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Abstract

Membership Inference Attacks (MIA) aim to infer whether a target data record
has been utilized for model training or not. Existing MIAs designed for large
language models (LLMs) can be bifurcated into two types: reference-free and
reference-based attacks. Although reference-based attacks appear promising perfor-
mance by calibrating the probability measured on the target model with reference
models, this illusion of privacy risk heavily depends on a reference dataset that
closely resembles the training set. Both two types of attacks are predicated on
the hypothesis that training records consistently maintain a higher probability of
being sampled. However, this hypothesis heavily relies on the overfitting of tar-
get models, which will be mitigated by multiple regularization methods and the
generalization of LLMs. Thus, these reasons lead to high false-positive rates of
MIAs in practical scenarios. We propose a Membership Inference Attack based
on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, we introduce
a self-prompt approach, which constructs the dataset to fine-tune the reference
model by prompting the target LLM itself. In this manner, the adversary can
collect a dataset with a similar distribution from public APIs. Furthermore, we
introduce probabilistic variation, a more reliable membership signal based on LLM
memorization rather than overfitting, from which we rediscover the neighbour
attack with theoretical grounding. Comprehensive evaluation conducted on three
datasets and four exemplary LLMs shows that SPV-MIA raises the AUC of MIAs
from 0.7 to a significantly high level of 0.9. Our code and dataset are available at:
https://github.com/tsinghua-fib-lab/NeurIPS2024_SPV-MIA.

1 Introduction

Large language models (LLMs) have been validated to have the ability to generate extensive, creative,
and human-like responses when provided with suitable input prompts. Both commercial LLMs
(e.g., ChatGPT [51]) and open-source LLMs (e.g., LLaMA [65]) can easily handle various complex
application scenarios, including but not limited to chatbots [20], code generation [66], article co-
writing [28]. Moreover, as the pretraining-finetuning paradigm becomes the mainstream pipeline in
of LLM field, small-scale organizations and individuals can fine-tune pre-trained models over their
private datasets for downstream applications [44], which further enhances the influence of LLMs.

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

ar
X

iv
:2

31
1.

06
06

2v
4 

 [
cs

.C
L

] 
 2

6 
N

ov
 2

02
4

https://github.com/tsinghua-fib-lab/NeurIPS2024_SPV-MIA


0 . 9 7 0 . 9 8

0 . 6 9

0 . 9 6

0 . 6 7

0 . 9 3

L R A N e i g h b o u r  A t t a c k

0 . 6

0 . 8

1 . 0

At
tac

t A
UC

 I d e n t i c a l - d i s t r i b u t i o n   D o m a i n - s p e c i f i c   I r r e l e v a n t

0 . 9 5 2
0 . 9 0 3

0 . 6 5 7
0 . 6 1

L R A N e i g h b o u r  A t t a c k

0 . 6

0 . 8

1 . 0

At
tac

t A
UC

 O v e r f i t t i n g   M e m o r i z a t i o n

0 . 9 4

0 . 5 8
0 . 7 1

0 . 5 8
0 . 6 6

0 . 5 8

R e f e r e n c e - b a s e d R e f e r e n c e - f r e e
0 . 6

0 . 8

1 . 0
At

tac
t A

UC

(a) AUC w.r.t reference dataset source, which is utilized
to fine-tune reference model for difficulty calibration
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Figure 1: Attack performances of the reference-based MIA (LiRA [8, 46, 47, 72]) and reference-free
MIA (LOSS Attack [73]) unsatisfy against LLMs in practical scenarios, where LLMs are in the
memorization stage and only domain-specific dataset is available. (a) Reference-based MIA shows
a catastrophic plummet in performance when the similarity between the reference and training
datasets declines. (b) Existing MIAs are unable to pose privacy leakages on LLMs that only exhibit
memorization, an inevitable phenomenon occurs much earlier than overfitting and persists throughout
almost the entire training phase [47, 64, 75].

However, while we enjoy the revolutionary benefits raised by the popularization of LLMs, we also
have to face the potential privacy risks associated with LLMs. Existing work has unveiled that the
privacy leakage of LLMs exists in almost all stages of the LLM pipeline [9, 19, 41, 53, 59, 61]. For
example, poisoning attacks can be deployed during pre-training, distillation, and fine-tuning [34, 68].
Moreover, data and model extraction attacks can be conducted through inference [6, 22]. Among these
attacks, fine-tuning is widely recognized as the stage that is most susceptible to privacy leaks since
the relatively small and often private datasets used for this process [74]. Therefore, this paper aims to
uncover the underlying privacy concerns associated with fine-tuned LLMs through an exploration of
the membership inference attack (MIA).

MIA is an adversary model that categorizes data records into two groups: member records, which
are included in the training dataset of the target model, and nonmember records, which belong to
a disjoint dataset [60]. MIAs have been well studied in classic machine learning tasks, such as
classification, and reveal significant privacy risks [25]. Recently, some contemporaneous works
attempt to utilize MIAs to evaluate the privacy risks of LLMs. For example, several studies have
employed reference-free attack, especially LOSS attack [73], for privacy auditing [31] or more
sophisticated attack [6]. Mireshghallah et al. introduce the seminal reference-based attack, Likelihood
Ratio Attacks (LiRA) [8, 70, 72], into Masked Language Models (MLMs), which measure the
calibrated likelihood of a specific record by comparing the discrepancy on the likelihood between the
target LLM and the reference LLM. Following this concept, Mireshghallah et al. further adapt LiRA
for analyzing memorization in Causal Language Models (CLMs). However, these methods heavily
rely on several over-optimistic assumptions, including assuming the overfitting of target LLMs [41]
and having access to a reference dataset from the same distribution as the training dataset [46, 47].
Thus, it remains inconclusive whether prior MIAs can cause considerable privacy risk in practical
scenarios.

As illustrated in Fig. 1, LiRA [47] and LOSS Attack [73] are employed to represent reference-based
and reference-free MIAs to explore their performance in practical scenarios. Firstly, as shown in
Fig. 1(a), we evaluate LiRA and LOSS Attack with three reference datasets from different sources, i.e.,
the dataset with the identical distribution with the member records (identical-distribution), the dataset
of the same domain with the member records (domain-specific), and the dataset irrelevant to the
member records (irrelevant). The performance of LOSS attack is consistently low and independent of
the source of the reference dataset. For LiRA, the attack performance will catastrophically plummet as
the similarity between the reference dataset and the target dataset declines. Thus, the reference-based
MIA can not pose critical privacy leakage on LLMs since similar datasets are usually not available
to adversaries in real applications. Secondly, as shown in Fig. 1(b), two target LLMs are fine-tuned
over the same pre-trained model but stop before and after overfitting, and the reference LLMs are
fine-tuned on a different dataset from the same domain. We can observe that existing MIAs cannot
effectively cause privacy leaks when the LLM is not overfitting. This phenomenon is addressed by
the fact that the membership signal proposed by existing MIAs is highly dependent on overfitting in
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target LLMs. They assume that member records tend to have overall higher probabilities of being
sampled than non-member ones, an assumption that is only satisfied in overfitting models [67].

