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Abstract

In real-world time-series modelling, graph structures are
widely adopted because they explicitly encode node topol-
ogy and capture complex network dynamics. In practice,
however, a complete graph is often partitioned across mul-
tiple parties; each party can access only its local sub-graph
and, owing to privacy regulations, cannot share topology or
data, creating pervasive data silos. Federated Graph Learn-
ing (FGL) offers a privacy-preserving collaborative-learning
paradigm, yet current methods still face two key challenges:
(1) they implicitly capture inter-edge information, making
it difficult to accurately reconstruct the global structure and
consequently degrading model performance; (2) explicitly
exchanging inter-edge information may leak graph-topology
privacy. To overcome these obstacles, we propose FedSkele-
ton, a privacy-preserving framework for time-series predic-
tion that comprises a Skeleton Construction Module and
a Dual-stream Forecasting Module, enabling global depen-
dency capture without revealing the topology. Extensive ex-
periments show that FedSkeleton consistently outperforms
existing baselines and even surpasses centralised models with
full-graph access. In addition, we conduct comprehensive
security analysis, communication-cost evaluation and scal-
ability experiments, demonstrating that FedSkeleton effec-
tively resists common attacks, keeps communication over-
head manageable and remains robust with respect to key
hyper-parameters and the number of participating parties.
Our code and datasets are available at the following link1.

1 Introduction
Numerous real-world high-dimensional time series in real-
world scenarios are formed by dynamically changing at-
tributes of individual entities, whose evolution is typi-
cally driven by their interactions. These entities (as nodes)
and their interactions (as edges) jointly constitute a graph
structure, such as financial networks and electric net-
works. Therefore, the problem of forecasting these high-
dimensional time series can be naturally converted into a
nodal dynamics prediction problem on graphs, which is in-
strumental for a wide spectrum of real-world applications
including anomaly detection (Miele, Bonacina, and Corsini
2022) and efficiency optimization (Shen et al. 2022). How-
ever, in practical applications, the data of different nodes
is often held by different organizations (e.g., governmental
agencies, and corporations). Due to privacy concerns, these
organizations cannot disclose the attributes of their nodes or
even the topological relationships among them. Under the
circumstances, an important research question is how to ef-
ficiently implement federated learning between different or-
ganizations to forecast their nodal dynamics, while preserv-
ing the privacy of the graph data of each participating orga-
nization.

1https://anonymous.4open.science/status/FedSkeleton-BCFA

However, the problem of graph federated time-series fore-
casting is also a difficult task with several challenges un-
solved. First, existing federated graph learning algorithms
typically require the propagation and aggregation of node
embeddings across the complete graph topology (Chen et al.
2021; Liu, Li, and Gu 2021). Regardless of the private
information involved in node embeddings (e.g., node at-
tributes), the graph topology itself is sensitive and poten-
tially leads to privacy leaks. For example, in financial net-
works, edge information can disclose monetary transactions
between nodes. Thus, achieving federated time-series fore-
casting without revealing node attributes as well as topo-
logical information is a critical challenge. Second, since
nodal dynamics are inherently driven by interactions be-
tween nodes, the edges across different parties are a crucial
factor that should be considered in the prediction task. Ig-
noring inter-party edges will lead to inevitable performance
loss. How to incorporate inter-party interactions without re-
vealing private graph data is the second challenge.

To solve these challenges, in this paper, we propose
FedSkeleton, a federated graph learning framework to ef-
ficiently forecast time series on graphs while preserving
the privacy of graph data of each participant. The core of
FedSkeleton is an elaborately-designed secure multi-party
graph skeleton construction algorithm that utilizes graph
coarsening (Hashemi et al. 2024) and secret sharing (Blakley
1979) techniques to merge the attribute of K nodes into a su-
pernode, guaranteeing k-anonymity (Sweeney 2002) while
ensuring that the mapping between original nodes and su-
pernodes is only known to the node owner. As a result, the
private information of each node is obscured by aggregat-
ing K different nodes in the graph skeleton, which cannot
be traced back to the original graphs. Therefore, the graph
skeleton can encode both useful nodal dynamics and topo-
logical information of the original complete graph without
leaking privacy, which addresses the first challenge. Fur-
ther, based on the constructed graph skeleton, FedSkeleton
employs a local-global dual-stream forecasting mechanism,
where each participant trains a local Graph ODE model
on their private graphs, while a global Graph ODE model
is trained on the constructed graph skeleton at servers. By
collaboratively integrating information from both local and
global models during prediction, FedSkeleton effectively
models inter-participant node interactions without compro-
mising privacy.

Our contribution can be summarized threefold as follows:
• We propose a novel federated graph learning framework

for time-series forecasting, which constructs graph skele-
tons through graph coarsening and secret sharing tech-
niques to encode both useful nodal dynamics and topo-
logical information of the original complete graph with-
out leaking privacy.

• We propose a local-global dual-stream forecasting mech-



anism that collaboratively integrates information from
both local and global models during prediction, which
can incorporate inter-participant node interactions and
mitigate the performance decline caused by the non-
disclosure of original graph data of different participants
due to privacy concerns.

• Extensive experimental results on two real-world
datasets demonstrating an average improvement of ap-
proximately 42.48% on average of FedSkeleton com-
pared with baselines, demonstrating that FedSkeleton
can effectively balance privacy protection and predictive
performance while maintaining a reasonable communi-
cation overhead, and ensuring secure and efficient col-
laboration among parties without excessive data trans-
mission.

