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Generally speaking, we can easily specify many causal relationships in the prediction tasks of ubiquitous

computing, such as human activity prediction, mobility prediction, and health prediction. However, most

of the existing methods in these fields failed to take advantage of this prior causal knowledge. They typi-

cally make predictions only based on correlations in the data, which hinders the prediction performance in

real-world scenarios, because a distribution shift between training data and testing data generally exists. To

fill in this gap, we proposed a Generative Adversarial Network (GAN)-based Causal Information Learning

prediction framework, which can effectively leverage causal information to improve the prediction perfor-

mance of existing ubiquitous computing deep learning models. Specifically, faced with a unique challenge

that the treatment variable, referring to the intervention that influences the target in a causal relationship, is

generally continuous in ubiquitous computing, the framework employs a representation learning approach

with a GAN-based deep learning model. By projecting all variables except the treatment into a latent space,

it effectively minimizes confounding bias and leverages the learned latent representation for accurate pre-

dictions. In this way, it deals with the continuous treatment challenge, and in the meantime, it can be easily

integrated with existing deep learning models to lift their prediction performance in practical scenarios with

causal information. Extensive experiments on two large-scale real-world datasets demonstrate its superior

performance over multiple state-of-the-art baselines. We also propose an analytical framework together with

extensive experiments to empirically show that our framework achieves better performance gain under two

conditions: when the distribution differences between the training data and the testing data are more signifi-

cant and when the treatment effects are larger. Overall, this work suggests that learning causal information

J. Zeng and G. Zhang contributed equally to this research.

This research has been supported in part by the National Key Research and Development Program of China under Grant

No. 2022YFF0606904 and in part by the National Natural Science Foundation of China under Grants No. U21B2036 and No.

U20B2060.

Authors’ addresses: J. Zeng, G. Zhang, J. Yuan, Y. Li, and D. Jin, Beijing National Research Center for Information Science

and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, 30 Shuangqing Road, Haidian Qu,

Beijing Shi, China; e-mail: liyong07@tsinghua.edu.cn.

Author current address: G. Zhang, TsingRoc, 1 Wangzhuang Rd, Haidian Qu, Beijing Shi, China.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2157-6904/2024/05-ART54

https://doi.org/10.1145/3652610

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 3, Article 54. Publication date: May 2024.

https://orcid.org/0000-0003-4481-413x
https://orcid.org/0000-0003-0592-2285
https://orcid.org/0000-0001-9734-6056
https://orcid.org/0000-0001-5617-1659
https://orcid.org/0000-0003-0419-5514
mailto:permissions@acm.org
https://doi.org/10.1145/3652610


54:2 J. Zeng et al.

is a promising way to improve the prediction performance of ubiquitous computing tasks. We open both our

dataset and code1 and call for more research attention in this area.

CCS Concepts: • Computing methodologies→ Neural networks; Learning latent representations;

Additional Key Words and Phrases: Prediction, predictive modeling, causal information learning, GAN
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1 INTRODUCTION

Predictive modeling refers to the computational predictions or forecasts about future events or
outcomes based on available historical data. With the progress of data collection devices and the
boom of data availability, prediction has been a commonly employed technique to inform decision-
making. Many researchers have devoted themselves to improving the prediction accuracy of these
tasks, because good prediction accuracy is essential for practical applications. However, most of
the existing methods make predictions based on correlations, especially the recently developed
deep learning ones, which hinders the prediction performance in real-world scenarios. The rea-
son is that a distribution shift between training data and testing data generally exists in practice;
thereby the learned correlations between the features and the prediction target can become noise
in application [1].
To address this problem, recent works from the computer vision field attempt to distill causal

relations from data and utilize them to make predictions [37], because causality means that the
data generative process in the training data remains stable in the testing data. In other words, if
we focus on the causal features to make predictions, then the prediction performance in practical
scenarios could be raised. However, causal information is not fully contained in the observational
data [23]. Specifically, there typically does not exist a unique set of causal relationships for given
observational data [9]. Furthermore, even if the causal relationships can be determined, we cannot
accurately calculate the causal effects due to the general existence of confounding biases [10]. Thus,
following these works to infer causal relations from observational data is risky and may in turn
introduce noise into prediction.
Generally speaking, human experts can easily specify many causal relationships in prediction

tasks in practice. Taking humanmobility prediction as an example, according to our common sense,
people go out less when it rains. Therefore, the influence of weather on people’s travel demand
can be regarded as a causal relationship. This characteristic of prediction problems gives us a
unique viewpoint: If we can jointly model this informative prior knowledge and the data, then it is
possible to boost the prediction performance of existing prediction methods in practical scenarios.
Following this lead, this article focuses on building a causal information learning framework to
raise the prediction performance of existing deep learning methods in prediction tasks.
Although existing research has made several attempts that enable deep learning models to use

causal information to give stable predictions [3, 4, 6, 15], they share two drawbacks that are chal-
lenging to solve. First, existing works typically can only incorporate the binary causal information
representing whether one intervention has been applied or not. In other words, the treatment vari-
able in these works, which refers to the intervention in the context of causality, is limited to binary

1https://github.com/tsinghua-fib-lab/GCIL
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form. Since the treatment is binary and has only two possible values, they can define a unique coun-
terfactual and estimate the counterfactual distribution to learn the causal information. However,
in predictive modeling, the intensity of interventions may vary, and therefore treatment variables
need to be continuous to fully capture such intensity information. Thus, existing methods fail to
generalize to this scenario, because we will face infinite counterfactuals if we adopt them. Second,
these methods cannot integrate with existing deep learning models and train in an end-to-end
manner, which is one of the keys to better performance in most applications.
To deal with the challenge, we proposed a Generative Adversarial Network (GAN)-based

