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ABSTRACT
Traffic congestion incurs long delay in travel time, which seriously
affects our daily travel experiences. Exploring why traffic conges-
tion occurs is significantly important to effectively address the
problem of traffic congestion and improve user experience. Tradi-
tional approaches to mine the congestion causes depend on human
efforts, which is time consuming and cost-intensive. Hence, we aim
to discover the known and unknown causes of traffic congestion in
a systematic way. However, to achieve it, there are three challenges:
1) traffic congestion is affected by several factors with complex
spatio-temporal relations; 2) the amount of congestion data with
known causes is small due to the limitation of human label; 3) more
unknown congestion causes are unexplored since several factors
contribute to traffic congestion. To address above challenges, we
design a congestion cause discovery system consisting of two mod-
ules: 1) congestion feature extraction, which extracts the important
features influencing congestion; and 2) congestion cause discovery,
which utilize a deep semi-supervised learning based method to
discover the causes of traffic congestion with limited labeled causes.
Specifically, it first leverages a few labeled data as prior knowl-
edge to pre-train the model. Then, the deep embedded clustering
method is performed to produce the clusters under the supervision
of the data reconstruction loss and Kullback-Leibler divergence
loss. Extensive experiments show that the performance of our pro-
posed method is superior to the baselines. Additionally, our system
is deployed and used in the practical production environment at
Amap.
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1 INTRODUCTION
Traffic congestion, characterized by slow driving speed rather than
free-flow speed, has become a common phenomenon in urban
transportation systems. According to statistics in [16], nearly 25%
of American adults experienced traffic congestion every day. There
are several negative effects caused by traffic congestion such as the
long-time delay. For example, people in America spend 4.3 billion
extra hours in travel time in 2020 due to traffic congestion [20].
Thus, traffic congestion is a serious problem, which has a great
impact on our daily travel experiences.

To tackle the problem of traffic congestion, many map service
providers launch their map applications that not only offer the real-
time traffic condition information, but also have ability to predict
the future traffic condition by traffic prediction models [11, 17,
25, 28]. However, in most cases, people not only want to know
where and when the traffic is congested, but also would like to
realize why traffic congestion occurs. For example, when a user is
experiencing the traffic congestion, he/she is more willing to know
the congestion causes. Thus, it is important to discover the causes
of congestion. For map service providers, offering the causes of
congestion is beneficial to improve the user experience of their map
applications. For individual users, they can dynamically adjust their
trip routes to alleviate the influence of the traffic congestion.

In order to study the causes of traffic congestion, we collect
large-scale traffic data within one week in a city of China. The traf-
fic data includes the traffic conditions, e.g., the average speed and
congestion levels, of each road in the road network at each time slot.
Meanwhile, we also collect other geo-spatial information like points
of interests (POI) in the city, which is helpful for the congestion
cause analysis. To comprehensively investigate the traffic conges-
tion, we define a congestion event as the traffic conditions on a
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Figure 1: An example of traffic congestion caused by different
causes.We use A, B and C to represent different causes, which
are attending school, going to hospital and traffic accidents,
respectively.

road segment at the maximum consecutive time slots are congested.
From our data analysis, we find that traffic congestion events are
strongly related to the nearby places and time information, thus
their causes are diverse and complicated. For instance, the traffic
congestion on road segment link1 in Figure 1 occurred three times,
but their causes were different. The first congestion was caused by
going to school, which occurred from 7AM to 8AM. The second
happened between 9AM and 10AM due to high traffic near the
hospital. The last took place at 4PM because of a severe accident.
Since there are a large number of congestion events happening
every day in the city, it raises a question of how to automatically
and accurately identify these causes.

Traditionally, it relies on considerable experience and expertise
knowledge to manually label the congestion causes. It is too time-
consuming and costly to find all the causes of traffic congestion
events, which cannot be used in the real-time map applications.
Thus, how to automatically and accurately identify the causes of
traffic congestion is our main focus. To address it, we first manually
label a small part of the causes of traffic congestion events from the
traffic data. Our goal is to simultaneously discover known and un-
known causes from a large amount of unlabeled congestion events
with a limited labeled data. However, there are three challenges
that need to be addressed.

• Complicated factors influencing congestion. Traffic con-
gestion may occur on the same road but at different time
periods, as illustrated in Figure 1. This indicates that the con-
gestion has a strong correlation with temporal information.
Meanwhile, the causes are not the same, which are related
to the nearby POI types. This means that spatial information
has a great impact on traffic congestion. Thus, the traffic
congestion is affected by several complicated factors with
the spatio-temporal correlations.

