable, low-carbon and resilient city. As shown in Fig. 1a, we reno-
vate the real-world HLG community to make it fit the 15-minute-city 
concept. In other words, with existing residential blocks fixed, our 
agent can generate spatial plans of various facilities to improve the 
layout efficiency of the community. In our framework, we set up mul-
tiple land-use types corresponding to residential needs, for example, 
office, business, school, hospital and recreation for working, shopping, 
education, medical care and entertainment. In 15-minute-city planning, 
our model lays out these functional land-use types in a more decentral-
ized way, such that various facilities are within walking distance from 
existing residential blocks. To evaluate the service accessibility, we 
calculate the number of residential blocks that are less than 500 m 
from a corresponding facility for each of the five service types, as an 
indicator for satisfying the service need within 15 min.

The effect of the 15-minute city is closely related to the needs of 
facilities, that is, requirements on the amount of different land-use 
types. We set the planning needs as predefined configurations of the 
environment in our framework because it is usually determined by a 
broader class of elements such as demographic, economic, social and 
public demand. The DRL agent will generate spatial plans that maximize 
the spatial efficiency under all these requirements. We investigate 
community renovation with different facility needs, including low, 
medium, high and a mixed needs of five land-use types, as shown in 
Fig. 1c. Specifically, we utilize a pretrained model of our framework and 
generate community renovation plans through direct model inference 
under new planning requirements without fine-tuning. Figure 1d shows 
the proportion of residential blocks that can satisfy five basic services 
within 15 min. With a low need of facilities, the accessibility of service 
is limited, with only about 30% of the residential blocks achieving the 
15-minute-city goal. After increasing the needs of facilities from 2 to 4 
(medium), service accessibility improves effectively, and an average of 
55% of communities reaches the goal of the 15-minute city. In addition, 
the gain from further increasing the needs (high) tends to diminish, 
for example, the proportion of communities that can reach recreation 
sites for entertainment only increases from 65% to 70%. Meanwhile, 
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the renovation planning requirements for different communities 
vary, such as higher demand for schools and offices in communities 
with more young residents (mix in Fig. 1c). The corresponding results 
in Fig. 1d demonstrate our framework’s ability to design a community 
according to customized requirements, in which education and work 
are more accessible. In real-world scenarios, the needs of different 
services vary depending on economic constraints or political realities, 
and our framework is flexible in generating spatial plans of different 
service requirements (see results on the other DHM community in 
Supplementary Section 2.5).

Demonstration of model transferability
With varying objectives, requirements and initial conditions, commu-
nity spatial planning tends to have quite different goals, which requires 
the planning model to be able to transfer between different planning 
tasks. Specifically, the transferability makes it possible to first obtain a 
decent pretrained model under moderate scale and simplified condi-
tions, and then adapt the pretrained model to much more complicated 
planning scenarios, which can substantially reduce the time cost of 
model training. In previous experiments of the 15-minute city, we show 
that our DRL model can achieve successful transfer between different 
planning needs of the same community (Fig. 1c,d), by conducting direct 
model inference with different service-facility supplies. We now further 
investigate two more challenging settings to study the transferability 
of our model, which are transfer from small to large scale and transfer 
from simple to complex scenario (Supplementary Section 2.6).

As we focus on community-level spatial planning, which usually 
concerns an area of a few square kilometers and a side length of less 

than 3 km (ref. 36), we investigate how our model transfers between 
different scales of synthetic grid communities, from a small commu-
nity of 3 × 3 blocks (about 3 km2) to a large community of 4 × 4 blocks 
(about 6 km2), with a doubled decision-sequence length. Figure 2a 
shows the performance of the above transfer process. Training from a 
pretrained model achieves much better spatial efficiency than training 
a new model from scratch, making a relative progress of about 7.95% in 
the service metric and improving the ecology metric by about 4.57%. 
The improvements are substantial and stable, as shown by the small 
error bars in Fig. 2a. We also illustrate the convergence curves of the 
two models in Fig. 2b, in which the pretrained model starts from a 
much higher reward and adapts to the larger-scale community with a 
better final performance. It is worth noting that transferring to even 
larger scales is technically possible; however, the expanded area will 
go beyond the focus of a community-level planning task and involves 
much more complicated factors.

The results of transferring between different forms of communi-
ties are similar. Figure 2c demonstrates the performance of transfer-
ring from the simple grid scenario to the complicated real-world HLG 
community renovation scenario. Training from a pretrained model 
achieves a substantially higher service metric with relative progress of 
about 4.69%, and the ecology metric is also better than training from 
scratch by about 4.63%. The convergence plot in Fig. 2d also shows that 
the pretrained model starts from a higher position (+12.5% episodic 
reward) and ends with much better performance (+13.8% episodic 
reward) than the randomly initialized model. The above experiments 
verify that our model can learn universal skills for improving spatial 
layout efficiency from small-scale and simple spatial planning tasks, 
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Fig. 2 | Demonstration of transferring pretrained models to different spatial 
planning tasks. a,b, Transfer between different community scales, from a small 
grid community with 3 × 3 blocks to a large grid community with 4 × 4 blocks.  
a, Service and ecology performance for training from the pretrained model 
versus training from scratch. The bar chart shows the average performance over 
five repeated experiments and the dots indicate individual performance of each 
experiment. The error bars show the maximum and minimum metric values 
of the five repeated experiments. b, The convergence plot of the two models. 

c,d, Transfer between different community forms, from simple synthetic grid 
community with 3 × 3 blocks to the complicated real-world community in  
Fig. 1a. c, Service and ecology performance for training from the pretrained 
model versus training from scratch. The bar chart shows the average 
performance over five repeated experiments and the dots indicate individual 
performance of each experiment. The error bars show the maximum and 
minimum metric values of the five repeated experiments. d, The convergence 
plot of the two models.
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and such skills can be successfully transferred to different spatial plan-
ning tasks that are much larger and more complicated.

Generating plans of different styles
There is no one-size-fits-all design in urban planning, and different 
planning styles essentially influence urban activities in the planned 
city37. Thus, it is of vital importance for urban-planning models to be 
able to generate multiple candidate plans in different styles for selec-
tion. Particularly, spatial planning for communities can be oriented 
differently for the sustainable development of cities38–40. For example, 
service-oriented planning emphasizes the accessibility of urban ser-
vices and results in a life-circle community. Ecology-oriented planning 
emphasizes the coverage of parks and green space and leads to a green 
community. Meanwhile, communities can have sparse or dense road 
networks and show different accessibility. We now demonstrate the 
capability of our framework in generating community plans of dif-
ferent styles.