Causal Information Learning (GCIL) prediction framework, which can effectively leverage
given causal relationships to improve the prediction performance of an existing deep learning
model in predictive modeling. The main idea is to project all variables except the treatment into a
latent spacewith aminimized confounding bias and use the latent representation and the treatment
variable to make predictions. In this way, we avoid the problem of defining infinite counterfactuals.
Specifically, we first distinguish the treatment variable from other covariates to avoid the causal
information getting lost in the high dimensional latent representation space. Then, to learn causal
information to facilitate the prediction performance, we propose to use a generative adversarial
network to disentangle the treatment variable from confounders. Finally, we use the disentangled
representation together with the treatment to make predictions. The proposed framework can be
seamlessly integrated with existing deep learning prediction models and trained end-to-end. We
also demonstrate that this framework can easily be extended tomultiple treatments by an ensemble
method that stacks different models built on a single treatment.
To examine the effectiveness of our proposed method, we conducted extensive experiments

on two of the representative prediction tasks, including human activity prediction and travel de-
mand prediction. Experiments on two large-scale real-world datasets on different prediction tasks
demonstrate that applying our framework to existing deep learning models can generally improve
prediction performance. Further, we propose an analytical framework and conduct extensive ex-
periments on several semi-synthetic datasets to examine the boundary of the framework’s effec-
tiveness. The results show that our framework performs better under two conditions: when the
distribution differences between the training and testing data are more significant or when the
treatment effects are larger.
To sum up, our contributions are as follows:

— To the best of our knowledge, we are the first to propose the causal information learning
problem in predictive modeling tasks, and we demonstrate that learning causal information
is a promising way to improve the prediction performance of existing predictive modeling
models in practical scenarios.

—We propose an effective and generalizable causal information learning framework, GCIL,
which can leverage causal information to boost the prediction performance of existing deep
learning methods.

—We conduct extensive experiments on two large-scale real-world datasets on different predic-
tive modeling tasks and demonstrate the effectiveness of our framework. We further present
an in-depth analysis to empirically examinewhen it performs better, which provides insights
into better model designs.

2 PRELIMINARIES

2.1 Problem Definition

Our goal is to design a causal information learning framework for the general predictive modeling
tasks. Specifically, we denote all the input variables asX and the prediction target asY , which can

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 3, Article 54. Publication date: May 2024.
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Fig. 1. Comparison between the traditional deep learning prediction framework and our causal information

learning framework.

either be a categorical variable or a numeric variable. Our problem can be defined as using X to
predictY with some given prior causal information ξ . In this article, ξ refers to causal relationships
given by expert knowledge or common sense, such as the causal relationship between weather and
people’s mobility. The problem can be formulated as follows:

Y = F (X , ξ ), (1)

where X ∈ Rn×N . For regression tasks, Y ∈ R1×N , and for classification tasks, Y ∈ {c1, c2, . . . , ck }
where ci is the ith category. n denotes the dimension of inputs and N denotes the number of
instances.
To facilitate methodology modeling, we represent causal information ξ in a mathematical form.

We borrow themathematical representationmethod of traditional causal inference fields, denoting
the intervention that influences the outcome in the causal relationship as the treatment variable
T and all other input variables in X as confounding variables Xc .

3 METHODOLOGY

3.1 Unified Causal Information Learning Pipeline

As shown in Figure 1(a), traditional deep learning prediction methods in predictive modeling usu-
ally adopt an end-to-end framework where all the inputs are fed into a deep learning model to
predict the target [17, 35]. Without a specific design, these methods cannot effectively learn causal
information from the observational data because of three reasons. First, causal information is not
fully contained in the observational data [23]. For a set of observational data, there are usually
many possible combinations of causal relationships that could hold to be true, and thus the model
is most likely to make predictions relying on some non-causal correlations. Second, the confound-
ing bias, a systematic distortion in the measure of causal effects, generally exists. Therefore, when
the model wants to learn causal effects, it could be misled by another factor that affects both the
treatment and the prediction targets. Third, existing deep learning methods usually map the input
variables into high-dimensional spaces, where the causal signals could easily get lost.

This work aims at utilizing causal information to improve the prediction performance of the
above existing predictive modeling models, and thus we first design a unified causal information
learning framework that is highly compatible with the traditional deep learning framework, as
shown in Figure 1(b). It adds two steps into the traditional prediction pipeline. First, we introduce
a causal priori to the model to reformulate the problem, and we denote the causes as the treatment
variables T , and all other input variables in X as confounding variables Xc . In this way, we can

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 3, Article 54. Publication date: May 2024.



Empowering Predictive Modeling by GAN-based Causal Information Learning 54:5

reformulate our problem as follows:

Y = F (Xc ,T ), (2)

where Xc ∈ R(n−nt )×N , T ∈ Rnt×N , and nt denotes the dimension of treatment variables. In this
article, we first show that our proposed framework can handle one-dimensional treatment vari-
ables, and then demonstrate how it can easily extend to multi-dimensional treatment variables in
Section 3.4. Note that the causal priori specifically refers to the causal relationships given by ex-
pert knowledge or our common sense in this article, and such a causal relationship is easy to find
in predictive modeling problems. For instance, in terms of human travel demand prediction, tem-
perature, rainfall, and other environmental causes can change one’s traveling plan, and thereby
temperature, rainfall, and other environmental causes can be regarded as treatments. By distin-
guishing the treatment variable from other covariates, we avoid the causal information getting
lost in the high dimensional latent representation space.
In the second step, we feed the treatments and the confounding variables into a GAN-based

causal information learning model, GCIL, to learn causal information from the data to improve
the prediction performance. The output of this causal information learning model is an embedding
that contains causal information that could be easily used by a deep learning model.