• Limited labeled data of known congestion causes. Be-
cause it takes much time and high cost to manually label
the congestion causes, it is difficult to know the causes of
most congestion events. Although the labeled data of known
congestion causes is relatively limited, they can also provide
some valuable information to explore which features corre-
late with traffic congestion. For example, the case that the
traffic congestion is caused by going to schools represents
the importance of POI information. Thus, how to effectively
utilize the limited labeled data of known congestion causes
is challenging.

• More unknown congestion causes. Although we can em-
pirically list some categories of congestion causes, it is hard
to cover all the congestion events because several factors
would contribute to traffic congestion to different degrees.
For example, the school location and the school hours both
play a critical role in traffic congestion on link1 in Figure 1.
To sum up, there are many unknown congestion causes.
How to explore the unknown causes from a large amount of
unlabeled congestion events is the third challenge.

In order to address them, we design and implement a system
that has ability to explore known and novel congestion cause based
on limited supervised data. This system contains two modules:
1) congestion feature extraction, which extracts the key features
related to the traffic congestion events based on real-world traffic
data; and 2) congestion cause discovery, which designs a deep semi-
supervised learning based method based on the limited labelled data
to discover know and novel causes of traffic congestion. Specifically,
we design an encoder-decoder neural network, and pre-train the
model based on limited labelled data under the supervision of the
reconstruction loss and classification loss. Further, we transfer the
knowledge from pre-trained model, and perform clustering on
learned feature representations with the reconstruction loss and
Kullback-Leibler (KL) divergence loss. Benefit from the transferred
knowledge, our clustering method can achieve better performance
in accuracy.

We summarized our contributions as follows.
• To the best of our knowledge, we are first to automatically
discover unknown causes of traffic congestion with limited
labeled data.

• We quantitatively study the representative features of traffic
congestion events induced by various causes. These features
are extracted from both spatial and temporal aspects, includ-
ing the related POI information, road type, the start and end
time as well as how the congestion events evolve.

• We propose a deep semi-supervised learning based approach
on the limited labelled data of known congestion causes. In
this approach, we transfer the pre-trained model parameters
from the labelled data, and perform the deep embedded clus-
tering algorithm based on learned features representation of
traffic congestion events.

• We conduct extensive experiments based on real-world dataset.
The results demonstrate that our proposed approach achieves
a higher accuracy than the state-of-the-art methods, and can
discover unknown causes at the same time.

• We deploy the system in the production environment, which
shows its capacity of discovering the congestion causes.

2 OVERVIEW
2.1 Preliminary
Definition 1 (Traffic condition level): The traffic condition has four
levels: unobstructed, slow, congested and severely congested, which
is specified according to the algorithm designed by Amap. Note
that there is a unique condition level 𝑐𝑡,𝑖 on a road segment 𝑖 at
time slot 𝑡 .

Definition 2 (Traffic congestion event): We define a traffic con-
gestion event occurred on road segment 𝑖 as a sequence 𝑥 (𝑖) =
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Figure 2: An illustration of our research problem.

[(𝑡𝑠 , 𝑐𝑡𝑠 ,𝑖 ), (𝑡𝑠+1, 𝑐𝑡𝑠+1,𝑖 ), ..., (𝑡𝑒 , 𝑐𝑡𝑒 ,𝑖 )], 𝑡𝑠 < 𝑡𝑒 , which satisfies the fol-
lowing three conditions:

(1) The values of 𝑐𝑡𝑠 ,𝑖 and 𝑐𝑡𝑒 ,𝑖 are congested or severely con-
gested condition.

(2) None of the values of set [𝑐𝑡𝑒+1,𝑖 , 𝑐𝑡𝑒+2,𝑖 , ...𝑐𝑡𝑒+𝑇,𝑖 ] are con-
gested or severely congested condition. 𝑇 is a threshold, which is
equal to 5 minutes.

(3) 𝑡𝑒 − 𝑡𝑠 >= 𝑇𝑑 , in this paper, 𝑇𝑑 is equal to 5 minutes.

2.2 Problem Statement
Given a traffic congestion event set𝐷𝑙 = {𝑥𝑙

𝑖
, 𝑖 = 1, · · · , 𝑁 }with the

labelled causes, a congestion event set𝐷𝑢 = {𝑥𝑢
𝑖
, 𝑖 = 1, · · · , 𝑀}(𝑀 ≫

𝑁 ) with the unlabelled causes, as well as the features related to the
congestion events in 𝐷𝑙 and 𝐷𝑢 , we aim to discover the causes of
the congestion events in 𝐷𝑢 , which may be known or novel. Figure
2 give a clear illustration to our research problem. In Figure 2, we
have a labeled set of knowing congestion causes, but in reality,
there are a large number of unlabeled events. The unlabeled set
contains both known causes and novel causes, and our goal is to
separate these events according to their features.