In this work, to address the aforementioned two limitations of existing works, we propose a Mem-
bership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA) composed of
two according modules. First, although existing reference-based MIAs are challenging to reveal
actual privacy risks, they demonstrate the significant potential of achieving higher privacy risks
with the reference model. Therefore, we design a self-prompt approach to extract the reference
dataset by prompting the target LLMs themselves and collecting the generated texts. This approach
allows us to acquire the significant performance improvement brought by the reference model while
ensuring the adversary model is feasible on the practical LLMs. Second, prior studies have shown
that memorization is intrinsic for machine learning models to achieve optimality [16] and can persist
in LLMs without leading to overfitting [64]. Consequently, rather than relying on probabilities as
membership signals, we propose designing a more resilient signal grounded in an insightful theory,
which posits that LLM memorization manifests as an augmented concentration in the probability
distribution surrounding the member records [67]. Specifically, we proposed a probabilistic variation
metric that can detect local maxima points via the notion of second partial derivative test [62] approx-
imately instantiated by a paraphrasing model. Moreover, based on the new theoretical foundation,
we elucidate the efficacy of the neighbor attack [41] through the lens of LLM memorization. This
analysis underscores the pivotal role of characterizing memorization in MIA for future studies. It is
worth noting that our paraphrasing model does not rely on another MLM like the neighbour attack.
Overall, our contributions are summarized as follows:

• We propose a self-prompt approach that collects reference datasets by prompting the target LLM
to generate, which will have the closely resemble distribution as the training dataset. In this
manner, the reference model fine-tuned on the reference dataset can significantly improve the
attack performance without any unrealistic assumptions.

• We further design a probabilistic variation metric based on the theoretical foundation of LLM
memorization [67], and derive a more convincing principle and explanation of the neighbour
attack [41]. Furthermore, our investigation highlights the importance of characterizing LLM
memorization for subsequent studies in designing more sophisticated MIA methods.

• We conducted extensive experiments to validate the effectiveness of SPV-MIA. The results
suggest that SPV-MIA unveils significantly higher privacy risk across multiple fine-tuned LLMs
and datasets compared with existing MIAs (about 23.6% improvement in AUC across four
representative LLMs and three datasets).

2 Related Works

Membership Inference Attack: Initially, prior MIAs mainly focused on classical machine learning
models, such as classification models [7, 10, 39, 60]. With the rapid development of other machine
learning tasks, such as recommendation and generation tasks, MIAs against these task-specific models
became a research direction of great value, and have been well investigated [13, 18, 77]. Meanwhile,
ChatGPT released by OpenAI has propelled the attention towards LLMs to the peak over the past
year, which promotes the study of MIAs against LLMs. The seminal works in this area typically
focuses on fine-tuned LLM or LM. Mireshghallah et al. proposed LiRA against MLMs via adopting
pre-trained models as reference models. Following this study, Mireshghallah et al. further adapted
LiRA for CLMs. Mattern et al. pointed out the unrealistic assumption of a reference model trained
on similar data, then substituted it with a neighbourhood comparison method. Although MIAs against
LMs and fine-tuned LLMs have been studied by several works, the attack performance of existing
MIAs in regard to LLMs with large-scale parameters and pre-trained on tremendous corpora is still
not clear. Thus, some contemporaneous works have also been released to detect the pre-training
data of LLMs and expose considerable privacy risks [11, 14, 19, 42, 59, 76]. In this work, we still
focus on fine-tuned LLMs since the fine-tuning datasets are typically more private and sensitive. We
evaluate previous MIAs on LLMs in practical scenarios, and found that the revealed privacy breaches
were far below expectations due to their strict requirements and over-optimistic assumptions. Then,
we propose SPV-MIA, which discloses significant privacy risks on practical LLM applications.

Large Language Models: In the past year, LLMs have dramatically improved performances on
multiple natural language processing (NLP) tasks and consistently attracted attention in both academic
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and industrial circles [44]. The widespread usage of LLMs has led to much other contemporaneous
work on quantifying the privacy risks of LLMs [41, 48, 53]. In this work, we audit privacy leakages
of LLMs by distinguishing whether or not a specific data record is used for fine-tuning the target LLM
The existing LLMs primarily fall into three categories: causal language modeling (CLM) (e.g. GPT),
masked language modeling (MLM) (e.g. BERT), and Sequence-to-Sequence (Seq2Seq) approach
(e.g. BART). Among these LLMs, CLMs such as GPT [54, 69] and LLaMA [65] have achieved the
dominant position with the exponential improvement of model scaling [79]. Therefore, we select
CLM as the representative LLM for evaluation in this work.

3 Preliminaries

3.1 Causal Language Models

For a given text record x, it can be split into a sequence of tokens
[
t0, t1, · · · , t|x|

]
with variable length

|x|. CLM is an autoregressive language model, which aims to predict the conditional probability
pθ (ti | x<i) given the previous tokens x<i = [t0, t1, · · · , ti−1]. During the training process, CLM
calculates the probability of each token in a text with the previous tokens, then factorizes the joint
probability of the text into the product of conditional token prediction probabilities. Therefore, the
model can be optimized by minimizing the negative log probability:

LCLM = − 1

M

M∑
j=1

|x(j)|∑
i=1

log pθ

(
ti | x(j)

<i

)
, (1)

where M denotes the number of training records. In the process of generation, CLMs can generate
coherent words by predicting one token at a time and producing a complete text using an autoregressive
manner. Moreover, the pretraining-finetuning paradigm is proposed to mitigate the uncountable
demands of training an LLM for a specific task [44]. Besides, multifarious parameters-efficient
fine-tuning methods (e.g., LoRA [24], P-Tuning [38]) are introduced to further decrease consumption
by only fine-tuning limited model parameters [12]. In this work, we concentrate on the fine-tuning
phase, since the fine-tuning datasets are usually more private and vulnerable to the adversary [74].

3.2 Threat Model

In this work, we consider an adversary who aims to infer whether a specific text record was included
in the fine-tuning dataset of the target LLM. There are two mainstream scenarios investigated by
previous research: white-box and black-box MIAs. White-box MIA assumes full access to the raw
copy of the target model, which means the adversary can touch and modify each part of the target
model [50]. For a fully black-box scenario, the adversary should only approved to acquire output texts
generated by the target LLM while given specific prompts, which maybe too strict for the adversary
to conduct a valid MIA [14, 41, 58, 76]. Thus, we consider a practical setting beyond fully black-box
that further requires two regular API access for evaluating existing works and our proposed method:

• Query API: The access to the query API that only provides generated texts and logits (or loss).
• Fine-tuning API: The access to the fine-tuning API of the pre-trained version of the target model.

Note that the query API access is widely adopted by existing MIA works [14, 41, 58, 76], both
the query API and the fine-tuning API are usually provided by commercial LLM providers, such
as OpenAI [52] and Zhipu AI [2]. These two APIs are also easy for the adversary to access in
open-source LLMs, such as LLaMA [65] and Flacon [3]. In our setting, D is a dataset collected for
a specific task, which can be separated into two disjoint subsets: Dmem and Dnon. The target LLM
θ is fine-tuned on Dmem, and the adversary has no prior information about which data records are
utilized for fine-tuning. Besides, all reference-based MIA, including SPV-MIA, can at most fine-tune
the reference model using a disjoint dataset Drefer from the same task. The adversary algorithm A is
designed to infer whether a text record x(i) ∈ D belong to the training dataset Dmem:

A
(
x(j), θ

)
= 1

[
P
(
m(j) = 1|x(j), θ

)
≥ τ

]
, (2)

where m(j) = 1 indicates that the record x(j) ∈ Dmem , τ represents the threshold, and 1 denotes the
indicator function.
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Figure 2: The overall workflow of SPV-MIA, where includes the probabilistic calibration via self-
prompt reference model and the probabilistic variation assessment via paraphrasing model.