3.2 GAN-based Causal Information Learning

To learn causal information in predictive modeling tasks, we are facing a unique challenge
that the treatments are typically continuous variables. Specifically, existing works that attempt
to use causal information to give more accurate predictions typically focus on binary treat-
ments [3, 4, 6, 15], such as whether it rains, and they can define counterfactuals and convert the
causal information into constraints on factual and counterfactuals accordingly. However, in prac-
tical scenarios, such a binary model is oversimplified, which can introduce significant noise. For
instance, the travel demand is affected by precipitation. A drizzling has little influence, while a
thunderstorm may cause many people to change people’s travel plans. Modeling the continuity of
the treatment variable is keenly important for improving the prediction performance of predictive
modeling tasks, and thus we cannot walk the usual way of defining counterfactuals, because there
will be infinite counterfactuals otherwise.

Recentwork from the causal inference literature inspired us to propose our GAN-based causal in-
formation learning model that can learn causal information for continuous treatments. Although
the goal of causal inference is essentially different from ours, the methods of the two tasks can
be related, because they both need the model to comprehend causal information. Specifically, re-
searchers from the causal inference literature try to learn causal effects by learning a causal rep-
resentation in a latent space that balances between the confounding variables’ distribution of the
treatment group and the control group [14, 28]. Although the treatment group and the control
group can only be defined when the treatment is binary, this intuition is valuable for our case.
Following this lead, we propose to map all variables except the treatment into a latent space

with a minimized confounding bias and use the latent representation together with the treatment
to make predictions, and we designed a GAN-based causal information learning model, GCIL, to
achieve this goal. We present its architecture in Figure 2. Since confounding biases originate from
the existence of covariates being the cause of both the treatment and the prediction targets, if we
can map the confounding variables into a space where the treatment cannot be predicted from
the latent space representation, then the confounding biases are minimized. Put differently, the
treatments and the confounding variables are disentangled in the latent space. Specifically, we
use a generative adversarial network to disentangle treatment from confounders. The goal of the
discriminator D is to use the representation output X ′ by the generator to predict the treatments

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 3, Article 54. Publication date: May 2024.
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Fig. 2. Architecture of the GCIL framework.

as accurately as possible, while the goal of the generator G is to generate a representation of the
confounding variables so that the discriminator cannot use it to predict the treatment. After we
obtain the disentangled representationX ′, we concatenate it with the treatment variables and feed
them into the deep learning model to make predictions.
In our implementation, we adopt a two-layerMultiple-layer Perceptron (MLP) as the gener-

ator G, which is formulated as follows:

X ′ = G(Xc ) = σ
(
W 1

д σ
(
W 0

дXc + b
0

д

)
+ b1д

)
, (3)

whereW 0

д ∈ Rnд0×(n−1),W 1

д ∈ Rnд×nд0 , b0д ∈ Rnд0 , and b1д ∈ Rnд . n represents the dimension of

the initial input X , nд represents the dimension of X ′, and σ (·) denotes a non-linear activation
function. Without specification, we use Rectified Linear Unit (ReLU) in this article. For the
discriminator D, we also adopt a two-layer MLP and to predictT the formulation of the prediction
D(X ′) is as follows:

D(X ′) =W 1

d σ
(
W 0

dX
′ + b0d

)
+ b1d , (4)

whereW 0

d
∈ Rnd×nд ,W 1

d
∈ R1×nd , b0

d
∈ Rnd and b1

d
∈ R1.

3.3 Prediction and Training

For the prediction phase, X ′ is concatenated with T together and inputted into the deep learning
model P to predict our targetY . The prediction loss is denoted as LY . IfY is a numeric value, then
we use the mean absolute error as the prediction loss, which can be formulated as follows:

LY (P(X
′,T ),Y ) =

1

N

N∑
i=1

|P(X ′,T )i −Y i |, (5)

where N is the number of instances. If Y is a binary value, then we adopt the cross entropy loss as
the prediction loss, which is formulated as follows:

LY (P(X ′,T ),Y ) = 1
N

∑N
i=1(Y

i logP(X ′,T )i + (1 −Y i )log(1 − P(X ′,T )i )). (6)

We denote the prediction loss by discriminator D to predict T from Xc as LD . Since our treat-
ment variable is a continuous numeric variable, we use the mean absolute error as the prediction

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 3, Article 54. Publication date: May 2024.
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Fig. 3. Our proposed framework when generalized to multiple treatments.

loss, which can be formulated as follows:

LD (D(X ′),T ) = 1

N

N∑
i=1

|D(X ′)i −T i |. (7)

The goal of the generator G is to maximize LD and, in the meantime, minimize the prediction
error LY , which can be formulated as follows:

min
G,P

(LY − β × LD ), (8)

where β is a hyper-parameter to balance the two losses. The goal of the discriminator D is to
minimize LD so that it can predict the treatment as accurately as possible, which is formulated as
follows:

min
D

LD . (9)

During the adversarial training, we alternate the training of the generator network and the
discriminator network after each five iterations.

3.4 Multi-treatment Generalization

Now that we have shown our proposed framework GCIL can leverage one piece of causal informa-
tion to enhance prediction performance, we can easily extend our framework to deal with more
prior causal information, i.e., multi-treatment scenarios, by ensemble learning. The design is pre-
sented in Figure 3. Note that this design is only a showcase of the framework’s flexibility. More
complex methods, such as an attention mechanism, can be used to further improve performance.
We set each prediction head to leverage one piece of prior causal information and ensemble

their prediction outcomes to make final predictions. Since each prediction head can leverage its
corresponding causal information, combining these prediction heads can help us grasp multiple
pieces of causal information, therefore achieving the best performance.
We reformulate our multi-treatment generalization as follows. For the kth prediction head, we

formulate the representation X ′
k
of confounding variables Xck as

X ′
k = Gk (Xck ), (10)

ACM Trans. Intell. Syst. Technol., Vol. 15, No. 3, Article 54. Publication date: May 2024.
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Table 1. Basic Statistics of Our Three Datasets

Statistics Beidian Sharebike IHDP

Number of instances 20,611 7,260 747
Number of input variables 13 12 26
Prediction type classification regression regression
Dataset type real-world real-world semi-synthesized

whereGk denotes the generator in the GCIL framework for the kth prediction head. Then the deep
learning model Pk in this prediction head makes a prediction based on the representation X ′

k
and

the treatment variableTk , which is formulated as follows:

Yk = Pk (X
′
k ,Tk ), (11)

where Pk (X
′
k
,Tk ) is the prediction of our target by deep learning model Pk .