2 Preliminaries
2.1 Secret Sharing
We adopt the classic n-out-of-n Shamir scheme (Shamir
1979), which splits a secret into n shares, one per partici-
pant, such that all n shares are required for reconstruction.
The scheme is additively and Multiplicative homomorphic
can be performed privately by first generating Beaver triples
over the same shares (Beaver 1991).

As a concrete example, consider the 2-out-of-2 case. Al-
ice splits her secret a into random shares (a1, a2) with
a = a1 + a2; Bob does the same for b as (b1, b2). After
exchanging a2 and b2, Alice holds (a1, b2) while Bob holds
(b1, a2). They send the partial sums (a1 + b2) and (b1 + a2)
to a combiner, who obtains a+b = (a1+b2)+(b1+a2) but
learns nothing about a or b. Thus the original secrets remain
private throughout the protocol.

2.2 Inter-edges issue in Federated Graph
Learning

Consider a power-grid network jointly formed by several
utility companies. Let the global graph be G = (V,E) and
the sub-graph owned by company i be Gi = (Vi, Ei) with
node features Xi (historical generation time series). Xi and
the local edges Ei are private to company i; in contrast,
the geographic links between plants of different companies,
Eij = E ∩ (Vi × Vj), are public inter-edges. Similar cross-
organisation settings arise in banking transaction networks
and mobile-operator base-station networks.

If these inter-edges are ignored during federated GNN
training, each party learns on a disconnected sub-graph, and
its local objective degrades to

Fi(θ) = L
(
GNN(Ei,Xi; θ), yi

)
, (1)

which misses inter-subgraph dependencies and ultimately
harms global performance.

2.3 Problem Definition
In this work, we study a setting where the graph G =
(V,E,X) is partitioned among m parties, with each party
having access only to its own subset of the data. In partic-
ular, the data available to party i is represented by Gi =
(Vi, Ei,Xi), where Vi ⊂ V denotes the set of nodes that
belong internally to party i, and Xi = {xi(t) | t =
0, 1, 2, . . . , T − 1} comprises the time-series data corre-
sponding to those nodes. Since a node’s time-series data is

considered private, it is exclusively held by a single party.
Moreover, we define the border nodes for party i as V ∗

i =
{v∗ | (v∗, v) ∈ E, v∗ ∈ Vi, v /∈ Vi}. Thus, in this pa-
per, we assume that different parties’ internal nodes have
Vi∩Vj = ∅, i ̸= j. Ei is the set of edges accessible by party
i, including both inter edges E∗

i = {(v, v∗) | (v, v∗) ∈
E, v∗ ∈ V ∗

i , v /∈ Vi} and internal edges. The core task in
our study is to build a FL framework each FL parties main-
tains a subgraph of the global graph and trains a model to
predict future time-series with observed history time-series,
which is defined as follows:
Definition 1 (Federated Time-Series Forecasting). Given
multiple sub-graphs {Gi = (Vi, Ei,Xi)}Mi=1 owned by i’th
FL party. FedSkeleton aims to coordinates all FL party
collaborative training to forecast future time series X̂i =
{x̂i(t) | t = T, T + 1, . . . , T +∆t} immediately following
an observable historical time series it owns Xobs

i = {x̂i(t) |
t = T − τ, T − τ + 1, . . . , T − 1}, meanwhile guarantees
that both the internal node time series data and the graph
topology remain private.

3 Method
3.1 Overall Framework
In this section, we present a detailed overview of the
FedSkeleton framework, as depicted in Figure 1. The frame-
work is composed of two main modules: the Dual-Stream
Forecasting Module and the Skeleton Construction Module.
The process of this framework is presented in Algorithm 1.

3.2 Graph Skeleton Construction
Local skeleton build Each FL participant independently
constructs a local skeleton by first generating learnable node
embeddings. The assignment matrix is then computed to de-
termine the mapping from original nodes to supernodes, es-
tablishing a hierarchical structure. Finally, GCNs are applied
to aggregate node features into supernodes, forming a coars-
ened representation that maintains the topological and dy-
namic properties of the original graph.

(i) Adaptive assignment matrix. To determine the num-
ber of supernodes, we utilize the reduction ratio γ. We ini-
tialize two sets of learnable embeddings: supernode embed-
dings ES ∈ RN×γ×2 and node embeddings E ∈ RN×2,
where each embedding encapsulates the dynamic behavior
of the associated original nodes. The assignment matrix is
computed as follows:

P = softmax(ẼSẼ
T ), (4)

where the softmax function is applied row-wise. Here, Ẽ =
MLP(E) and ẼS = MLP(ES).

To enforce sparsity and ensure that the assignment matrix
approaches a one-hot structure, we minimize:

LE =
1

N

N∑
i=1

H(Pi),

where H represents the entropy function, and Pi denotes the
i-th column of P .

Additionally, to retain the topological structure of the
original graph, we introduce a regularization term:
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Figure 1: The overall architecture of FedSkeleton.

LR = ||A,PTP ||F
where || · ||F denotes the Frobenius norm.

(ii) Node Aggregation. To model the temporal dynamics
of original nodes, we employ graph convolutional networks
(GCNs). The aggregated representation of the supernodes is
computed as:

H = σ(D̃− 1
2 ÃD̃− 1

2X)Θ1 ∈ RN×d, XS = PH ∈ Rγ×N×d,
(5)

where D̃ =
∑

j Ãij , Ã = A + I , and Θ is a learnable
parameter.

The topological relationship between supernodes, also
known as the local skeleton, is given by:

AS = PAPT ,

Global skeleton build After every party has produced its
local skeleton (Ai

S , Pi), the server must stitch these pieces
together so that super-nodes belonging to different parties
are linked whenever an inter-edge exists. We decompose
this procedure into three reusable sub-modules, mirroring
the style of the Local Skeleton Build. The process of this
module is presented in Algorithm 2.

