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ABSTRACT
Monitoring sustainable development goals requires accurate and

timely socioeconomic statistics, while ubiquitous and frequently-

updated urban imagery in web like satellite/street view images has

emerged as an important source for socioeconomic prediction. Es-

pecially, recent studies turn to self-supervised contrastive learning

with manually designed similarity metrics for urban imagery rep-

resentation learning and further socioeconomic prediction, which

however suffers from effectiveness and robustness issues. To ad-

dress such issues, in this paper, we propose a Knowledge-infused

Contrastive Learning (KnowCL) model for urban imagery-based

socioeconomic prediction. Specifically, we firstly introduce knowl-

edge graph (KG) to effectively model the urban knowledge in spa-

tiality, mobility, etc., and then build neural network based encoders

to learn representations of an urban image in associated semantic

and visual spaces, respectively. Finally, we design a cross-modality

based contrastive learning framework with a novel image-KG con-

trastive loss, which maximizes the mutual information between

semantic and visual representations for knowledge infusion. Ex-

tensive experiments of applying the learnt visual representations

for socioeconomic prediction on three datasets demonstrate the

superior performance of KnowCL with over 30% improvements

on 𝑅2
compared with baselines. Especially, our proposed KnowCL

model can apply to both satellite and street imagery with both

effectiveness and transferability achieved, which provides insights

into urban imagery-based socioeconomic prediction.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Computer vision representations; • Applied
computing → Law, social and behavioral sciences.
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1 INTRODUCTION
Driven by the rapid urbanization, more than half of the world

population-4.4 billion inhabitants-live in cities and contribute over

80% of global GDP today [4], which makes cities an increasingly

important role in achieving United Nations Sustainable Develop-

ment Goals (SDGs) on economy, education, environment, health,

etc. [32, 33]. Especially, socioeconomic indicators like population,

educational background and household income are good proxies

for SDG monitoring [11]. The traditional door-to-door surveys for

such statistics however are costly, labor-intensive, time-consuming

and further affected by recent COVID-19 pandemic [33]. In contrast,

the inclusive, ubiquitous and frequently-updated web applications

paves the way for high-quality, economical and timely SDG moni-

toring. Recently, researchers predict socioeconomic indicators with

the enormous amount of web data especially the urban imagery

[6, 25, 43], i.e., the satellite imagery and the street view imagery

provided in web map services like Google Map and web platforms

like Instagram.

Built upon the great success of deep learning in computer vision

[9, 21], most studies adopt convolutional neural networks (CNNs)

to learn visual representations of urban imagery for socioeconomic

prediction. Specifically, earlier studies follow the task-specific su-

pervised learning for visual representations with neighborhood

demographics [1, 11] and country poverty [17, 48] as supervision

signals, which require massive labeled data for training and suffer

from generalization issues [37]. To overcome such issues, recent

studies turn to self-supervised learning with contrastive objectives,

a.k.a, contrastive learning [27], and learn a single representation

vector for one image to generalize across diverse prediction tasks

[2, 44]. Based onmanually designed similarity metrics, these studies

learn visual representations of urban imagery by maximizing the

agreement between similar images in latent space under an image

https://doi.org/10.1145/3543507.3583876
https://doi.org/10.1145/3543507.3583876
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Figure 1: Illustration of infusing various types of knowl-
edge for urban imagery-based socioeconomic prediction, e.g.,
“nearBy”, “flowTransition” and “similarFunction” relational
links describe urban knowledge in spatiality, mobility and
function (POI category distribution), respectively.

view-based contrastive learning framework [50]. For example, a

commonly used metric on spatiality knowledge is from Tobler’s

First Law of Geography [30] that spatially near images should have

similar semantics and thus closer representations [5, 18, 20, 45].

Moreover, a recent study [47] applies the typical contrastive learn-

ing framework, SimCLR [7], for satellite imagery-based socioe-

conomic prediction, assuming that images with similar point of

interest (POI) features should have closer representations
1
. Ow-

ing to the task-agnostic representation learning from unlabeled

data, contrastive learning becomes a promising avenue for urban

imagery-based socioeconomic prediction.