After training every prediction head, we ensemble the prediction results {Yk ,k = 1, 2, . . . ,K}

to make the final prediction Y . We formulate this process as follows:

Y = E(Y1,Y2, . . . ,Yk ), (12)

where E denotes the ensemble function. For simplicity, we adopt weighted sum as the ensemble
function and the weights are hyper-parameters.

4 EVALUATION

To comprehensively evaluate our proposed framework, we take three steps. Specifically, we first
use two real-world datasets on the most common predictive modeling tasks to examine the frame-
work’s performance. Second, we propose an analytical framework and conduct extensive experi-
ments on several semi-synthetic datasets to investigate when our framework works better. Finally,
we examine the performance of our framework when generalizing to the multi-treatment scenario.
In this section, we first introduce our experimental setups, including the datasets, baseline meth-
ods, and evaluation protocols. Then, we elaborate on the experiment results.

4.1 Experiment Setups

4.1.1 Dataset. To test our framework, we adopt two large-scale real-world datasets of typical
prediction scenarios for comprehensive evaluation. We also introduce a semi-synthetic dataset
from causal inference benchmarks for further theoretical analysis. The basic statistics of all three
datasets are shown in Table 1, and the details of the datasets are as follows:
Sharebike2: An open dataset in travel scenario predicting Seoul bike sharing demand. Its co-

variates include weather information (Temperature, Humidity, Windspeed, Visibility, Dewpoint,
Solar radiation, Snowfall, Rainfall), and date information (whether being a holiday, the hour). With
all these input variables, we predict the number of public bikes rented at each hour in the Seoul
Bike-sharing System. We regard hour as the treatment variable, since peoples’ demand to travel is
affected by time.
Beidian (Classification): For the human activity prediction scenario, we collect a dataset from

the leading social e-commerce platform Beidian in China. On this platform, users can share items
with their friends and get rewarded if their friends place an order for the items. The input vari-
ables cover users’ demographic data (age, gender, city development level, account age), social net-
work data (degree, #already churned neighbours, ...), and behavioral data (total purchase value,

2https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand (Regression)
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#purchase, ...). We want to predict whether a user will churn based on these input variables. Con-
sidering the role of social connection in users’ purchases on this platform, the churn of friends
impacts users and may also lead them to churn. Therefore, we regard the number of friends that
have churned for every user as the treatment in the prediction.
IHDP3: A semi-synthetic dataset from the famous Infant Health and Development Program,

which clinically evaluates the efficacy of early intervention in reducing the developmental and
health problems of low birth weight premature infants. The original IHDP dataset from the Infant
Health and Development Program contains binary 747 observations on 26 covariates, including
other features of the infants and their families and evaluation of the pregnancy. Since the initial
treatment variable, which is whether the infant receives home visits and attendance at a special
child development center, is binary, we synthesize continuous treatment together with outcome
referring to Reference [24]. The full equations are

t̂ |x =2
x1

1 + |x2 |
+ 2

max(x3,x5,x6)

0.2 +min(x3,x5,x6)
+ 2tanh

(
5

∑
i ∈Sdis,1(xi−c1)

|Sdis,1 |

)
− 4 + N (0, 0.25), (13)

t =
1

1 + e−t̂
, (14)

y |x , t =
sin(3πt)

1.2 − t
× tanh

[
5

∑
i ∈Sdis,2(xi−c2)

|Sdis,2 |

]
+

exp(0.2(x1 − x6))

0.5 +min(x2,x3,x5)
+ N (0, 0.25), (15)

where x denotes the input variables, t denotes the continuous treatment, and y denotes the
prediction target. Sdis,1={x4,x7,x8,x9,x10,x11,x13,x14}, Sdis,2={x16,x17,x18,x19,x20,x22,x24,x25}, c1 =

mean(

∑
i∈Sdis,1

xi

|Sdis,1 |
), and c2 = mean(

∑
i∈Sdis,2

xi

|Sdis,2 |
). Here, mean(·) represents calculating the average.

4.1.2 Baselines. To evaluate the performance of our model, we compare our framework with
eight prediction methods from two groups. One group contains some well-established deep learn-
ing models that are generally used across different predictive modeling tasks. We set out to ex-
amine whether there are performance increases after applying our proposed framework to these
baselines. The other group contains some state-of-the-art models that utilize causal information
for prediction.
Well-established Non-causal Deep Learning Models:

—MLP [8]: A classical neural network that is composed of multiple layers of perceptrons with
threshold activation. In our experiment, we adopt a three-layer MLP. For regression tasks, all
threshold activation adopts ReLU activation. For classification tasks, the threshold activation
on the last layer uses Sigmoid activation.

— ResMLP [32]: It is a deep residual neural network for the regression/classification of non-
linear functions. It typically skips connections, or shortcuts to jump over some layers. Each
layer is a fully connected layer. For a fair comparison, our ResMLP network consists of three
layers. To fit in the regression/classification task, the threshold activation on the last layer
is set as ReLU/Sigmoid.