We first investigate community renovation with different land-
use settings. We adjust the planning requirements, increasing the 
number of facilities in life-circle-community planning and the number 
of parks in green-community planning. In addition, we also adapt the 
reward weight, α in equation (1), to emphasize different aspects, with 
higher service weight (α = 2.0) for life-circle-community planning and 
lower service weight (α = 0.5) for green-community planning. Figure 3a 
shows the performance with respect to service and ecology for the two 
generated spatial plans. The planned life-circle community achieves 
0.71 in service, 65.1% higher than that achieved by the planned green 
community that conversely achieves much better (+48.3%) ecology 
value. Figure 3b illustrates the two generated spatial plans, in which our 
framework lay outs facilities dispersively for the life-circle community 
and places parks evenly for the green community, demonstrating the 
ability of our framework to design for different land-use settings (see 
Supplementary Section 2.8 for more results on reward weight).

We then study different forms of road planning in the synthetic 
grid community. Our framework can easily generate sparser or 
denser road networks by varying the total number of steps in the 
road planning task, that is, changing the termination step to decide 
how many land-use boundaries are selected and built into roads by 
the agent. We set the total number of steps as 40%, 60% and 80% of 
the feasible candidates (land-use boundaries), respectively. Figure 3c  
shows the density and connectivity of the generated road plans 
under different proportions. Our framework generates road plans 
of different densities according to planning needs, that is, denser 
roads with a larger number of planning steps, and ensures optimal 
connectivity (1.0) in all cases. As shown in Fig. 3d, in both sparse 
(40%) and dense (80%) road plans, the generated road networks 
contain only one connected component and no dead-end road. 
All these results demonstrate that our framework can generate  
spatial plans of different styles in both land-use attributes and  
road density.

Comparison and collaboration with professional human 
designers
We have demonstrated the advantage of our DRL framework in opti-
mizing spatial efficiency over rule-based heuristics and GAs. One natu-
ral question is how the framework performs compared with human 
designers, because most of the urban plans are accomplished by  
human designers currently. Therefore, we invited eight professional 
and experienced urban planners (see Supplementary Table 4 for infor-
mation on invited planners) to conduct the real-world HLG and DHM 
community spatial planning tasks and evaluated their performance. 
These experts were given the same initial conditions and planning 
requirements as our DRL model, and we evaluated the same two effi-
ciency metrics, service and ecology. Figure 4a,b shows the planning 
performance on two communities, and we can observe that compared 
with human planners with many years of experience, our DRL model still 
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has a substantial advantage in searching for higher spatial efficiency, 
achieving Pareto optimal against all eight human designers in both 
communities. Specifically, the DRL model improves service and ecol-
ogy efficiency by 13.6% and 15.4%, respectively, against the best human 
designer in the DHM community, and improvements against the human 
average are larger, surpassing 15.38% and 59.65% in service and ecology 
efficiency, respectively. Notably, our model achieves more balanced 
performance on the efficiency of different facilities; for example, the 
DRL model attains the best accessibility in three out of the five different 
basic residential needs for the DHM community (see Supplementary 
Figs. 5 and 6 and Supplementary Section 2.4 for details on comparison 
with professional human designers).

With the better performance of optimizing spatial efficiency, 
our AI model can help liberate human designers from heavy planning 
work and improve their productivity. Because human designers are 
good at conceptual prototyping and AI performs well in searching a 
large solution space, we propose a human–AI collaborative workflow 
(Supplementary Fig. 7a). In this workflow, human designers generate 
conceptual plans through centers and axes (Supplementary Fig. 7b)  
that are fed to AI models and make adjustments to the spatial plans 
generated by AI (see ‘Methods’ for details on the human–AI work-
flow). We compare this human–AI collaborative workflow with a  
fully human-labor workflow in objective efficiency metrics, sub-
jective blind tests and time cost. Results show that the human–AI  
collaboration can substantially reduce the time consumption of 
planning without compromising but even improving the objective 
efficiency metrics (Supplementary Table 5). For example, in the 
DHM community, the human–AI collaborative workflow achieves 
Pareto optimal in service and ecology, improving their efficiency by 
12.3% and 5.0%, respectively. Meanwhile, the time cost for AI (<1 s) to 

generate spatial plans is 3,000 times less than that for human design-
ers (50–100 min). Nevertheless, it only takes about 2 days to obtain 
a well-trained AI model, which is much less than years for training a 
human designer.

Conversely, subjective judgments of spatial plans that cannot be 
easily quantified exist, for example, creativity, systemicity or targeted-
ness41,42. Thus, we invited 100 post-graduate-level human designers to 
participate in a blind test. In this test, they were asked to choose from 
two spatial plans based on personal experience and preference while 
unaware of whether the spatial plans are generated by human designers 
or AI (ten groups of two spatial plans, see Supplementary Fig. 8 for the 
blind test). Figure 4c,d shows the votes received by human designers 
and our DRL model; participants do not show clear preference in most 
cases, but AI wins substantially more votes in several spatial plans (G2 
and G3 for HLG community). Through objective metric evaluation and 
subjective blind test, we demonstrate the feasibility of improving the 
productivity of human designers by collaboration with our proposed 
AI framework (see Supplementary Section 2.9 for details on the results 
of human–AI workflow).

It is worth noting that the proposed AI framework is not a replace-
ment for human planners but a supporting tool to increase their pro-
ductivity. In the above human–AI collaborative workflow, we take out 
the tedious computational work and leave it to the AI, allowing human 
planners to focus more on conceptual work, such as generating suitable 
axes and centers at the beginning. Furthermore, updating planning 
principles and ideas along with the continuous advancement of urban 
science requires the substantial participation of human planners. We 
regard cities as the masterpiece of human intelligence, and with the 
development of AI technology, humans will play a more critical role 
in creating a sustainable urban life.
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Discussion
With urban planning being a long-standing problem, researchers have 
devoted decades of efforts to developing computational models and 
supporting tools for it in order to automate its process13–17. Human 
urban planners are now several orders of magnitude more productive 
with geographic information system tools than they were decades ago, 
yet tedious layout tasks still need to be done manually. In our study, 
we demonstrate the potential of data-driven methods in urban plan-
ning, a task that previously relied heavily on human experiences and 
intuitions. In particular, our model can achieve much better planning 
performance as the training data increases. Because of the limitation of 
computational resources, we only collect training samples (interactions 
with the environment) in parallel using multiple threads on a single 
server and train the neural networks on a single graphics processing 
unit (GPU). In our experiments, we collect a million-scale dataset for 
each community, and the training lasts for about 48 h (Supplemen-
tary Section 2.7). Even though the number of generated spatial plans 
exceeds 1 million, it is still not large enough compared with the datasets 
leveraged in similar DRL-based tasks such as Go playing25 and chip 
design28. Efforts could be made to further increase the data volume to 
train our model, for example, to collect planning episodic samples on 
distributed clusters and train the model with multiple GPUs. It is worth 
noting that the decomposed three sub-spaces (what to plan, where to 
plan and how to plan) may be jointly optimized by the agent; however, 
the problem will become much more complicated and require much 
more training samples. Moreover, the what to plan part can be extended 
to include other important elements regarding urban sustainability, 
such as public transport routes and stations. Furthermore, different 
functionalities can be considered and planned simultaneously to better 
capture their synergies.