Despite this, existing contrastive learning based methods heavily

rely on manually designed similarity metrics for urban imagery

representation learning, which only capture one or two types of

semantic knowledge in urban environment and thus affect the

practical performance in socioeconomic prediction. According to

recent works of leveraging multi-source urban data for socioe-

conomic prediction [46, 49], there are various types of semantic

knowledge available for urban imagery-based socioeconomic pre-

diction, e.g., the spatiality knowledge of spatial neighborhood, the

mobility knowledge of significant flow transitions and the func-

tion knowledge of similar POI category distributions, as shown

in Figure 1. Thus, how to infuse comprehensive knowledge into

contrastive learning for urban imagery-based socioeconomic pre-

diction becomes an important research problem, which however is

challenging in:

• Effective structure for knowledge identification. Unlike
the well-known domain knowledge like Tobler’s First Law of

Geography, other types of aforementioned knowledge lack ex-

plicit domain definition. Moreover, further knowledge infusion

requires an effective structure to store and represent the knowl-

edge, increasing the difficulty of knowledge identification for

urban imagery-based socioeconomic prediction.

1
Here POI features correspond to POI category distributions of regions identified in

urban imagery.

• Contrastive learning for knowledge infusion. Existing stud-
ies adopt the image view-based contrastive learning framework

where the similarity metric is manually designed with a single

type of knowledge. Therefore, they fail to infuse various types of

knowledge for urban imagery-based socioeconomic prediction.

To address such challenges, in this paper, we propose a Knowledge-

infused Contrastive Learning model for urban imagery-based so-

cioeconomic prediction, termed as KnowCL. Firstly, motivated by

the recent success of the structured knowledge graph (KG) for ur-

ban knowledge modeling [26, 29, 40, 41, 53], we introduce urban

knowledge graph (UrbanKG) to identify comprehensive knowledge

in multi-source urban data. In the UrbanKG, entity nodes character-

ize urban elements like regions, POIs and business centers, while

relation edges describe semantic connections between them, i.e.,

the knowledge in spatiality, mobility and function. Moreover, we

present cross-modality based contrastive learning for knowledge

infusion by exploiting the naturally associated pairing of urban im-

agery and regions in UrbanKG
2
. To be specific, for an urban image,

KnowCL develops a visual encoder to extract its visual representa-

tion, and a semantic encoder to extract KG embedding of its associ-

ated region entity in UrbanKG [42], which are further optimized for

maximum agreement with contrastive loss on image-KG pairs. The

learnt visual representations of urban imagery are further fed into

traditional regression models for diverse socioeconomic prediction

tasks. Therefore, KnowCL firstly leverages UrbanKG for knowledge

identification, then represents comprehensive knowledge with KG

embedding, and combines with cross-modality based contrastive

learning to achieve knowledge infusion for urban imagery-based

socioeconomic prediction. The main contributions of this paper are

summarized as follows:

• To the best of our knowledge, we are the first to investigate

KG for urban imagery-based socioeconomic prediction, which

provides an effective structure to comprehensively identify the

semantic knowledge in spatiality, mobility, function, etc.

• We propose a cross-modality based contrastive learning frame-

work, which infuses semantic knowledge into visual represen-

tations of urban imagery via the novel contrastive objective

between the image and KG modalities. The proposed framework

might shed light on urban imagery representation learning.

• We conduct extensive experiments on three cities of Beijing,

Shanghai and New York across six socioeconomic indicators.

The results on both satellite and street view imagery demon-

strate that our proposed framework achieves significant per-

formance improvement compared with state-of-the-art models.

Further ablation studies and analysis confirm the effectiveness

and transferability of knowledge infusion for urban imagery-

based socioeconomic prediction.

2 RELATEDWORK
As described before, the urban imagery-based socioeconomic predic-

tion studies focus on urban imagery representation learning, which

extracts visual representations for downstream socioeconomic pre-

diction tasks. Based on whether the urban imagery representation

learning process needs supervision signals from downstream tasks,

2
The knowledge graph is identified as another kind of modality data versus urban

imagery data in visual modality.
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related studies can be classified into supervised learning, unsuper-

vised learning and self-supervised learning
3
.