2.3 System Overview
As shown in Figure 3, the overall system consists of two main
modules, i.e., feature extraction module and congestion discovery
module. To be specific, the feature extraction module takes multi-
source data including the POIs, road networks, traffic data as the
input, and extract the congestion features based on the analysis of
the labeled congestion events with known causes. Since the traffic
congestion events are influenced by spatial and temporal factors,
the feature extraction is divided into two parts: spatial features and
temporal features. The congestion discovery module uses the limited
labeled congestion event data as the prior knowledge to pre-train a
classification model, and then transfers it into the clustering task
of unlabed data to infer the congestion event causes.

Figure 3: System overview.

Table 1: Summary of Known Traffic Congestion Causes.

Causes Notation # of Congestion
Events

GH Going to the Hospital 5395
AS Attending school 3500
LS Leaving school 1640
OR Line up at off-ramps 6722
GS Going to scenic spots 160
TS Line up at toll station 62
TA Traffic accident 787
RS Road construction 253
TR Traffic restriction 15

3 CONGESTION EVENT FEATURE
EXTRACTION

3.1 Dataset
Firstly, according to our definition of a traffic congestion event men-
tioned in Section 2, we extract a large number of discrete congestion
events from historical traffic condition data. This data comes from
AutoNavi department in Alibaba Group and records four traffic
conditions, including unobstructed, slow, congested and severely
congested. Then, our dataset is divided into two parts: labeled and
unlabeled traffic congestion events.

3.1.1 Labeled Traffic Congestion Events. First, we introduce the
dataset of traffic congestion causes labeled by domain experts in
Table 1. Domain experts from AutoNavi department in Alibaba
Group rely on their background knowledge to speculate on the
causes of traffic congestion. Due to the high time cost and labor
cost, our domain experts only label a few traffic congestion events in
Beijing. Specifically, for periodic traffic congestion, the congestion
events caused by hospitals are labeled by grade A hospitals only.
The congestion caused by scenic spots is labeled by 5A scenic spots
only. For other non-periodic traffic congestion, our domain experts
also labeled the congestion events caused by traffic accidents, road
construction and traffic restriction.

3.1.2 Unlabeled Traffic Congestion Events. In addition to the la-
beled data, we also randomly sampled 55,638 unlabeled traffic con-
gestion events in Beijing. These events extracted from historical
traffic condition data from September 5, 2021 to September 11, 2021,
which records road conditions for each link of road every minute.
Therefore, the data has a very high temporal resolution and can
reflect a lot of congestion properties. We visualize the spatial dis-
tribution and temporal distribution of these randomly sampled
congestion events in Figure 4. It is observed that these randomly
sampled events cover a large part of Beijing. In terms of temporal
distribution, most of the congestion occurs during the morning and
evening rush hours, which is consistent with what we expect.

3.2 Feature Extraction
Traffic congestion events are affected by complex spatial and tem-
poral factors, which lead to different congestion causes. Based on
the labeled traffic congestion event data, we introduce the extracted
features from the spatial and temporal aspects.
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(a) Spatial distribution (b) Temporal distribution

Figure 4: The overview of unlabeled congestion causes.

Figure 5: The distribution of start time.
3.2.1 Temporal Features.

The start time. The start time is an important feature to describe
a traffic congestion event. The distribution of congestion events
induced by difference causes in one day is shown in Figure 5. We
observe that the start time of the congestion events with different
causes is different. For example, the congestion events caused by
attending school occur between 6AM and 8AM, while those caused
by leaving school happen between 4PM and 6PM.

Three stages of congestion. A traffic congestion event usually
experiences three stages, including congestion formation, conges-
tion persistence and congestion dissipation, which is the important
information to characterize the traffic congestion. To quantify it,
we define the congestion formation as the slow moving stage be-
fore congestion, and the congestion dissipation process as the slow
moving stage after the end of congestion. Then, we extract the
duration of the congestion formation, congestion persistence and
congestion dissipation. The normalized formation duration (NFD),
the normalized congestion duration (NCD) and the normalized dis-
sipation duration (NDD) of congestion events induced by different
causes are illustrated in Figure 6. We find that the congestion events
induced by different causes show different patterns of the duration,
among which the duration of line up at off-ramps is the longest.

Traffic condition. The stop-and-go trend is a frequently ob-
served phenomenon in traffic congestion.To quantify it, we calculate
the proportion of four traffic condition levels in the process of traffic
congestion.

Traffic speed. The traffic speed describes how fast the vehicles
can drive on a road, which is an important indicator to evaluate
how severe the traffic congestion is. The traffic congestion events
with different causes have different patterns in the traffic speed
before congestion, during congestion and after congestion, so we
choose the average speed in these three phases as the key features.

Figure 6: The duration in three stages during congestion.