(i) Pairwise block formulation. For each unordered party
pair (i, j) let Aij=E∗

ij , Aii= Ai
S , Ajj= Aj

S and construct
the block-diagonal assignment matrix P = diag(Pi, Pj).
The desired pairwise backbone is

A(i,j)
s = PAP⊤ =

(
PiAiiP

⊤
i PiAijP

⊤
j

PjAjiP
⊤
i PjAjjP

⊤
j

)
. (8)

(ii) Secure off-diagonal computation. The diagonal
blocks C11 = PiAiiP

⊤
i and C22 = PjAjjP

⊤
j are com-

puted locally. The off-diagonal block C12 = PiAijP
⊤
j must

be obtained without revealing Pi, Pj or Aij . We perform a
Boolean-semiring matrix multiplication with

C12[u, v] =
∨
k

[
(Pi)u,k ∧ (Aij)k,v

]
, (9)

and realise every AND via Beaver triples over {0, 1} (Algo-
rithm 3). Because Aji = A⊤

ij , the second off-diagonal block
is reused as C21 = C⊤

12.

(iii) Block embedding and global merge. Let Ii (resp.
Ij) be the index range of party i (resp. j) in the global super-
node list. We embed A

(i,j)
s into the empty backbone B by

B[Ii∪Ij , Ii∪Ij ] ← B[ · ] ∨ A(i,j)
s . (10)

A Boolean OR ensures that repeated embeddings (from dif-
ferent pairs) only add connectivity, never delete it.

After all pairs are processed, B ∈ {0, 1}N∗×N∗
is a spar-

sified yet connectivity-complete global skeleton, it is ready
to guide downstream Dual-Stream Forecasting.

3.3 Dual-Stream Forecasting
ODE prediction We now define the forward ODE func-
tion for the latent dynamics dZ

dt of the skeleton. Taking into
account that the evolution of each node xi is influenced by
its self-dynamics and coupling dynamics, the parameterized
time derivative consists of two terms: one denoting the self-
dynamics function f(Z) and another representing the inter-
action with neighbors g(Z,A). Thus, the dynamic equation



for each node is given by:

dZ

dt
= f(Z) + g(Z,A), (6)

where f is an MLP and g is a GNN responsible for informa-
tion propagation:

g(Z,A) = σ(Aσ(ZΘ3)Θ2). (7)

Given the ODE function, the predicted trajectory of the
skeleton dynamics can be solved by any ODE solver as an
initial value problem:

ZT = Z0 +

∫ T

0

f(Zt) + g(Zt, A)dt, (8)

where the initial state Z0 = MLP (X) ∈ RN×1. This al-
lows us to predict the state of super-nodes at any continuous
time point T .

Local and global forecasting Both local forecasting (ex-
ecuted independently by each participant) and global fore-
casting (conducted on the global skeleton at the central
server) follow the same ODE-based modeling framework
described above. However, they differ in their scope and in-
formation flow: Local Forecasting: Each participant applies
the ODE model to its own subgraph, using a local adjacency
matrix Ai and local node features Xi. This process captures
the fine-grained temporal evolution of local structures.

Zi,T = Zi,0 +

∫ T

0

f(Zi,t) + g(Zi,t, Ai)dt.

Global Forecasting: The central server applies the same
ODE framework to the global skeletonB, where super-
node’s aggregated time-series data Xi

S structures from mul-
tiple participants.

ZS,T = ZS,0 +

∫ T

0

f(ZS,t) + g(ZS,t, B)dt.

Enhance Fusion Module: Upon completion of the global
forecast, the predicted global skeleton is partitioned, and the
relevant segments are sent back to the participants. Each par-
ticipant then enhances its local prediction by integrating en-
hanced results obtained from the coarse global information.
The fusion is achieved through the following formulae:

Zenhance
i,T = σ

(
(MLP(Xobs

i )||MLP(Zcoarse
i,T ))Θ4

)
,

Yfinal = (1− α)Zi,T + αZenhance
i,T .

By adjusting fusion rate α, participants can control the level
of fusion applied to their final forecast.

3.4 Security Analysis
We show that the BoolMatMult is privacy-preserving and
correct in the two-party, semi-honest, honest-majority set-
ting. The detailed definition and proof is in appendix.

Resistance to attack Data layer. Raw time-series and
their labels always remain on the client. Only the n-out-of-
n XOR shares enter the MPC pipeline. Because any sin-
gle share is information-theoretically independent of the
underlying value and the server never accesses plaintext
or gradients, an adversary cannot reconstruct samples or
labels, nor perform membership inference or GAN-based
data–synthesis attacks.

Topology layer. Each client compresses its local graph
into k-anonymous super-nodes, then uses BoolMatMult to
reveal only whether cross-party edges exist; the server fur-
ther binarises the result. Coarse aggregation removes fine-
grained structure, and binarisation erases edge-count and de-
gree information, blocking graph-reconstruction and degree-
based attribute-inference attacks. k-anonymous proof in ap-
pendix.

Mapping layer. The node-to-super-node assignment ma-
trix Pi is never sent in plaintext; it appears only as masked
shares inside the MPC and is dynamically updated during
training. Consequently, neither a corrupted client nor an
honest-but-curious server can map super-node observations
back to concrete nodes, making node-level membership or
attribute inference infeasible.

