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Mobile User Traffic Generation Via Multi-Scale
Hierarchical GAN

TONG LI, SHUODI HUI, SHIYUAN ZHANG, HUANDONGWANG, and
YUHENG ZHANG, Tsinghua University, Beijing, China
PAN HUI, Hong Kong University of Science and Technology, Hong Kong, China
DEPENG JIN and YONG LI, Tsinghua University, Beijing, China

Mobile user traffic facilitates diverse applications, including network planning and optimization, whereas
large-scale mobile user traffic is hardly available due to privacy concerns. One alternative solution is to
generate mobile user traffic data for downstream applications. However, existing generation models cannot
simulate the multi-scale temporal dynamics in mobile user traffic on individual and aggregate levels. In this
work, we propose a multi-scale hierarchical generative adversarial network (MSH-GAN) containing multiple
generators and a multi-class discriminator. Specifically, the mobile traffic usage behavior exhibits a mixture of
multiple behavior patterns, which are called micro-scale behavior patterns and are modeled by different pattern
generators in our model. Moreover, the traffic usage behavior of different users exhibits strong clustering
characteristics, with the co-existence of users with similar and different traffic usage behaviors. Thus, we
model each cluster of users as a class in the discriminator’s output, referred to as macro-scale user clusters.
Then, the gap between micro-scale behavior patterns and macro-scale user clusters is bridged by introducing
the switch mode generators, which describe the traffic usage behavior in switching between different patterns.
All users share the pattern generators. In contrast, the switch mode generators are only shared by a specific
cluster of users, which models the multi-scale hierarchical structure of the traffic usage behavior of massive
users. Finally, we urge MSH-GAN to learn the multi-scale temporal dynamics via a combined loss function,
including adversarial loss, clustering loss, aggregated loss, and regularity terms. Extensive experiment results
demonstrate that MSH-GAN outperforms state-of-art baselines by at least 118.17% in critical data fidelity
and usability metrics. Moreover, observations show that MSH-GAN can simulate traffic patterns and pattern
switch behaviors.

CCS Concepts: • Networks→ Network simulations; • Computing methodologies→Modeling and
simulation; • Information systems→ Spatial-temporal systems;

Additional Key Words and Phrases: Mobile user traffic, generation, GAN, clustering
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1 Introduction
Mobile networks have gained widespread popularity in recent years. In 2022, there were over five
billion unique mobile internet users [1], indicating that over 60% of the world’s population uses
a mobile device to access the internet. This data underscores the indispensable role that mobile
networks play in modern society. Under this circumstance, collecting and utilizing the network
traffic of mobile users is of increasing importance and popularity [2, 3]. Specifically, mobile user
traffic facilitates diverse applications, including user behavior modeling [4, 5], network digital
twinning [6–8], malware detection [9, 10], advertising fraud detection [11], sociological inference
[12], website fingerprinting [13], and so forth. Mobile user traffic also contributes to the progress
of mobile networks by inspiring the improvement of network planning [14, 15] and optimization
[16–18].
Mobile user traffic is hardly available in practice. Due to privacy concerns for mobile users,

mobile network providers with access to mobile user traffic are often unwilling to make this data
public to the research community [19, 20]. Alternatively, they may add noise to the data before its
utilization, reducing its quality, and usability [21–23]. Moreover, collecting mobile user traffic data
via crowdsourcing requires careful handling of the tradeoff between data quality and expenses
[24, 25]. To mitigate the above gaps, we propose to generate synthetic mobile user traffic data,
avoiding privacy issues in data sharing while reducing costs in data collection. Recently, sev-
eral models have been proposed to generate various forms of traffic data, including network
packet sequences [26–28] and traffic volume series [29–32]. These previous models predominantly
concentrate on generating network traffic at an aggregated level, such as network packets of a
local network or the traffic volume of a specific region. However, their limitations lie in their
inability to generate network traffic traces for individual users, which is the primary focus of
our work.

Network traffic usage by mobile users displays complex characteristics from various perspectives,
including individual micro-scale traffic usage patterns and macro-scale group patterns observed
among mobile users. Specifically, generating traffic usage for mobile users requires careful consid-
eration of both characteristics, presenting challenges.

— Individual micro-scale traffic usage patterns. The traffic usage of mobile users showcases
individual characteristics that emerge from a blend ofmultiple behavior patterns, termedmicro-
scale behavior patterns. These patterns often result from basic mobile app usage activities
like online messaging, video streaming, and online shopping. Notably, as only one app is
typically active in the foreground of a mobile phone and primarily consumes the mobile traffic,
these micro-scale behavior patterns are more pronounced in the mobile domain than in wired
networks [33]. For example, Figure 1(a) presents two selected user traffic flows, where the
blue curve shows multi-periodicity while the yellow curve shows slight fluctuations.

—Macro-scale group patterns. Beyond individual patterns, mobile user traffic also demonstrates
group-level patterns, indicating strong clustering characteristics in their behavior. This phe-
nomenon is described as macro-scale group patterns. Distinct user groups sharing similar
features exhibit micro-scale behaviors in specific constellations. Figure 1(c) illustrates the
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Fig. 1. Examples of the real user traffic flows: (a) with/without pattern switch, (b) with/without periodic
patterns, and (c) aggregated traffic.

aggregated user traffic flows of two such clusters. While both curves display daily periodic
patterns, the blue curve additionally reveals high-frequency periodicity.