Traffic volume. The traffic volume describes how many vehi-
cles drive on a road at a specified time. When the traffic congestion
occurs, the traffic volume would be decrease. Similar to the traffic
speed, there are different patterns in the traffic volume before con-
gestion, during congestion and after congestion. Thus, we select
the traffic volume before congestion, during congestion and after
congestion as the important features.

3.2.2 Spatial Features.
Points of Interests (POIs). POIs, as a location with a certain func-
tion, reflects the land use of an area. Since the traffic congestion is
usually influenced by the surrounding environment, POI has a cor-
relation with the congestion. Hence, we acquire a real-world POIs
data and road networks data for Beijing, and extracts 1, 618, 605
POIs. POIs is divided into 9 categories, including Education, Fi-
nance, Shopping, Residence, Entertainment, Hospital, Scenic spots,
Transportation and Toll station. In order to extract the semantic
information of the location of congestion events, it is necessary to
design a reasonable method to map POIs to the road network. We
take the midpoint of each road section as the center of the circle and
500 meters as the radius to obtain a circular area. Then, we calculate
the number of categories of POIs in the circle. Since the distribution
of POI categories in a city is imbalanced, we standardize the number
of POIs, and use the maximum value of the standardized POI vector
as the functional category of a road segment.

Road type. Different types of roads have different traffic capac-
ity, which has a great impact on the traffic congestion. For example,
the road segment with low capacity is more prone to be congested.
Hence, we select the road types as the key congestion features.

4 CONGESTION EVENT CAUSE DISCOVERY
In this section,we will describe our two-stage method, deep transfer
clustering for spatio-temporal data (ST-DTC) in detail. As shown
in Figure 7, we firstly extract features of traffic congestion events
and embed them into a feature vector. After that, a classifier will
be trained with limited labeled data. In the second stage, we trans-
fer the knowledge learned from labeled data to unlabeled data via
transfer clustering. In both the pre-training stage and the cluster-
ing stage, we use the reconstruction loss as an auxiliary training
objective. In this way, ST-DTC can not only learn useful knowledge
for classification task, but also retain the feature of the input data.

4.1 Feature Representation Initialization
Since a traffic congestion event has multiple features introduced
in Section 3.2, we have to initialize these features as the effective
feature representations for the input of ST-DTC.

From the temporal aspect, for the start time, it is represented with
hour-of-day, and is encoded into a one-hot vector 𝒙ℎ𝑠 ∈ R24. We
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Figure 7: Our clustering framework. Firstly, we train a classi-
fier with limited labeled data. Then, we transfer the knowl-
edge learnt from labeled data to unlabeled data via transfer
clustering. (RL : reconstruction loss)

also consider whether a event occurring at weekdays or weekends,
and encode day-of-week into 𝒙𝑑𝑠 ∈ R2 using one-hot coding. After
that, we concatenate them into a vector 𝒙𝑠 = [𝒙ℎ𝑠 , 𝒙𝑑𝑠 ] ∈ R24+2,
where [, ] denotes the concatenation operator. For three stages of
the congestion, their duration is normalized and represented as a
vector 𝒙𝑑 ∈ R3. For the traffic condition, we embed the proportion
of four traffic condition level during a traffic congestion event into
a vector 𝒙𝑝 ∈ R4. For the traffic speed and traffic volume, we encode
the speed and volume before congestion, during congestion and
after congestion into 𝒙𝑣 ∈ R3 and 𝒙𝑟 ∈ R3, respectively.

From the spatial aspect, For the POI feature, we represent the
functional category of a road segment into a one-hot vector 𝒙𝑜 ∈ R9.
For the road type, we encode it into a one-hot vector 𝒙𝑤 ∈ R9.

Finally, the congestion feature representation can be initialized
as:

𝒙 = [𝒙𝑠 , 𝒙𝑑 , 𝒙𝑝 , 𝒙𝑣, 𝒙𝑟 , 𝒙𝑜 , 𝒙𝑤] . (1)

4.2 Pre-training with Limited Supervised Data
We firstly pretrain a classifier to help the task of clustering rather
than considering a fully unsupervised setting, which is motivated
by Deep Transfer Clustering (DTC) [5].

Autoencoder. The main network used in our model is Autoen-
coder [23]. Both of our encoder and decoder are fully connected
layer. The encoder map the congestion feature representation 𝒙 to
a latent feature space 𝑧 ∈ R𝑑 , and 𝑑 is smaller than the dimension
of input data 𝑥 . The latent features 𝒛 represent the most important
component of input data. Then, the decoder learns to reconstruct 𝑥
from its latent features.