3.5 Communication Overhead
FedSkeleton’s traffic naturally splits into a cold-start phase
and an online training loop. During cold start each client
pair (Pi, Pj) executes the Boolean-semiring protocol once,
sending one masked matrix each e ∈ {0, 1} (γ|Vi|)×|Vj |

from Pi and f ∈ {0, 1}(γ|Vj |)×γj from Pj-for an aggre-
gate P2P cost of

∑
i bits; every client then uploads its inter-

nal adjacency AS
i and the cross-block shares to the server,

which assembles and broadcasts the global binary backbone
B ∈ {0, 1}Γ×Γ and Γ =

∑m
i=1

(
γ|Vi|

)
once. In each sub-

sequent training round the node-to-supernode mapping Pi
may change, so clients must re-run that same cross-block
protocol and exchange fresh e, f matrices of identical size;
meanwhile each client uploads γ|Vi|d floats of super-node
features XS

i , receives the same-sized coarse forecast slice
Zcoarse
i,T and returns two scalar losses. All payloads scale lin-

early with the super-node count γ|Vi|, where γ|Vi| ≪ |Vi|
and is far smaller than the full GNN parameter size |θ|. Con-
sequently, even with per-round client-to-client exchanges,
the P2P load remains only a fraction of the gradients or node
embeddings transferred in conventional graph FL, and the
client–server round trip is just 2γ|Vi|d floats. Except for the
one-off O(Γ2) server broadcast, cumulative training traffic
grows only linearly with γ, yielding one- to two-order-of-
magnitude savings over classical graph-federated learning
while preserving structural privacy and accuracy. The theo-
retical communication-overhead comparison is provided in
Appendix

4 Experiments
4.1 Datasets
We evaluate FedSkeleton on four time-series graph datasets-
three real-world and one synthetic-covering power-grid op-
eration, public-health surveillance and generic network dy-
namics. complete data sources, preprocessing and sliding-
window settings are deferred to Appendix A(National Re-
newable Energy Laboratory 2006; Kim et al. 2018). So-



lar contains 137 nodes representing Alabama photovoltaic
plants with 10-minute power-output readings and is split into
2 parties; ChileNet models a Chilean generator–substation
grid with 218 nodes and 3 default parties; Syn is a 2,000-
node Barabási–Albert synthetic network governed by Hind-
marsh–Rose dynamics, evaluated under 5-, 20- and 50-party
partitions; Covid links 3,142 U.S. counties through adja-
cency edges, provides 500-day case counts, and treats each
state as a party for a total of 45.

4.2 Compared Algorithm
We compare FedSkeleton with three state-of-the-art algo-
rithms: (1) STGNCDE (Choi et al. 2022) integrates graph
convolutions and controlled differential equations for the
prediction of time series in graph-structured data. (2) MT-
GODE (Jin et al. 2023) combines spatial dependencies
through graph convolutions and temporal dynamics through
ODEs for multi-step forecasting. (3) FourierGNN (Yi et al.
2024) combines Fourier Transform and GNN to capture
spatio-temporal dependencies in the frequency domain. (4)
T-PATCHGNN (Zhang et al. 2024) splits irregular mul-
tivariate series into transformable patches and forecasts
with a Transformer–GNN hybrid. (5) NDCN (Zang and
Wang 2020) views GNN layers as continuous diffusion
ODEs, integrating node dynamics for sequence prediction.
(6) FedGC (Fu et al. 2025) condenses graphs federatively by
gradient-matching parties while safeguarding membership
privacy. (7) CNFGNN (Meng, Rambhatla, and Liu 2021a)
decouples on-device temporal encoding and server-side spa-
tial GNN to model decentralized spatio-temporal data.

4.3 Experimental Setup
We evaluate FedSkeleton under two complementary learn-
ing regimes. In the centralized setting, a single server holds
the complete graph and all node features. In the federated
setting, both topology and features remain partitioned across
clients and never leave their silos. The full implementation
details provided in the Appendix.

4.4 Metrics
To evaluate the model’s performance, we use four key
metrics: Mean Squared Error (MSE), Normalized Mean
Squared Error (NMSE), Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE). Specifically, for all met-
rics, a smaller value indicates a better performance. Their
detailed description can be found in Appendix.

4.5 Main Results
Centralized performance Table 1 shows that FedSkele-
ton consistently outperforms every baseline on both Solar
and ChileNet. On Solar, FedSkeleton attains the lowest MSE
(18.13) and RMSE (4.20), cutting error by roughly 11%
and 7% relative to the second-best FourierGNN (20.37 /
4.51) and by 40–72% against MTGODE, STGNCDE and
the newly added NDCN. Although FourierGNN edges ahead
in NMSE and MAE, FedSkeleton still delivers the best over-
all accuracy. The advantage widens on ChileNet: FedSkele-
ton leads all four metrics, with an NMSE of 0.0360-23%
lower than FourierGNN, 55% lower than MTGODE, 67%
lower than NDCN, and 85% lower than STGNCDE. Its
MSE drops to 429.63, improving on FourierGNN by 14%
and on MTGODE by 49%, while MAE (5.84) and RMSE

(19.43) are likewise the best recorded. Crucially, every base-
line is trained on the full graph topology, whereas FedSkele-
ton relies only on party-local subgraphs plus a privacy-
preserving global skeleton. Despite lacking complete topol-
ogy, the framework leverages secure cross-edge information
to surpass centrally trained models, underscoring FedSkele-
ton’s strength for time-series forecasting under federated,
privacy-constrained settings.