— DenseMLP [12]: It is an adaption of the well-established Densely Connected Convo-

lutional Network (DenseNet), which was originally designed for image processing
to non-image prediction. The novel DenseMLP model replaced the original convolution
and pooling layers with fully connected layers. The original concatenation shortcuts are
maintained to reuse the feature. We also set the regression/classification network to be of

3https://www.icpsr.umich.edu/web/HMCA/studies/9795
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three layers. The threshold activation on the last layer can be ReLU or Sigmoid depending
on the prediction type.

To notice, these general predictive baselines we are comparing with are also widely used and are
state-of-the-art methods in the specified domains of our evaluation. In the domain of churn predic-
tion, MLP has been widely used to capture the correlations between different attributes and users’
intention of churn [11, 31]. In the domain of sharebike demand modeling, Zhang et al. [39] adopt
the multi-layer perceptron to forecast the bicycle rental demand and so on. Therefore, the superior
performance of our framework over these baselines validates the applicability and contribution of
our model to these specific fields.
Causal Prediction Models: There are several existing methods that incorporate causal learn-

ing into prediction. The former three models are originally designed to predict the causal effect
of a given treatment variable. We adapt these frameworks to predict a target given a causal rela-
tionship between the treatment variable and the target. The latter two models attempt to discard
the spurious correlations among inputs and learn the stable structure underlying the dataset to
improve prediction stability.

— Tarnet [28]: This network splits the continuous treatment variable into several intervals and
trains a deep learning prediction model for every interval to predict causal effects, respec-
tively. For each deep learning prediction model, the inputs are the confounding variables of
the instances whose treatment variable lies in this treatment interval. To adapt this model
to our task, we train every deep learning model to predict a target. For a fair comparison,
we set every deep learning prediction model to be of three layers.

— DRNet [27]: This network also discretizes the treatment and trains a prediction head for
every treatment interval. Not only the confounding variables but the treatment variable are
inputted together into the corresponding prediction head for prediction. For adaptation, we
also make every deep learning model predict a target. For a fair comparison, we set every
prediction head as a deep learning model of three layers.

— VCNet [24]: Instead of building multiple treatment heads, this network adopts a varying co-
efficient neural network to predict the causal effect. The varying coefficients are formulated
by the continuous treatment variable. For adaption, we also set the neural network to predict
a target. For a fair comparison, we use a truncated polynomial basis with degree 2 so that
the number of parameters of VCNet is equal to that of Tarnet and DRNet.

— SRDO [30]: Considering that the collinearity among input variables will lead to instability
of prediction results, the authors proposed a sample reweighted decorrelation operator to
pre-calculate the sample weights, which are then added to the training.

— StableNet [37] This method attempts to learn the sample weights and train the prediction
model simultaneously by iteratively optimizing the decorrelation loss and training loss.

4.2 Evaluation Metrics

In the evaluation, we perform five-fold cross-validation on our framework. For the performance
evaluation, since there are two forms of prediction: classification and regression, we design two
sets of evaluation protocols, respectively.
For classification evaluation:We adopt F1-score and Area Under the Receiver Operating

Characteristic Curve (AUC) as metrics, which are commonly adopted in classification problems.
F1-score: It combines two important metrics, precision and recall, into a single metric by taking

their harmonic mean:

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
. (16)
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AUC: This is a metric to calculate the possibility that the classifier ranks a randomly chosen
positive instance higher than a randomly chosen negative one, which can be expressed as follows:

AUC =

∑
i ∈posit iveclass ranki −

M (M+1)
2

M × N
, (17)

where ranki denotes the rank of instance i in the prediction,M denotes the total number of positive
instances and N denotes the total number of negative instances.

For regression evaluation: We adopt MAE and sMAPE as evaluation metrics. The former
measures the absolute error and the latter measures the relative error.
MAE: Mean absolute error, which can be formulated as follows:

MAE =
1

N

N∑
i=1

|ŷi − yi |, (18)

where N denotes the total number of predicted instances, ŷi denotes the prediction of instance i
and yi denotes the true value of instance i .
sMAPE: symmetric Mean Absolute Percentage Error, which can be expressed as follows:

sMAPE =
1

N

N∑
i=1

|ŷi − yi |

(|ŷi | + |yi |)/2
, (19)

where N denotes the total number of predicted instances, ŷi denotes the prediction of instance i
and yi denotes the true value of instance i .

4.3 Parameter Settings and Implementation Details

During the training process of our proposed framework, we iteratively train the generator G and
discriminator D. Every five epochs’ training of the generator G and deep learning model P is
followed by five epochs’ training of the discriminator D. In our experiment, without specification,
we use the ReLU function as the activation function. We use the Adam Optimizer [16] for the
gradient-based model optimization in a mini-batch mode, and we perform a grid search on the
learning rates, batch size, the trade-off weight β to find the optimal hyper-parameters. Specifically,
we search the learning rates ∈ [1e − 5, 5e − 5, 1e − 4, 5e − 4, 1e − 3, 5e − 3, 1e − 2, 5e − 2, 1e − 1],
batch sizes ∈ {32, 64, 128, 256}, and the trade-off weight β ∈ (0, 1). For all baselines, we also tune
their learning rates in the range of [1e − 5, 5e − 5, 1e − 4, 5e − 4, 1e − 3, 5e − 3, 1e − 2, 5e − 2, 1e − 1].
For MLP, ResMLP, and DenseMLP and their GCIL variants, their prediction head consists of three
layers, respectively, for a fair comparison. The dimensions of the hidden layers are set as 32. For
Tarnet and DRnet, we set the block number as 5 to divide the continuous treatment into 5 blocks.
For VCNet, consistent with its setting stated in the article, we use a truncated polynomial basis
with degree 2 and two knots at 1/3, 2/3, so it also has 5 bases. For SRDO, the hyperparameters are
the learning rate and the batch size, which are also tuned in the mentioned range. For StableNet,
apart from the learning rate and the batch size, we also tune the smoothing parameter α , which
balances the long-term and short-term memories during representation update, in the range of 0.2,
0.4, 0.6, 0.8. We use early stopping to obtain the model with the best performance.