𝒛 = 𝜎 (𝑤𝑒 · 𝒙 + 𝑏𝑒 ), (2)

𝒙 = 𝜎 (𝑤𝑑 · 𝒙 + 𝑏𝑑 ), (3)

where 𝜎 (·) is the activation,𝑤𝑒 and 𝑏𝑒 are the parameters of the
encoder, and𝑤𝑑 and 𝑏𝑑 are the parameters of the decoder.

Objective of pre-training. The objective of pre-training stage
in ST-DTC is as follows,

𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = − 1
𝑁

𝑁∑︁
𝑖=1

log[𝑙𝑦𝑖 (𝑧
𝑙
𝑖 ) + _

𝑁∑︁
𝑖=1

(𝑥𝑙𝑖 − 𝑥
𝑙
𝑖 )

2, (4)

where 𝑥𝑙
𝑖
means the 𝑖th labeled sample,𝑧𝑙

𝑖
and 𝑥𝑙

𝑖
are its latent fea-

tures and reconstruction respectively. The first term is the classi-
fication loss, which is classic cross entropy(CE) loss. The second
term is the reconstruction loss, which is mean square error(MSE).
The second term reduces the difference of input data 𝑥𝑙

𝑖
and its

reconstruction 𝑥𝑙
𝑖
. _ is the weight of the reconstruction loss.

4.3 Transfer Clustering
After pre-training the model with limited supervised data, we trans-
fer the pre-trained model parameters to the second stage.

The second stage is a clustering task extended from Deep Em-
bedded Clustering (DEC) [26]. DEC is the first time to optimize
dimensionality reduction and clustering simultaneously using deep
neural networks. Given initial cluster centers {`1, · · · , `𝑘 } and la-
tent features 𝑧, DEC uses a student’s t-distribution to measure the
similarity between cluster center `𝑖 and data point 𝑥𝑖 as follows,

𝑞𝑖 𝑗 =
(1 + ||𝑧𝑖 − ` 𝑗 | |2/𝛼)−

𝛼+1
2∑

𝑘 (1 + ||𝑧𝑖 − `𝑘 | |2/𝛼) 𝛼+1
2
, (5)

where 𝛼 is the degree of freedom of the Student’s t-distribution.
Following DEC, we also let 𝛼 = 1 for all experiments. 𝑞𝑖 𝑗 can be
regarded as the probability of assigning sample 𝑖 to cluster 𝑗 . Then
KL-divergence loss is used to guide model training.

𝐾𝐿(𝑃 | |𝑄) =
∑︁
𝑖

∑︁
𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
, (6)

𝑝𝑖 𝑗 =
𝑞2
𝑖 𝑗
/𝑓𝑗∑

𝑘 𝑞
2
𝑖 𝑗
/𝑓𝑘

, (7)

where 𝑝𝑖 𝑗 is an auxiliary distribution and 𝑓𝑘 =
∑
𝑖 𝑞𝑖 𝑗 is soft cluster

frequencies.
Objective of clustering.DEC exceeds the baselinemodel greatly,

however, its loss function is represented in clustering loss only. A
recent study found that the model combining the two tasks works
better [27]. Thus, in the clustering stage, the model was optimized
by the reconstruction loss and clustering loss simultaneously, and
the objective is as follows,

𝐿𝑡𝑟𝑎𝑖𝑛 = 𝐾𝐿(𝑃 | |𝑄) + 𝛽
𝑁∑︁
𝑖=1

(𝑥𝑢𝑖 − 𝑥𝑢𝑖 )
2, (8)

where 𝑥𝑢
𝑖
means the 𝑖th unlabeled sample, 𝑥𝑢

𝑖
is its reconstruction.

The first term is the clustering loss, which is a Kullback–Leibler (KL)
divergence loss between the soft assignments 𝑞𝑖 and the auxiliary
distribution 𝑝𝑖 . The second term is the reconstruction loss, which
is mean square error(MSE). 𝛽 is the weight of the reconstruction
loss. We let 𝛽 = 1 for all experiments.

5 EXPERIMENTS RESULTS
In this section, we evaluate our system by the extensive experiments.
First, we present the experiment results compared to different base-
lines. After that, the novel congestion causes are analyzed in detail.
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5.1 Baselines
Wefirstly compare our method (ST-DTC) with unsupervised cluster-
ing methods, including K-means (KM) [15], DEC [26] and DCN [27].
K-means is a classic clustering algorithm, it iteratively assigned
each object to its nearest cluster center by computing the distance.
DEC is the first time to optimize dimensionality reduction and clus-
tering simultaneously using deep neural networks. However, DEC
trains the model by using clustering loss only. DCN expanded the
DEC by optimizing the decoder and clustering simultaneously.