Despite the objective metrics and subjective concepts that have 
been incorporated into our framework, spatial planning also involves 
other subjective evaluation metrics such as esthetic and artistic scores, 
which can be further included in our framework. For example, some 
recent works43,44 have investigated training DRL models to meet human 
preferences or to align with human values. Meanwhile, it is worthwhile 
to notice that our current framework is guided mainly by static metrics 
and can generate community plans with high spatial efficiency. Beyond 
static planning based on spatial efficiency indicators, our framework 
can have major impacts when combined with a city simulator or a 
digital twin city via hierarchical multi-agent reinforcement learning45, 
enabling a complete cycle of city-wide planning, construction and 
development, through optimizing spatial layouts based on dynamic 
evolutionary results such as simulated pedestrian and vehicular  
traffic flow46.

In addition, this study provides a reference model for data-driven 
urban planning, whose technical framework may be extended from the 
community level to the entire city. However, scaling the method to the 
city level requires a substantial increase in training samples collected 
from distributed clusters, as well as larger neural networks trained 
with multiple GPUs on multiple servers. Additionally, planning for an 
entire city is a much more complex task, with diverse goals that include 
economic growth and resident health. Evaluating the impact of a city-
level plan through a few static metrics is nearly impossible. Therefore, a 
city simulator can be used to comprehensively compare different plans 
and provide effective feedback to the planning model. The proposed 
method can serve as a starting point for automated planning at a larger 
scale, paving the way for a bright future.

Our experimental results demonstrate that generating spatial 
plans through DRL is viable and effective and can be flexibly adjusted 
to various planning concepts and styles. Practical urban planning 
can be much more complicated because of the tendency for various 
constraints and rules. For example, business zones are better to be 
placed near subway stations to maximize their economic benefits and 
schools should not be too narrow to fit the playground. In most of our 

experiments, we disregarded these hundreds of rules to investigate 
spatial planning in a relatively clean and concise setting. In addition, 
critical issues regarding land ownership, public rights of way, urban 
segregation and gentrification need to be considered in real-world 
urban planning. Fortunately, with necessary and reasonable adapta-
tions, our proposed approach can well handle these rules and political 
realities of decision-making in practical planning. For instance, these 
experiential rules can be easily integrated into our framework by add-
ing action masks. Moreover, our framework can generate spatial plans 
that are fully consistent with planning rules from practical realities 
without damaging spatial efficiency (Supplementary Section 2.10 
for details).

A spatial layout is a combinatorial result of both human creativity 
and strategic planning, in which it is always indispensable for human 
designers to provide initial conceptual insights. The presented model 
we develop is by no means a replacement for human designers but 
rather serves as an assistant for them. Human designers and AI models 
have distinct specialties in synthesizing conceptual prototypes and 
optimizing spatial efficiency, and we demonstrate a possible simple 
way of human–AI collaboration. In our experiments, we show that the 
AI model completes the complex and tedious planning work on the 
initial conceptual blueprints provided by human designers, which 
greatly automates spatial planning and substantially increases the 
productivity of human designers. By showcasing the collaboration with 
professional human designers, the proposed framework can inspire 
advanced urban-planning approaches, such as an iterative workflow 
between human designers and AI models to generate spatial plans 
based on multiple rounds of feedback.

Urban planning is never a simple game of selecting locations for 
land use and roads but rather a complicated interaction among multiple 
stakeholders, such as the government, citizens, planners and deve-
lopers. Besides assisting planners to accelerate the process of spatial 
layout, our proposed approach can bring broader benefits to other 
participants. For example, our developed planning environment can 
provide precise quantifiable indicators of the 15-minute city, helping 
citizens and the government compare different community plans. In 
addition, public platforms can be constructed by introducing custom-
ized options to the proposed model, which can facilitate the participa-
tion of residents and developers in the planning process. Our proposed 
framework demonstrates the possibility of higher engagement of all 
participants, serving as a small step towards a more transparent and 
inclusive future of urban planning.

Methods
Problem formulation
We formulate the problem of community spatial planning as a sequen-
tial Markov decision process (MDP), an interactive process between 
the planning agent and the environment, in which the agent observes 
the ‘state’ (the current conditions of the community), takes an ‘action’ 
(placement of an urban functionality) at each step and receives ‘reward’ 
(effect of the planned result) signaled by the environment, which 
undergoes a ‘transition’ (changes of the layout) according to the agent’s 
action. We utilize DRL to learn an effective policy that maps states to 
actions with a parameterized neural network. The neural network is 
optimized towards higher spatial efficiency through massive training 
under the MDP, with millions of training samples of the 4-tuple (state, 
action, reward and transition). As illustrated in Extended Data Fig. 1, 
our MDP is composed of two consecutive stages:
 (1) Land-use planning. Given the initial road conditions, the agent 

places functionality blocks one at a time, either near existing 
roads or near boundaries of previously placed land use. After 
all the functionalities and open spaces are allocated, a reward 
regarding the efficiency of land use is returned to the agent, 
which treats different land use as an integrated system. The final 
land-use plan becomes the initial condition of road planning.
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 (2) Road planning. Boundaries of planned land use are viable loca-
tions for road construction. The agent builds roads iteratively, 
turning one boundary into a road segment at a single step. 
Stopped at a predefined termination step, a reward considering 
the transportation efficiency is returned to the agent.