4.4 Overall Performance

To examine the effectiveness of our framework, we evaluate three variants with different choices
of deep learningmodels, includingMLP [8], ResMLP [32], and DenseMLP [12]. The performance of
our frameworks and baselines are shown in Table 2, from which we derive three key observations
and several insights.
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Table 2. Performance Evaluation Results on the Beidian and the Sharebike Datasets

Beidian (Classification) Sharebike (Regression)
Models F1-score AUC MAE sMAPE

MLP [8] 0.6599 ± 0.0075 0.6948 ± 0.0034 0.0553 ± 0.0016 0.4544 ± 0.0153
ResMLP [32] 0.6634 ± 0.0066 0.6956 ± 0.0030 0.0441 ± 0.0013 0.3796 ± 0.0220

DenseMLP [12] 0.6563 ± 0.0076 0.6943 ± 0.0047 0.0454 ± 0.0014 0.3830 ± 0.0182

Tarnet [28] 0.5581 ± 0.0039 0.5247 ± 0.0026 0.1221 ± 0.0002 0.7357 ± 0.0005
DRNet [27] 0.5300 ± 0.0461 0.5431 ± 0.0354 0.1167 ± 0.0004 0.6921 ± 0.0013
VCNet [24] 0.5958 ± 0.0326 0.5757 ± 0.0458 0.1196 ± 0.0026 0.7028 ± 0.0234
SRDO [30] 0.6574 ± 0.0076 0.6852 ± 0.0038 0.0569 ± 0.0026 0.5003 ± 0.0233

StableNet [37] 0.6568 ± 0.0095 0.6910 ± 0.0053 0.0594 ± 0.0031 0.4789 ± 0.0146

MLP+GCIL 0.6730 ± 0.0012+ 0.7006 ± 0.0006+ 0.0460 ± 0.0009 0.3980 ± 0.0101
ResMLP+GCIL 0.6726 ± 0.0015+ 0.7009 ± 0.0024+ 0.0417 ± 0.0003+ 0.3516 ± 0.0095+

DenseMLP+GCIL 0.6732 ± 0.0015+ 0.7011 ± 0.0011+ 0.0424 ± 0.0015+ 0.3721 ± 0.0226+

“+” indicates the improvement of GCIL over the best baseline is significant at the level of 0.05 in the Wilcoxon

signed-rank test.

—GCIL’s consistent improvement over various deep learning models. As we can see
from Table 2, applying our GCIL framework to MLP, ResMLP, and DenseMLP all bring sig-
nificant performance gain, which validates the effectiveness of our proposed framework.
Specifically, for the Beidian dataset, the gains are 0.86%, 0.53%, and 1.04%. For the Sharebike
dataset, the performance gains are 20.22%, 5.44%, and 6.61%. All improvements are significant
at the level of 0.05. The consistent performance gains also suggest that learning causal infor-
mation to improve the prediction performance of deep learning models is a promising way.

—GCIL’s superiority over SOTA causal information learning methods. All models
with the GCIL framework outperform state-of-the-art causal information learning methods
across different prediction tasks. Compared with the best baseline method, the performance
gain of the F1-score for the Beidian dataset is 2.40%. TheMAE improvement for the Sharebike
dataset is 26.7%. Specifically, our framework greatly outperforms Tarnet [28] and DRNet [27],
which may originate from the information loss in discretizing the continuous treatment into
several intervals. Although VCNet [24] shows a relatively higher performance, it lacks a
clear deconfoundingmechanism, rendering it susceptible to confounding bias when utilizing
causal information. SRDO [30] and StableNet [37] both employ a reweighting mechanism
to decorrelate covariates from treatment. However, reweighting only achieves partial decor-
relation, whereas mapping covariates into a new representation space enables complete
decorrelation. Thus, we can conclude that our framework leverages causal information
better than existing state-of-the-art methods, thereby exhibiting the greatest performance.

—GCIL’s robustness over different scenarios. The proposed GCIL framework brings per-
formance gain across both regression and classification tasks. Such consistent improvement
demonstrates the robustness of the framework. Specifically, the average performance gain
of the F1-score by applying our framework to the three deep learning models is 1.99% for
the Beidian dataset, while the average performance gain of MAE is 10.76% for the Sharebike
dataset.

4.5 When Does Our Framework Work Better?

As shown in Table 2, although there are consistent improvements by integrating GCIL with deep
learning models for all real-world datasets, the performance gain brought by GCIL varies. Thus,
an important question comes to the fore: when will our framework work, and when does it work
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Fig. 4. General decomposition of a given set of confounding variables.

better? To answer this question, we propose an analytical framework based on a causal graph and
then conduct extensive experiments to provide empirical evidence.

4.5.1 Analytical Framework. In general, the causal relationships among the treatment variable
T , the confounding variablesX , and the prediction targetY can be modeled by the causal graph in
Figure 4, where the confounding variables can be decomposed into four sub-variables, including
Xα ,Xβ ,Xγ , andXδ .Xα is the cause ofT .Xγ is the cause ofY .Xβ is the cause of bothT andY , and
Xδ has no causal relationship with both T or Y . According to this framework, our framework’s
disentangling X and T is equal to removing both the causal arrow pointing from Xα and Xβ to
T . Then, our framework makes predictions focusing on the learned causal information betweenT
and Y . Thus, there are two most important factors that affect the prediction performance of the
proposed framework. One is the scale of the average treatment effect of T on Y . The other is the
distribution shift of the confounding variables between the training set and the testing set, which
is also referred to as the out-of-distribution (OOD) problem [37].

