WeightFlow: Learning Stochastic Dynamics via Evolving Weight of Neural Network

Anonymous submission

Abstract

Modeling stochastic dynamics from discrete observations
is a key interdisciplinary challenge. Existing methods often
fail to estimate the continuous evolution of probability den-
sities from trajectories or face the curse of dimensionality.
To address these limitations, we presents a novel paradigm:
modeling dynamics directly in the weight space of a neu-
ral network by projecting the evolving probability distribu-
tion. We first theoretically establish the connection between
dynamic optimal transport in measure space and an equiv-
alent energy functional in weight space. Subsequently, we
design WeightFlow, which constructs the neural network
weights into a graph and learns its evolution via a graph
controlled differential equation. Experiments on interdisci-
plinary datasets demonstrate that WeightFlow improves per-
formance by an average of 43.02% over state-of-the-art meth-
ods, providing an effective and scalable solution for modeling
high-dimensional stochastic dynamics. Code is available at:
https://anonymous.4open.science/r/WeightFlow-EDF0/

Introduction

Stochastic dynamical processes are ubiquitous across numer-
ous scales, from gene regulation and ecological evolution
to climate patterns, making them a core subject of interdis-
ciplinary research (Sha et al. 2024; Wagner 2023; Lenton
et al. 2019; Li et al. 2025a). A key challenge in modeling
such systems lies in solving the temporal evolution of their
state distribution, which is deterministically described by
the renowned Fokker-Planck equation or the Master Equa-
tion (Chen and Majda 2017; Jiang et al. 2021; Liu et al. 2025).
Consequently, early efforts focused on developing efficient
solution algorithms, including statistical approximations and
variational autoregressive networks (Chen and Majda 2018;
Anderson and Farazmand 2024; Tang, Weng, and Zhang
2023; Liu and Wang 2024). These studies, however, are pred-
icated on the availability of well-defined governing equations
or reaction rules. In real-world scenarios, we often lack this
prior knowledge and only have access to static snapshots of
the system at discrete time points (Gao, Qiao, and Huang
2022; Neklyudov et al. 2023; Qu et al. 2025).

In the absence of governing equations, existing methods for
inferring continuous dynamics from observational data can
be classified into two categories. The first category models
the stochastic trajectories of individual particles in state space.

Stochastic State Space

fdt + odW,
State x

1
1
1
1
1
1
\4

Time t Fokker-Planck /
Master Equation

Deterministic Probability Space 1

dX,

1

. |
:

9 |
1

P(RY) P, Pe, Pt Pey

Parameterized Weight Space Neural Network

 f

0 04, O, O, Oy

EEEEEE)
<I<

Figure 1: Learning stochastic dynamics: from sample trajec-
tories to evolving weights.

For instance, NeuralSDE (Li et al. 2020) and SPINN (Zhang
et al. 2025) integrate stochastic differential equations to fit
the drift and diffusion mechanisms of particle motion. Meth-
ods based on dynamic optimal transport are inspired by the
principle of least action and construct trajectories by min-
imizing path energy (Tong et al. 2020; Onken et al. 2021;
Huguet et al. 2022). More recent studies (Koshizuka and Sato
2023; Chen et al. 2023; Kapusniak et al. 2024; Terpin et al.
2024) have formalized this process as a Schrodinger Bridge
problem, ensuring the physical realism and smoothness of
trajectories by learning a potential function or introducing
momentum. A common limitation of these trajectory-based
approaches is their inability to directly yield the probabil-
ity density of states. Instead, the distribution must be ap-
proximated through large-scale trajectory sampling, which
makes it exceedingly difficult to estimate rare events or the
tails of the distribution. To address this, a second category
of methods emphasizes the evolution of deterministic prob-
ability distributions. For example, transfer operator-based
methods (Mardt et al. 2018; Schreiner, Winther, and Ols-
son 2023; Kostic et al. 2023; Federici et al. 2024) learn the
transition probabilities of the system between metastable
states. NeuralMJP (Seifner and Sanchez 2023) and ANN-

SM (Jiang et al. 2021) explicitly learn the master equation
for discrete systems, thereby directly modeling the temporal
evolution of the state distribution. Similarly, PESLA (Li et al.
2025c¢) and DeepRUOT (Zhang, Li, and Zhou 2025) parame-
terize and solve the Fokker-Planck equation for continuous
state spaces. However, these methods require describing a
state space that grows exponentially with the system’s dimen-
sion (Tang, Weng, and Zhang 2023). They not only face the
curse of dimensionality during optimization but also struggle
to capture the underlying geometric manifold (Knobloch and
Wiesenfeld 1983) of the dynamical process.

In light of the limitations of existing methods, we propose
a novel approach: projecting the evolution of the state distri-
bution, p(z, t), into the weight space of a neural network that
defines it, © = {0|p(x,t) = py, (v)}, and directly modeling
the dynamics of weight evolution (Figure 1). Compared to
probability measures unfolded in high-dimensional spaces,
the weights benefit from a well-defined topological structure
imposed by the neural network’s connectivity, making them
amenable to modern graph representation models (Li et al.
2025b). Furthermore, the number of parameters in neural net-
works designed for sequential modeling, such as the autore-
gressive network (Tang, Weng, and Zhang 2023; Feng et al.
2025), does not depend directly on the system’s dimension,
thus effectively circumventing the curse of dimensionality.