The reward is only calculated at the last step of each stage to 
summarize the performance of land-use planning and road planning, 
respectively, and all intermediate steps receive a reward of 0. We define 
the reward for land use and road layout based on the 15-minute-city 
concept4,8, which emphasizes the spatial efficiency to facilitate active 
transportation such as walking and cycling instead of automobiles. 
The two reward terms are calculated as follows:

rL = αService + Ecology, (1)

rR = Traffic, (2)

where Service measures the community life-circle index in the 15-min-
ute city, Ecology measures the coverage of green space and parks, 
Traffic is a combination of road density and connectivity (Methods) 
and α serves as a hyper-parameter indicating the weight of service 
performance in the land-use reward. With the calculated reward values, 
we use proximal policy optimization to update the parameters of value 
and policy networks47. We first train the agent for the land-use planning 
task until convergence and then train the agent to build roads with the 
optimal land-use plan obtained in the first stage. After two stages of 
training, the AI agent is able to design communities with an efficient 
spatial layout of both land use and roads.

Graph model. Different from previous Go25 and chip design28 tasks, 
urban planning is more challenging because of its much larger degrees 
of freedom in the problem form. Specifically, the conditions of previ-
ous tasks are regular, for example, placing stones on a 19 × 19 board or 
placing rectangular macros onto a grid chip canvas, which can be rep-
resented by pixels (raster). By contrast, the conditions for community 
spatial planning are diverse and irregular because the road corners and 
land blocks are usually not orthogonal. To accurately describe urban 
geographic elements, including land blocks (L), segments of roads and 
land-use boundaries (S) and junctions between roads and land-use 
boundaries ( J), we use vector representations, which have been proven 
to have substantial advantages over raster representations in urban 
planning48, and consist of the following three geometries:

 (1) ‘Polygon’ that describes a vacant land to be planned (for  
example, L1 in the right part of Extended Data Fig. 2a) or an 
already planned land block (for example, L2 in the right part of 
Extended Data Fig. 2a) with the coordinates of the land boundary;

 (2) ‘LineString’ that represents a road segment (for example, S3 in 
the right part of Extended Data Fig. 2a) or a boundary edge of a 
land block (for example, S9 in the right part of Extended Data 
Fig. 2a) with the coordinates of the start and end points; and

 (3) ‘Point’ that stands for the junctions between roads and land-
block boundaries (for example, J2 and J7 in the right part of 
Extended Data Fig. 2a) with their coordinates.

We transform all geographic elements into the above three cate-
gories of geometries and then represent the whole community as a 
graph, in which nodes are the geometries and edges stand for the spatial 
contiguity relationship between these geometries, that is, two nodes 
are connected if the underlying two geometries touch each other. Each 
node stores its geographic information as the node features, including 
the type, coordinates, width, height, length and area of the geometry. 
In this way, spatial planning can be transformed as a problem of making 
choices on a dynamic graph (Extended Data Fig. 2), in which the graph 
evolves according to the agent’s actions.

In the land-use planning task, the agent selects one L–J edge that 
connects a vacant land and a junction, placing a given functionality at the 
location specified by the corresponding L and J (Extended Data Fig. 2a).  
In each step, the topology of the contiguity graph changes because 
the newly placed functionality generates new nodes and edges. New 
nodes include the new functionality itself, its boundaries, new junctions 
and split segments. New edges indicate the newly established spatial 
contiguity. Similarly, in the road planning task, the agent selects one  
S node that is currently a boundary and constructs it as a road segment 
(Extended Data Fig. 2b). Although the topology remains the same, 
the graph’s attributes alter because the selected node’s type changes 
from boundary to road. Through the problem reformulation with the 
graph model, we can now handle the irregular urban blocks and unify 
the two seemingly distinct stages of land use and road planning on 
one single graph.

Action space design. Another major challenge of urban planning is 
the huge action space, which is almost infinite in the original continu-
ous space, and still too large in the reduced discrete graph space. The 
contiguity graph continues to grow as we place a functionality at each 
step, resulting in a large graph with thousands of nodes and edges. 
A typical spatial plan of a 2 km by 2 km community can take a total 
number of 100 planning steps in each stage, and the contiguity graph 
can have 4,000 edges and 1,000 nodes, which makes the action space 
4,000100 and 1,000100 for the two stages, respectively. In addition, valid 
actions are extremely sparse in the space, and a substantial portion 
of actions is of low quality and will lead to unreasonable results, such 
as placing a facility in the center of a vacant land without connecting 
roads. Therefore, it is crucial to reduce the action space and avoid 
unreasonable actions.

To address this challenge, we propose a general DRL framework in 
which an intelligent agent perceives and makes decisions in a reduced 
graph space, and the environment handles urban elements in the origi-
nal geographic space and generates graph states according to the geo-
graphic spatial layout. Meanwhile, we decompose the entire action 
space into a Cartesian product of three sub-spaces, including what 
to plan, where to plan and how to plan, and let the DRL agent focus on 
the core issue of where to plan. The first sub-space of what to plan can 
be eliminated by fixing the planning order of different land-use types 
through domain knowledge, allowing land-use types that are more 
dependent on the initial road network to be planned earlier (Methods). 
To avoid apparently improper actions in where to plan, we impose 
planning constraints on the agent’s actions, with an action mask that 
blocks out unreasonable options, that is, only L–J edges and S nodes are 
candidates for the two planning stages, respectively. After selecting one 
L–J edge for a given land-use type, the functionality is placed in the corre-
sponding land block (L node) at the location of the corresponding junc-
tion ( J node), whose shape and size are determined by predefined rules 
that maximize the reuse of existing roads and boundaries (Methods); 
thus, the last sub-space of how to plan is effectively eliminated. Through 
these designs, we narrow the action space to a solvable scale and filter 
out most unreasonable actions, enabling efficient optimization for 
DRL algorithms. In summary, the original problem of spatial planning 
is successfully transformed into a standard sequential decision-making 
process on a graph with moderate action space.

Framework. After the above problem reformulation and action space 
design, we propose a DRL framework in which an AI agent learns to 
lay out land use and roads by interacting with the spatial planning 
environment, as illustrated in Extended Data Fig. 3. The sequential 
MDP (Extended Data Fig. 3e,f) contains the following key components:

 (1) States summarize the current spatial plan with the previously 
introduced contiguity graph containing rich node features, and 
other information, such as statistics of different land use types.
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 (2) Actions indicate the locations to place the current land use or 
construct a new road segment, which are transformed from the 
selected edges or nodes in the contiguity graph.

 (3) Rewards are 0 for all intermediate steps, except for the last step 
in each stage, in which it evaluates the spatial efficiency of land 
use and roads.

 (4) Transitions describe the changes of the layout given the 
selected location, and the transitions occur in both the original 
geographic space (new land use and road on the map) and the 
transformed graph space (new topology and attributes of the 
graph).