4 Membership Inference Attack via Self-calibrated Probabilistic Variation

In this section, we first introduce the general paradigm of Membership Inference Attack via Self-
calibrated Probabilistic Variation (SPV-MIA) as illustrated in Fig 2. Then we discuss the detailed
algorithm instantiations of this general paradigm by introducing practical difficulty calibration (PDC,
refer to Section 4.2) and probabilistic variation assessment (PVA, refer to Section 4.3).

4.1 General Paradigm

As formulated in Eq. 1, the objective of an LLM is to maximize the joint probability of the text in the
training set. Thus, prior reference-free MIAs employ the joint probability of the target text being
sampled as the membership signal [6, 31, 58]:

A (x, θ) = 1 [pθ (x) ≥ τ ] , (3)

where pθ (x) denotes the probability measured on the target model θ. Since some records are
inherently over-represented, even non-member records can achieve high probability in the data
distribution [70], which leads to a high False-Positive Rate (FPR). Thus, reference-based MIAs
adopt difficulty calibration [14, 57, 70], which further calibrates the probability by comparing it with
the value measured on reference models [46, 47]:

Aexist (x, θ) = 1 [∆pθ (x) ≥ τ ] = 1 [pθ (x)− pϕ (x) ≥ τ ] , (4)

where ∆pθ (x) is the calibrated probability, and pϕ (x) is estimated on the reference model ϕ.

However, both reference-free and reference-based MIAs often encounter high FPR in practical
scenarios [14, 41, 59, 76]. For reference-based MIAs, although them has the potential to offset
the over-represented statuses of data records if the reference model can be trained on a dataset
closely resembling the training dataset Dmem. Nevertheless, it is almost unrealistic for an adversary
to obtain such a dataset, and adopting a compromising dataset will lead to the collapse of attack
performance. We circumvent this by introducing a self-prompt reference model θ̂, which is trained on
the generated text of the target model θ. Besides, the probability signal adopted by existing MIAs is
not reliable, since the confidence of the probability signal is notably declined when the target model is
not overfitting only memorization [67]. Thus, we elaborately design a more stable membership signal,
probabilistic variation p̃θ (x), audited by a paraphrasing model and only rely on LLM memorization.
Formally, as depicted in Fig. 2, our proposed MIAs can be formulated as:

Aour

(
x, θ, θ̂

)
= 1

[
∆p̃θ,θ̂ (x) ≥ τ

]
= 1

[
p̃θ (x)− p̃θ̂ (x) ≥ τ

]
, (5)

where p̃θ (x) and p̃θ̂ (x) are probabilistic variations of the text record x measured on the target model
θ and the self-prompt reference model θ̂ respectively.

4.2 Practical Difficulty Calibration (PDC) via Self-prompt Reference Model

Watson et al. [70] has suggested that inferring the membership of a record by thresholding on a
predefined metric (e.g. confidence [56], loss [73], and gradient norm [50]) will cause a high FPR.
Since several non-member records may have high probabilities of being classified as member records
simply because they are inherently over-represented in the data manifold. In other words, the
metric estimated on the target model is inherently biased and has a high variance, which leads to a
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significant overlap in the metric distributions between members and non-members, making them
more indistinguishable. To mitigate this phenomenon, Watson et al. propose difficulty calibration
as a general approach for extracting a much more distinguishable membership signal, which can be
adapted to most metric-based MIAs by constructing their calibrated variants [46, 46, 70]. Concretely,
difficulty calibration assumes an ideal reference dataset Drefer drawn from the identical distribution
as the training set Dmem of the target model θ, and trains an ideal reference model ϕ with a training
algorithm T . Then, it fabricates a calibrated metric by measuring the discrepancy between metrics on
the target model and reference model, and this can offset biases on membership signals caused by
some over-represented records. The calibrated metric is defined as:

∆m(x) = mθ(x)− Eϕ←T (Drefer )[mϕ(x)], (6)

where ∆m(x) is the calibrated metric, mθ(x) and mϕ(x) are metrics measured on target and
reference models, respectively. The existing study has verified that reference-based MIA highly
depends on the similarity of training and reference dataset [41]. A low-quality dataset will lead to an
exponential decrease in attack performance. However, the dataset used for fine-tuning an LLM is
typically highly private, making extracting a high-quality reference dataset from the same distribution
a non-trivial challenge.

We notice that LLMs possess revolutionary fitting and generalization capabilities, enabling them
to generate a wealth of creative texts. Therefore, LLMs themselves have the potential to depict the
distribution of the training data. Thus, we consider a self-prompt approach that collects the reference
dataset from the target LLM itself by prompting it with few words. Concretely, we first collect a
set of text chunks with an equal length of l from a public dataset from the same domain, where the
domain can be easily inferred from the task of the target LLM (e.g., An LLM that serves to summary
task has high probability using a summary fine-tuning dataset). Then, we utilize each text chunk of
length l as the prompt text and request the target LLM to generate text. All the generated text can
form a dataset of size N , which is used to fine-tune the proposed self-prompt reference model θ̂ over
the pre-trained model. Accordingly, we can define the practical difficulty calibration as:

∆m (x) = mθ (x)− Eθ̂←T (Dself)
[mθ̂ (x)] ≈ mθ (x)−mθ̂ (x) , (7)

where Dself ∼ pθ (x), mθ (x) and mθ̂ (x) are membership metrics measured over the target model
and the self-prompt reference model. Only one reference model is used for computational efficiency,
which can achieve sufficiently high attack performance. It is worth noting that in some challenging
scenarios where acquiring domain-specific datasets is difficult, our self-prompt method can still
effectively capture the underlying data distribution, even when using completely unrelated prompt
texts. The relevant experiments will be conducted and discussed in detail in Section 5.4.

4.3 Probabilistic Variation Assessment (PVA) via Symmetrical Paraphrasing

Before diving into technical details, we first provide a brief overview of the motivation behind our
proposed probabilistic variation assessment by demonstrate that memorization is a more reliable
membership signal. Although memorization is associated with overfitting, overfitting by itself cannot
completely explain some properties of memorization[47, 64, 75]. The key differences between
memorization and overfitting can be summarized as the following three points:

• Occurrence Time: Existing research defines the first epoch when the LLM’s perplexity (PPL)
on the validation set starts to rise as the occurrence of overfitting [64]. In contrast, memorization
begins early [47, 64] and persists throughout almost the entire training phase [47, 75].

• Harm Level: Overfitting is almost universally acknowledged as a detrimental phenomenon in
machine learning. However, memorization is not exclusively harmful, and can be crucial for certain
types of generalization (e.g., on QA tasks) [4, 63].

• Avoidance Difficulty: Since memorization occurs much earlier, even if we use early stopping to
prevent overfitting, we will still achieve significant memorization [47]. Memorization has been
verified as an inevitable phenomenon for achieving optimal generalization on machine learning
models [17]. Moreover, since memorization is crucial for certain LLM tasks [4, 63], and separately
mitigates specific unintended memorization (e.g., verbatim memorization [27]) is a non-trivial task.