In this work, we first theoretically demonstrate that the
dynamic optimal transport path in probability space can be
approximated by solving an equivalent energy functional in
the weight space. Building on this, we design a novel frame-
work named WeightFlow. WeightFlow models the neural
network weights as a graph and employs a graph neural dif-
ferential equation to learn the continuous dynamics of this
weight graph. To capture the global manifold of dynamics,
WeightFlow projects a latent path from observational snap-
shots and performs a Riemann—Stieltjes integral to achieve
continuous interpolation. Our contributions are as follows:

* We propose a novel framework, WeightFlow, for modeling
stochastic dynamics in the weight space of a neural net-
work, offering a new paradigm for tackling the challenge
of modeling high-dimensional stochastic systems.

* We theoretically derive the approximately equivalent for-
mulation in neural network weight space for the dynamic
optimal transport path found in probability space.

* WeightFlow models network weights as a weight graph
and introduces a graph controlled differential equation to
learn its continuous evolution.

* WeightFlow achieves an average performance improve-
ment of 43.02% over existing state-of-the-art methods.

Preliminary
Stochastic Dynamics & Probability Evolution
We consider a physical system whose state X; € R? evolves
according to a stochastic differential equation:
dX, = f(Xy, t)dt + o (X, t)dW, ¢))

where W, is a standard Wiener process, f (X, t) is the drift,
and o(X,,t) is the diffusion tensor. While individual tra-
jectories are stochastic, the ensemble’s probability density

p(z,t) evolves deterministically according to the Fokker-
Planck equation (Risken 1989; Gardiner 2009):

8tp(1"7 t) = _vm[(f(a:v t)p(il:, t))]'i_v?c : [D(:l:, t)p(il:, t()Z]S
where D(x,t) = io%(x,t) is the diffusion matrix and
V2 : denotes the tensor dot product. The Master equa-
tion (Van Kampen 1992) similarly describes probability evo-
lution for discrete state spaces. This creates a duality between
the microscopic stochastic process and its macroscopic deter-

ministic evolution.

Problem Definition

Our goal is to reconstruct the continuous evolution trajectory
(11¢)tefo,r) in the space of measures P(R?) from a set of
empirical distributions {/i;, } Y, observed at V discrete times.
Each snapshot /i;, consists of n samples from the system’s
ensemble. We assume an absolutely continuous path, where
each measure y; has a probability density function p(x,t)
satisfying du:(x) = p(x, t)dx.

We frame this as a dynamical optimal transport problem
based on the principle of least action (Koshizuka and Sato
2023; Kapusniak et al. 2024). The optimal path between two
consecutive snapshots, 1y and v, is found by solving the
Benamou-Brenier formulation (Benamou and Brenier 2000):

1
. 1
W(Vovvl)me/ / S (@ O 3p(a, t)dudt
p.fJo Jra 2

st. Op+V-(pf) =0, pli=o=r0, pli=1 =11
3)
This problem seeks an optimal path, defined by density
p(ax,t) and velocity f(x,t), that minimizes kinetic energy.

Weight Path of Probability Evolution

In this section, we provide a theoretical justification for mod-
eling stochastic dynamics through the evolution of weights.

Parameterizing Probability Distribution

We parameterize the high-dimensional probability density
p(x,t) with an autoregressive neural network (Wu, Wang,
and Zhang 2019). This factorizes the joint density into a
product of conditional probabilities via the chain rule:

d
p(x,t) = pe,(x) = Hpet (zilz1, o miz) @)
i=1

Here, a complex, high-dimensional distribution is represented
by a finite-dimensional weight vector ;. A key advantage of
this autoregressive formulation is scalability with dimension
d, which mitigates the curse of dimensionality. The universal
approximation property (Hornik, Stinchcombe, and White
1989) ensures that for any time ¢, a weight set 8, exists that
can accurately represent the true density p(x, t).

We formalize this relationship as a map G, determined
by the network architecture, from the weight space © to the
space of probability densities:

G:0, €0 pg,(x) € PRY) ®)

Thus, the deterministic evolution of the probability distribu-
tion becomes a trajectory in the network’s finite-dimensional
weight space. This maps the density path (p;):cjo,7] to a
weight path (6;) (0,1

Bridging the Probability Path and Evolving Weight
The dynamic optimal transport problem of equation (3) can
be approximately solved by finding an optimal trajectory in
the network’s weight space. The core idea is to find a weight-
space path that approximates the true optimal path’s energy
by minimizing a corresponding energy functional. We first
define this energy functional (Zhang, Li, and Zhou 2025) as:

1 1 o
E(p,v) == / / [§||v(x,t)2|\ +) ||V log p| |*|pdadt,
o Jrd

(6)
where p denotes p(z,t). Here, v(x,t) is the velocity field,
and the density p(z,t) evolves according to the continuity
equation Oyp + V - (pv) = 0. The evolution of the parameter-
izing weights 6 is then governed by an Ordinary Differential
Equation (ODE):

de

o = 9(0.0).)
The weight-space velocity field g defines a corresponding
state-space velocity v, (x, t) that satisfies the continuity equa-
tion Oypg + V - (pevy) = 0.
Theorem 1. Let 11y and (1 be the initial and end probability
measures on R%, and let (p*,v*) be the optimal path under
the Eq. 6. Assuming the following conditions are satisfied:
(C1) There exists a reference parameter 6y such that py, =~ p*
and vgy = V*;
(C2) The trained minimizer 0* satisfies pg~ (1) & 1,
(C3) 0* = arg ming(\E(pg,vy) + L(g)) with X\ > 0, where

1 4
1 o
E(pe,vy) ::/ / [i\lvg|\2+*8 ||V log pe||*]pedadt
0 R4

(3)
and L(9) = —Ezp, [l0g pe,, (2)] —Ezny, [l0g o, ()]
Then, we have |E(pg+, vg) — E(p*,v*)] < 6.