At each step, the agent represents the state by encoding the graph 
with a GNN49. Via multiple message passing and non-linear activation 
layers, the GNN state encoder generates effective representations of 
edges, nodes and the whole graph (Extended Data Fig. 3a), which will be 
leveraged by the value and policy networks (Extended Data Fig. 3b–d). 
Specifically, because choosing locations for land use is equivalent to 
selecting edges on the graph, the land-use policy network takes the 
edge embeddings and scores each edge with an edge-ranking MLP, 
as shown in Extended Data Fig. 3b. The obtained score for each edge 
indicates the sampling probability of the corresponding edge, which 
is returned to the environment and becomes the probability of placing 
the land use at the location specified by that edge. Similarly, in road 
planning, the road policy network takes node embeddings and scores 
each node with a node-ranking MLP (Extended Data Fig. 3d), outputting 
the probability of choosing one land block boundary and building it as 
a road segment. Finally, the value network takes in the graph embed-
ding that summarizes the whole community and predicts the planning 
rewards with a fully connected layer (Extended Data Fig. 3c). To master 
the skills of spatial planning, millions of spatial plans are accomplished 
by the proposed model to search the large solution space during the 
training process, which is utilized as real-time training data to update 
the parameters of the neural network.

Detailed methodology
Initial conditions. As introduced in the paper, we use vector geometries 
including Polygon, LineString and Point to describe urban geographic 
elements. Specifically, there are ten types of land blocks that are repre-
sented as Polygon, including the initial vacant land to be planned, and 
nine different functionality types, which are residential (RZ), school 
(SC), hospital (HO), clinic (CL), business (BU), office (OF), recreation 
(RE), park (PA) and open space (OP). In addition, there are two types 
of segments (roads and land-use boundaries) that are represented by 
LineString and one type of junction (intersections between roads and 
land-use boundaries) that is represented by Point. Therefore, a commu-
nity is faithfully represented by a table of geometries, in which each row 
is a geographic element with three columns of ID, type and geometry. 
Initial conditions of a community consist of all the original land blocks, 
roads and intersections, whose accurate coordinates are recorded 
by their corresponding geometries in the table of geometries. In the 
synthetic grid community, we experiment on a basic community with 
a size of 2.4 km by 2.4 km, containing 16 rectangular vacant lands, 40 
horizontal or vertical initial road segments and 25 road intersections, 
as shown in the first step of Extended Data Fig. 1. In the real-world com-
munity, we replicate the road network of HLG and DHM communities in 
Beijing from OpenStreetMap using OSMnx30 and geopandas, reserve 
residential blocks and leave other areas as vacant land to be renovated. 
Finally, we obtain two communities of around 4 km2 as shown in Fig. 1a 
and Supplementary Fig. 11a.

Planning needs and requirements. Before carrying out the actual 
spatial planning, we need to determine the planning needs and require-
ments, which serve as the configuration of the planning environment. 
The planning need describes the amount that each land-use type has 

to achieve, either in area or in number, for example, residential blocks 
of 50% community area and three hospitals. Meanwhile, we also have 
requirements on the minimum area (in square meters) of each planned 
block; for example, the area of one school is at least 10,000 m2. Supple-
mentary Table 3 shows an example of the planning needs and require-
ments for a community, in which 15% of the community area needs to 
be planned as parks; thus, it serves as a green community. Only spatial 
plans that satisfy all the needs and requirements are considered as 
successful episodes and reserved as training samples, and those failed 
episodes are discarded. In our framework, the planning needs and 
requirements are configurations for the environment, making our 
model highly flexible in generating spatial plans. Specifically, once 
we obtain a well-trained model under one configuration, we can sim-
ply change the configuration and directly perform model inference 
without re-training to generate plans for different planning needs 
and requirements, such as the community plans of different service 
supplies in Fig. 1c,d.

Planning order of land-use types. As introduced in the paper, in order 
to reduce the huge action space, we fix the planning order of different 
land-use types based on domain knowledge and make the agent focus 
on the core task of selecting locations. Because feasible locations 
are next to existing junctions, land use that is planned earlier will be 
closer to initial roads with more convenient traffic. Therefore, we first 
plan those facilities that depend more on roads, including hospitals 
(clinics), schools and recreation. Meanwhile, at later steps of land-use 
planning, the shape of feasible vacant lands tends to be more irregular 
and fragmented, which is not suitable for residential blocks that usually 
occupy a whole plot of land; thus, we distribute residential blocks after 
planning the above road-dependent facilities. Finally, we arrange those 
land-use types that are not much demanding in land shapes. After all the 
planning needs are satisfied, the remaining vacant lands are assigned 
as open spaces. In summary, the planning order in our framework is 
fixed as follows: hospital, school, clinic, recreation, residential, park, 
office, business and open space. Letting the agent determine the order 
of land-use types may be an alternative approach. However, it will make 
the problem much more complicated, as the action space is increased 
drastically. In practice, our fixed order generates sound spatial plans.

Land cutting. In land-use planning, the environment receives the 
action from the agent, which is the selected L–J edge, and cuts a new 
land from the corresponding land block (L node) at the location of the 
corresponding junction ( J node). We develop a rule-based system with 
expert knowledge incorporated to determine the shape and size of the 
new land. The rule-based system is roughly composed of three steps: 
(1) Determine the relationship between J and L, such as in the middle of 
a road or at the corner. (2) Determine the reference line along existing 
boundaries from junction J, which can be I-shape, L-shape and U-shape. 
(3) Determine the length of inward extension from the reference line 
into the block L, forming the final sliced new land. The three steps 
are conducted according to expert knowledge, in order to meet the 
planning requirements and fit the current plan as closely as possible.

State. Our state contains three parts: (1) urban contiguity graph,  
(2) current object to be placed and (3) community statistics. We construct 
a graph to represent the current community information as illustrated 
in Extended Data Fig. 2, in which nodes are urban geographic elements 
and edges indicate the spatial contiguity relationship. We compute 
rich geographic attributes as node features, including the type, coor-
dinates, area, length, width and height of the underlying urban element. 
The edges are represented by a sparse adjacency matrix. As for the 
current object to be placed, its type is determined by the environment 
according to planning needs and planning order, that is, the environ-
ment will traverse the planning order and transit to the next type if the 
planning needs for the previous type have been satisfied. We treat the 
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current object as a virtual isolated node, with its type feature provided 
by the environment and other node features left as default values. 
Lastly, community statistics include the area and count of different 
land-use types in the current plan, as well as the planning needs, which 
summarize the current conditions and the progress of spatial planning.