Therefore, the aforementioned discussions highlights memorization will naturally be a more reliable
signal for detecting member text. Memorization in generative models will cause member records to
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have a higher probability of being generated than neighbour records in the data distribution [67]. This
principle can be shared with LLMs, as they can be considered generation models for texts. Thus, we
suggest designing a more promising membership signal that can measure a value for each text record
to identify whether this text is located on the local maximum in the sample distribution characterized
by θ. The second partial derivative test is an approach in multivariable calculus commonly employed
to ascertain whether a critical point of a function is a local minimum, maximum, or saddle point [62].
For our objective of identifying maximum points, we need to confirm if the Hessian matrix is negative
definite, meaning that all the directional second derivatives are negative. However, considering that
member records may not strictly fall on maximum points, we suggest relaxing the decision rule and
using specific statistical metrics of the distribution of the second-order directional derivative over
the direction z to characterize the probability variation. Thus, we define the probabilistic variation
mentioned in Eq. 5 as the expectation of the directional derivative:

p̃θ (x) := Ez

(
z⊤Hp (x) z

)
, (8)

where Hp(·) is the hessian matrix of the probability function pθ(·), then z⊤Hp (x) z indicates
the second-order directional derivative of pθ(·) with respect to the text record x in the direction
z. However, calculating the second-order derivative is computationally expensive and may not be
feasible in LLMs. Thus, we propose a practical approximation method to evaluate the probabilistic
variation. Specifically, we further approximate the derivative with the symmetrical form [26]:

z⊤Hp(x)z ≈
pθ(x + hz) + pθ(x − hz)− 2pθ(x)

h2
, (9)

where requires h→ 0, and z can be considered as a sampled perturbation direction. Thus, x ± hz
can be considered as a pair of symmetrical adjacent text records of x in the data distribution. Then
we can reformulate Eq. 8 as follows by omitting coefficient h:

p̃θ (x) ≈
1

2N

N∑
n

(
pθ

(
x̃+
n

)
+ pθ

(
x̃−n

))
− pθ (x) . (10)

where x̃±n = x ± zn is a symmetrical text pair sampled by a paraphrasing model, which slightly
paraphrases the original text x in the high-dimension space. Note that the paraphrasing in the
sentence-level should be modest as Eq. 9 requires h → 0, but large enough to ensure enough
precision to distinguish the probabilistic variation in Eq. 8. Based on the aforementioned discussions,
we designed two different paraphrasing models in the embedding domain and the semantic domain,
respectively, to generate symmetrical paraphrased text embeddings or texts. For the embedding
domain, we first embed the target text, then randomly sample noise following Gaussian distribution,
and obtain a pair of symmetrical paraphrased texts by adding/subtracting noise. For the semantic
domain, we randomly mask out 20% tokens in each target text, then employ T5-base to predict the
masked tokens. Then, we compute the difference in the embeddings between the original tokens
and predicted tokens to search for tokens that are symmetrical to predicted tokens with respect
to the original tokens. We provide the detailed pseudo codes of both two paraphrasing models
in Appendix A.3. In subsequent experiments, we default to paraphrasing in the semantic domain.
Furthermore, we reformulate the neighbour attack and provide another explanation of its success
based on the probabilistic variation metric with a more rigorous principle (refer to Appendix A.4).
Additionally, supplementary experiments demonstrate that our proposed paraphrasing model in the
embedding domain achieves considerable performance gains without relying on another MLM.

5 Experiments

5.1 Experimental Setup

Our experiments are conducted on four open-source LLMs: GPT-2 [54], GPT-J [69], Falcon-7B [3]
and LLaMA-7B [65], which are both fine-tuned over three dataset across multiple domains and
LLM use cases: Wikitext-103 [43], AG News [78] and XSum [49]. Each target LLM is fine-
tuned with the batch size of 16, and trained for 10 epochs. Each self-prompt reference model is
trained for 4 epochs. We adopt LoRA [24] as the default Parameter-Efficient Fine-Tuning (PEFT)
technique. The learning rate is set to 0.0001. We adopt the AdamW optimizer [40] and early
stopping [71] to avoid overfitting and achieve generalization in LLMs, the PPL of each LLM-
dataset pair is provided in Appendix A.5.4. We compare SPV-MIA with seven state-of-the-art MIAs
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Method Wiki AG News Xsum
GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg.

Loss Attack 0.614 0.577 0.593 0.605 0.597 0.591 0.529 0.554 0.580 0.564 0.628 0.564 0.577 0.594 0.591
Neighbour Attack 0.647 0.612 0.621 0.627 0.627 0.622 0.587 0.594 0.610 0.603 0.612 0.547 0.571 0.582 0.578
DetectGPT 0.623 0.587 0.603 0.619 0.608 0.611 0.579 0.582 0.603 0.594 0.603 0.541 0.563 0.577 0.571
Min-K% 0.658 0.623 0.629 0.643 0.638 0.629 0.604 0.607 0.619 0.615 0.621 0.562 0.588 0.594 0.591
Min-K%++ 0.623 0.613 0.645 0.648 0.635 0.635 0.609 0.623 0.631 0.625 0.627 0.556 0.589 0.604 0.594
LiRA-Base 0.710 0.681 0.694 0.709 0.699 0.658 0.634 0.641 0.657 0.648 0.776 0.718 0.734 0.759 0.747
LiRA-Candidate 0.769 0.726 0.735 0.748 0.744 0.717 0.690 0.708 0.714 0.707 0.823 0.772 0.785 0.809 0.797
SPV-MIA 0.975 0.929 0.932 0.951 0.938 0.949 0.885 0.898 0.903 0.909 0.944 0.897 0.918 0.937 0.924

Table 1: AUC Score for detecting member texts from four LLMs across three datasets for SPV-MIA
and five previously proposed methods. Bold and Underline respectively represent the best and the
second-best results within each column (model-dataset pair).

Method Wiki AG News Xsum
GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg.

Loss Attack 1.3% 1.2% 1.1% 1.4% 1.2% 1.3% 1.0% 1.3% 1.2% 1.2% 1.5% 1.0% 1.0% 1.1% 1.2%
Neighbour Attack 4.1% 3.6% 2.8% 3.4% 3.5% 3.6% 2.7% 2.8% 3.1% 3.1% 3.2% 2.4% 2.5% 2.7% 2.7%
DetectGPT 3.7% 3.1% 2.6% 3.2% 3.2% 3.3% 2.4% 2.6% 2.7% 2.8% 3.0% 2.1% 2.4% 2.6% 2.5%
Min-K% 4.4% 4.3% 3.4% 3.7% 4.0% 3.7% 3.4% 3.8% 3.6% 3.6% 3.4% 2.5% 2.7% 3.1% 2.9%
Min-K%++ 3.7% 4.2% 3.8% 3.9% 3.9% 4.0% 3.3% 3.9 % 4.1% 3.8% 3.1% 2.8% 3.2% 3.4% 3.1%
LiRA-Base 12.5% 11.3% 10.7% 11.2% 11.4% 9.2% 8.0% 8.3% 8.7% 8.6% 13.5% 9.3% 10.7% 12.2% 11.4%
LiRA-Candidate 16.3% 14.3% 14.8% 15.0% 15.1% 12.2% 9.4% 10.6% 11.5% 10.9% 19.4% 10.9% 14.5% 18.5% 15.8%
SPV-MIA 67.3% 55.4% 57.6% 64.2% 61.1% 42.9% 34.8% 37.6% 39.5% 38.7% 42.1% 38.6% 40.7% 42.0% 40.9%

Table 2: TPR@1%FPR for detecting member texts from four LLMs across three datasets for
SPV-MIA and five previously proposed methods.

designed for LMs, including five reference-free MIAs: Loss Attack [73], Neighbour Attack [41],
DetectGPT [48], Min-K% [59], Min-K%++ [76] and two reference-based MIAs: LiRA-Base [47],
LiRA-Candidate [47]. We defer the detailed setup information to Appendix A.6.