Federated performance In TableTable 2 showsUnder a
fully federated setting, FedSkeleton delivers either the best
or second-best scores on all four datasets and clearly outper-
forms the other three baselines overall. On Solar, it reduces
MSE to 18.13 and RMSE to 4.20, improvements of 28.0%
and 12.7% over the next-best T-PatchGNN. On ChileNet,
its NMSE is only 0.036, corresponding to 90.0% of T-
PatchGNN and 34.6% of CNFGNN, while FedGC-limited
by structural information loss-shows errors more than an
order of magnitude higher. On the synthetic Syn dataset,
FedSkeleton achieves NMSE 5× 10−4 and MSE 3× 10−3,
a further 4–5× reduction relative to CNFGNN, whereas
FedGC lags by two orders of magnitude. Even on the highly
imbalanced Covid dataset, FedSkeleton remains ahead with
an MSE of 4.50×106, just 0.14% of T-PatchGNN and 0.38%
of CNFGNN, demonstrating robustness to heterogeneous
graph sizes. In summary, by leveraging a privacy-preserving
global skeleton to recover cross-party topology, FedSkeleton
consistently lowers forecasting error and maintains superior-
ity across all evaluation metrics.

4.6 Parameter Analysis
Impact of compression ratio In FedSkeleton, the com-
pression ratio γ controls the resolution of the global skele-
ton’s structure. Higher values of γ preserve more node-
level details, while lower values have coarser structure. This
section investigates the relationship between γ and predic-
tive accuracy. To evaluate the effect of γ on performance,
we conduct a parameter study using seven different values:
[0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5]. For clarity, we present
the performance trends of the model with varying γ values
at specific epochs: [10, 30, 40, 50], where all participants in
a given training session use the same γ. Figure 2 presents
the results for the Solar dataset. As curves in (a) and (b),
When the number of training epochs is small, the impact of
γ on performance is not significant. As training progresses,
higher values of γ lead to better predictive accuracy, while
γ values below 0.1 result in a noticeable decline in perfor-
mance. However, when γ exceeds 0.2, there is no significant
improvement in prediction performance.

Impact of fusion rate In this section, we explore the im-
pact of different fusion rates on the FedSkeleton framework,
conducting experiments on two datasets, Solar and Chile.
Each FL party uses the same fusion rate by default, and we
examine the effect of varying α from 0 to 1 with a step size
of 0.1.

Figure 3 upper row illustrates the impact of α on the So-
lar dataset, with prediction loss trends measured using MAE
and MSE at different epochs (10, 50, and 80). As observed,
when α is set to a low value (closer to 0), the prediction re-
lies primarily on local information, resulting in higher loss
values, particularly in long-term predictions. As α increases,
incorporating more global information, the prediction error



Table 1: Average performance comparison on Solar and ChileNet (smaller is better). Bold = best, underline = second best.

Solar ChileNet
NMSE MSE MAE RMSE NMSE MSE MAE RMSE

NDCN 0.6328 65.3593 4.3139 8.0845 0.1085 1191.1644 13.2282 34.5132
MTGODE 0.1920 30.0970 3.0341 5.4860 0.0800 840.8540 9.4250 28.9970
STGNCDE 0.2750 42.8610 4.4991 6.5426 0.2420 2549.2980 18.2940 50.4770
FourierGNN 0.1370 20.3730 2.2860 4.5140 0.0470 501.8770 7.0110 22.4020
Our model 0.1970 18.1340 2.3520 4.1980 0.0360 429.6340 5.8420 19.4330

Table 2: Average performance comparison on four real-world datasets (smaller is better). Bold=best, underline=second best.

Solar ChileNet
NMSE MSE MAE RMSE NMSE MSE MAE RMSE

t-PatchGNN 0.1493 25.1150 2.3190 4.8112 0.0400 452.1530 7.3579 20.1395
FedGC 0.7735 117.0280 9.4185 10.736 0.4287 4145.1114 40.5153 63.933
CNFGNN 0.7053 104.6111 5.3617 9.977 0.1041 1174.9940 15.6223 33.131
Our model 0.1970 18.1340 2.3520 4.1980 0.0360 429.6340 5.8420 19.433

Syn Covid
NMSE MSE MAE RMSE NMSE MSE MAE RMSE

t-PatchGNN 0.0047 0.0301 0.1187 0.1730 0.0213 3.158e+9 2.212e+3 3.167e+3
FedGC 0.3967 2.5369 1.1290 1.5858 0.8142 2.082e+9 1.551e+4 3.448e+4
CNFGNN 0.0022 0.0139 0.0911 0.1178 0.3069 1.182e+9 7.881e+3 1.712e+4
Our model 0.0005 0.0030 0.0348 0.0550 0.0040 4.501e+6 7.066e+2 2.122e+3
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Figure 2: Prediction loss trends measured by MAE and MSE
over different values of γ on the Solar dataset, with results
recorded at epochs 10, 30, 40, and 50.

gradually decreases. However, when α approaches 1, the
MSE and MAE both start increasing again, especially at
later epochs. This suggests that excessive reliance on global
forecasts may introduce noise or excessive coarsening, lead-
ing to performance degradation. The best performance is
achieved for moderate values of α (around 0.3 to 0.6), where
local fine-grained details and global structural information
are optimally fused.

Lower row presents the results on the Chile dataset, (b)
omits the MSE when α = 0. showing a similar trend in the
influence of α. When α is too low, the MAE and MSE val-
ues remain relatively high, as local-only forecasting lacks
sufficient global structural information to generalize well.
However, unlike the Solar dataset, the Chile dataset exhibits
more variation in performance as α increases, with notice-
able fluctuations at higher values of α. This indicates that the
balance between local and global forecasting plays a more
dynamic role depending on the dataset characteristics. Over-
all, for both datasets, moderate values of α yield the most
stable and accurate predictions, confirming the necessity of
balancing local and global fusion in the FedSkeleton frame-

work.
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Figure 3: Prediction loss trends measured by MAE and MSE
over different values of α on the Solar (top row) and Chile
(bottom row) datasets, with results recorded at epochs 10,
50, and 80.