We also compare our method with semi-supervised clustering
methods, including KCL [6], MCL [7] and DTC [5]. The idea of
semi-supervised clustering methods is to aid the discovery of novel
categories by leveraging a certain number of known categories.
KCL trains a classifier with limited labeled data by considering
pairwise similarity. MCL improves KCL to train the classifier us-
ing a probabilistic-graphical-model-based loss function. However,
neither KCL nor MCL has training process for the clustering stage.
Therefore, DTC combines DEC training methods in clustering stage.

5.2 Evaluation Metrics
We use the conventional clustering accuracy (ACC), normalized
mutual information (NMI) [22] and adjusted Rand index (ARI) [19]
to evaluate the clustering performance of our approach. All the
metrics are valued in the range of [0, 1] and higher values mean
better performance.

5.3 Experimental Settings
We introduce our experimental settings in terms of data preparation,
network architectures and training configurations.

Data preparation. Firstly, we split our dataset into labeled data
and unlabeled data. The labeled data contain 70% samples of all
known causes events. The unlabeled data contain 30% samples
of known causes events and other unknown congestion events.
In our dataset, the sample size of some categories of causes was
very small. For example, we only have 15 samples for TR (traffic
restriction). For small data, we apply the oversampling method to
increase the number of samples for both pre-training phase and
clustering stage. In pre-training stage, for small sample data, each
sample is replicated 10 times. In clustering phase, for small sample
data, each sample is replicated 6 times.

Network architectures. The deep learning model is imple-
mented with Pytorch. We use a fully connected encoder with 3
layers. All of the layers have Relu activation function and dropout
rate of 0.1. The number of hidden units is (128, 64, 12) in three fully-
connected layers. The decoder also is a fully connected network
with 3 layer. The number of hidden units of the decoder is (12, 64,
128).

Training configurations. In the pre-training stage, we train
the feature extractor (MLP) with a batch size of 128, and the fully
connected layer has a dropout layer. Adam optimizer is selected
with a learning rate of 0.005 for 5 epochs. The weight of the recon-
struction loss term is 0.1. In the clustering stage, We fine-tune the
pre-trained model with a batch size of 1280. Adam optimizer is also
selected with a learning rate of 0.0005 for 20 epochs. The weight of
the reconstruction loss term is 1.0.

Figure 8: The accuracy of different numbers of clusters.

Table 2: The clustering results on two datasets with different
ratios of sample of known causes and unknown causes.

Ratio (known:unknown) 1:5 1:10
ACC NMI ARI ACC NMI ARI

KM 0.3661 0.3523 0.2740 0.4201 0.3610 0.3312
DEC 0.5531 0.4404 0.4698 0.4738 0.3943 0.3358
DCN 0.4106 0.3596 0.2499 0.3964 0.3494 0.2417
KCL 0.6102 0.5241 0.6009 0.5502 0.5061 0.5709
MCL 0.6073 0.5280 0.6093 0.5829 0.5734 0.6578
DTC 0.7950 0.7022 0.7459 0.7981 0.6946 0.7579

ST-DTC 0.8326 0.7347 0.7828 0.8282 0.7307 0.7794

5.4 Determining the Number of Clusters
We compare performance of known categories of congestion causes
to determine the optimal number of clusters. Figure 8 shows the
value of three metrics for the given number of clusters. From the
results, we find that the optimum number of clusters is around 12.

5.5 Overall Performance
We summarize our results in Table 2. Our results on all datasets are
averaged over 10 runs. Our method achieves the best results and
outperforms other baselines. For baselines, unsupervised clustering
methods (KM, DEC, DCN) perform worse than semi-supervised
clustering methods (KCL, MCL, DTC). Compare with DTC, the
accuracy of our model is improved by around 5%. The pre-training
stage in DTC is optimized by classification loss using the labeled
data. However, this makes the latent features overly-specialize for
the labeled data, and thus DTC may provides a poor initialized rep-
resentation of the novel congestion causes. Moreover, the clustering
stage in DTC is optimized by clustering loss only, which fails to
capture the original characteristics of the input data. Since ST-DTC
adds the idea of self-supervision (i.e., autoencoder), the model can
retain its own important feature while learning classification task
and clustering task. Therefore, ST-DTC is more robust and can
achieve better performance.

5.6 Cluster Analysis
In this section, we will analyze the clustering results in detail. The
dataset with labeled data and unlabeled data ratio of 1 : 5 was
selected as a case. All of the following analysis are based on the
test dataset.

Latent features. The clustering result of testing dataset is rep-
resented in Figure 10. We use a t-distributed stochastic neighbor
embedding (TSNE) [10] to visualize the clusters. TSNE can show
the learned latent features of ST-DTC in two dimension space. The
color represents different clusters, and finally we obtain 12 clusters.
In Figure 10, these clusters are separated well, which proves that
our model is valid. The larger the number of scatter points, the
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(a) 𝑇𝑘 (b) 𝑇𝑐 (c) 𝑇𝑑
Figure 9: The distribution of the congestion events with known causes on clusters. 𝑇𝑘 is the intra-cluster distribution of known
causes. 𝑇𝑐 is the inter-cluster distribution of each known cause. 𝑇𝑑 is the final decision matrix, 𝑇𝑑 = 𝑇𝑘 ×𝑇T

𝑐 .