Proof. See Appendix for proof. O

Here, § > 0 is an arbitrarily small error term. A detailed
proof is in Appendix I. Theorem 1 bridges weight evolution
and dynamic optimal transport, showing that the probability
path can be projected onto a path in network’s weight space.

Learning Stochastic Dynamics via Evolving Weight

We formalize learning stochastic dynamics as an optimization
problem in the weight space. Given N empirical distributions
{j1s, }I¥|, an autoregressive network G (Eq. 4) models the
state distribution p(x, t) by mapping a weight vector 6, to a
density pg, (x). Learning the dynamics involves finding an
optimal velocity field g(6, t) whose resulting weight trajec-
tory {0 }c[o,7) minimizes the objective function:

N

1

N E (_Ewwﬂti Inggti (m)) + Ag(pey v!])' (9)
=1

The objective’s first term ensures data fit, while the second
constrains the path energy.

WeightFlow

In this section, we introduce WeightFlow, a novel framework
for modeling stochastic dynamics through the evolution of
neural network weights, as illustrated in Figure 2.

Backbone and Weight Graph

WeightFlow uses an autoregressive model, termed the back-
bone, to parameterize the state distribution p(«, t). The back-
bone implements the factorization in Eq. 4 and can be any
sequential architecture like an RNN or Transformer. For an
RNN-based backbone, it conditions the ¢-th dimension’s prob-
ability on a hidden state h;_1: p(x;,t) = p(a;|hi—1, ;).
We train a separate backbone for each time snapshot ¢; by
minimizing the data’s Negative Log-Likelihood (NLL). This
yields a set of weights {0;, } Y, that serve as anchor points for
learning the continuous dynamics. Details of the Transformer-
based backbone are provided in Appendix A.

The weights of the backbone are inherently structured by
the network’s architecture. To represent this structure, we
organize the weights of each snapshot 6;, into a weight
graph based on the network’s forward data flow. Specifically,
each output neuron of the backbone’s linear layers becomes
a node in the graph. Each node’s feature vector is formed by
concatenating its incoming connection weights and its bias
term. Thus, a linear layer with weights w € RPout*DPin and
bias b € RP-«+*1 becomes D,,; nodes in the weight graph,
each with a (D;;, + 1)-dimensional feature. Weight evolution
is thereby formalized as the evolution of node features on
this graph.

Graph Neural Differential Equation

To learn the optimal weight path from Eq. 9, we parameterize
the velocity field g as a neural differential equation. Specif-
ically, WeightFlow models the evolution of the backbone
weights 0; as a graph neural ODE (Chen et al. 2018):

97’ = 00 +/ g¢(0t7 t)dta (10)
0

where g4 = % is a hypernetwork modeling the dynamics
of the backbone weights 6;. To handle the heterogeneous
dimensions of the weight graph’s node features, we first
use a layer-wise linear map to project them into a common
dimension. We then apply a multi-head attention mechanism
to the fully connected weight graph to model all inter-node
relationships. The resulting representation is projected back
to the original dimensions via another layer-wise map to
predict the weight derivative.

To capture the global path’s manifold trend, we en-
hance the ODE into a Controlled Differential Equation
(CDE) (Kidger et al. 2020) via a Riemann—Stieltjes integral:

0, =0 +/ g¢(9t,t)%dt, (1)
0 dt
where integration follows a controlling variable path Z;. A
self-supervised autoencoder (encoder F, decoder D) projects
the anchor weights {6;,} Y| into latent vectors {z;, }1¥.,. We
then use cubic spline interpolation on these latent vectors to
dz;

approximate the path’s rate of change, <. This injects the

Probability Path

Pty Pe, Pt, Pe, Pty

ARARARRRRARANARARRRNARANA)

Pe, (%) = G(x,6)

4 dz,
o,=90+f 9(6:,0) L dt
0

backbone

™~

"GQS
g

\

Graph Neural Differential Equation
0. _ .o
[l vom) azg 1)

Feed-Forward Output Projection
Layer Norm

Multi-Head Attention P

Graph Attention

1
D 1
0, 7

weight graph

Figure 2: Framework of WeightFlow.

global evolutionary trend into the integration and explicitly
scales the conditional vector field g, = 9%

= 4z
Training Strategy

WeightFlow’s training has two stages: anchor pre-training
and dynamics model training. First, in the warm-up stage,
we pre-train the backbone independently at each observa-
tion time ¢; to get the anchor weights {6;,}Y,. To ensure
a smooth transition, we use a sequential-aligning strategy,
initializing the training for time ¢; with the weights from ¢;_ .
These anchor weights are projected into a latent space and
interpolated with cubic splines to form the control path Z,.
The main stage optimizes the hypernetwork g4 that governs
weight dynamics. In the objective from Eq. 9, the NLL loss is
replaced with a weight reconstruction loss. This reconstruc-
tion loss is a mean squared error between the trajectory’s
weights and the pre-trained anchor weights é@ Path energy
is computed via a ODE solver. We detail the training proce-
dure in Algorithm 1 of the Appendix.

Time and Computational Complexity

Let L be the number of candidate states or mixture density
parameters per dimension in a d-dimensional system. Weight-
Flow’s complexity depends on its autoregressive backbone
and the hypernetwork g.

* Backbone: The backbone’s size is independent of dimen-
sion d, with O(L) space complexity. Its inference time
complexity is O(d) due to the autoregressive calculation.

* Hypernetwork: The hypernetwork’s inference bottleneck
is its multi-head attention mechanism. Its time complexity
is O(NZ,4..), where the number of nodes, Ny, qes, is de-
termined by the backbone architecture (e.g., proportional
to L) and is also independent of dimension d.

Thus, WeightFlow effectively avoids the curse of dimension-

ality, as its main computational costs do not scale with the
state-space dimension.