SupervisedUrban ImageryRepresentation Learning for So-
cioeconomic Prediction. We first discuss about the input source

of satellite imagery. With the CNN model pre-trained on ImageNet

[9] and light intensity as supervision signal, both Jean et al. [17] and
Yeh et al. [48] extract satellite imagery representations for assets

prediction in Africa. Similar frameworks are proposed in [15, 35]

for economic indicator prediction. Han et al. [12] train a teacher-

student network with limited labels to predict demographics like

household and income. As for street imagery case, Gerbu et al. [11]
train a CNN model to identify the types and number of cars in

street view imagery, which are further used to estimate socioeco-

nomic indicators like race and education. Lee et al. [23] leverage
semantic segmentation and graph convolution network (GCN) to

predict livelihood indicators of wealth index and BMI. Moreover,

Law et al. [22] extract features from both satellite and street view

imagery to estimate the house prices. However, above studies learn

urban imagery representations supervised by a specific downstream

task, i.e., the learnt representations cannot generalize to various

socioeconomic prediction tasks.

Unsupervised Urban Imagery Representation Learning
for Socioeconomic Prediction. Han et al. [13] adopt clustering
algorithm and partial order graph to distinguish economic develop-

ment of satellite imagery, which are further used to train a scoring

model for urbanization prediction. Suel et al. [38] apply the pre-

trained CNN model to extract street view imagery representations

for inequality measurement in urban environment. Besides, He et
al. [15] extract traditional image features like histogram of oriented

gradients from both satellite and street view imagery to predict

commercial activeness. However, such unsupervised learning meth-

ods only capture shallow features of urban imagery, which lead to

inferior performance.

Self-supervised Urban Imagery Representation Learning
for Socioeconomic Prediction.Motivated by the milestones of

self-supervised learning achieved in computer vision [7, 19, 44],

researchers also leverage self-supervised learning especially con-

trastive learning for urban imagery-based socioeconomic predic-

tion, and focus on similarity metric design to distill expressive

representations of urban imagery. Especially, most studies follow

the Tobler’s First Law of Geography [30] that “everything is related

to everything else, but near things are more related than distant

things”, and design corresponding similarity metrics or loss forms.

For example, Jean et al. [18] employs the triplet loss to minimize

the distance between representations of spatially near satellite im-

ages but maximize the distance between those of spatially distant

pairs, while Wang et al. [45] employs the similar loss for street view

imagery case. Moreover, recent studies [5, 20, 47] mainly adopt

the InfoNCE loss [34] with SimCLR framework [7] to encode such

spatiality knowledge into visual representations. Xi et al. [47] fur-
ther incorporate a POI-based similarity metric such that images

corresponding to similar POI category distributions should have

closer visual representations. Furthermore, Li et al. [25] consider
the spatiality based similarity metrics for both satellite imagery and

3
The self-supervised learning is separated from the unsupervised one, which empha-

sizes using supervision signals generated from data itself.

street imagery. According to the discussion above, most existing

studies adopt the image view-based contrastive learning frame-

work, where a pair of images are compared to capture spatiality

knowledge, failing to infuse various types of knowledge together. In

comparison, our proposed KnowCL model captures comprehensive

knowledge via UrbanKG and achieves effective knowledge infusion

with cross-modality based contrastive learning framework.

3 PRELIMINARIES & PROBLEM STATEMENT
As stated in The sustainable Development Goals Report [33], the
SDGs determine the survival of humanity, facing the current con-

fluence of crises. Especially, various socioeconomic indicators are

characterized for SDG monitoring [8]:

Definition 1 (Socioeconomic Indicator). Socioeconomic indica-

tors measure the status of the region/nation on the socioeconomic

scale, determined by a combination of social and economic fac-

tors such as population, amount and kind of education, household

consumption, crime rate, etc.

Moreover, the urban region becomes an important subject for

socioeconomic indicator investigation, which are defined as:

Definition 2 (Urban Region). A city can be partitioned into a set

of urban regions A, following certain partition criteria like road

network division and administrative division [12, 45].