GNN state encoder. In our framework, the policy is used to select 
edges or nodes in the graph and the value is used to evaluate the whole 
graph. Thus, it is crucial to obtain effective encodings of nodes, edges 
and the whole graph for efficient policy-making and value evaluation. 
As shown in Extended Data Fig. 3a, we propose a GNN-based model to 
encode the current state. The message-passing and neighbor-aggrega-
tion mechanisms in GNN make it possible for each node to access the 
information of its neighbor nodes, which reflects the nearby situation 
in the original geographic space and is critical to the layout efficiency. 
Formally, we first concatenate all the node features and obtain an initial 
embedding for each node with a linear layer as follows:

v0
i
= Linear(Ti ∥Ci ∥Ai ∥Li ∥Wi ∥Hi), (3)

where Ti is the one-hot encoding of the type feature and the last five  
features are the coordinates, area, length, width and height, respectively. 
Then we feed node embeddings into several graph convolutional layers. 
In the kth graph convolutional layer, nodes broadcast their embeddings 
to the connected edges to achieve message passing. Each edge takes  
the passed message and obtains its edge embedding via a fully con-
nected layer and a non-linear tanh activation function as follows:

ek
ij
=
tanh(fck(vi ∥vj)) + tanh(fc

k(vj ∥vi))
2 , (4)

and then each node absorbs the embeddings of its connected edges 
to achieve neighbor aggregation as follows:

vk
i
= vk−1

i
+ 1

ni
∑
j∈Ni

ek
ij
, (5)

where Ni denotes the neighbor set of node vi and ni is the number of 
neighbors. By stacking multiple graph convolutional layers, the 
obtained embeddings for each urban element (node or edge) can 
capture the nearby geographic conditions. We use the output of the 
last graph convolutional layer, vL

i
 and eL

ij
, as the representations for 

nodes and edges, where L is a hyper-parameter in our model. Mean-
while, we adopt mean pooling on node and edge embeddings as 
follows:

vmean =
1
M

M

∑
i=1

vL
i
, (6)

emean =
1
N

∑
i,j∈E

eL
ij
, (7)

gL = vmean ∥ emean, (8)

where gL is the obtained graph-level representation that describes the 
conditions of the whole community.

Besides the urban contiguity graph, the other two parts of the 
state, namely the current object to be placed vc and the community 
statistics hs, are also encoded. As introduced previously, the current 
object is regarded as a virtual isolated node with the same set of node 
features; thus, we reuse the linear layer to encode the current object:

vc = Linear(Tc ∥Cc ∥Ac ∥Lc ∥Wc ∥Hc), (9)

where Tc is the type of the current object to be placed determined by the 
environment, and other features are default values. As for community 
statistics, we encode them via a two-layer MLP:

hs = MLP(area1 ∥ ⋯ ∥area9 ∥count1 ∥ ⋯ ∥count9), (10)

where the area and count of all nine different land-use types are con-
catenated first and then fed into an MLP. Now all three parts of the state 
have been encoded by vectorized representations. Particularly, we now 
have representations for nodes, edges and the whole graph, which are 
adopted separately by policy and value networks.

Action. As illustrated in Extended Data Fig. 2a, land-use planning is 
reformulated as a sequential MDP in which the agent selects an edge in 
a dynamic graph. Therefore, the action space for land-use planning is 
the probability distribution of choosing from N edges, and we sample 
from this distribution to obtain the action. Similarly, road planning is a 
sequential MDP of choosing nodes as shown in Extended Data Fig. 2b; 
thus, the action space for road planning is the probability distribution 
over M nodes, which is sampled to generate the node selection action. 
In addition, as introduced previously, we impose constraints on the 
action space; for example, the agent can only select L–J edges (between 
vacant lands and junctions) and S nodes (land-use boundaries) to 
avoid unreasonable spatial plans. Thus, we calculate a mask in each 
step that indicates feasible options, and the probability distribution 
will be multiplied by the mask, allowing only feasible edges or nodes 
to be sampled as actions.

Policy and value networks. As shown in Extended Data Fig. 3b–d, 
we develop separate policy networks to take actions in the policy 
and value stages, respectively, as well as a value network to predict 
the performance of spatial plans. The three networks share the same 
state encoder to obtain state representations, taking full advantage 
of the GNN. Policy networks generate the probability distribution by 
scoring the edges and nodes in the graph, and then sample from this 
distribution to take actions. Meanwhile, the value network evaluates 
the whole graph to predict spatial efficiency, providing feedback for 
the community plan. In this section, we introduce the detailed design 
of the three networks.

Land-use policy network. In land-use planning, the agent places the 
current object at the location specified by the selected edge. The effect 
of edge selection is related to both the edge and the current object; for 
example, placing a hospital next to an already planned hospital may 
lead to low service efficiency. Therefore, the land-use policy network 
considers both the edge and the current object as input. As shown 
in Extended Data Fig. 3b, a feed-forward network, which is an edge-
ranking MLP, is developed to score each edge:

s(eij) = FFland(eLij ∥vc ∥e
L
ij
− vc ∥eLij ⋅ vc), (11)

where the difference and the inner product of eL
ij

 and vc are also concat-
enated to emphasize the relationship between the current object to 
be planned and those already planned land use. The scores are con-
verted to a probability distribution over all edges using softmax:

Prob(eij) =
es(eij)

∑s,t∈Ee
s(est)

, (12)

which is sampled to select an edge.

Road policy network. In road planning, the agent selects one boundary 
node and plans a road at its location. Different from that of land-use 
planning, the topology of the graph is stable with no new nodes to be 
added. Thus, there is no need to include the current object. Meanwhile, 
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the road policy network takes node embeddings as input, which already 
contain neighbor geographic information through message passing of 
GNN. As in Extended Data Fig. 3d, another node-ranking feed-forward 
MLP is adopted to score each node:

s(vi) = FFroad(vi). (13)

The score is also transformed to probability with a softmax operator:

Prob(vi) =
es(vi)

∑j∈Ne
s(vj)

, (14)

and we sample from this probability distribution to select one node.

Value network. As shown in Extended Data Fig. 3c, we develop a value 
network to judge the current planning situations and predict the plan-
ning performance. Because it is an overall evaluation of the entire com-
munity, we take the graph-level representation as the input of the value 
network. Meanwhile, we also include community statistics. Specifically, 
we concatenate graph representations and the statistics embedding, 
and adopt a fully connected layer to predict the performance:

̂v = fc(gL ∥hs), (15)

where ̂v  is the estimated value of the current plan.