Numerical Results

In this section, we empirically evaluate WeightFlow on a
diverse set of simulated and real-world stochastic dynamics.

Experimental Settings

Dynamical Systems We evaluate WeightFlow’s capacity to
model interdisciplinary stochastic dynamics in both discrete
and continuous state spaces across a diverse set of simu-
lated and real-world systems. The simulated systems include
four biochemical reaction networks (Tang, Weng, and Zhang
2023): Epidemic, Toggle Switch, and Signalling Cascades 1
and 2, as well as one ecological adaptive evolution process (Li
et al. 2025c¢). The real-world systems consist of two single-
cell differentiation datasets: the human embryoid body (Tong
et al. 2020) and the in vitro pancreatic 3-cell (Veres et al.
2019). Details regarding the system dynamics, data collec-
tion, and preprocessing for each dataset are provided in the
Appendix.

Baselines We benchmark WeightFlow against several state-
of-the-art baselines that model stochastic dynamics from di-
verse perspectives. These include methods based on the direct
modeling of stochastic differential equations, LatentSDE (Li
et al. 2020); Markov jump processes, NeuralMJP (Seifner and
Séanchez 2023); transfer operator, T-IB (Federici et al. 2024);
Schrodinger bridges, NLSB (Koshizuka and Sato 2023); and
dynamic optimal transport, DeepRUOT (Zhang, Li, and Zhou
2025). The configurations are detailed in the Appendix IV.

Metrics We measure the difference between probability
densities using several standard metrics from related work.
These include the Wasserstein (W) distance (Zhang, Li, and
Zhou 2025), Maximum Mean Discrepancy (M M D) (Ka-
pusniak et al. 2024), and the Jensen-Shannon Divergence
(JSD) (Li et al. 2025¢). The detailed computational formu-
las for these metrics are provided in the Appendix V.

Epidemic Toggle Switch Signalling Cascadel Signalling Cascade2 Ecological Evolution
x107! Wl JSD| W] JSD| W| JSD| W] JSD| W] JSD|
Latent SDE 3.14:‘:0.25 4-22j:0.26 2.34:|:0_15 1.27:|:0.12 3.04:‘:0.17 0.85:|:0_14 3.59:|:0_13 1-02:|:0.06 8.04:‘:0.33 3.52:|:0_23
Neural MJP 1.88:‘:0.14 1.61:|:0.14 2~13:|:0‘26 0.94:|:()‘14 1.69:‘:0,15 0.30:|:0.04 1.68:&0‘11 0.36:|:0‘01 1.68:‘:0,18 0.51:&0.03
T-1B 2.6240.17 3.5240.29 1.5940.90 0.8840.11 1.6640.16 0.3240.04 2.1640.17 0.4040.03 2.17+0.24 0.5640.06
NLSB 3.2710.28 1.65+0.14 2.9710.30 1.32+0.20 1.50+0.10 0-39+0.05 1.83+0.15 0.4810.05 3.09+0.26 2.80+0.32
DeepRUOT 1.78:‘:0,13 1.08:|:0.09 1.37:&0,17 0.77:|:()‘05 0.52:‘:0.02 0.07:|:0.00 0.51:&0‘01 0.08:|:0‘00 3.27:‘:0.31 2-47:|:0.36
WCightFlOWo 1-14j:0.15 0.36i0,02 0-90i0.08 O~35i0.02 0-59j:0.06 0-05i0.00 0-64i0.08 O~07i0‘01 0-50i0.08 0-13i0.01

WCightFlOWC 1~10i0.14 0-34j:0.01 0.82i0.07 0~33i0.02 0.48i0,03 0-04j:0.00 0-49i0.07 0.06i0,01 0-51i0.07 0-12j:0‘02

Promotion 38.20% 68.52% 40.15% 57.14%

7.69%

42.86% 3.92% 25.00% 70.24% 76.47%

Table 1: Statistic results on various stochastic dynamical systems over 10 runs. The best/second-best are bold/underlined.

L
- .| JSD: 0.0126
o8

b e 50
N [o~ o
[} otz P [
g P 3 40 3
S A it 3 S

20 40

Locus 1

Locus 1 0 60

Evolutionary Dynamics

. ¥,

Locus 1

Locus 2
Locus 2
Locus 2

Locus 1

Fitness Landscape t=10

50

Locus 1

t=25

55 50 52

Locus 1

48 50 52

Locus 1

54

Locus 2
Locus 2

Locus 1

t=50

t=100

Figure 3: Joint and marginal distributions predicted by WeightFlow over time on the Ecological Evolution system. The central
panels show the joint distribution contours of two loci overlaid on the fitness landscape (brighter yellow indicates higher fitness),

with marginal densities on the outer axes.

Main Results

In all experiments, unless otherwise specified, WeightFlow
uses a RNN with Gated Recurrent Units (GRU) as its default
backbone. The subscripts o and ¢ denote implementations
based on ordinary differential equations and controlled dif-
ferential equations, respectively. When not explicitly sub-
scripted, WeightFlow defaults to the CDE-based implemen-
tation. The specific configuration of WeightFlow for each
system is provided in the Appendix C.

Simulated Datasets For five discrete dynamical systems,
we simulate 1,000 evolution trajectories of 100 steps each.
Training data is created by down-sampling each trajectory to
10 time points, while evaluation is performed on the full 100
time points.

Across all systems, WeightFlow outperforms baselines,
improving the Wasserstein distance and Jensen-Shannon di-
vergence by 32.04% and 53.99% on average, respectively
(Table 1). These results demonstrate WeightFlow’s ability to
capture probabilistic dynamics and validate our weight-space
modeling approach. Compared to DeepRUOT, WeightFlow
provides more stable long-term predictions by avoiding late-

stage error accumulation (Appendix Figure 1).