4.5.2 Experiment Results. Following this lead, we synthesize several datasets based on the well-
known IHDP dataset [24], which clinically evaluates the efficacy of early intervention in reducing
the developmental and health problems of low-birth-weight premature infants. By experimenting
on datasets synthesized with different treatment effects and distribution shift extent, we examine
the impact of the two factors on the performance gains of the framework.
First, we examine the correlation between the scale of the average treatment effects and the per-

formance gain by manipulating the generation process of the synthetic IHDP dataset. Specifically,
we derive datasets with different scales of causal effects by adding a coefficientA on the terms that
contain the treatment variable in Equation (20), which can be formulated as follows:

y |x , t =A ×
sin(3πt)

1.2 − t
× tanh

[
5

∑
i ∈Sdis,2(xi−c2)

|Sdis,2 |

]
+

exp(0.2(x1 − x6))

0.5 +min(x2,x3,x5)
+ N (0, 0.25). (20)

By changingA, we change the causal effect of the treatment variableT onY byA times.We examine
the performance gain of our proposed framework on the datasets generated with an A of 0.4, 0.5,
0.75, and 1, and the results are shown in Figure 5(a). As we can see, as A increases, i.e., the causal
effect of the given relationship gets larger, the performance gain by our framework increases as
well. In other words, our framework performs better when the average treatment effect is larger.
This experiment gives an empirical explanation for the results that the performance gain of the
proposed framework differs in different scenarios.
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Fig. 5. Experimental results on when our framework works better.

Second, we examine the influence of the distribution shift of the confounding variables between
the training data and the testing data on the performance gain of our framework. To achieve
this goal, we first define an OOD score D to measure the distribution differences and then derive
datasets with different OOD scores of Xα , Xβ , Xγ , and Xδ , respectively, so that we can obtain a
comprehensive understanding of the framework under OOD conditions. Specifically, given a set
of variables, we define the OOD score as the average KL distance between their distributions in
the training data and the testing data, which can be formulated as follows:

diKL = DKL(xtrain,i ,xtest,i ) =
n∑
i=1

ptrain(xi )loд
ptrain(xi )

ptest (xi )
, (21)

D =
1

N

∑
i ∈X

diKL, (22)

where DKL denotes calculating KL divergence, and N denotes number of variables in X .
To derive datasets with different distribution shift levels, we first simplified the generation pro-

cess of the IHDP dataset to ten confounding variables so that we can easily distinguishXα ,Xβ ,Xγ ,
and Xδ and control the distribution shift of them, respectively. The simplified generation process
ofT and Y are as follows:

t |x =
2x1

1 + x2
+ 2

max(x3,x5)

0.2 +min(x3,x5)
+ 2 × tanh(5x9) + N (0, 0.25), (23)

y |x , t =
sin(3πt)

t
tanh[5(x6 + x10)] + 10 ×

exp(0.2(x1 − x6))

0.5 + 5min(x2,x3,x5)
+ N (0, 0.02), (24)

where Xα = {x9}, Xβ = {x1,x2,x3,x5}, Xγ = {x6,x10}, and Xδ = {x4,x7,x8}, respectively. Then,
we fix the training data and manipulate the testing data by sampling a specific set of variables from
normal distributions that have different mean with that of the training data for Xα , Xβ , Xγ , and
Xδ , respectively. In this way, we get four sets of datasets with different distribution shift levels of
a specific set of confounding variables having other variables controlled.
We test our framework on each set of these datasets and show the results in Figure 5, where we

can draw two key insights. First, our framework brings consistent performance gain in all OOD
scenarios. In other words, our framework is valuable when there exists a distribution shift between
the training data and the testing data, which is a common case in predictive modeling. Second, for
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Table 3. Performance Comparison Between the Ensemble

Model and Two Base Models

Treatment MAE sMAPE

Submodel A Hour 0.0460 0.3980
Submodel B Precipitation 0.0421 0.3669

Ensemble Model Both 0.0415 0.3487

all types of confounding variables, includingXα ,Xβ ,Xγ , andXδ , when the distribution shift level
increases, the performance gain of applying our framework becomes larger, which demonstrates
that our framework can effectively model causal information.
To sum up, our framework achieves better performance gains under two conditions: when the

treatment effects are larger or when the distribution differences between the training data and the
testing data are more significant.

4.6 Multi-treatment Generalization Evaluation

After we present the GCIL framework that deals with a single causal relationship, we demonstrate
that it can be easily extended to multiple treatments by ensembling GCIL models built on different
treatment variables together in this section. The ensemble framework is depicted in Figure 3. With-
out loss of generality, we use the Sharebike dataset to showcase its effectiveness. Specifically, we
adopt weighted sum as the ensemble function and MLP as the deep learning model. We ensemble
two basic models with the hour and the precipitation as the treatment variable and denote them
as Submodel A and Submodel B, respectively. After training both two models, we calculate the
weighted sum of the two outputs as the final prediction results. Specifically, we restrict the sum of
the two weights to equal 1 and iterate the weight of Submodel A from 0.01 to 0.99 with an interval
of 0.01. The best ensemble result, for which the weight for Submodel A is 0.27, can lift the model
performance significantly. Specifically, as listed in Table 3, our ensemble model outperforms the
best base models by 1.43% and 9.78% in terms of MAE and sMAPE, respectively, which suggests
the generalizability of our proposed method. We visualize the performance of the ensemble model
with varying weights in Figure 6. As we can see, the ensemble model with any weight can out-
perform the original Submodel B. A remarkable observation from our investigation reveals that
an approximate majority, approximately 60 percent, of the weights corresponded to the ensem-
ble model demonstrating superior performance. All these findings underscore the efficacy of our
model in leveraging multiple causal information.