5.2 Overall Performance

As presented in Table 1, we initially summarize the AUC scores [5] for all baselines and SPV-MIA
against four LLMs across three datasets. Then, as illustrated in Tabel 2, we follow the suggestion
of Carlini et al. [7] to evaluate the MIA performance by computing True-Positive Rate (TPR) at
low False-Positive Rate (FPR). Furthermore, we present linear scale and logarithmic scale receiver
operating characteristic (ROC) curves for SPV-MIA and the top three representative baselines on
LLaMAs in Appendix A.5.3 for a more comprehensive presentation. The results demonstrate that
SPV-MIA achieves the best overall attack performance with the highest average AUC of 0.924 over all
scenarios. In comparison to the AUC score, SPV-MIA demonstrates a more substantial performance
margin TPR at low FPR, achieving an average TPR@1% FPR of 46.9%. Furthermore, compared to
the most competitive baseline, LiRA-Canididate, SPV-MIA has improved the AUC of the attack by
30%, even LiRA-Canididate assumes full access to the auxiliary dataset while SPV-MIA only needs
some short text chunks from this dataset. This phenomenon indicates that our proposed self-prompt
approach enables the reference model to gain a deeper understanding of the data distribution, thereby
serving as a more reliable calibrator. We also conduct ablation studies to evaluate the contribution of
both PDC and PVA in SPV-MIA, and the results are presented in Appendix A.5.1. Most baseline,
especially reference-free attack methods, yield a low AUC, which is only slightly better than random
guesses. Furthermore, their performances on larger-scale LLMs are worse. This phenomenon verifies
the claim that existing MIAs designed for LMs can not handle LLMs with large-scale parameters. It
is also worth noting that the privacy risks caused by MIAs are proportional to the overall parameter
scale and language capabilities of LLMs. We interpret this phenomenon as follows: LLMs with
stronger overall NLP performance have better learning ability, which means they are more likely to
memorize records from the training set. Besides, MIAs fundamentally leverage the memorization
abilities of machine learning models, making superior models more vulnerable to attacks.

5.3 How MIAs Rely on Reference Dataset Quality

In this work, a key contribution is introducing a self-prompt approach for constructing a high-quality
dataset to fine-tune the reference model, which guides the reference model to become a better
calibrator. Therefore, we conduct experiments to investigate how prior reference-based MIAs rely
on the quality of the reference dataset, and evaluate whether our proposed method can build a high-
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quality reference dataset. In real-world scenarios, based on different prior information, adversaries
can obtain datasets from different sources to fine-tune the reference model with uneven quality.
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Figure 3: The performances of reference-
based MIA on LLaMA while utilizing
different reference datasets.

We categorize the reference dataset into three types based
on their relationship with the fine-tuning dataset of the
target model and sort them in ascending order of difficulty
in acquisition: 1) Irrelevant dataset, 2) Domain-specific
dataset, and 3) Identical distribution dataset. Besides, the
dataset extracted by the self-prompt approach is denoted
as 4) Self-prompt dataset. The detailed information of
these datasets is summarized in Appendix A.6. Then, we
conduct MIAs with the aforementioned four data sources
and summarize the results in Fig. 3. The experimental re-
sults indicate that the performance of MIA shows a notice-
able decrease along the Identical, Domain, and Irrelevant
datasets. This illustrates the high dependency of previous
reference-based methods on the quality of the reference
dataset. However, AUC scores on self-prompt reference datasets are only marginally below Identi-
cal datasets. It verifies that our proposed self-prompt method can effectively leverage the creative
generation capability of LLMs, approximate sampling high-quality text records indirectly from the
distribution of the target training set.

5.4 The Robustness of SPV-MIA in Practical Scenarios

W i k i A G  N e w s X s u m

0 . 6

0 . 8

1 . 0
 S e l f - p r o m p t  ( I r r e l e v a n t )   S e l f - p r o m p t  ( D o m a i n )
 S e l f - p r o m p t  ( I d e n t i c a l )

At
tac

t A
UC

D a t a s e t
Figure 4: The performances of SPV-
MIA on LLaMA while utilizing different
prompt text sources.

We have verified that SPV-MIA can provide a high-quality
reference model. However, the source and scale of self-
prompt texts may face various limitations in practical sce-
narios. Therefore, we conducted experiments to verify the
robustness of SPV-MIA performance in diverse practical
scenarios. Source of Self-prompt Texts. The sources of
self-prompt texts available to attackers are usually limited
by the actual deployment environment, and sometimes
even domain-specific texts may not be accessible. Com-
pared with using domain-specific text chunks for prompt-
ing, we also evaluate the self-prompt approach with irrel-
evant and identical-distribution text chunks. As shown in
Fig. 4, the self-prompt method demonstrates an incredibly
lower dependence on the source of the prompt texts. We
found that even when using completely unrelated prompt texts, the performance of the attack only
experiences a slight decrease (3.6% at most). This phenomenon indicates that the self-prompt method
we proposed has a high degree of versatility across adversaries with different prior information.
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Figure 5: The performances of SPV-MIA on LLaMA while utilizing different query count to the
target model and different prompt text lengths.

Scale of Self-prompt Texts. In real-world scenarios, the scale of self-prompt texts is usually limited
by the access frequency cap of the LLM API and the number of available self-prompt texts. Thus, we
set up two sets of experiments to verify the sensitivity of SPV-MIA to the aforementioned limitations.
As shown in Fig. 5(a), our self-prompt reference model is minimally affected by the access frequency
limitations of the target LLM. Even with only 1,000 queries, it achieves performance comparable to
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10,000 queries. As shown in Fig. 5(b), even when the self-prompt texts are severely limited (with
only 8 prompt tokens), the attack performance remains at a startlingly high level of 0.9. Besides,
texts from different sources show varying attack performance trends based on text length. From the
identical dataset, attack performance increases with text length. From the domain-specific dataset, it
initially increases then decreases. From an irrelevant dataset, it decreases with longer texts. Therefore,
we recommend setting smaller text lengths to allow LLMs to generate samples that are close to
data distributions of training sets, unless adversaries can directly sample texts from the same data
distribution as the training set. Overall, our proposed method can maintain stable attack performance
in practical scenarios where the scale of self-prompt texts is limited.

5.5 Defending against SPV-MIAs

Privacy Budget ϵ 15 30 60 + inf

Wiki 0.785 0.832 0.875 0.951
AG News 0.766 0.814 0.852 0.903

Xsum 0.771 0.827 0.867 0.937
Avg. 0.774 0.824 0.865 0.930

Table 3: The AUC performance of SPV-MIA
against LLaMA fine-tuned with DP-SGD w.r.t dif-
ferent privacy budget ϵ.