A case study on an ecological evolution system further
demonstrates WeightFlow’s performance in Figure 3. In this
system, a 2D genetic phenotype evolves towards a global peak
on a fitness landscape. WeightFlow accurately predicts the
distribution throughout the evolution, capturing both macro-
scopic landscape shifts and fine-grained local dynamics.

Real-world Datasets We evaluate WeightFlow on two
continuous-space, single-cell differentiation datasets. The
datasets track gene expression via scRNA-seq during in vitro
pancreatic 3-cell and human embryoid body differentiation.
Following related work (Koshizuka and Sato 2023; Zhang,
Li, and Zhou 2025), we project the high-dimensional gene
data onto 30 and 100 principal components for modeling.
WeightFlow’s backbone then use a Mixture Density Network
(MDN) to model the resulting continuous distributions. The
detailed configuration is provided in the Appendix B.
WeightFlow significantly outperformed baselines on these
systems, demonstrating its effectiveness in continuous state
spaces (Table 2). A case study of the pancreatic 5-cell data vi-
sualizes the predicted paths in Figure 4. We compare the first

MMD: 0.0295

t=7

t=1 Reference) Ours DeepRUOT

o A A _
M o 00179
* = 9
: ®
* : \&
x
x
x
x
. t=2
[]
x 4
x
* - 00154
K* |
o
o &
. ‘
x
x
t=3
Moment Ours RUOT
Mean 0.101+0.038 0.264-+0.096

Variance 0.67240.422 0.623 19275
Skewness 1.77541 461 1.84541 586
Kurtosis 1.65141 743 2.08949 383

Figure 4: Weight prediction for 5-cell differentiation. The trajectory shows the continuous evolution of weights and corresponding
ensemble distributions (PCA). Highlights compare the results at observed snapshots: reference (left), WeightFlow’s prediction
(center), and DeepRUOT’s prediction (right). The table reports the average relative error of the first four statistical moments.

four statistical moments of the predicted distributions against
the ground truth. While both WeightFlow and DeepRUOT
capture the global shape with comparable errors in mean
and variance, WeightFlow is significantly more accurate for
higher-order moments like skewness and kurtosis. This shows
WeightFlow more accurately reproduces fine-grained distri-
bution structures, such as asymmetry and extreme values.
Similar results are observed for the embryoid body dataset in
the Appendix Figure 2.

Ablation Study

Path Integral WeightFlowc, which integrates along the
latent path Z, generally outperforms WeightFlowg, which
integrates directly with respect to time ¢ (Table 1). Taking the
Toggle Switch system as example (Figure 5), the integration
path of WeightFlowc is able to capture the slow-down in
dynamics during the later convergence phase, which is con-
sistent with the system evolution trend. This, in turn, controls
the weight evolution to decelerate in later stages, which corre-
sponds to WeightFlowc consistently having lower long-term
prediction errors than WeightFlowg. The results for the other
systems are shown in the Appendix Figure 3.

Path Projection We replace the autoencoder with different
projection algorithms for computing the control variable Z;.
The results indicate that WeightFlow consistently achieves
the best performance when using the autoencoder-based path
projection (Appendix Table 3). Visualizations of different
paths are provided in the Appendix Figure 4.

Sequential Aligning We evaluate the importance of the se-
quential warm-start strategy by disabling it during the warm-
up stage and instead using random initializations for the back-
bone at each observation time. The resulting performance
degradation confirms the importance of the sequential warm-
start strategy (Figure 7c¢).

B-cell Embryoid
Wl MMD] wl MMD |
NLSB 11.1840.22 0.0710.01 14.3940.40 0.10+0.03

RUOT 10994020 0.0610.01 14.714040 0.1510.03
WeightFlOWO 9.86i0_25 0-02i0.01 13.72:&0.39 0.02:|:0_01
WeightFlowe 9.73 1027 0.0210.01 14.1810.43 0.0310.01
Promotion 11.44% 71.88% 4.64% 81.37%

Table 2: Statistical results on real-world cell datasets.

1.0 = 8 A
8 " % \ —— ODE
Sos . S oa| | o \M CDE
g 0.6 2 00s| !
*] ©
0.4 /4 +2 50 60 70 80 90 100
= e Snapshots £0.2
e [0}
w02 CDE Path @ ‘
0.0 0.2 04 0.6 0.8 1.0 0 25 50 75 100
Time Time Step

Figure 5: Comparing path interpolation (left) and average
Wasserstein distance (right) for ODE and CDE models on
two the toggle switch system.

Sensitivity Analysis

Backbone Size WeightFlow uses the backbone to param-
eterize probability distributions. Therefore, the backbone’s
size affects the quality of its fit to complex distributions. Here,
we test the performance of a single-layer RNN with differ-
ent latent dimensions (Figure 6a). The results indicate that
for most systems, a hidden dimension of just 8 is sufficient.
This benefits from WeightFlow’s decoupled design, where
the backbone only models static distributions, leaving the
continuous evolution to the hypernetwork.

@ @
2 0.20 Epidemic mmm Signalling Cascade2 2
g - = Toggle Switch Ecological Evolution g
D 015 Signalling Cascade1 o 0.10
£ £
Q Q
B 010 ® 005
& &
s 0.05 8
= =
0.00 4 16 20 24 0.00 20 40

8
Backbone Size (hidden dim)

(a) Backbone Size

Data Ratio (%)

(b) Data Ratio

4
=)

Wasserstein Distance
o
=S
(5]

14
o
S

60 80 100

2 4 8 16
Path Dimension

(c) Path Dimension

Figure 6: Average Wasserstein distance for WeightFlow as a function of (a) backbone size, (b) data ratio, and (c) path dimension

across five dynamical systems.