This article proposes aMulti-Scale Hierarchical Generative Adversarial Network (MSH-
GAN) for mobile user traffic generation. First, we simulate the micro-scale behavior patterns
in user traffic via multiple pattern generators. We utilize the Bidirectional Long Short-Term
Memory (BiLSTM) networks and self-attention mechanism to capture the long-term and short-
term temporal correlations. Then, we bridge the gap between micro-scale behavior patterns and
macro-scale user clusters by introducing the switch mode generators, which describe the traffic
usage behavior in switching between different patterns. For example, Figure 1(b) presents two
selected user traffic flows, where the yellow curve shows stable patterns corresponding to daily life,

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 8, Article 189. Publication date: July 2024.
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while the blue curve switches between distinct patterns on the fourth day. Thus, users’ traffic usage
behavior is formed by the cooperation of pattern generators and switch mode generators. All users
share the pattern generators, while a specific cluster only shares the switch mode generators. In
this way, we model the multi-scale hierarchical structure of the traffic usage behavior of massive
numbers of users. Our multi-class discriminator provides the true or false results to discriminate
micro-scale behavior patterns and classifies the user traffic into macro-scale user clusters, where
we adopt Temporal Convolutional Networks (TCNs) with daily and weekly kernels to capture
the multi-scale temporal dynamics. Finally, we update MSH-GAN using a delicately designed loss
function, including adversarial loss, clustering loss, aggregated loss, and regularity terms.

Our contributions are summarized as follows:

—We propose MSH-GAN to simulate the multi-scale hierarchical structure of the traffic usage
behavior of massive users, generating the traffic patterns with multiple pattern generators
and pattern switch modes with multiple switch mode generators while discriminating and
clustering the mobile user traffic with a multi-class discriminator.

—We design a combined loss function to urge the MSH-GAN to learn individual- and aggregate-
level multi-scale temporal dynamics of user traffic, including adversarial loss, clustering loss,
aggregated loss, and regularity terms.

—We conduct experiments on a real-world user traffic dataset, where we train the MSH-GAN
and other baseline models and utilize the trained models to generate synthetic user traffic
for individual-level and aggregate-level evaluation. Extensive results show that MSH-GAN
outperforms other state-of-art baselines by more than 118.7% in terms of key metrics on
fidelity and usability while successfully simulating individual-level and aggregate-level traffic
behaviors.

2 Problem Definition and System Overview
2.1 Definitions
Definition 1. (User Traffic Flow). Given a mobile user* , the traffic flow is defined as the series

of network traffic volumes consumed in equal time intervals + = {EC })C=1, where EC represents the
network traffic volume consumed in the Cth interval and ) is the amount of these intervals.

Focusing on simulating the traffic variations of each user, we apply normalization to the user
traffic flows.

Definition 2. (Normalized User Traffic Flow). Given a mobile user* , the normalized traffic flow is
defined as - = {GC })C=1 = {EC/‖+ ‖2})C=1, where GC represents the normalized network traffic volume
in the Cth time interval, ‖+ ‖2 is the two norm of user traffic flow + .

Definition 3. (Aggregated Normalized User Traffic Flow). Given a cluster of mobile users {* 8 }#8=1
and their normalized traffic flow {- 8 }#8=1, the aggregated normalized traffic flow is defined as
� = {0C })C=1 = {

∑#
8=1 G

8
C })C=1, where 0C represents the aggregated normalized network traffic volume

in the Cth time interval.

As mobile users can change their behavior patterns significantly in the normalized user traffic
flow, we define the consistent behavior patterns and the switch modes among these patterns to
decompose the user traffic generation problem at micro and macro scales.

Definition 4. (Traffic Pattern). A traffic pattern is a normalized user traffic flow with consistent
temporal patterns, which is defined as % = {?C })C=1, where ?C represents the normalized network
traffic volume of the traffic pattern in the Cth time interval.
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Table 1. Notations and Descriptions for User Traffic Generation

Notation Description

* A mobile user

+ = {EC })C=1 The traffic flow of mobile user*

- = {GC })C=1 The normalized traffic flow of mobile user*

� = {0C })C=1 The aggregated normalized traffic flow of mobile users {* 8 }#8=1
% = {?C })C=1 The traffic pattern

( = {BC })C=1 The traffic switch mode of mobile user*

� The cluster of mobile users {* 8 }#8=1 according to their {- 8 }#8=1
/ The random noise vector for a generation

Fig. 2. Overview of user traffic generation via MSH-GAN.

Definition 5. (Traffic Switch Mode). Each user’s traffic switch mode is defined as ( = {BC })C=1,
where BC is a one-hot encoding vector representing the traffic pattern obeyed by the user in the Cth
time interval.

2.2 Problem Formulation
Based on the above-defined notations and concepts, the user traffic generation problem can be
expressed as follows:

Definition 6. (User Traffic Generation Problem). Given the real normalized user traffic flow set
{- }, the goal is to generate a synthetic normalized user traffic flow set {-̂ } that exhibits similar
characteristics to the real training data. In addition, auxiliary information of the users can be
optionally utilized in this process.