As privacy risks emerge from various attacks,
including data extraction attack [6], model ex-
traction attack [22], and membership inference
attack [41, 60, 72], the research community ac-
tively promotes defending methods against these
attacks [29, 45]. DP-SGD [1] is one of the most
widely adopted defense methods based on differ-
ential privacy [15] to provide mathematical pri-
vacy guarantees. Through DP-SGD, the amount
of information the parameters have about a sin-
gle data record is bound. Thus, the privacy leakage will not exceed the upper bound, regardless of
how many outputs we obtain from the target model. We follow the same manner as the existing
study [36] and train LLaMA with DP-Adam on the three datasets. The results are summarized in
Table 3, where we choose a set of appropriate ϵ as existing works suggest that higher DP guarantees
lead to a noticeable performance degradation [21, 41]. The performances of LLMs are supplemented
in Appendix A.5.4, and the results of other baselines can be found in Appendix A.5.5. The results
indicate that DP-SGD can mitigate privacy risks to a certain extent. However, under moderate privacy
budgets, SPV-MIA still presents a notable risk of privacy leakage and outperforms the baselines.

5.5.1 Impact of Fine-tuning Methods

PEFT LoRA Prefix Tuning P-Tuning (IA)3

# Parameters (M) 33.55 5.24 1.15 0.61
Wiki 0.951 0.943 0.922 0.914

Ag News 0.903 0.897 0.879 0.873
Xsum 0.937 0.931 0.924 0.911

Table 4: The AUC Performance of SPV-MIA
across LLaMAs fine-tuned with different PEFT
techniques over three datasets. We choose
LoRA [24], Prefix Tuning [35], P-Tuning [38] and
(IA)3 [37] as four representative PEFT techniques.

We further evaluated the generalizability of SPV-
MIA under different PEFT techniques. As
shown in Table 4, SPV-MIA can maintain a high-
level AUC across all PEFT techniques. Besides,
the performance of MIA is positively correlated
with the number of trainable parameters during
the fine-tuning process. We hypothesize that
this is because as the number of trainable pa-
rameters increases, LLMs retain more complete
memory of the member records, making them
more vulnerable to attacks.

6 Conclusion

In this paper, we reveal the under-performances of existing MIA methods against LLMs for practical
applications and interpret this phenomenon from two perspectives. First, reference-based attacks
seem to pose impressive privacy leakages by comparing the sampling probabilities of the target record
between target and reference LLMs, but the inaccessibility of the appropriate reference dataset will
be a big obstacle to deploying it in practice. Second, existing MIAs heavily rely on overfitting, which
is usually avoided before releasing LLM for public access. To ddress these limitations, we propose a
Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA), where we
propose a self-prompt approach to extract reference dataset from LLM itself in a practical manner,
then introduce a more reliable membership signal based on memorization rather than overfitting. We
conduct substantial experiments to validate the superiority of SPV-MIA over all baselines and verify
its effectiveness in extreme conditions. One primary limitation of this study is that SPV-MIA is only
designed for CLM, we leave the adaption on other LLMs as the future work.
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A Appendix

A.1 Ethic and Broader Impact Statements

For ethic consideration, this study proposes a membership inference attack algorithm, SPV-MIA,
which can be maliciously utilized to infer whether a specific textual entry is fed to the target LLM
during the training process. The extensive experiments reveal appreciable privacy leakage of LLMs
through SPV-MIA, where the member records are identified with high confidence. We acknowledge
that SPV-MIA can bring severe privacy risks to existing LLMs. Therefore, to prevent potential misuse
of this research, all experimental findings are based on widely used public datasets. This ensures that
every individual textual record we analyze has already been made public, and eliminates any further
privacy violations.

For broader impact, we have made our code accessible to the public to allow additional research in
the pursuit of identifying appropriate defense solutions. Thus, we posit that our article can inspire
forthcoming research to not only focus on the linguistic ability of LLMs, but also take into account
the dimensions of public data privacy and security. Besides, our research is more closely aligned with
real-world LLM application scenarios, thereby revealing privacy risks in more realistic settings. Our
proposed method is scalable, with many aspects left for further exploration and research, such as
adapting it for other LLMs.

A.2 Notations of This Work

Table 5: Notations and descriptions.

Notation Description
x A specific data record.
x̃±n A pair of symmetrical paraphrasing text record of the target text record x.
Dmem The training dataset utilized for LLM fine-tuning.
Dnon A disjoint dataset from the training dataset.
Drefer The reference dataset that collected for fine-tuning reference LLM.

m(j) The membership of the data record x(j), 1 represents member, whereas 0
represents non-member.

θ The parameters of the target large language model (LLM).
ϕ The parameters of the reference LLM.
θ̂ The parameters of the self-prompt reference LLM.

A (x, θ) The adversary algorithm for MIA.
pθ (x) The probability of text record x being sampled by the LLM θ .
pθ (x̃n) The probability of paraphrasing text x̃n being sampled by the LLM θ .
∆pθ (x) The calibrated probability of text record x.
p̃θ (x) The probabilistic variation of x measured on the target LLM θ.
p̃θ̂ (x) The probabilistic variation of x measured on the self-prompt reference LLM θ̂.

∆p̃θ,θ̂ (x)
The calibrated probabilistic variation of x measured on both the target LLM θ

and the self-prompt reference LLM θ̂.
N The query times for estimating p̃θ (x).
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A.3 Detailed Pseudo Codes of Symmetrical Perturbation

Algorithm 1 Symmetrical paraphrase in the embedding domain

Input: Target text set {x(i)}, Gaussian noise scale σ, paraphrasing number N , embedding matrix of
tokens E.
Ouput: Symmetrical paraphrased text embedding emb(x(i))±.

1: for x(i) ∈ {x(i)} do
2: id(x(i))← tokenizer(x(i)) ▷ Tokenize the text into token ids.
3: emb(x(i))← E(id(x(i))) ▷ Convert token ids into embeddings.
4: for n ∈ {1, · · · , N} do
5: z ∼ N (0, σ2I) ▷ Sample noise from Gaussian distribution.
6: emb(x(i))+ ← emb(x(i)) + z
7: emb(x(i))− ← emb(x(i))− z
8: return emb(x(i))±

9: end for
10: end for

Algorithm 2 Symmetrical paraphrase in the semantic domain

Input: Target text set {x(i)}, paraphrasing percentage λ, paraphrasing number N , embedding matrix
of tokens E.
Ouput: Symmetrical paraphrased text x(i)±.

1: for x(i) ∈ {x(i)} do
2: id(x(i))← tokenizer.encode(x(i)) ▷ Tokenize the text into token ids.
3: for n ∈ {1, · · · , N} do
4: for tj ∈ id(x(i)) =

[
t0, t1, · · · , t|x|

]
do

5: if Rand() < λ then
6: tj ← [MASK] ▷ Mask tokens with the percentage λ.
7: else
8: tj ← tj
9: end if

10: end for
11: {t+j } ← MLM(id(x(i))) ▷ Fill the mask tokens with MLM.
12: for t+j ∈ {t

+
j } do

13: emb(tj)← E(tj) ▷ Extract the embedding of the original token.
14: emb(tj)

+ ← E(t+j ) ▷ Extract the embedding of the paraphrased token.
15: ∆emb(tj)← emb(tj)

+ − emb(tj) ▷ Measure the paraphrasing noise in the
embedding domain.