5 RELATEDWORK AND DISCUSSION

5.1 Prediction by Correlations

As massive data sources become available, predictive modeling has been a powerful tool for
decision-making informing [2, 22]. The general prediction tasks, which involve mining the pattern
and correlations between attributes and thereby inferring unknown situations, have long been an
important research problem. With the progress of deep learning, MLP [8] has been proposed as a
backbone for predictive modeling. Then Resnet architecture [32] and DenseNet [12] architecture
have been further proposed to prevent gradient vanishing and gradient explosion and thereby
boost the predictive performance. Based on these general prediction models, various prediction
models targeting specific fields are proposed, including human activity prediction [17, 18, 36], mo-
bility prediction [7, 13], health prediction [20, 38], and travel demand prediction [26]. For example,
Krishna et al. [17] proposed an Long Short-term Memory-based deep learning model to predict
human activity given their past behaviors. Kwon et al. [18] predicts the churn of users leveraging
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Fig. 6. Performance results of our Ensemble model with varying weights.

venue-specific features. Jiang et al. [13] designed a region of interest modeling approach to predict
urban human mobility. Lin et al. [20] develop an interpretable machine learning model to predict
individual health conditions with mobility data.
In the aforementioned tasks, existing models typically make predictions based on correlations,

which hinders their performance in practical scenarios. In this article, we suggest that their predic-
tion performance in practical scenarios can be further improved by modeling causal information.
The reason lies in three aspects. First, it is common in predictivemodeling that the training data dis-
tribution deviates from the testing data. In this case, correlation-based models trained on training
data may depend on correlations that do not hold in the testing data and thereby leading to poor
performance. Second, the causal information is not fully contained in the observational data [23].
Thus, guiding the model to integrate causal relationships to make predictions can improve the
model performance by an information gain. Third, without a specific design, existing models can-
not effectively learn causal information from the observational data due to the general existence
of confounding bias.

5.2 Prediction by Causality

5.2.1 Learning Causal Information for Deep LearningModels. In recent studies, researchers have
begun exploring the integration of causal information into deep learning models to enhance their
performance [3, 19, 21, 29, 40]. Existing research in this area can be broadly categorized into two
main approaches. The first category aims to leverage causal relationships to mitigate bias in ob-
served data [3, 40]. The second category focuses on learning causal effects to improve prediction
stability [19, 29, 30, 37]. Our work is closely aligned with the latter one.

Targeted at the field of stable learning [5], Shen et al. [30, 37] addressed the out-of-distribution
hazards of existing predictive methods by adopting covariate balancing strategies in causal infer-
ence to minimize the distribution shifts between different datasets and increase the stability of
prediction. However, these methods fail to utilize explicitly given causal information. Some other
methods learn causal effects by estimating the counterfactual data distribution, and then they use
the estimated causal effects as an additional input of the predictor. For example, Li et al. [19] use a
traditional propensity score matching method to estimate the causal effects and use them as a fea-
ture of the prediction network. However, a significant challenge for these methods to adapt to pre-
dictive modeling scenarios is that they can only handle binary treatment. In predictive modeling,
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treatment variables are generally continuous. Thus, existing methods fail to generalize to this sce-
nario, because we will face infinite counterfactuals if we adopt them. This work proposes a causal
information learning framework that can effectively deal with continuous treatment variables.

5.2.2 Causal Inference with Deep Learning. Causal inference has been a long-standing problem
in research history [25]. Recently, researchers begin to use deep learning methods to facilitate this
task. Although the goal of causal inference is essentially different from our tasks’, the methods
of the two tasks are related. Specifically, causal inference focuses on determining the effects of a
treatment variable on the outcome variable [33], while this work cares more about the prediction
accuracy of the outcome variable. The subtle relationship between the two tasks is that they both
want the model to learn from causal information, and thereby the intuition behind the model
design of the two tasks can be similar.
Overall, there are mainly two types of deep learning methods for causal inference. One is learn-

ing causal representations [14, 28]. The other is counterfactual prediction [34, 41]. However, most
of the existing works are designed for binary treatments and are hard to generalize to continuous
ones. Some recent efforts address this problem by estimating the average dose-response function
rather than the treatment effect. Schwab et al. [27] propose DRNet to discretize the treatment
and train different prediction networks for different treatments. Based on DRNet, Nie et al. [24]
further take the continuity of the dose-response curve into consideration and use a varying
coefficient model to estimate the dose-response curve. In this work, we follow the research line of
causal representation learning and propose a GAN-based causal information learning framework
for continuous treatment to improve the prediction performance of predictive modeling tasks,
which consistently outperforms the above approaches across different prediction tasks.

6 CONCLUSION AND FUTURE WORK

In this article, we propose the GCIL prediction framework that fully incorporates given causal
information into the prediction process of deep learning models and improves their performance.
Our work bridges the gap between the general prediction methods nowadays and their limited
utilization of existing abundant causal information and knowledge. By projecting all variables ex-
cept the treatment into a latent space decorrelated to the treatment, our work is capable of dealing
with causal information, even when the intervention is continuous. In conclusion, the highlight of
our work lies in the full utilization of general causal information to enhance prediction accuracy.
We evaluate our framework on two real-world datasets, which shows its effectiveness and

robustness compared with the state-of-the-art baselines. We further proposed an analytical
framework and conducted extensive experiments to show that our framework can achieve better
performance gains under two conditions: when the distribution differences between the training
data and the testing data are more significant or when the treatment effects are larger. Overall,
this work suggests that learning causal information is a promising way to improve the prediction
performance of predictive modeling tasks. A meaningful future direction is to explore how
to jointly utilize several causal information to improve the prediction performance better. In
addition, it is also valuable to explore how to apply our framework to dynamic scenarios where
temporal causality relationships exist.
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