2.3 System Overview
Figure 2 shows the workflow of MSH-GAN, where we generate synthetic normalized user traffic
flows and discriminate between them and the real flows. Specifically for each user, we first generate
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Fig. 3. Illustration of the pattern generator.

several traffic patterns {%̂8 }#8=1 and the traffic switch mode (̂ , where the dimension of each one-hot
encoding vector B̂C is equal to the number of patterns # . Then, we take the element-wise multipli-
cation of the traffic patterns {%̂8 }#8=1 and the traffic switch mode (̂ as the generated normalized user
traffic flow -̂ , and discriminate between -̂ and the real traffic - . Particularly, we utilize multiple
switch mode generators to simulate the variable switch modes of mobile users. As we found that
the aggregated normalized user traffic flow � of mobile users {* 8 }#8=1 can show different patterns
corresponding to the clusters, we adjust the discriminator to output the true or false results along
with the cluster for each flow - or -̂ . Finally, we update generators and the discriminator via loss
functions computed according to the discrimination results of - and -̂ .

3 Method
As discussed in the introduction section, mobile user traffic shows multi-scale temporal behaviors
on the individual level and multi-periodic patterns on the aggregate level. Therefore, we design
multiple pattern generators, switch mode generators, and a multi-class discriminator. We utilize
BiLSTM networks and self-attention mechanisms in each pattern generator to capture the long-
term and short-term temporal dynamics in traffic patterns. In each switch mode generator, we
utilize a linear Switch Learner (SL) to memorize and update the pattern switch modes and use
Gumbel-Softmax to output the pattern switch results. Then, we generate synthetic mobile user
traffic as the element-wise product of the generated traffic patterns and switch modes. Next, we
input the real and generated mobile user traffic into the discriminator, providing the discrimination
result as the probabilities of the input traffic being fake and belonging to each cluster. According to
the discrimination results, we calculate the combined loss function to update the generators and
discriminator, simultaneously considering individual and aggregate levels.

3.1 Pattern Generator
To simulate the long-term and short-term temporal dynamics in the traffic pattern, we utilize
BiLSTM [34] networks and self-attention mechanism [35] to generate the traffic patterns {%̂}, as
illustrated in Figure 3. Long Short-Term Memory (LSTM) networks [36] are Recurrent Neural
Network (RNN) architectures known for their ability to remember historical values over arbitrary
intervals and generate series data step by step. In a typical LSTM network, the output at each step
is influenced not only by the current input but also by the input and states from previous steps.
BiLSTM network [34] takes this a step further by allowing the current step to be influenced by the
following steps. In other words, the BiLSTM can capture past and future context by processing the
input sequence in both forward and backward directions. This capability enables the BiLSTM better
to understand the temporal dependencies within user network traffic. Therefore, we adopt BiLSTM

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 8, Article 189. Publication date: July 2024.
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Fig. 4. Illustration of the switch mode generator.

networks to learn the long-term and short-term temporal dynamics of traffic patterns. Specifically,
we map the condition vector and noise vector to the initial cell state 20 and the initial hidden state
ℎ0 of the BiLSTM via two linear layers and map the condition and noise vector to the input of each
step for the BiLSTM via another linear layer. As presented by the dashed yellow box and lines in
Figure 3, the condition vector is optional according to the existence of auxiliary information of the
users, and the initial cell state 20 is set to zeros without the condition vector.
To simulate the short-term temporal dynamics in the traffic pattern more delicately while

improving the efficiency, we adopt self-attention mechanism to process the output hidden states
and generate multiple elements in each step

' = ReLU(ℎ:, ), '& = ReLU(ℎ:,& ), '+ = ReLU(ℎ:,+ ),

%̂: = softmax

(
'& · ') √

3

)
· '+ ·,B .

(1)

As presented in Equation (1), the self-attention layer maps the hidden state ℎ: in each step to the
key ' , query '& , and value '+ representations via linear projections, and the dot products of the
query with all keys and the weights on the values are computed via a softmax activate function
after normalizing the products by the dimension of keys. Finally, it takes & steps to generate the
traffic pattern %̂ , and %̂: = {?C }: ·&C=(:−1) ·&+1 in each step. Notably, the traffic pattern generator �%

has a single BiLSTM unit and self-attention layer. The expanded structure presented in Figure 3
stands for the & steps in the generation. Finally, we generate the traffic patterns {%̂8 }#8=1 with #

pattern generators.

3.2 Switch Mode Generator
To simulate the switch modes among traffic patterns for each user, we utilize a linear SL to memorize
and update the switch modes and adopt Gumbel-Softmax [37] to generate the one-hot encoding
vector while avoiding discontinuity step by step as follows,

<0 = Linear(/ ; 2>=38C8>=∗),
B̂C = GumbelSoftmax(<C ),

<C+1 = SL(<C , B̂C ),
(2)

where / is the random noise vector, 2>=38C8>= is the auxiliary information of the users,<0 the
initial switch state,<C the switch state in the Cth step, B̂C is the generated one-hot encoding vector
representing the traffic pattern in Cth step, and SL represents the switch learner.