Reward. We train the policy networks to optimize the efficiency of 
spatial layout, with respect to service, ecology and traffic. As in equa-
tions (1) and (2) of this paper, we define reward functions that give a 
comprehensive evaluation of the above metrics. Meanwhile, the reward 
values can be quickly computed within tens of milliseconds given a 
spatial plan, making it possible to collect large-scale samples for train-
ing DRL models. In this section, we introduce how the three metrics are 
calculated. It is worth noting that our framework is flexible and can be 
extended to include more metrics in the reward.

Service. We adopt the concept of 15-minute life circle4, which requires 
that basic services of the community be reachable for residents within 
15 min by walking or cycling. Specifically, as demonstrated in Fig. 1b,c, 
we consider five different basic services, each of which is related to 
one or two facilities, that is, education (school), medical care (hospi-
tal, clinic), working (office), shopping (business) and entertainment 
(recreation). Therefore, the 15-minute life circle means that the dis-
tances between facilities and residential zones need to be less than the 
walking distance of 15 min, which is set as 500 m in our experiments. 
We define the service metric as the proportion of accessible services 
within 500 m, and the metric is averaged for all residential zones31. 
Formally, given a community spatial plan p, the service metric is cal-
culated as follows:

d(i, j) = min{EucDis(RZi, FA
j
1),⋯ , EucDis(RZi, FA

j
nj
)}, (16)

Servicei =
1
5

5
∑
j=1

[d(i, j) < 500], (17)

Service = 1
nRZ

nRZ

∑
i=1
Servicei, (18)

where EucDis is the Euclidean distance, d(i, j) is the minimum distance 
for the ith residential zone RZi to access the jth service that is provided 
by facility FAj and nj is the total number of facilities FAj. Servicei is the 
15-min life-circle metric for the ith residential zone, and we average over 
all nRZ residential zones to obtain the final service metric for the whole 
community. This service metric guides the agent to arrange facilities 

in a more decentralized way and close to residential zones, which is 
critical for increasing the ability of community services.

Ecology. The ecology of a community is important to the physical and 
mental health of residents; thus, we include an ecology metric that 
measures the layout efficiency of parks and open spaces. In general, 
parks and open spaces serve the residents who live in the neighbor-
hood, and we hope they can serve as many residential areas as possible. 
Formally, we define the ecological serving range as the region within 
300 m from a park or an open space, and the ecology metric measures 
the proportion of residential areas that are covered by the ecological 
serving range32. The metric is calculated as follows:

ESR = Union {Buffer(PA1, 300),⋯ ,Buffer(PAnPA , 300),

Buffer(OS1, 300),⋯ ,Buffer(OSnOS , 300)} ,
(19)

ARZ =
nRZ

∑
i=1
Area(RZi), (20)

Ae
RZ =

nRZ

∑
i=1
Area (Intersection(RZi, ESR) , (21)

Ecology =
Ae
RZ

ARZ
, (22)

where Buffer(PAi, 300) and Buffer(OSi, 300) represent the regions that 
extend the park and open space 300 m outward, which is their serving 
range, and ESR is the ecological serving range that combines the serving 
range of all parks and open spaces. The ecology metric encourages the 
agent to maximize Ae

RZ; thus, the greenness of the community plan is 
promoted.

Traffic. For the second stage of road planning, we evaluate the traffic 
efficiency from three perspectives, including density33, connectivity34 
and spacing35. Road density is the ratio of the total length of roads to 
the land area. Connectivity is a network characteristic that reflects the 
strength of how different parts of a network are linked with each other, 
and we choose the number of connected components and the number 
of dead-end roads. To achieve appropriate road spacing, we also include 
two terms to penalize too large (>600 m) and too small (<100 m) spac-
ing. Formally, the traffic metric is calculated as follows given the road 
plan pR and the converted graph gR from the planned road network:

Tdensity =
Length(pR)

Ac
, (23)

Tconnectivity =
1

NCC(gR)
+ 1
1 +∑v∈gR [Degree(v) = 1] , (24)

Tspacing =
1

1+∑
r∈pR

[Length(v)>600]

+ 1
1+∑

r∈pR
[Length(v)<100]

,
(25)

Traffic = 1
3 (Tdensity + Tconnectivity + Tspacing), (26)

where Length calculates the length of a road segment, Ac is the area 
of the community, NCC calculates the number of connected compo-
nents in a network and Degree calculates the degree of a node in the 
graph. Combining the three perspectives, the traffic metric encour-
ages the agent to plan denser roads and, at the same time, guarantees 
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connectivity and appropriate spacing, without creating dead-end roads 
or planning too-long or too-short road segments.

Model training. We train our model for hundreds of iterations to 
learn the skills of spatial planning. In each iteration, we collect train-
ing samples of a few thousand episodes and update the parameters of 
our model using proximal policy optimization47. Specifically, the loss 
function is a combination of policy loss, policy entropy and value loss. 
Policy loss is a surrogate clipped objective to improve the policy with 
safe exploration, which is calculated as follows:

rt(θ) =
πθ(at|st)
πθold (at|st)

, (27)

Lpolicy = min(rt(θ) ̂At, clip(rt(θ), 1 − ϵ, 1 + ϵ) ̂At), (28)

̂At = Q(st,at) − V(st), (29)

where θ is the parameters of our model, rt(θ) is the ratio of the probabil-
ity of the new policy to the old policy, ̂At  is the advantage function and 
clip restricts the update to be not too large. The entropy loss controls 
the balance between exploitation and exploration, which is calculated 
as follows:

Lentropy = Entropy[Prob(a1),⋯ ,Prob(ana )], (30)

where na is the total number of actions that equals to M (edges) or N 
(nodes) in different planning stages, and Prob is obtained by policy 
networks according to equations (12) and (14). We use mean squared 
error loss to supervise the value prediction:

Lvalue = MSE( ̂vt,Rt), (31)

where Rt is the return value from ground-truth and ̂vt  is estimated by 
value network according to equation (15). The final loss function is a 
weighted sum of the above three terms:

L = Lpolicy + βLentropy + γLvalue, (32)

where β and γ are hyper-parameters in our model.

Model inference. After we obtain a well-trained model, we perform 
model inference to generate community plans. We use the policy net-
works and compute the probability distribution over different actions 
according to equations (12) and (14), that is, the probability of selecting 
different edges and nodes. Then the most likely action is chosen to place 
land use or road at the location specified by the action:

a = argmax{Prob(a1),⋯ ,Prob(ana )}, (33)

where na is M or N for land use and road planning, respectively. It is 
worth noting that we can directly perform model inference under a 
different setup without re-training, and the results are illustrated in 
Fig. 1c,d.