The urban imagery includes the satellite imagery and the street

view imagery, which are visual appearances of the city from over-

head view and ground-level view, respectively [25, 43]. Figure 1

provides some examples of the urban imagery. Specifically, the satel-

lite images are collected by satellites, which capture the structure of

regions in the city. The street view images are taken by automobiles

or citizens along the street, which capture the internal environment

of regions in the city. Moreover, an urban region usually associates

with one satellite image but multiple street view images taken at

different locations therein, which are defined as:

Definition 3 (Urban Imagery). Given a city, the urban imagery set

is denoted by I = ISI/ISV
with the satellite imagery set ISI

and

the street view imagery set ISV
. For ∀𝑎 ∈ A, its associated satellite

image is denoted by 𝐼SI𝑎 ∈ ISI
, and its associated 𝑛 street view

images are denoted by 𝐼SV𝑎 = {𝐼SV
𝑎,1

,· · ·, 𝐼SV𝑎,𝑛} with 𝐼SV
𝑎,1

,· · ·, 𝐼SV𝑎,𝑛 ∈ ISV
.

The UrbanKG generalizes the commonly used KG concept [16,

42] to urban domain for urban knowledge modeling [26, 29, 40, 53],

which is defined as:

Definition 4 (Urban Knowledge Graph). An UrbanKG is de-

fined as a multi-relational graph G = (E,R, F ), where E, R and

F are the sets of entities, relations and facts, respectively, with

F = {(𝑒ℎ, 𝑟 , 𝑒𝑡 ) |𝑒ℎ, 𝑒𝑡 ∈ E, 𝑟 ∈ R} hold. Especially, the entity set E
includes urban elements like regions, POIs, business centers and

categories, while the relation set R describes their semantic con-

nections on spatiality, mobility, function and business. The set of

region entities in G corresponds to above defined region set A.

Details of the UrbanKG will be presented in detail in Section 4.3.

To capture the semantic knowledge for downstream applications,

recent studies learn to embed entities and relations of a KG into

low-dimensional vector space, a.k.a., KG embeddings [16, 39, 42].

Based on the preliminaries above, we then formally define the

urban imagery-based socioeconomic prediction problem as follows.
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Problem 1 (Urban Imagery-based Socioeconomic Prediction).
Given the region set A with its associated urban imagery set I,
for ∀𝑎 ∈ A, the main goal is to learn the visual representation

𝑰𝑎 and well estimate the socioeconomic indicator 𝑦𝑎 . The ground

truth values of 𝑦𝑎 is assumed to be unknown in urban imagery

representation learning.

4 METHODOLOGY
4.1 Framework Overview
Figure 2 presents the main framework of our proposed KnowCL

model for urban imagery-based socioeconomic prediction problem.

Since we consider the socioeconomic indicators on region level, we

solve the challenges of knowledge identification and knowledge

infusion with focus on regions in the city.

Figure 2: The main framework of KnowCL model, where the
urban imagery input can be either satellite imagery or street
view imagery. The projector heads after encoders are omitted
for simplicity in the illustration.

To identify the comprehensive knowledge in urban environment,

we firstly introduce the recently proposed UrbanKG structure to

store and represent urban knowledge related with regions, which

is then fed into a GCN-based semantic encoder to learn KG embed-

dings for region entities therein. As for satellite/street view images

associated with regions, a CNN-based visual encoder is adopted

for visual representations. Furthermore, we propose cross-modality

based contrastive learning framework to achieve knowledge infu-

sion. Especially, the designed image-KG contrastive loss encourages

one region’s KG embedding and its associated urban imagery rep-

resentation to exhibit high mutual information, through which the

semantic knowledge preserved in KG embedding is successfully

infused into urban imagery representation. Finally, the knowledge-

infused urban imagery representations are leveraged for diverse

socioeconomic prediction tasks.

4.2 Urban Knowledge Identification
As defined in Section 3, we introduce UrbanKG to identify the

urban knowledge for socioeconomic prediction. Specifically, the

entities in UrbanKG include regions partitioned by road network,

business centers of commercial and consumption activities, POIs

of infrastructures like restaurants, markets and schools, as well as

categories of POI attributes, e.g., food, shopping, education, etc.

Thus, the entity types in UrbanKG are Region, Business Center

(BC), POI and Category.

Table 1: The captured knowledge and corresponding rela-
tional structures in UrbanKG.