As presented in Figure 4, we first map the noise vector and condition vector to the initial switch
state<0 for the SL. In the SL, we memorize the switch modes via a matrix, where the elements
represent the previous switches among traffic patterns.With a one-hot encoding vector representing
the traffic pattern B̂C as input, the SL outputs the next switch state <C+1 based on the previous
switches and B̂C . Gumbel-Softmax [38] is a continuous distribution that can approximate categorical
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Fig. 5. Illustration of the discriminator.

samples, which applies the softmax function to the Gumbel-Max trick [39]. Gumbel-Max trick helps
to draw samples B̂C from a multinomial distribution with probabilities<C as follows,

B̂C = one_hot
(
argmax

8

[
68 + log<8

C

] )
, 68 = −log(−log(D8 )), (3)

where<8
C is the 8th element in<C , 68 is the independent identically distributed samples drawn from

the�D<14; (0, 1) distribution, D8 is the independent identically distributed samples drawn from the
*=8 5 >A<(0, 1) distribution. Then, replacing the arg max function with the softmax function, the
Gumbel-Softmax trick can be expressed as follows,

B̂C
8 =

exp
( (
log

(
<8
C

)
+ 68

)
/g

)∑#
9=1 exp

((
log

(
<
9
C

)
+ 6 9

)
/g

) for 8 = 1, . . . , # , (4)

where B̂C 8 is the 8th element in B̂C , # is the dimension of B̂C , which equals the total number of traffic
patterns.Then, B̂C becomes a one-hot encoding vector with the softmax temperature g approximating
zero, while the parameter gradients can be easily computed via the reparameterization trick.
Particularly, as presented by the dashed yellow box and lines in Figure 4 and the ∗ in Equation (2),
the condition vector is optional according to the existence of auxiliary information of the users.

With the generated traffic patterns {%̂8 }#8=1 and switch mode (̂ , the generated multi-scale normal-
ized user traffic flow is computed via element-wise multiplication -̂ = [%̂1, %̂2, ..., ˆ%# ] � (̂ .

3.3 Discriminator
The aggregated normalized user traffic flow � of mobile users {* 8 }#8=1 can show different patterns
corresponding to distinct clusters. To bridge the gap between individual-level and aggregate-level
behaviors, the discriminator in our model should act as a multi-class classifier to provide the cluster
label for each flow - or -̂ if it is discriminated as real. Hence, the output of the discriminator can
be expressed as follows,

� (- ) = (� 5 (- ), �2 (- )),
�2 (- ) = [�1

2 (- ), �2
2 (- ), ..., �"2 (- )],

(5)

where � 5 (- ) is the probability that the traffic flow - is discriminated as fake by the discriminator,
and �82 (- ) is the probability that the traffic flow - is discriminated as real in the 8th cluster by
the discriminator. Then, the sum of these probabilities equals one, i.e., � 5 (- ) +

∑"
8=1 �

8
2 (- ) = 1,

representing that each traffic flow is either fake or real in one of the clusters. Notably, there is no
pre-determined ground truth or labels for clusters. The discriminator automatically determines the
clustering results to maximize inter-cluster distances while minimizing intra-cluster distances, as
detailed in the loss function (7).
To capture the temporal correlations in the real and generated traffic, we adopt TCN [40] with

daily and weekly kernels. TCN is a one-dimension convolutional network with casual and dilated
convolutions between the input layer, hidden layers, and output layer, capturing features from
each layer via convolutions and passing the feature to the next layer. In each layer, the feature
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is calculated based on values within the convolutional kernel size. Therefore, TCNs with daily
and weekly kernels help to capture the temporal correlations in previous days and weeks across
multiple layers. As presented by Figure 5, the real traffic flow - and generated traffic flow -̂ are
input to the TCNs, and probabilities are given through a linear layer and a softmax layer. Similar to
the pattern generator and switch mode generator, the condition vector is optional according to the
auxiliary information of users, as presented by the dashed yellow box and lines in Figure 5.

3.4 Loss Functions
To simultaneously simulate the individual-level and aggregate-level multi-scale traffic, we consider
clustering loss and aggregation loss in addition to the traditional adversarial loss. Moreover, we
regularize generators and the discriminator for more realistic results.

3.4.1 Discrimination Loss. The loss function for discrimination includes: adversarial loss, clus-
tering loss, and regularity term. To discriminate the real and generated traffic flows, the adversarial
loss can be expressed as follows,

;>BB03E4AB0A80;� = E-∼?A
[
log

(
� 5 (- )

) ]
+ E-̂∼�

[
log

(
1 − � 5

(
-̂

))]
, (6)

where - is the real traffic flow, ?A represents the distribution of real data, -̂ is the generated
traffic flow, � represents the generator, � 5 is the probability that the sample is false given by the
discriminator.
The clustering loss urges the inner-cluster distances to be less than the intra-cluster distances,

which can be expressed as follows,

;>BB
2;DBC4A8=6

�
=

"∑
8=1

©­«
∑

�2 (- )=�8

- −$8
ª®¬ − ©­«

∑
�2 (- )≠�8

- −$8
ª®¬
 ,

$8 =
∑

�2 (- )=�8

-/|�8 |,
(7)

where �2 (- ) is the cluster of the real traffic flow - given by the discriminator, �8 is the 8th cluster,
$8 is the center of cluster �8 , and" is the total number of clusters.

A good discriminator should provide as much information as possible for each sample, where
the output � (- ) or � (-̂ ) should be more similar to a one-hot encoding, which requires the weight
of the linear layer in the discriminator be more similar to an orthogonal matrix. Therefore, the
regularity term can be expressed as follows,

;>BB
A46D;0A8C~

�
= AE(� ′F�F, � ), (8)

where �F is the weight of the linear layer in the discriminator, � ′F is the transpose of �F , � is the
identity matrix, and AE means the Absolute Error.

The loss function for discrimination can be expressed as follows,

;>BB� = ;>BB03E4AB0A80;� + V2 ∗ ;>BB2;DBC4A8=6�
+ VA ∗ ;>BBA46D;0A8C~�

, (9)

where V2 and VA are the relative magnitudes of the clustering and regularization coefficients.