[0 @ @
e 02 [Sequential 1< [GRU 206 1 Aligned
(‘(% ' (Random _(‘(_% 0.2 ‘ (Transformer _(‘(_% 0.5 1 wioAligned
(=) (=) 0 04
c c c
e e = Ul {
@ I} @
§ 0.0 § § 0.0 4 < > %
. AemiC e det de2 ion aemiC iten det de2 tion emiC iten get de2 fion
Ep\de SW Casc? Casc? gvoW Ep\de SW! Casc? Casc? gvoW EP‘de SW! s Casc? vo!

(a) Autoregressive Order

(b) Backbone Architecture

(c) Sequential Aligning

Figure 7: Wasserstein distance distributions for WeightFlow across five systems under various settings: (a) autoregressive order,
(b) backbone architecture, and (c) sequential aligning (with versus without). The outliers are truncated to highlight differences.

- -

@ 04| @LatentSDE @ 4 233.6k%
5 E" - 2334k &
° © 2
a ONLSB o 11K 2
£ p2]/OTIB NeuralMJP S 0.0k - 232.4k 97‘r
o 7 .

@ @ DeepRUOT S)
@ P 8 0.5k —@— Backbone Params 2
1] (o] . s
8 WeightFlow 0 ~ Hypernetwork Params 3
= 0.0 - . @

25 5.0 7.5

T T
) 12 52 85 100
Inference Time (s) L

Figure 8: Inference time (left) and model size (right).

Data Size We evaluate WeightFlow’s dependency on the
amount of observational data by reducing the number of train-
ing samples (Figure 6b). The results show that WeightFlow’s
performance does not collapse even when the data is reduced
to only 20%, but instead shows only a limited decline.

Path Dimension The dimension of the latent path affects
WeightFlow’s capacity to represent weight dynamics. We
find that WeightFlow is not sensitive to the path dimension
(Figure 6c¢). The performance with a one-dimensional path is
even slightly superior to that with higher dimensions. This
could be because the weight evolution dynamics occur on a
low-dimensional manifold of the system (similar to Figure 4),
for which a one-dimensional latent path is sufficient.

Autoregressive Order Mathematically, WeightFlow’s au-
toregressive backbone models the joint probability distribu-
tion in the form of Eq. 4, which supports any autoregressive
order. We test the performance with a randomly shuffled au-
toregressive order (Figure 7a). The results indicate that the
prediction error of the random order is indeed very close to
that of the sequential order.

Backbone Architecture WeightFlow supports any imple-
mentation for its backbone. Therefore, we compare the perfor-
mance of a Transformer-based WeightFlow (Figure 7b). The
results show that the predictive performance of WeightFlow
is similar for both backbone architectures.

Time and Space Cost

We report the inference time versus error for various methods,
as well as the parameter size of WeightFlow in Figure 8.
WeightFlow achieves the Pareto frontier in terms of inference
time and error. Furthermore, its parameter size scales only
linearly with the number of candidate states, L.

Conclusions

In this work, we proposed WeightFlow, a new framework
for modeling stochastic dynamics in the weight space of
a neural network. By learning the continuous evolution of
a weight graph, WeightFlow effectively circumvents the
curse of dimensionality faced by traditional methods in high-
dimensional state spaces. We find that WeightFlow exhibits
good robustness to data quantity and model size , and that
a very low-dimensional latent path (even one-dimensional)
is sufficient to capture the complex dynamics of weight evo-
lution. This suggests that the evolution of the probability
distribution itself may lie on a low-dimensional manifold. Fur-
thermore, compared to baseline models, WeightFlow more
accurately captures the higher-order moments of the distri-
bution (such as skewness and kurtosis), indicating a stronger
ability to characterize fine structures like asymmetry and tails.
This indicates that WeightFlow is a promising candidate for
an effective solution to stochastic dynamics modeling.

References

Anderson, W.; and Farazmand, M. 2024. Fisher information
and shape-morphing modes for solving the Fokker—Planck
equation in higher dimensions. Applied Mathematics and
Computation, 467: 128489.

Benamou, J.-D.; and Brenier, Y. 2000. A computational fluid
mechanics solution to the Monge-Kantorovich mass transfer
problem. Numerische Mathematik, 84(3): 375-393.

Chen, N.; and Majda, A. J. 2017. Beating the curse of dimen-
sion with accurate statistics for the Fokker—Planck equation
in complex turbulent systems. Proceedings of the National
Academy of Sciences, 114(49): 12864—-12869.

Chen, N.; and Majda, A. J. 2018. Efficient statistically ac-
curate algorithms for the Fokker-Planck equation in large
dimensions. Journal of Computational Physics, 354: 242—
268.

Chen, R. T.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. Advances
in neural information processing systems, 31.

Chen, T.; Liu, G.-h.; Tao, M.; and Theodorou, E. A. 2023.
Deep multi-marginal momentum Schrodinger bridge. In
Proceedings of the 37th International Conference on Neural
Information Processing Systems, 57058-57086.

Federici, M.; Forré, P.; Tomioka, R.; and Veeling, B. S. 2024.
Latent Representation and Simulation of Markov Processes
via Time-Lagged Information Bottleneck. In The Twelfth
International Conference on Learning Representations.
Feng, M.; Huang, Y.; Liao, W.; Liu, Y.; Liu, Y.; and Yan, J.
2025. SINGER: Stochastic Network Graph Evolving Opera-
tor for High Dimensional PDEs. In The Thirteenth Interna-
tional Conference on Learning Representations.