Knowledge Relation Head Entity Tail Entity

Spatiality

borderBy Region Region

nearBy Region Region

locateAt POI Region

Mobility flowTransition Region Region

Function

similarFunction Region Region

coCheckin POI POI

cateOf POI Category

Business

provideService BC Region

belongTo POI BC

competitive POI POI

Moreover, we model the comprehensive knowledge in multi-

source urban data as semantic relations, which are summarized in

Table 1. Various types of knowledge are represented in triple form

with relation, head entity and tail entity.

• Spatiality.We determine borderBy and nearBy relational links

by spatial distance between regions, and use locateAt to identify

POIs’ spatially located regions.

• Mobility.we aggregate individual mobility trajectories to induce

the significant flow transition between regions, which are linked

by flowTransition.
• Function.We consider widely used features in urban computing

tasks [51] as function knowledge. For example, coCheckin con-

nects highly correlated POIs in terms of concurrence in check-in

data, which implies two POIs are consecutively visited by several

people, e.g., a cinema and a neighboring restaurant [28]. Since

the region function is usually featured by POI category distribu-

tion therein [47], we connect regions with similar POI category

distribution via similarFunction. Besides, cateOf describes the

category attribute of POIs.

• Business. We connect regions with their neighboring business

centers via provideService, to capture the economic status of

regions. Similarly, POIs are connected with neighboring business

centers via belongTo. To further identify the competitiveness

between POIs, neighboring POIs with the same category are

connected via competitive [24].

Besides, reverse edges are added to model inverse relations, e.g.,

(POI, locateAt, Region) and (Region, ∼locateAt, POI). Following the

structure above, we construct the UrbanKG with urban knowledge

identified for socioeconomic prediction. The construction details

can be referred to Section A.

4.3 Encoder Design
4.3.1 Semantic Encoder Design. The semantic encoder aims to

learn region embeddings with urban knowledge represented. To

fully exploit both semantic information of various relations and

structural information of graph topology in UrbanKG, we adopt

the GCN-based encoder for region embeddings [28, 39].
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Given the UrbanKG G = (E,R, F ), for ∀𝑣 ∈ E, 𝑟 ∈ R, their
𝑑-dimensional embeddings after 𝑙 layer are denoted by 𝒆𝑙+1

𝑣 and

𝒓𝑙+1
, respectively. The neighborhood of 𝑣 is denoted by N𝑣 =

{(𝑢, 𝑟 ) | (𝑢, 𝑟, 𝑣) ∈ F }, and 𝒆𝑙+1

𝑣 ∈ R𝑑 can be calculated as:

𝒆𝑙+1

𝑣 = 𝜎
©«

∑︁
(𝑢,𝑟 ) ∈N𝑣

𝑾𝑙
dir(𝑟 )𝜙 (𝒆

𝑙
𝑢 , 𝒓

𝑙 ) +𝑾𝑙
self

𝒆𝑙𝑣
ª®¬ , (1)

where𝑾𝑙
dir(r)

and𝑾𝑙
self

are direction-specific projection matrices

for incoming/outgoing relations and self loop relation, respectively.

𝜙 : R𝑑 × R𝑑 → R𝑑 is the composition function for message cal-

culation in GCN, e.g., element-wise summation and element-wise

product [39]. 𝜎 (·) is an activation function. Besides, we use pre-

trained embeddings from TuckER [3] for initialized embeddings.

Let 𝑓 KG (·) denote the semantic encoder with 𝐿 layers of GCN

following above design, and the region embedding for 𝑎 ∈ A can

be calculated as 𝒆𝑎 = 𝑓 KG (G, 𝑎), i.e., 𝒆𝑎 = 𝒆𝐿𝑎 .

4.3.2 Visual Encoder Design. Our proposed KnowCL model allows

various choices of network architectures for visual encoder design.

For simplicity, we adopt the commonly used ResNet [14] to obtain

visual representations of urban imagery.