3.4.2 Generation Loss. The loss function for generation includes three parts: adversarial loss,
aggregation loss, and continuity loss for the switch mode generators. To fool the discriminator
with generated traffic flows, the adversarial loss can be expressed as follows,

;>BB03E4AB0A80;� = E-̂∼�

[
#∑
8=1

log
(
�82

(
-̂

))]
, (10)
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where �82
(
-̂

)
is the probability that the traffic flow -̂ is discriminated as real in the 8th cluster by

the discriminator.
The aggregated traffic of the generated traffic flows in each cluster should be similar to the

aggregated traffic of the real traffic flows in the same cluster, and the aggregation loss can be
expressed as follows,

;>BB
066A460C8>=

�
=

#∑
8=1

AE(�̂8 , �8 ) =
#∑
8=1

AE
©­«

∑
�2 (-̂ ) =�8

-̂ ,
∑

�2 (- ) =�8

-
ª®¬ , (11)

where �8 is the aggregated traffic of the real traffic flows {- } in cluster�8 , and �̂8 is the aggregated
traffic of the generated traffic flows {-̂ } in cluster �8 .

As most users tend not to switch frequently among different traffic patterns, the generated switch
modes should retain continuity to some extent. Therefore, the continuity loss for the switch mode
generators can be expressed as follows,

;>BBBF8C2ℎ� =


diff((̂)

2 = 




)−1∑

C=1

ˆBC+1 − B̂C







2

, (12)

where (̂ is the generated switch mode, B̂C is the generated one-hot encoding vector representing
the traffic pattern in the Cth time interval, diff means the first-order difference, and ‖·‖2 means the
two norm.

The loss function for generation can be expressed as follows,

;>BB� = ;>BB03E4AB0A80;� + V0 ∗ ;>BB066A460C8>=�
+ VB ∗ ;>BBBF8C2ℎ� , (13)

where V0 and VB are the relative magnitudes of the aggregation and switch continuity coefficients.

3.5 Model Training
We train the generators and discriminator alternately until convergence. In each iteration, we
first input the real traffic flows {- } to the discriminator. Then, according to the discriminated
clusters of the real traffic flows {- }, we generate fake switch modes {(̂} with different switch
mode generators and fake traffic patterns {%̂} with multiple traffic pattern generators. With the
generated switch modes {(̂} and traffic patterns {%̂}, we take element-wise multiplication and
input the generated fake traffic flows {-̂ } to the discriminator. After discriminating all the real
traffic flows and generating the corresponding fake ones, we compute the loss functions to update
the model. We use a mini-batch to improve the training efficiency, and the details are presented in
Algorithm 1.

4 Experiments
We conduct experiments on a real-world user traffic dataset, evaluating MSH-GAN on individual,
aggregate, and application levels.

4.1 Experiment Setting
4.1.1 Dataset. We obtained a user traffic dataset collected by one of the major Internet Service

Providers from Shanghai, a big city in China. The dataset contains nearly two billion network traffic
records of over one million mobile users in Shanghai, collected between April 20th and April 26th,
2016. However, the records of most users are sparse in the time domain, and several users have no
records for days. Thus, we select 6,055 users with dense records in the time domain.
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Algorithm 1 MSH-GAN. Default values : # = 6, " = 6, g = 0.1, U = 0.0001, UB = 0.01, V1 = 0.5,
V2 = 0.9, V2 = 1, VA = 100, V0 = 0.001, VB = 1, =� = 1, � = 1024.

Require:The pattern number # , the cluster number" , the softmax temperature g , Adam hyperparameters U , UB , V1, V2,
the clustering coefficient V2 , the regularity coefficient VA , the aggregation coefficient V0 , the switch continuity coefficient
VB , the number of discriminator iterations per generator iteration =� ,
Initialize: Initial pattern generator parameters q0, initial switch model generator parameters i0, initial discriminator
parameters \0.
1: while q,i, \ has not converged do
2: for 8=1, … , =� do
3: for 9=1, … , � do
4: �\ Training:

Sample real traffic flow - ∼ %A ,
noise / ∼ %I ,

5: for : = 1, … , # do
6: %̂: =�:

q
(/ )

7: end for
8: ; = argmax �\ (- ) , ; = 1, … ,"
9: (̂ =�;i (/ )
10: -̂ = [?̂1, ?̂2, … , ?̂# ]

⊙
(̂

11: !
9

�
← !03E4AB0A80;

�
(�\ (- ), �\ (-̂ ) )

12: end for
13: !� ← 1

�

∑�
9=1 !

9

�
+ V2 !

2;DBC4A8=6

�
({- }, {�\ (- ) } ) +

VA !
A46D;0A8C~

�
(�\ )

14: \ ← Adam (∇\!� , U, V1, V2 )
15: end for
16: �q ,�i Training:
17: for 9=1, … , � do

Sample real traffic flow - ∼ %A ,
noise / ∼ %I

18: for : = 1, … , N do
19: %̂: =�:

q
(/ )

20: end for
21: ; = argmax �\ (- ) , ; = 1, … ,"
22: (̂ =�;i (/ )
23: -̂ = [?̂1, ?̂2, …, ?̂# ]

⊙
(̂

24: !
9

�
← !03E4AB0A80;

�
(�\ (-̂ ) )

25: end for
26: for ; = 1, … ," do
27: �; ← ∑

�\ (- )=;
-

28: �̂; ← ∑
�\ (-̂ )=;

-̂

29: end for
30: !� ← 1

�

∑�
9=1 !