Gao, M.; Qiao, C.; and Huang, Y. 2022. UniT Velo: tempo-
rally unified RNA velocity reinforces single-cell trajectory
inference. Nature Communications, 13(1): 6586.

Gardiner, C. 2009. Stochastic methods, volume 4. Springer
Berlin Heidelberg.

Hornik, K.; Stinchcombe, M.; and White, H. 1989. Multilayer
feedforward networks are universal approximators. Neural
networks, 2(5): 359-366.

Huguet, G.; Magruder, D. S.; Tong, A.; Fasina, O.; Kuchroo,
M.; Wolf, G.; and Krishnaswamy, S. 2022. Manifold inter-
polating optimal-transport flows for trajectory inference. Ad-
vances in neural information processing systems, 35: 29705—

29718.

Jiang, Q.; Fu, X.; Yan, S.; Li, R.; Du, W.; Cao, Z.; Qian, F.;
and Grima, R. 2021. Neural network aided approximation
and parameter inference of non-Markovian models of gene
expression. Nature communications, 12(1): 2618.

Kapusniak, K.; Potaptchik, P.; Reu, T.; Zhang, L.; Tong, A.;
Bronstein, M.; Bose, J.; and Di Giovanni, F. 2024. Metric
flow matching for smooth interpolations on the data mani-

fold. Advances in Neural Information Processing Systems,
37:135011-135042.

Kidger, P.; Morrill, J.; Foster, J.; and Lyons, T. 2020. Neu-
ral controlled differential equations for irregular time series.

Advances in neural information processing systems, 33: 6696—
6707.

Knobloch, E.; and Wiesenfeld, K. 1983. Bifurcations in
fluctuating systems: The center-manifold approach. Journal
of Statistical Physics, 33(3): 611-637.

Koshizuka, T.; and Sato, I. 2023. Neural Lagrangian
Schrodinger Bridge: Diffusion Modeling for Population Dy-
namics. In The Eleventh International Conference on Learn-
ing Representations.

Kostic, V. R.; Novelli, P.; Grazzi, R.; Lounici, K.; and Pon-
til, M. 2023. Learning invariant representations of time-
homogeneous stochastic dynamical systems. arXiv preprint
arXiv:2307.09912.

Lenton, T. M.; Rockstrom, J.; Gaffney, O.; Rahmstorf, S.;
Richardson, K.; Steffen, W.; and Schellnhuber, H. J. 2019.
Climate tipping points—too risky to bet against. Nature,
575(7784): 592-595.

Li, R.; Cheng, J.; Wang, H.; Liao, Q.; and Li, Y. 2025a.
Predicting the dynamics of complex system via multiscale
diffusion autoencoder. arXiv preprint arXiv:2505.02450.
Li, R.; Wang, H.; Ding, J.; Yuan, Y.; Liao, Q.; and Li, Y.
2025b. Predicting Dynamical Systems across Environments
via Diffusive Model Weight Generation. arXiv preprint
arXiv:2505.13919.

Li, R.; Wang, H.; Liao, Q.; and Li, Y. 2025c. Predicting
the Energy Landscape of Stochastic Dynamical System via
Physics-informed Self-supervised Learning. In The Thir-
teenth International Conference on Learning Representa-
tions.

Li, X.; Wong, T.-K. L.; Chen, R. T.; and Duvenaud, D. 2020.
Scalable gradients for stochastic differential equations. In
International Conference on Artificial Intelligence and Statis-
tics, 3870-3882. PMLR.

Liu, C.; and Wang, J. 2024. Distilling dynamical knowl-
edge from stochastic reaction networks. Proceedings of the
National Academy of Sciences, 121(14): e2317422121.

Liu, J.; Li, R.; Wang, H.; Yu, Z.; Liu, C.; Ding, J.; and Li, Y.
2025. Beyond Equilibrium: Non-Equilibrium Foundations
Should Underpin Generative Processes in Complex Dynami-
cal Systems. arXiv preprint arXiv:2505.18621.

Mardt, A.; Pasquali, L.; Wu, H.; and Noé, F. 2018. VAMPnets
for deep learning of molecular kinetics. Nature communica-
tions, 9(1): 5.

Neklyudov, K.; Brekelmans, R.; Severo, D.; and Makhzani, A.
2023. Action matching: Learning stochastic dynamics from

samples. In International conference on machine learning,
25858-25889. PMLR.

Onken, D.; Fung, S. W.; Li, X.; and Ruthotto, L. 2021. Ot-
flow: Fast and accurate continuous normalizing flows via
optimal transport. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, 9223-9232.

Qu, R.; Cheng, X.; Sefik, E.; Stanley III, J. S.; Landa, B.;
Strino, F.; Platt, S.; Garritano, J.; Odell, I. D.; Coifman, R.;
et al. 2025. Gene trajectory inference for single-cell data
by optimal transport metrics. Nature biotechnology, 43(2):
258-268.

Risken, H. 1989. Fokker-planck equation. In The Fokker-
Planck equation: methods of solution and applications, 63—
95. Springer.

Schreiner, M.; Winther, O.; and Olsson, S. 2023. Implicit
transfer operator learning: Multiple time-resolution models
for molecular dynamics. Advances in Neural Information

Processing Systems, 36: 36449-36462.

Seifner, P.; and Sanchez, R. J. 2023. Neural markov jump
processes. In International Conference on Machine Learning,

30523-30552. PMLR.

Sha, Y.; Qiu, Y.; Zhou, P.; and Nie, Q. 2024. Reconstructing
growth and dynamic trajectories from single-cell transcrip-
tomics data. Nature Machine Intelligence, 6(1): 25-39.