Global topology updating To quantify how the global
skeleton update frequency affects accuracy, we keep all
other hyper-parameters fixed on the Syn-5 partition and
vary the trigger ratio of Global Skeleton Build. Result
present in Table 3. FedSkeleton-all rebuilds the back-
bone in every communication round, whereas FedSkeleton-
{0.8, 0.5, 0.4, 0.2} refresh it in only 80%, 50%, 40%, and
20% of the rounds, reusing the previous adjacency other-



wise. Full updates yield the best scores (NMSE = 0.0005,
MSE = 0.0030). Reducing the ratio to 0.8 causes a mod-
est rise (roughly 1.8× in MSE); at 0.5 and 0.4 the incre-
ments grow further and both MAE and RMSE deteriorate
markedly, indicating that stale cross-party topology induces
drift that local models cannot correct. The extreme 0.2 set-
ting, which effectively approximates local training in most
rounds, exhibits larger and unpredictable fluctuations. Over-
all, promptly synchronising the global structure substan-
tially boosts forecasting accuracy, while an update ratio of
at least 80% offers a pragmatic trade-off between communi-
cation cost and performance in bandwidth-constrained sce-
narios.

Table 3: Impact of Global Skeleton Update Ratio on Fore-
casting Errors (Syn-5)

Syn-5
NMSE MSE MAE RMSE

FedSkleton-all 0.0005 0.0030 0.0348 0.0550
FedSkleton-0.8 0.0009 0.0057 0.0384 0.0758
FedSkleton-0.5 0.0011 0.0070 0.0433 0.0835
FedSkleton-0.4 0.0011 0.0070 0.0433 0.0835
FedSkleton-0.2 0.0011 0.0030 0.0348 0.0550

Impact of federation scale To assess robustness under
federation growth, we partition the synthetic dataset (Syn)
into three federation sizes-5, 20, and 50 clients-keeping the
per-client data volume and all training hyper-parameters
identical to the main experiments. As the number of clients
increases, the total amount of data rises while communica-
tion and aggregation costs also grow. We report four error
metrics and plot the two most indicative ones-mean squared
error (MSE) and mean absolute error (MAE)-to visualize
scaling trends.

Figure 4 reports performance when the synthetic Syn
dataset is split across 5, 20 and 50 clients. This shows that
FedSkeleton is the most scale-robust: its MAE increases
only from 0.0348 to 0.0572 and its MSE from 0.0030 to
0.0090-both less than a two-fold rise-while remaining the
lowest throughout, CNFGNN improves slightly as federa-
tion size grows (MAE 0.0911 → 0.0811; MSE 0.0139 →
0.0135) yet still lags FedSkeleton by roughly 40–140%
in every setting. T-PatchGNN is more scale-sensitive, with
MAE dropping from 0.1187 to 0.0611 and MSE from
0.0301 to 0.0090, but it stays an order of magnitude worse
than FedSkeleton. FedGC’s MSE hovers around 6.2 at both
20 and 50 clients-nearly three orders of magnitude higher
than FedSkeleton-indicating that its compression strategy
struggles to preserve structural information under highly
heterogeneous splits. Overall, FedSkeleton sustains the best
error levels even as communication and aggregation costs
rise, demonstrating superior scalability and robustness.

4.7 Additional Experiment
To quantify how graph compression affects privacy, we ran-
domly choose target nodes on the Solar dataset and let the
server act as a latent attacker that is given partial raw data.
The attacker trains a model to infer the targets’ time–series
while FedSkeleton operates with seven compression ratios
γ ∈ {0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5}. Figure 5 plots the
attacker’s MAE and MSE throughout training. The curves
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Figure 4: Prediction loss trends measured by MAE (left) and
MSE (right) as the synthetic Syn dataset is partitioned across
5, 20, and 50 clients.

show that when γ < 0.08, both errors remain highest, indi-
cating the strongest privacy because many primitive nodes
are merged into the same super-node. For γ≥0.2 the errors
drop noticeably, meaning the attacker can more easily re-
cover single-node information. In short, very small compres-
sion ratios offer clear privacy gains, while improvements sat-
urate once γ exceeds 0.1. Full experimental details and the
exact attack-model definition are provided in the appendix.
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Figure 5: Attack loss trends measured by MAE and MSE
over training epochs on the Solar dataset for different values
of γ.