9

�
+ V0

∑"
;=1 !

066A460C8>=

�
(�̂; , �; ) +

VB
∑"
;=1 !

BF8C2ℎ
�

(�i )
31: for : = 1, … , # do
32: q ( ) ← Adam(∇q ( ) !� , U, V1, V2)
33: end for
34: for ; = 1, … ," do
35: i (; ) ← Adam(∇q (; ) !� , UB , V1, V2)
36: end for
37: end while
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4.1.2 Baselines. We compare MSH-GAN with the following three baselines.
Recurrent GAN (RGAN) [41]. RGANmakes use of RNNs in the generator and the discriminator,

which can generate sequences of real-valued data. We use {- } as input to train this model and
generate the synthetic traffic flow set {-̂ }.

Continuous RNN-GAN (C-RNN-GAN) [42]. Similar to RGAN, this model proposes an RNN
architecture trained with adversarial training to model the joint probability of sequences and
generate continuous sequence data. Also, {- } are used to train the model and get the synthetic
data ˆ{- }.

Time-series GAN (TimeGAN) [43]. This model introduces an additional step-wise supervised
loss using the original data as supervision to learn the temporal dynamics of the original data and
use an embedding network to get a reversible mapping between features and latent representations.
We use {- } as the original data and get the synthetic data ˆ{- }.

DoppelGANger [30].This model leverages a conditional RNN-based GAN for generating traffic
forms data, combining the data attributes and feature series with variable length. We use {- } as
the original data to train this model and get the synthetic data ˆ{- }.

4.1.3 Metrics. We compare MSH-GAN with the baseline models via the following five metrics:
Traffic Volume. We compare the distribution of traffic volume of the generated user traffic with

the real distribution via Jensen–Shannon Divergence (JSD) [44]. JSD is a commonly used metric
to evaluate the similarity between two distributions, which can be expressed as follows,

JSD(P ˆ{- }, P{- }) =

√
KL(P ˆ{- } ‖P{-̃ }) + KL(P{-̃ } ‖P{- })

2
, (14)

where P{- } represents the distribution of the real samples {- }, P ˆ{- } is the distribution of the
generated samples ˆ{- }, P{-̃ } represents the point-wise mean of P{- } and P ˆ{- } , and KL is the
Kullback–Leibler divergence. A lower JSD means a closer distribution to the real data, which
indicates a better generation model.

First-Order Difference. To evaluate the dynamics of the user traffic, we compute its first-order dif-
ference as - ′ = {GC+1 − GC })−1C=1 . Then we use JSD to evaluate the similarity between the distribution
of the first-order difference of the real and generated traffic, which is denoted as JSD(P ˆ{- ′ }, P{- ′ }).

Daily Frequency Component. We compute the frequency spectrum of the aggregated user traffic
flow � as � = ��) (�). Next, the proportion of daily frequency component can be calculated as
�� = ‖� [3] ‖2 /‖� ‖2, where ‖� ‖2 is the two norm of the frequency spectrum, and ‖� [3] ‖2 is the
two norm of daily frequency component, and 3 is the total number of days. Then, we use AE to
evaluate the similarity between the daily frequency proportion of the real and generated aggregated
traffic, which can be expressed as AE(�� , ˆ�� ).
Daily Periodic Error (DPE). To evaluate the daily periodicity in the aggregated traffic, we

compute the DPE as the pairwise distance of the aggregated traffic on each day as follows,

DPE(�) =
3∑
8=1

3∑
9=1

|�(8) −�( 9) |,

�(8) = {0C }8 ·) /3C=(8−1) ·) /3+1 ,

(15)

where �(8) is the aggregated traffic in the 8th days, and 3 is the total number of days. Then, we use
AE to evaluate the similarity between the DPE of the real and generated aggregated traffic, which
can be expressed as AE(DPE(�),DPE(�̂)).
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Table 2. Evaluation Results of User Traffic Generated by Different Models, Where Lower Results
are Better

Metrics Traffic Volume First-order
Difference

Daily Frequency
Component

Daily Periodic
Error Traffic Prediction

Δ

JSD Δ JSD Δ AE Δ AE Δ MSE Δ

RGAN 0.1625 13.64% 0.1150 100.18% 0.0817 125.11% 0.1175 793.27% 0.2792 156.62% 237.76%
C-RNN-GAN 0.6422 349.09% 0.1001 74.09% 0.0830 128.74% 0.0141 7.21% 0.1462 34.38% 118.70%
TimeGAN 0.4870 240.56% 0.0918 59.65% 0.0724 99.37% 0.1181 798.32% 0.1338 22.98% 244.18%
DoppelGANger 0.4087 185.80% 0.0835 45.22% 0.0716 97.25% 0.0916 593.94% 0.1278 17.46% 187.93%
MSH-GAN 0.1430 0 0.0575 0 0.0363 0 0.0132 0 0.1088 0 0

Bold denotes the best(lowest) results and italics denotes the second-best results.

Traffic Prediction. To evaluate the usability of MSH-GAN, we conduct a traffic prediction ex-
periment on the real and generated user traffic data, where we use Mean Square Error (MSE)
between the predicted traffic and real traffic for evaluation.

4.1.4 Parameter Setting. We compute the user traffic with intervals of half an hour, hence 3 = 6
and ) = 288. Then, we set the number of patterns to 6 and have 6 pattern generators. Meanwhile,
we set the number of clusters to 6 according to the unsupervised clustering results of the real data,
and we have 6 switch mode generators. More details can be found in Algorithm 1.