For 𝑎 ∈ A with satellite imagery 𝐼SI𝑎 , the visual representation

can be calculated as 𝑰 SI𝑎 = ResNet(𝐼SI𝑎 ). As for street view imagery

𝐼SV𝑎 = {𝐼SV
𝑎,1

,· · ·, 𝐼SV𝑎,𝑛}, the visual representation is calculated by aver-

age pooling on street view images therein:

𝑰 SV𝑎 =
1

𝑛

𝑛∑︁
𝑖=1

ResNet(𝐼SV𝑎,𝑖 ). (2)

Thus, let 𝑓 Image (·) denote the visual encoder designed above,

and the urban imagery representation can be obtained by 𝑰𝑎 =

𝑓 Image (𝐼𝑎) with 𝐼𝑎 = 𝐼SI𝑎 /𝐼SV𝑎 and 𝑰𝑎 = 𝑰 SI𝑎 /𝑰 SV𝑎 .

4.4 Contrastive Loss Design & Optimization
Motivated by cross-modality based contrastive learning between

image and text modalities [36, 50], we design a novel image-KG

contrastive loss for knowledge infusion. The core insight here is

that both semantic representation (KG embedding) and visual rep-

resentation (urban imagery representation) of a region should be

close to each other.

First, for better representation quality, we introduce two indepen-

dent projection heads 𝑔KG (·) and 𝑔Image (·) after semantic encoder

and visual encoder, respectively, as validated in empirical studies

[5, 7]. The corresponding outputs of �̃�𝑎 and 𝑰𝑎 for 𝑎 ∈ A can be

expressed as:

�̃�𝑎 = 𝑔KG (𝒆𝑎) =𝑾KG

2
ReLU(𝑾KG

1
𝒆𝑎) (3)

𝑰𝑎 = 𝑔Image (𝑰𝑎) =𝑾
Image

2
ReLU(𝑾 Image

1
𝑰𝑎), (4)

where four projection matrices are used to project representations

for both modalities from their encoder space to the same space for

contrastive learning.

Moreover, following the core insight above, we extend the tradi-

tional InfoNCE loss [34] to image-KG contrastive loss, and the loss

function for 𝑎 ∈ A is expressed as:

L𝑎 = LImage→KG

𝑎 + LKG→Image

𝑎

= − log

exp(sim(𝑰𝑎, �̃�𝑎))∑𝑚
𝑖=1

exp(sim(𝑰𝑎, �̃�𝑖 ))
−log

exp(sim(�̃�𝑎, 𝑰𝑎))∑𝑚
𝑖=1

exp(sim(�̃�𝑎, 𝑰𝑖 ))
, (5)

where the loss is computed in a minibatch of 𝑚 samples, and

sim(·) represents the inner product. LImage→KG

𝑎 and LKG→Image

𝑎

are image-to-KG and KG-to-image contrastive losses, respectively,

which maximally preserve the mutual information between image-

KG pairs. Unlike existing urban imagery-based socioeconomic pre-

diction studies using image view-based contrastive loss in the same

modality [25, 47], our proposed image-KG contrastive loss is based

on cross modalities of inputs, which successfully infuses the com-

prehensive knowledge captured in region embeddings into urban

imagery representations.

By optimizing the image-KG contrastive loss on the whole data,

we obtain knowledge-infused urban imagery representations 𝑰𝑎∈A
from the visual encoder, which are further fed into the regression

module of multi-layer perceptron (MLP) for socioeconomic indica-

tor training and prediction.

5 EXPERIMENTS AND RESULTS
5.1 Experimental Setup
5.1.1 Datasets. We collect three datasets with urban imagery and

socioeconomic indicator data for evaluation: Beijing (BJ), Shanghai

(SH) and New York (NY). Regions in Beijing and Shanghai are

partitioned by road network, while regions in New York are Census

Block Groups (CBGs) used by US Census Bureau. The 256×256-
pixel satellite images with about 4.7 m-resolution are obtained from

ArcGIS, which are further merged along irregular region boundaries

for input satellite images. The 1024×512-pixel street view images

in Beijing and Shanghai as well as the 512×512-pixel street view
images in New York are obtained from Baidu Map API and Google

Street API, respectively.

As for socioeconomic indicator data, Beijing dataset includes

(1) Pop.: population data from WorldPop, (2) Econ.: economic

activity data from [10], (3) Rest.: restaurant business (takeaway
order data) and (4) Consp.: consumption data from a life service

platform, while Shanghai dataset includes (1) Pop.: population and

(2) Econ.: economic activity data from same sources. New York

dataset includes (1) Pop.: population and (2) Edu.: education data

from SafeGraph, and (3) Crime: crime data from NYC Open Data.