Figure 10: TSNE visualization of clusters.

larger the size of the cluster. We can see that the size of each cluster
is unbalanced, which is in line with reality. The causes inducing
traffic congestion are also diverse and the size of corresponding
events unbalanced in urban environment. For example, the size of
periodic congestion events induced by some causes (i.e., attend-
ing and leaving school) is usually larger than that of non-periodic
congestion events induced by other causes (i.e., traffic accidents).

Knownandnovel causes.Our test dataset contains both known
and novel congestion causes, and we want to analyze which clusters
are known or novel causes in Figure 10.

To quantify which clusters correspond to known congestion
causes, we need to consider the intra-cluster and inter-cluster dis-
tribution of each known cause. Here we compute two matrices 𝑇𝑘
and 𝑇𝑐 based on the clustering result in Figure 9(a) and Figure 9(b).
𝑇𝑘 is the intra-cluster distribution of each known cause. 𝑇𝑐 is the
inter-cluster distribution of each known cause. Then, based on the
cross of 𝑇𝑘 and 𝑇𝑐 , we get the final decision matrix 𝑇𝑑 .

𝑇𝑘 (𝑖 𝑗) =
𝑁𝑘𝑐∑𝐾
𝑘=1 𝑁𝑘𝑐

, (9)

𝑇𝑐 (𝑖 𝑗) =
𝑁𝑘𝑐∑𝐶
𝑐=1 𝑁𝑘𝑐

, (10)

where 𝑁𝑘𝑐 means the number of samples the 𝑘th known cause
assigned to 𝑐th cluser, 𝑘 = 1, 2, 3, · · · , 𝐾 , 𝐾 is the number of known
causes, and 𝑐 = 1, 2, 3, · · · ,𝐶 , 𝐶 is the number of clusters. In our
experiment, 𝐾 = 9 and 𝐶 = 12. By considering the intra-cluster
and inter-cluster distribution of each known causewe obtain the

(a) The POI distribution

(b) The distribution of start time

(c) Traffic condition level

Figure 11: The statistics of the congestion events with novel
causes on clusters.(C9, C10, C11 mean Cluster 9, Cluster 10 ,
Cluster 11). NP means normalized proportion.

decision matrix 𝑇𝑑 as follows,

𝑇𝑑 = 𝑇𝑘 ×𝑇T
𝑐 . (11)

The matrix 𝑇𝑑 is showed with a heatmap in Figure 9(c). Each
known cause has a pair of corresponding cluster, our clustering
model separates the known causes well even with the challenges of
small samples. Furthermore, we discover three novel causes inde-
pendent of known causes, including Cluster 9, Cluster 10 and Clus-
ter 11. These novel causes correspond to different spatio-temporal
patterns.
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5.7 Novel Congestion Cause Analysis
In this section, we will analyze the traffic features of novel conges-
tion causes, which is mainly made from the time, spatial attributes
and congestion characteristics of traffic congestion events.

POIs feature. The POIs feature of three novel causes is visual-
ized in Figure 11(a). POIs feature of a congestion event is represented
with a one-hot vector, and we count the proportion of each POI cat-
egories in each novel cause. We find that the distribution of Cluster
9, Cluster 10 and Cluster 11 are basically similar, which proves the
complication of congestion causes. Specifically, this result shows
congestion events occur induced by different causes even in the
similar surrounding environment.

The start time. The distribution of start time of the conges-
tion events with three novel causes is visualized in Figure 11(b).
Obviously, we observe different temporal patterns. Most of the
congestion events in Cluster 11 occurs on morning at both week-
days and weekend. However, congestion events usually occur at
afternoon.

The stop-and-go trend. The stop-and-go trend is an essential
feature of urban traffic congestion, which has been mentioned in
Section 3. We calculated the proportion of four road conditions in a
complete congestion process, namely unobstructed, slow, congested
and severely congested in Figure 11(c). These congestion events
have higher proportion of slow state in Cluster 10, which means
they are more likely to be stop-and-go. Different from the other
two causes, the congestion events in Cluster 11 are more likely to
be severely congested.

6 SYSTEM DEPLOYMENT
To embed our model to the map application, we release the model
internally in forms of the package. After that, we deploy the model
package to the machine learning platform, and the application pro-
grams will automatically run our model by the designed interfaces.

6.1 System Interface
To offer better user experience, we design three views in the system
interface, as shown in Figure 12.