4.2 Individual-Level Evaluation
On the individual level, we mainly focus on the distribution of mobile users’ traffic flows and switch
modes. Notably, as several individual users’ traffic flows do not show daily periodicity, we consider
the daily periodicity on the aggregate level instead of the individual level.

Table 2 presents the JSD between the real and generated distributions for the traffic volume. MSH-
GAN outperforms the baseline models by over 13.64%, demonstrating that MSH-GAN is superior in
simulating the volume distribution of user traffic flows. Regarding short-term temporal dynamics,
we compare the distributions of the first-order difference between the real and generated traffic
flows. MSH-GAN outperforms the baseline models by at least 45.22%, indicating that MSH-GAN also
excels in simulating the short-term temporal dynamics in user traffic flows. While DopplGANger is
a competitive method among the baselines, our proposed model surpasses DoppelGANger because
DoppelGANger adopts a simple RNN-based structure that cannot effectively capture the various
usage patterns exhibited by mobile users.

To present the performance visually, Figure 6(a) provides examples of the individual user traffic
flows generated by MSH-GAN and TimeGAN in blue and yellow curves, respectively. The blue
curve in Figure 6(a) shows pattern switch behavior, where the traffic flows in the previous four
days and the latter two days have different patterns, indicating that MSH-GAN can simulate the
switch modes in user traffic flows.

4.3 Aggregate-Level Evaluation
On the aggregate level, we focus on the daily periodicity of the aggregated traffic and consider
the aggregate pattern switch probabilities. Table 2 presents the AE of the proportion of the daily
frequency component and the DPE, where MSH-GAN outperforms the baseline models by over
97.25% and 7.21%, respectively. Moreover, Figure 6(b) provides the aggregated generated traffic
flows generated by MSH-GAN and TimeGAN in blue and yellow curves, respectively, where daily
periodicity can be observed in the MSH-GAN generated traffic. The results demonstrate that MSH-
GAN performs better in simulating the daily periodicity of the aggregated user traffic flows. We
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Fig. 6. Examples of the user traffic flows generated by MSH-GAN and TimeGAN.

Fig. 7. Weights of the SL in each switch mode generator.
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Table 3. Evaluation Results of User Traffic Generated by Variants of MSH-GAN, where Lower Results
are Better

Metrics Traffic Volume First-order
Difference

Daily Frequency
Component

Daily Periodic
Error Traffic Prediction

Δ

JSD Δ JSD Δ AE Δ AE Δ MSE Δ

with LSTM 0.2414 68.81% 0.0728 26.61% 0.0476 31.13% 0.0343 159.85% 0.1148 5.51% 58.38%
w/o switch model 0.3713 159.65% 0.0606 5.39% 0.0416 14.60% 0.0362 174.24% 0.2052 88.60% 88.50%
w/o ;>BB2;DBC4A8=6

�
and ;>BB066A460C8>=

�
0.4216 194.83% 0.1017 76.87% 0.0544 49.86% 0.0313 137.12% 0.1466 34.74% 98.68%

MSH-GAN 0.1430 0 0.0575 0 0.0363 0 0.0132 0 0.1088 0 0

present the weights of the SL in each switch mode generator in Figure 7, where each value, (8, 9)
has a positive correlation with the probability of switching from pattern % 9 to pattern %8 . The
weights show that most users tend to keep the current traffic pattern, while some users are more
likely to switch their traffic mode, which is qualitatively in line with the observation.

4.4 Application-Level Evaluation
In recent years, generated data has been used to enhance the training dataset in downstream
applications. We conduct a traffic prediction experiment on the real and generated user traffic data,
where we predict each user’s traffic flow on the last day via learning behaviors from the traffic
flow in the previous five days. Specifically, we train TCN models on each traffic dataset generated
by MSH-GAN and the baseline models. Table 2 presents the MSE between the traffic predicted by
TCNs trained on different datasets and the real traffic, where MSH-GAN outperforms the baselines
by at least 17.46%. The results demonstrate that MSH-GAN can provide training data enhancement
for downstream applications. Overall, MSH-GAN outperforms the baseline models by more than
118.7%, demonstrating the individual-level and aggregate-level fidelity and usability of MSH-GAN.

4.5 Ablation Study
To demonstrate the effectiveness of the designs we adopted, we compare the performance of
MSH-GAN with the following three variants:

with LSTM. This variant uses unidirectional LSTM to capture temporal dependencies in the user
network traffic instead of using bidirectional LSTM.
w/o Switch Model. In this variant, the switch mode is removed. This is equivalent to using the

pattern generator output as the final output.
w/o ;>BB2;DBC4A8=6

�
and ;>BB

066A460C8>=

�
. This variant removes the discriminator’s clustering loss and

the generator’s aggregation loss. It only retains the adversarial loss to capture individual-level
behaviors.
The experimental results are presented in Table 3. It can be observed that the LSTM network

performs significantly worse in all metrics, particularly in capturing the daily periodicity of net-
work traffic. This suggests that bidirectional LSTM is more effective in understanding temporal
dependencies. The switch mode explicit mixture modeling and utilizing a switch model to choose
behavior patterns adaptively are necessary. Furthermore, without clustering loss and aggregation
loss, the generation model fails to effectively capture aggregate-level characteristics, resulting in
poor performance in modeling the daily frequency component and the daily periodicity.