5 Conclusion

In this paper, we propose a privacy-preserving federated
graph learning framework, named FedSkeleton, for collab-
orative time-series prediction tasks. FedSkeleton can strike
a better balance between forecasting utility and data privacy
with the enhancement of the two curated modules. Specifi-
cally, we first curate a skeleton construction method to ag-
gregate cross-party features in a privacy-preserving manner.
Subsequently, we introduce a dual-stream forecast mecha-
nism for mitigating the performance decline raised by the
privacy-preserving scheme. Extensive experiments on two
real-world datasets demonstrate that FedSkeleton signifi-
cantly outperforms state-of-the-art techniques in federated
graph learning for time-series forecasting. Future research
can explore integrating different local predictive models
with the global skeleton to further investigate its capability
in capturing and understanding complex network topologies.
Additionally, further studies can focus on the security and
robustness of supernodes, exploring adversarial strategies in
federated learning.
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Kim, H.; Olave-Rojas, D.; Álvarez-Miranda, E.; and Son, S.-
W. 2018. In-depth data on the network structure and hourly
activity of the central Chilean power grid. Scientific data,
5(1): 1–10.
Lei, R.; Wang, P.; Zhao, J.; Lan, L.; Tao, J.; Deng, C.; Feng,
J.; Wang, X.; and Guan, X. 2023. Federated learning over
coupled graphs. IEEE Transactions on Parallel and Dis-
tributed Systems, 34(4): 1159–1172.
Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2017. Diffusion con-
volutional recurrent neural network: Data-driven traffic fore-
casting. arXiv preprint arXiv:1707.01926.
Liu, T.; Li, P.; and Gu, Y. 2021. Glint: Decentralized feder-
ated graph learning with traffic throttling and flow schedul-
ing. In 2021 IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS), 1–10. IEEE.
Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, Z.; Kang, J.;
and Hossain, M. S. 2020. Deep anomaly detection for time-
series data in industrial IoT: A communication-efficient on-
device federated learning approach. IEEE Internet of Things
Journal, 8(8): 6348–6358.
Liu, Y.; Liu, Q.; Zhang, J.-W.; Feng, H.; Wang, Z.; Zhou,
Z.; and Chen, W. 2022. Multivariate time-series forecasting
with temporal polynomial graph neural networks. Advances
in neural information processing systems, 35: 19414–19426.
Lu, S.; Zhang, Y.; Wang, Y.; and Mack, C. 2019. Learn elec-
tronic health records by fully decentralized federated learn-
ing. arXiv preprint arXiv:1912.01792.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelli-
gence and statistics, 1273–1282. PMLR.
Mei, G.; Guo, Z.; Liu, S.; and Pan, L. 2019. SGNN: A
Graph Neural Network Based Federated Learning Approach
by Hiding Structure. In 2019 IEEE International Conference
on Big Data (Big Data), 2560–2568.
Meng, C.; Rambhatla, S.; and Liu, Y. 2021a. Cross-node
federated graph neural network for spatio-temporal data
modeling. In Proceedings of the 27th ACM SIGKDD con-
ference on knowledge discovery & data mining, 1202–1211.
Meng, C.; Rambhatla, S.; and Liu, Y. 2021b. Cross-Node
Federated Graph Neural Network for Spatio-Temporal Data
Modeling. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining, KDD ’21,
1202–1211. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 978-1-4503-8332-5.
Miele, E. S.; Bonacina, F.; and Corsini, A. 2022. Deep
anomaly detection in horizontal axis wind turbines using



graph convolutional autoencoders for multivariate time se-
ries. Energy and AI, 8: 100145.
National Renewable Energy Laboratory. 2006. Solar Power
Data. Accessed: 2025-02-05.
Pan, Z.; Liang, Y.; Wang, W.; Yu, Y.; Zheng, Y.; and Zhang,
J. 2019. Urban traffic prediction from spatio-temporal data
using deep meta learning. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery
& data mining, 1720–1730.
Shamir, A. 1979. How to share a secret. Communications of
the ACM, 22(11): 612–613.
Shang, C.; Chen, J.; and Bi, J. 2021. Discrete graph structure
learning for forecasting multiple time series. arXiv preprint
arXiv:2101.06861.
Shen, Y.; Zhang, J.; Song, S.; and Letaief, K. B. 2022. Graph
neural networks for wireless communications: From theory
to practice. IEEE Transactions on Wireless Communica-
tions, 22(5): 3554–3569.
Sweeney, L. 2002. k-anonymity: A model for protecting
privacy. International journal of uncertainty, fuzziness and
knowledge-based systems, 10(05): 557–570.
Truong, H. T.; Ta, B. P.; Le, Q. A.; Nguyen, D. M.; Le,
C. T.; Nguyen, H. X.; Do, H. T.; Nguyen, H. T.; and Tran,
K. P. 2022. Light-weight federated learning-based anomaly
detection for time-series data in industrial control systems.
Computers in Industry, 140: 103692.
Wang, X.; Ma, Y.; Wang, Y.; Jin, W.; Wang, X.; Tang, J.;
Jia, C.; and Yu, J. 2020. Traffic flow prediction via spatial
temporal graph neural network. In Proceedings of the web
conference 2020, 1082–1092.
Wu, C.; Wu, F.; Lyu, L.; Qi, T.; Huang, Y.; and Xie, X. 2022.
A Federated Graph Neural Network Framework for Privacy-
Preserving Personalization. Nature Communications, 13(1):
3091.
Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; and Zhang,
C. 2020. Connecting the dots: Multivariate time series fore-
casting with graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge
discovery & data mining, 753–763.
Yan, B. 2024. Federated Graph Condensation with
Information Bottleneck Principles. arXiv preprint
arXiv:2405.03911.
Yang, L.; Tan, B.; Zheng, V. W.; Chen, K.; and Yang,
Q. 2020. Federated recommendation systems. Federated
Learning: Privacy and Incentive, 225–239.
Yao, Y.; Jin, W.; Ravi, S.; and Joe-Wong, C. 2024. FedGCN:
Convergence-communication tradeoffs in federated training
of graph convolutional networks. Advances in neural infor-
mation processing systems, 36.
Yi, J.; Wu, F.; Wu, C.; Liu, R.; Sun, G.; and Xie, X. 2021.
Efficient-FedRec: Efficient Federated Learning Framework
for Privacy-Preserving News Recommendation. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, 2814–2824.
Yi, K.; Zhang, Q.; Fan, W.; He, H.; Hu, L.; Wang, P.; An, N.;
Cao, L.; and Niu, Z. 2024. FourierGNN: Rethinking multi-
variate time series forecasting from a pure graph perspective.
Advances in Neural Information Processing Systems, 36.