Request View: The user requests the starting location and des-
tination. Next, the driving mode should be selected.

Map View: This view shows a recommendation route consist-
ing of multiple road segments between the starting location and
destination. The colors on the road segments represent different
traffic conditions, where the red color means congested, and the
green is unobstructed. A message icon on a road segment with the
red color shows the cause of traffic congestion, as well as other
congestion information including the average driving speed.

Navigation View: In this view, the user is using the navigation
service for driving. Similar to map view, A message icon appears
on the congested road segment with the red color, which shows the
cause of traffic congestion, as well as other congestion information
including the congestion length and the congestion duration.

6.2 Industrial Deployment and Results
We deploy our system on the machine learning platform named
AI Studio. The deployment consists of offline training and online
inference phases.

Figure 12: System interface. ’S’ and ’D’ represent staring loca-
tion and destination respectively.

Offline Training: During this phase, the model parameters
are learned based on the labeled congestion event data, which are
updated periodically.

Online Inference: In this phase, a user inputs a request to
look up the driving routes. After that, the system extracts all the
congested road segments along the route, and queries the traffic
data storage to obtain the recent time traffic conditions of these road
segments. Then, it runs the transfer clustering model to explore
the congestion causes on the road segments. Finally, the results of
all the congested road segments are returned and displayed in the
map view or navigation view.

Results: In online environment, our model can discover 25 con-
gestion causes, which obtains high user satisfaction. With this
function, users can plan their trip in advance. Even when users are
experiencing the traffic congestion, it is helpful to alleviate their
anxieties and improve user experience.

7 RELATEDWORK
Causal inference of traffic congestion. Many researchers focus
on studying the causes of traffic congestion [3, 13, 18, 21]. Bao et
al. [2] investigated traffic congestion caused by the demand from
residential area to the suburb resorts during public holidays, espe-
cially when the toll-exemption policy is performed. Authors in [21]
used the k-means algorithm to identify the most important factors
affecting traffic congestion based on real traffic data, and obtained
several insightful findings, e.g., the early evening peak congestion
is more likely to be caused by the number of bus stops. Chawla [3]
designed a mining and optimization framework to detect the cause
of traffic anomalies like traffic congestion in road traffic flow. Unlike
them, our proposed method not only accurately discovers known
causes, but also effectively identifies novel ones, which can be ap-
plied to practical scenarios of traffic management.

Traffic condition prediction. Understanding traffic condition
plays an essential part in studying the causes of traffic congestion
in urban environment. Many researchers propose algorithms to
predict traffic conditions such as the average speed, traffic volume,
and traffic states [4, 14, 29]. For example, Zhang et al. [29] combined
weather condition data to predict traffic flow based on the gated re-
current unit (GRU). Recently, several works utilized Convolutional
neural network (CNN) or graph convolutional network (GCN) with
the recurrent models to explore the spatio-temporal dependencies
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to further improve the traffic prediction performance. Chen et al. [4]
proposed a deep convolutional neural network to model periodic
traffic data for short-term traffic congestion prediction. Wang et
al. [24] also considered the periodicity of traffic congestion, and
designed a periodic spatial-temporal neural network to forecast
traffic condition. Different from them, we focus on exploring the
congestion causes based on the in-depth analysis of traffic data.

Clustering methods. There are two types of clustering meth-
ods related to our work, including unsupervised method and semi-
supervised method. Unsupervised clustering methods aim to learn
the patterns from unlabelled data. They include partitioning meth-
ods [15], hierarchical methods [8] and density-based methods [9].
Recently, deep learning methods are introduced to capture complex
dependencies for clustering [1]. However, these methods do not
take account into how to utilize limited labeled data as the useful
prior knowledge for clustering. Due to the importance of prior
knowledge, the semi-supervised clustering with the aid of some
labeled data has attracted the attention of researchers. For example,
Han et al. [5] presented the deep transfer clustering approach to
discover novel visual categories. Lin et al. [12] designed the con-
strained deep adaptive clustering method with cluster refinement
to discover new intents in the dialogue system. Inspired by them,
we propose an effective approach by transferring the knowledge
from limited labeled traffic data to simultaneously discover known
and novel causes of traffic congestion.

8 CONCLUSION
We propose a novel and systematic approach to discover the known
and novel causes of traffic congestion based on the limited labeled
data. We evaluate our model with the extensive experiments, and
the results show that our model achieves better performance in
terms of three metrics. Finally, we deploy our system in production
environment, and the online results show that our model has ability
to discover more congestion causes. When pushing the congestion
cause information to users by the map application, it can bring
great benefits. For example, when users are experiencing the traf-
fic congestion, their anxieties can be alleviated by knowing the
congestion cause information. To conclude, it is an important and
practical solution in real-world map services.
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