We also assess the impact of cluster number settings. Table 4 demonstrates that six is the optimal
number of clusters for the Shanghai dataset we collected. However, we acknowledge that optimal
hyperparameter settings, such as the number of clusters, may vary in different usage scenarios
when applying MSH-GAN. Therefore, the ideal number of clusters may not consistently be six
across various contexts.
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Table 4. Evaluation Results of User Traffic Generated by MSH-GAN Under
Different Settings of the Number of Clusters, Where Lower Results are Better

Number of cluster Traffic Volume First-order
Difference

Daily Frequency
Component

Daily Periodic
Error

2 0.403 0.0790 0.0527 0.0153
4 0.287 0.0683 0.0417 0.0142
6 0.143 0.0575 0.0363 0.0132
8 0.148 0.0606 0.0387 0.0136
10 0.173 0.0648 0.0416 0.0144
12 0.178 0.0656 0.0424 0.0145

5 Related Work
5.1 Network Data Generation
Network data generation is applied to test network equipment, network services, and security
products [45]. Traditional methods rely on statistic models to describe network traffic (e.g., Poisson
model [46]), traffic characteristics (e.g., packet size and packet arrival distributions [47]), and
network protocols (e.g., TCP [48]) in the early stage. However, the representative ability of these
models is too limited to capture the complicated temporal dynamics in real-world traffic.

In recent years, machine learning models have been increasingly applied to network data gener-
ation, focusing on two main aspects. The first aspect involves generating network packet traces,
which include information like IP addresses, port numbers, protocol types, and packet size. For
example, Ring et al. [29] developed three different pre-processing approaches based on Generative
Adversarial Network (GANs) to generate the five-tuple network flows. Dowoo et al. [27] proposed
a GAN-based model named PcapGAN to generate network packets using both cyber-attack data and
normal data. However, it is important to note that these approaches primarily focus on modeling
network data at the IP layer and have different objectives compared to our study. Alternatively,
the second aspect involves generating network traffic with goals similar to our research’s. Most
existing methods focus on generating traffic for a specific region rather than individual users. These
methods use Convolutional Neural Networks (CNNs), treating the problem of regional traffic
generation as an image generation issue. For instance, CartaGenie [49] uses information about a
region’s population density and points of interest as conditional features and leverages CNN to
generate network traffic for that region. Moreover, SpectraGAN [50] considers the periodicity of
traffic patterns and uses a CNN-based conditional GAN to generate spectra of mobile traffic at
all locations of the target region. However, these CNN-based models are specifically designed for
regional traffic generation and cannot serve as models for user traffic generation. Recently, Lin
et al. [30] proposed an RNN-based GAN model named DoppelGANger to generate traffic forms
data combining the data attributes and feature series with variable length. They conducted experi-
ments on several traffic forms datasets, including web traffic time series, geographically distributed
broadband measurements, and compute cluster usage measurements. DoppelGANger demonstrates
state-of-the-art performance in network traffic generation. However, it merely focuses on individual
features and neglects aggregate-level temporal dynamics.

5.2 GANs for Time Series Generation
Recently, GANs have been increasingly used to generate time series data. For instance, Mogren
et al. [42] propose C-RNN-GAN to generate continuous-valued musical time series. They apply RNN
architectures in both generator and discriminator to capture temporal dynamics and take context
information into account for decisions. For medical time series, Esteban et al. [41] propose RGAN
and Recurrent Conditional GAN (RCGAN) based on RNN architectures to generate real-valued
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time series subject to some conditional inputs. For privacy-sensitive personal health time series
data, Hartmann et al. [51] propose Electroencephalographic (EEG)-GAN to generate EEG brain
signals, Golany et al. [52] propose simulator-based GANs for Electrocardiogram generation to
improve classification tasks. Che et al. [53] present a modified GAN to generate Electronic Health
Records data with plausible labels. Generally speaking, a good time series generation model should
preserve temporal dynamics and generate sequences from the original patterns between time series
variables. For this purpose, Yoon et al. [43] propose TimeGAN, which combines the flexibility of
the unsupervised GAN with the control afforded by step-wise supervised loss.

As we generate mobile user traffic in terms of time series, these models provide us with extensive
experience. Moreover, C-RNN-GAN [42], RCGAN [41], and TimeGAN [43] apply to our mobile
user traffic generation problem, therefore, we compare MSH-GAN with them.

6 Conclusions
In this work, we propose MSH-GAN for multi-scale hierarchical user traffic generation, which
generates the traffic patterns with multiple pattern generators and pattern switch modes while
discriminating and clustering the mobile user traffic with a multi-class discriminator. Then, we
design a combined loss function urging MSH-GAN to learn the multi-scale temporal dynamics
on individual and aggregate levels. Extensive results show that MSH-GAN outperforms other
state-of-art baselines by more than 118.7% in terms of key metrics on fidelity and usability while
successfully simulating individual-level and aggregate-level traffic behaviors. For future work,
one promising direction is to address the challenge of modeling mixture distributions in user
behaviors. Richardson et al. [54] have highlighted that traditional GANs struggle to capture the
entire distribution. Therefore, we propose utilizing multiple pattern generators with a switch mode
to model the mixture distribution explicitly. Dilokthanakul et al. [55] has successfully combined
Gaussian mixture distributions and variational autoencoders to generate data. Hence, an interesting
avenue would be exploring the combination of Gaussian mixture distributions and GAN models to
handle the mixture distribution in user behaviors.
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