Yu, B.; Yin, H.; and Zhu, Z. 2017. Spatio-temporal Graph
Convolutional Neural Network: A Deep Learning Frame-
work for Traffic Forecasting. CoRR, abs/1709.04875.
Zang, C.; and Wang, F. 2020. Neural dynamics on complex
networks. In Proceedings of the 26th ACM SIGKDD inter-
national conference on knowledge discovery & data mining,
892–902.
Zhang, W.; Yin, C.; Liu, H.; Zhou, X.; and Xiong, H.
2024. Irregular multivariate time series forecasting: A trans-
formable patching graph neural networks approach. In
Forty-first International Conference on Machine Learning.

Reproducibility Checklist

Instructions for Authors:
This document outlines key aspects for assessing repro-

ducibility. Please provide your input by editing this .tex
file directly.

For each question (that applies), replace the “Type your
response here” text with your answer.

Example: If a question appears as
\question{Proofs of all novel claims
are included} {(yes/partial/no)}
Type your response here

you would change it to:
\question{Proofs of all novel claims
are included} {(yes/partial/no)}
yes

Please make sure to:

• Replace ONLY the “Type your response here” text and
nothing else.

• Use one of the options listed for that question (e.g., yes,
no, partial, or NA).

• Not modify any other part of the \question com-
mand or any other lines in this document.

You can \input this .tex file right before
\end{document} of your main file or compile it as
a stand-alone document. Check the instructions on your
conference’s website to see if you will be asked to provide
this checklist with your paper or separately.

1. General Paper Structure
1.1. Includes a conceptual outline and/or pseudocode de-

scription of AI methods introduced (yes/partial/no/NA)
yes

1.2. Clearly delineates statements that are opinions, hypoth-
esis, and speculation from objective facts and results
(yes/no) yes

1.3. Provides well-marked pedagogical references for less-
familiar readers to gain background necessary to repli-
cate the paper (yes/no) yes



2. Theoretical Contributions
2.1. Does this paper make theoretical contributions?

(yes/no) no

If yes, please address the following points:

2.2. All assumptions and restrictions are stated clearly
and formally (yes/partial/no) yes

2.3. All novel claims are stated formally (e.g., in theorem
statements) (yes/partial/no) yes

2.4. Proofs of all novel claims are included (yes/par-
tial/no) yes

2.5. Proof sketches or intuitions are given for complex
and/or novel results (yes/partial/no) yes

2.6. Appropriate citations to theoretical tools used are
given (yes/partial/no) yes

2.7. All theoretical claims are demonstrated empirically
to hold (yes/partial/no/NA) yes

2.8. All experimental code used to eliminate or disprove
claims is included (yes/no/NA) yes

3. Dataset Usage
3.1. Does this paper rely on one or more datasets? (yes/no)

yes

If yes, please address the following points:

3.2. A motivation is given for why the experiments
are conducted on the selected datasets (yes/par-
tial/no/NA) yes

3.3. All novel datasets introduced in this paper are in-
cluded in a data appendix (yes/partial/no/NA) yes

3.4. All novel datasets introduced in this paper will be
made publicly available upon publication of the pa-
per with a license that allows free usage for research
purposes (yes/partial/no/NA) yes

3.5. All datasets drawn from the existing literature (po-
tentially including authors’ own previously pub-
lished work) are accompanied by appropriate cita-
tions (yes/no/NA) yes

3.6. All datasets drawn from the existing literature
(potentially including authors’ own previously
published work) are publicly available (yes/par-
tial/no/NA) yes

3.7. All datasets that are not publicly available are de-
scribed in detail, with explanation why publicly
available alternatives are not scientifically satisficing
(yes/partial/no/NA) NA

4. Computational Experiments
4.1. Does this paper include computational experiments?

(yes/no) yes

If yes, please address the following points:

4.2. This paper states the number and range of values
tried per (hyper-) parameter during development of
the paper, along with the criterion used for selecting
the final parameter setting (yes/partial/no/NA) yes

4.3. Any code required for pre-processing data is in-
cluded in the appendix (yes/partial/no) yes

4.4. All source code required for conducting and analyz-
ing the experiments is included in a code appendix
(yes/partial/no) yes

4.5. All source code required for conducting and ana-
lyzing the experiments will be made publicly avail-
able upon publication of the paper with a license
that allows free usage for research purposes (yes/-
partial/no) yes

4.6. All source code implementing new methods have
comments detailing the implementation, with refer-
ences to the paper where each step comes from (yes/-
partial/no) yes

4.7. If an algorithm depends on randomness, then the
method used for setting seeds is described in a way
sufficient to allow replication of results (yes/par-
tial/no/NA) yes

4.8. This paper specifies the computing infrastructure
used for running experiments (hardware and soft-
ware), including GPU/CPU models; amount of
memory; operating system; names and versions of
relevant software libraries and frameworks (yes/par-
tial/no) yes

4.9. This paper formally describes evaluation metrics
used and explains the motivation for choosing these
metrics (yes/partial/no) yes

4.10. This paper states the number of algorithm runs used
to compute each reported result (yes/no) yes

4.11. Analysis of experiments goes beyond single-
dimensional summaries of performance (e.g., aver-
age; median) to include measures of variation, con-
fidence, or other distributional information (yes/no)
no, due to the high computational cost of the exper-
iments, all experimental results were obtained using
a fixed random seed.

4.12. The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no)
no, the performance is significant enough

4.13. This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) yes