Integration with manually designed planning concepts. The DRL 
framework is not designed for replacing human designers but serves 
as an intelligent assistant to improve the productivity of human design-
ers. Specifically, AI models are good at optimizing spatial efficiency 
in large solution spaces, whereas human designers are good at con-
ceptual prototyping. Therefore, we design a new workflow, in which  
human and AI collaboratively accomplish urban-planning tasks and 
leverage their respective expertise. As shown in Supplementary Fig. 7a,  
we propose a workflow with four key steps of conceptualization, 

planning, adjustment and evaluation, where AI takes responsibility 
for the planning step. In the workflow, human designers can leave the 
heavy and specific planning work to the AI, and they only need to pro-
vide relatively abstract conceptual planning and make adjustments to 
the spatial plans generated by the AI. We represent planning concepts 
as two major types, center and axis, and each concept is related to one 
or several land-use functions. For example, in the left part of Supple-
mentary Fig. 7b, the RE center in the HLG community represents the 
concept that encourages recreation zones near the specified location. 
Similarly, in the right part of Supplementary Fig. 7b, the BU&OF axis in 
the DHM community represents the concept that expects a business 
and office core along the specified band region. We feed the initial 
conditions of the community and the planning concepts to the model, 
and then train our DRL model to realize the planning concepts while at 
the same time optimizing spatial efficiency.

As the concept of center and axis is essentially the spatial relation-
ship between specific land-use functions and predefined locations, it 
can be easily integrated into our framework. Specifically, we utilize 
customized reward functions to implement planning concepts, that 
is, we add a reward to reflect the extent of consistency with the plan-
ning concept. For the center concept, we calculate the fraction of 
concept-related land-use functions in the region near the specified 
center location as follows:

rc =
1
nc

nc

∑
j=1

[Tj ∈ Tc], (34)

where nc is the number of land-use blocks within 100 m from the prede-
fined center and Tc is the land-use function related to the concept. This 
reward encourages the DRL agent to place concept-related land-use 
functions near the predefined center location. For the axis concept, we 
calculate the expansion in the parallel direction and the coverage frac-
tion in the vertical direction for the concept-related land-use functions, 
respectively, as follows:

rpa =
Lpa
La
, (35)

rva =
1
na

na

∑
j=1

[Tj ∈ Ta], (36)

ra =
1
2 (r

p
a + rva), (37)

where La is the length of the axis, Lpa  is the distance of projected points 
of concept-related land-use functions on the axis, na is the number of 
land use blocks within 100m from the predefined axis and Ta is the 
land-use function related to the concept. This reward encourages the 
DRL agent to place concept-related land-use functions as evenly as 
possible in the band area around the axis. The concept reward is com-
bined with efficiency reward, including service and ecology, by 
weighted sum. Through jointly optimizing efficiency and concept 
rewards, the DRL agent learns to improve spatial efficiency on the basis 
of realizing predefined planning concepts.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The geographic data of communities used in this work is collected 
from OpenStreetMap (https://www.openstreetmap.org) using Python 
3.8.0 with packages osmnx>=1.1.2 and geopandas>=0.11.1. We pro-
vide the data for the three adopted communities in our experiments. 
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The data supporting the results of this study is available on Zenodo  
(https://doi.org/10.5281/zenodo.8175420)50 and GitHub (https://
github.com/tsinghua-fib-lab/DRL-urban-planning). Source data are 
provided with this paper.

Code availability
The code used in this research can be found at Zenodo (https://doi.
org/10.5281/zenodo.8175420)50 and Github (https://github.com/
tsinghua-fib-lab/DRL-urban-planning).
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Extended Data Fig. 1 | Problem formulation of community-level spatial 
planning. The community-level spatial planning is formulated as a two-stage 
sequential decision-making problem. In the first stage of land use planning, 
the agent places different functionalities and open spaces until all the planning 
needs are satisfied. A reward rL regarding the layout efficiency of all the land 
use as a whole is returned after the entire community is filled. The result of 

land use planning serves as the initial conditions of the second stage of road 
planning, where one land use boundary is selected at each step and planned as a 
road segment. After a predefined termination step, a reward rR considering the 
efficiency of road transportation is returned, and all intermediate steps have a 
reward of 0. Please refer to Supplementary Table 1 for the meaning of  
different colors.
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Extended Data Fig. 2 | Reformulation of community spatial planning with 
a contiguity graph. a, Land use planning. A graph is constructed based on the 
contiguity relationship between urban geographical elements. Nodes consist 
of three different categories, including land (L), segment (S), and junction ( J). 
Land can be vacant land to be planned or already planned land use. Segment can 
be a road or a land use boundary. Junction is the intersection between roads and 
land use boundaries. Two nodes are connected with an edge if the underlying 
geographical elements touch each other. There are five categories of edges in 
total, including L-L, L-S, L-J, S-S, and S-J. In the stage of land use planning, the agent 
selects one L-J edge that decides the location to place a given land use type. In 
the figure as an example, we select the edge between L2 and J4, thus a block in 

L2 and near J4 is sliced and assigned as a newly planned land use type. After each 
step, new urban geographical elements are added and contiguity relationships 
change, thus a different graph with a distinct topology will be constructed at the 
next step. b, Road planning. Graph in the road planning task is defined in the same 
way as the land use planning task. At each step, the agent selects one S node that 
is currently a land use boundary, and plans a road at its location. In the figure, for 
example, we select S10, which is the boundary of L2 and L4 from three feasible 
candidates (S9, S10, and S12), and replace it with a road segment. In the next step, 
the node attribute of S10 changes, that is, its type changes from boundary to 
road, and two feasible candidates are left (S9 and S12).
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Extended Data Fig. 3 | Overview of the proposed framework. Our framework 
consists of two separate policy networks (b and d) that take actions for the land 
use planning task (e) and road planning task (f) respectively, and share a GNN 
state encoder (a) with a value network (c) that estimates the effect of the current 
planning result. a, A GNN-based state encoder takes the contiguity graph states as 
input and learns representations of nodes, edges, and the whole graph. b, A land 
use policy network utilizes the obtained edge embeddings and scores each edge 

with a MLP for edge selection. d, Similarly, a road policy network scores each 
node from the obtained node embeddings. c, A value network containing one 
fully-connected layer predicts the performance of the current spatial plan with 
the graph embedding. e, The spatial planning environment receives actions on 
the contiguity graph, places land use or road accordingly in actual geographical 
space, and transforms it into states in a graph form.
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