Tang, Y.; Weng, J.; and Zhang, P. 2023. Neural-network
solutions to stochastic reaction networks. Nature Machine
Intelligence, 5(4): 376-385.

Terpin, A.; Lanzetti, N.; Gadea, M.; and Dorfler, F. 2024.
Learning diffusion at lightspeed. Advances in Neural Infor-
mation Processing Systems, 37: 6797-6832.

Tong, A.; Huang, J.; Wolf, G.; Van Dijk, D.; and Krish-
naswamy, S. 2020. Trajectorynet: A dynamic optimal trans-
port network for modeling cellular dynamics. In International
conference on machine learning, 9526-9536. PMLR.

Van Kampen, N. G. 1992. Stochastic processes in physics
and chemistry, volume 1. Elsevier.

Veres, A.; Faust, A. L.; Bushnell, H. L.; Engquist, E. N.;
Kenty, J. H.-R.; Harb, G.; Poh, Y.-C.; Sintov, E.; Giirtler, M.;
Pagliuca, F. W.; et al. 2019. Charting cellular identity during
human in vitro §-cell differentiation. Nature, 569(7756):
368-373.

Wagner, A. 2023. Evolvability-enhancing mutations in the
fitness landscapes of an RNA and a protein. Nature Commu-
nications, 14(1): 3624.

Wu, D.; Wang, L.; and Zhang, P. 2019. Solving statistical me-
chanics using variational autoregressive networks. Physical
review letters, 122(8): 080602.

Zhang, Y.; Zhu, J.; Xie, H.; and He, Y. 2025. Physics-
informed deep learning for stochastic particle dynamics esti-
mation. Proceedings of the National Academy of Sciences,
122(9): €2418643122.

Zhang, Z.; Li, T.; and Zhou, P. 2025. Learning stochastic
dynamics from snapshots through regularized unbalanced
optimal transport. In The Thirteenth International Conference
on Learning Representations.

Reproducibility Checklist
1. General Paper Structure

1.1. Includes a conceptual outline and/or pseudocode de-
scription of Al methods introduced (yes/partial/no/NA)
yes

1.2. Clearly delineates statements that are opinions, hypoth-
esis, and speculation from objective facts and results
(yes/no) yes

1.3. Provides well-marked pedagogical references for less-
familiar readers to gain background necessary to repli-
cate the paper (yes/no) yes

2. Theoretical Contributions

2.1. Does this paper make theoretical contributions? (yes/no)
yes

If yes, please address the following points:

2.2. All assumptions and restrictions are stated clearly and
formally (yes/partial/no) yes

2.3. All novel claims are stated formally (e.g., in theorem
statements) (yes/partial/no) yes

2.4. Proofs of all novel claims are included (yes/partial/no)
yes

2.5. Proof sketches or intuitions are given for complex
and/or novel results (yes/partial/no) yes

2.6. Appropriate citations to theoretical tools used are
given (yes/partial/no) yes

2.7. All theoretical claims are demonstrated empirically
to hold (yes/partial/no/NA) yes

2.8. All experimental code used to eliminate or disprove
claims is included (yes/no/NA) yes

3. Dataset Usage

3.1. Does this paper rely on one or more datasets? (yes/no)
yes

If yes, please address the following points:

3.2. A motivation is given for why the experiments
are conducted on the selected datasets (yes/par-
tial/no/NA) yes

3.3. All novel datasets introduced in this paper are in-
cluded in a data appendix (yes/partial/no/NA) NA

3.4. All novel datasets introduced in this paper will be
made publicly available upon publication of the pa-
per with a license that allows free usage for research
purposes (yes/partial/no/NA) NA

3.5. All datasets drawn from the existing literature (po-
tentially including authors’ own previously pub-
lished work) are accompanied by appropriate cita-
tions (yes/no/NA) yes

3.6. All datasets drawn from the existing literature (po-
tentially including authors’ own previously published
work) are publicly available (yes/partial/no/NA) yes

3.7. All datasets that are not publicly available are de-
scribed in detail, with explanation why publicly avail-
able alternatives are not scientifically satisficing (yes/-
partial/no/NA) NA

4. Computational Experiments

4.1. Does this paper include computational experiments?
(yes/no) yes

If yes, please address the following points:

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

This paper states the number and range of values tried
per (hyper-) parameter during development of the
paper, along with the criterion used for selecting the
final parameter setting (yes/partial/no/NA) yes

Any code required for pre-processing data is included
in the appendix (yes/partial/no) yes

All source code required for conducting and analyz-
ing the experiments is included in a code appendix
(yes/partial/no) yes

All source code required for conducting and analyz-
ing the experiments will be made publicly available
upon publication of the paper with a license that al-
lows free usage for research purposes (yes/partial/no)
yes

All source code implementing new methods have
comments detailing the implementation, with refer-
ences to the paper where each step comes from (yes/-
partial/no) yes

If an algorithm depends on randomness, then the
method used for setting seeds is described in a way
sufficient to allow replication of results (yes/par-
tial/no/NA) yes

This paper specifies the computing infrastructure used
for running experiments (hardware and software), in-
cluding GPU/CPU models; amount of memory; oper-
ating system; names and versions of relevant software
libraries and frameworks (yes/partial/no) yes

This paper formally describes evaluation metrics used
and explains the motivation for choosing these met-
rics (yes/partial/no) yes

This paper states the number of algorithm runs used
to compute each reported result (yes/no) yes

Analysis of experiments goes beyond single-
dimensional summaries of performance (e.g., aver-
age; median) to include measures of variation, con-
fidence, or other distributional information (yes/no)
yes

The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no) NA

This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) yes