16: emb(tj)
− ← emb(tj)−∆emb(tj) ▷ Generate symmetrical embedding.

17: t−j ← SearchNearestToken(emb(tj)
−,E)

18: end for
19: id(x(i))+ ← FillMaskToken({t+j })
20: id(x(i))− ← FillMaskToken({t−j })
21: x(i)+ ← tokenizer.decode(id(x(i))+)
22: x(i)− ← tokenizer.decode(id(x(i))−)
23: return x(i)±

24: end for
25: end for
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Table 6: The MIA performance of SPV-MIA while applied different paraphrasing methods.

Paraphrasing Embedding Semantic Neighbour Comparing
Wiki 0.965 0.951 0.934

AG News 0.926 0.903 0.893
Xsum 0.949 0.937 0.928
Avg. 0.944 0.930 0.918

A.4 Rethinking of the Neighbour Attack

In this work, we introduce a symmetrical paraphrasing method for assessing probabilistic variation,
which is motivated by a rigorous principle: detect the memorization phenomenon rather than overfit-
ting. Meanwhile, we found that the Neighbour comparing [41] has a similar form to our proposed
probabilistic variation. Thus, we further consider reformulating neighbour attack based on our
intuition, then provide another explanation and motivation for it. As shown in Eq. 10, the assessment
of probabilistic variation requires a pair of symmetrical paraphrased text, thus we elaborately design
two paraphrasing models on embedding and semantic domains. However, it is still non-trivial to
define two neighboring samples with opposite paraphrasing directions for x, we therefore consider
directly ignoring the requirement for symmetry in the probabilistic variation. Thus, we simplify x̃±n
to be uniformly represented by x̃n. Then we can reformulate Eq. 10 to Neighbour comparing:

p̃θ (x) ≈
1

2N

N∑
n

(
pθ

(
x̃+
n

)
+ pθ

(
x̃−n

))
− pθ (x) =

1

2N

2N∑
n

pθ (x̃n)− pθ (x) . (11)

Therefore, we believe that the neighbour attack and our proposed probabilistic variation can share
the same design motivation, namely, detecting special signals that indicate the LLM has memorized
training set samples. Additionally, we compared the neighbour attack with our proposed symmetric
paraphrasing methods. As shown in Table 6, paraphrasing in the embedding domain achieves
considerable performance gains, while paraphrasing in the semantic domain yields a marginal
advantage.

A.5 Supplementary Experimental Results

A.5.1 Ablation Study

Table 7: Results of Ablation Study on GPT-J and LLaMA across three datasets.

Target Model Wiki AG News XSum
GPT-J LLaMA GPT-J LLaMA GPT-J LLaMA

w/o PDC 0.648 0.653 0.632 0.641 0.653 0.661
w/o PVA 0.901 0.913 0.864 0.885 0.873 0.919
SPV-MIA 0.929 0.951 0.885 0.903 0.897 0.937

In the previous experiments, we have validated the superiority of our proposed SPV-MIA over existing
algorithms, as well as its versatility in addressing various challenging scenarios. However, the specific
contributions proposed by each module we proposed are still unknown. In this subsection, we conduct
an ablation study to audit the performance gain provided by the two proposed modules. Concretely, we
respectively remove the practical difficulty calibration (PDC) and probabilistic variation assessment
(PVA) that we introduced in Section 4.2 and Section 4.3. The results are represented in Table 7,
where each module contributes a certain improvement to our proposed method. Besides, the PVC
approach seems to play a more critical role, which can still serve as a valid adversary without the
PVA. Thus, in practical scenarios, we can consider removing the PVA to reduce the frequency of
accessing public APIs.

A.5.2 TPR@0.1%FPR

As a supplement to the TPR@1%FPR results represented in Table 2, we further provide the perfor-
mance measured by TPR@0.1%FPR in Table 8.
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Method Wiki AG News Xsum
GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg.

Loss Attack 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 0.1% 0.2% 0.1% 0.1% 0.1%
Neighbour Attack 1.2% 0.6% 0.5% 0.8% 0.8% 0.8% 0.4% 0.3% 0.4% 0.5% 0.5% 0.3% 0.3% 0.3% 0.4%
DetectGPT 0.9% 0.4% 0.5% 0.6% 0.6% 0.6% 0.2% 0.3% 0.4% 0.4% 0.4% 0.2% 0.2% 0.3% 0.3%
Min-K% 1.4% 0.6% 0.7% 0.9% 0.9% 1.2% 0.4% 0.7% 0.6% 0.7% 0.5% 0.3% 0.4% 0.4% 0.4%
Min-K%++ 1.2% 0.7% 0.9% 1.1% 1.0% 1.4% 0.9% 1.1% 1.0% 1.1% 0.8% 0.4% 0.7% 0.6% 0.6%
LiRA-Base 1.9% 1.4% 1.5% 1.7% 1.6% 1.8% 1.4% 1.3% 1.4% 1.5% 3.1% 2.5% 2.6% 3.5% 2.9%
LiRA-Candidate 3.7% 2.5% 2.8% 3.2% 3.1% 2.3% 1.8% 1.7% 1.9% 1.9% 4.7% 3.4% 3.8% 5.1% 4.3%
SPV-MIA 39.1% 28.9% 32.7% 37.8% 34.6% 25.3% 17.3% 18.7% 23.5% 21.2% 34.4% 27.6% 28.9% 31.5% 30.6%

Table 8: TPR@0.1%FPR for detecting member texts from four LLMs across three datasets for
SPV-MIA and five previously proposed methods. Bold and Underline respectively represent the best
and the second-best results within each column (model-dataset pair).

A.5.3 AUC Curves

As a supplement to the main experimental results represented in Table 1, we further provide the raw
ROC curve for a more comprehensive presentation in Fig. 6 (linear-scale) and Fig. 7 (log-scale).
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Figure 6: Linear-scale ROC curves of SPV-MIA and the top-three best baselines on LLaMAs
fine-tuned over three datasets.
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Figure 7: Log-scale ROC curves of SPV-MIA and the three representative baselines on LLaMAs
fine-tuned over three datasets.

A.5.4 Performance of Target LLMs

We supplemented the performance of all LLM-dataset pairs on both the training and test sets
(estimated using PPL). As shown in Table 9, the experimental results indicate that none of the fine-
tuned LLMs exhibit significant overfitting, which aligns with our claim in the main body. Additionally,
we provided the performance of the LLM under different privacy budgets ϵ, as shown in Table 10.

A.5.5 Performance of Representative Baselines under Different Privacy Budgets

We have conducted three representative baseline attacks for the DP-SGD model (LLaMA fine-tuned
over Ag News dataset) and compared it with our method (SPV-MIA). The results are provided in
Table 11. The results demonstrate that SPV-MIA consistently maintains substantial MIA performance
margins over different settings of the privacy budget.
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Table 9: The perplexity (PPL) of each LLM-dataset pair on training set and test set.

Target Model GPT-2 GPT-J Falcon LLaMA
Training Test Training Test Training Test Training Test

Wiki 25.34 27.47 12.35 12.44 7.26 7.73 7.00 7.43
AG News 23.86 26.34 12.49 13.24 8.92 9.54 9.03 9.13

Xsum 26.42 28.31 13.43 13.88 7.69 7.96 7.35 7.65

Table 10: The perplexity (PPL) of each LLM-dataset pair trained w.r.t different privacy budget ϵ.

Privacy Budget ϵ 15 30 60 + inf

Wiki 8.45 8.16 7.76 7.43
AG News 10.84 9.68 9.32 9.13

Xsum 8.89 8.33 7.98 7.65

A.6 Experimental Settings

In this subsection, we give a extensive introduction of experimental settings, including the datasets,
target LLMs and baselines, as well as the implementation details.

A.6.1 Datasets

Our experiments utilize six different datasets across multiple domains and LLM use cases, where
we employ three datasets as the private datasets to fine-tune the target LLMs, and the remaining
datasets as the public datasets from the exact domains. Specifically, we use the representative articles
on Wikitext-103 dataset [43] to represent academic writing tasks, news topics from the AG News
dataset [78] to represent news topic discussion task, and documents from the XSum dataset [49]
to represent the article writing task. Besides, we utilize Wikicorpus [55], TLDR News [30], and
CNNDM [23] datasets to respectively represent as the publicly accessible dataset from the same
domain for each task.

A.6.2 Target Large Language Models

To obtain a comprehensive evaluation result, we conduct our experiments over four well-known and
widely adopted LLMs as the pre-trained models with different scales from 1.5B parameters to 7B
parameters:

• GPT-2 [54]: It is a transformer-based language model released by OpenAI in 2019, which has 1.5
billion parameters and is capable of generating high-quality text samples.

• GPT-J [69]: It is an open-source LLM released by EleutherAI in 2021 as a variant of GPT-3.
GPT-J has 6 billion parameters and is designed to generate human-like with appropriate prompts.

• Falcon-7B [3]: Falcon is a family of state-of-the-art LLMs created by the Technology Innovation
Institute in 2023. Falcon has 40 billion parameters, and Falcon-7B is the smaller version with less
consumption.

• LLaMA-7B [65]: LLaMA is one of the most state-of-the-art LLM family open-sourced by Meta
AI in 2023, which has outperformed other open-source LLMs on various NLP benchmarks. It has
65 billion parameters and has the potential to accomplish advanced tasks, such as code generation.
In this work, we utilize the lightweight version, LLaMA-7B.

A.6.3 Baselines

We choose six MIAs designed for LMs to comprehensively evaluate our proposed method, including
three reference-free attacks and one reference-based attack with one variant.

• Loss Attack [73]: A standard metric-based MIA that distinguishes member records simply by
judging whether their losses are above a preset threshold.

• Neighbour Attack [41]: The Neighbour Attack avoids using a reference model to calibrate the
loss scores and instead utilizes the average loss of plausible neighbor texts as the benchmark.
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Table 11: The AUC performance of SPV-MIA and three representative baselines w.r.t different privacy
budget ϵ.

Privacy Budget ϵ 15 30 60 + inf

Loss Attack 0.523 0.551 0.568 0.580
Neighbour Attack 0.542 0.564 0.587 0.610
LIRA-Candidate 0.611 0.655 0.684 0.714

SPV-MIA 0.766 0.814 0.852 0.903

• DetectGPT [48]: A zero-shot machine-generated text detection method. Although DetectGPT
is specially designed for LLMs-generated text detection, but has the potential to be adapted for
identifying the text utilized for model training.

• Min-K% [59] An MIA method designed for pre-trained LLMs, which evaluate the token-level
probability and employ the average over the k% lowest probability as the MIA metric.

• Min-K%++ [76] An enhanced version of Min-K% that utilizes a more sophisticated mechanism
to detect the records with relatively high probability curvature.

• Likelihood Ratio Attack (LiRA-Base) [47]: A reference-based attack, which adopts the pre-
trained model as the reference model to calibrate the likelihood metric to infer membership.

• LiRA-Candidate [47]: A variant version of LiRA, which utilizes a publicly available dataset in
the same domain as the training set to fine-tune the reference model.

A.6.4 Detailed Information for Reproduction

Table 12: Detailed split and other information of datasets.
Dataset Relative Datasets Target Model Reference Model

Domain-specific Irrelevant # Member # Non-member # Member # Non-member
Wikitext-103 Wikicorpus AG News 10,000 1,000 10,000 1,000

AG News TLDR News Xsum 10,000 1,000 10,000 1,000
Xsum CNNDM Wikitext-103 10,000 1,000 10,000 1,000

All experiments are compiled and tested on a Linux server (CPU: AMD EPYC-7763, GPU: NVIDIA
GeForce RTX 3090), Each set of experiments for the LLM-dataset pairs took approximately 8 hours,
and we spent around 14 days completing all the experiments. For each dataset, we pack multiple
tokenized sequences into a single input, which can effectively reduce computational consumption
without sacrificing performance [33]. Besides, the packing length is set to 128 tokens. Then, we use
10,000 samples for fine-tuning over pre-trained LLMs and 1,000 samples for evaluation. The detailed
information of datasets is summarized in Table 12. For each target LLM, we let it fine-tuned with
the training batch size of 16, and trained for 10 epochs. The learning rate is set to 0.0001. We adopt
the AdamW optimizer [40] to achieve the generalization of LLMs, which is composed of the Adam
optimizer [32] and the L2 regularization. For GPT-2, which has a relatively small scale, we adopt
the full fine-tuning, which means all parameters are trainable. For other LLMs that are larger, we
utilize a parameter-efficient fine-tuning method, Low-Rank Adaptation (LoRA) [24], as the default
fine-tuning method. For the paraphrasing model in the embedding domain, the Gaussian noise scale
is set to σ = 0.05. For the paraphrasing model in the semantic domain, the paraphrasing percentage
is set to λ = 0.2. For both of the two paraphrasing models, we generate 10 symmetrical paraphrased
text pairs for each target text record. For the reference LLM fine-tuned with our proposed self-prompt
approach, we utilize the domain-specific data as the default prompt text source. Then, we collect
10,000 generated texts from target LLMs with an equal length of 128 tokens to construct reference
datasets. We fine-tune the reference LLM for 4 epochs and the training batch size of 16.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are aligned with contributions
and scope. All claims match theoretical and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: As we have discussed in Appendix A.5.1, the proposed PVC method has a
high computational overhead and provides low performance gains. Therefore, we suggest
considering removing this module and only retaining the PDC in practical scenarios. Besides,
the proposed SPV-MIA requires two additional API accesses, which may not be available in
some scenarios.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we provide a complete derivation/proof for our proposed probabilistic
variation metric in Section 4.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: Yes, all experimental settings, codes, and datasets are provided in Appendix
and supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, all experimental settings, codes, and datasets are provided in Appendix A.6
and supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all experimental settings are provided in Appendix A.6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Since all experiments are taken on LLMs, error bars are not reported because
it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provide sufficient information of computer resources in Appendix A.6.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully reviewed the Code of Ethics and confirmed that we have adhered
to each one.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provide a Section “Ethic and Broader Impact Statements” follows the
reference.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As discussed in Appendix A.6, all models and datasets used in this study are
publicly accessible.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the creators or original owners of assets are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation can be found in the supplementary materials or the
anonymized URL: https://anonymous.4open.science/r/MIA-LLMs-260B.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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