The UrbanKG data for three datasets are from [28, 41], and business

knowledge related relations are omitted in New York dataset due

to a lack of source data. All socioeconomic indicators are converted

into logarithmic scale, i.e. 𝑦 = ln(𝑦raw + 1). Besides, regions in
datasets with over 40 street view images are selected and randomly

split into train/valid/test sets by a proportion of 6:2:2 in the socioe-

conomic prediction step. Table 2 summarizes dataset statistics and

details are provided in Section A.

Table 2: Dataset Statistics.

Dataset #Region #SV #SI |E | |R| |F |
Beijing 789 31,560 18,289 36,752 10 188,985

Shanghai 1,553 62,120 5,904 58,145 10 363,159

New York 1,142 45,680 1,560 87,020 6 357,464

5.1.2 Baselines. We compare our model with several baselines

in urban imagery-based socioeconomic prediction studies. The

satellite imagery-based baselines include:
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Table 3: Satellite imagery-based socioeconomic prediction results on three datasets. Best results are in bold and the best results
are underlined. The last row shows relative improvement in percentage.

Dataset Beijing Shanghai New York

Model Pop. Econ. Rest. Consp. Pop. Econ. Pop. Edu. Crime
𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE

ResNet-18 0.277 0.887 0.168 1.465 0.146 2.569 0.125 3.435 0.007 1.027 0.082 1.674 -0.404 0.788 0.518 0.085 0.324 0.751

Tile2Vec 0.274 0.888 0.092 1.531 0.108 2.626 0.074 3.534 0.125 1.041 0.065 1.689 0.143 0.615 0.533 0.084 0.382 0.718

READ 0.300 0.872 0.173 1.461 0.222 2.451 0.213 3.258 0.154 0.949 0.097 1.660 -0.034 0.676 0.534 0.084 0.413 0.700

PG-SimCLR 0.356 0.837 0.361 1.285 0.275 2.368 0.269 3.140 0.307 0.858 0.166 1.596 -0.223 0.735 0.622 0.075 0.434 0.687

KnowCL 0.479 0.752 0.532 1.100 0.493 1.979 0.443 2.741 0.424 0.783 0.325 1.436 0.153 0.612 0.658 0.042 0.536 0.622
Improv. 34.5% 10.2% 47.3% 14.4% 79.3% 16.4% 64.7% 12.7% 38.1% 8.7% 95.8% 10.0% 7.0% 0.5% 5.8% 44.0% 23.5% 9.5%

Table 4: Street view imagery-based socioeconomic prediction results on three datasets. Best results are in bold and the best
results are underlined. The last row shows relative improvement in percentage.

Dataset Beijing Shanghai New York

Model Pop. Econ. Rest. Consp. Pop. Econ. Pop. Edu. Crime
𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE 𝑅2
RMSE 𝑅2

RMSE

ResNet-18 0.085 0.997 0.215 1.423 0.262 2.388 0.257 3.166 0.046 1.007 0.033 1.718 0.151 0.612 0.402 0.095 0.340 0.742

Urban2Vec 0.026 1.029 0.059 1.559 0.094 2.646 0.103 3.478 0.012 1.025 0.007 1.741 0.046 0.649 0.232 0.107 0.020 0.904

SceneParse 0.073 1.004 0.157 1.476 0.183 2.512 0.193 3.299 0.058 1.001 0.049 1.704 0.154 0.611 0.426 0.093 0.222 0.806

PG-SimCLR 0.237 0.911 0.288 1.356 0.409 2.136 0.439 2.750 0.015 1.023 0.112 1.646 0.283 0.563 0.569 0.080 0.482 0.657

KnowCL 0.416 0.796 0.557 1.069 0.470 2.024 0.449 2.725 0.359 0.826 0.281 1.482 0.377 0.524 0.586 0.079 0.552 0.612
Improv. 75.6% 12.6% 44.3% 21.2% 14.9% 5.2% 2.3% 1.0% 519.0% 17.5% 150.9% 10.0% 33.2% 6.9% 3.0% 1.3% 14.5% 6.8%

• Tile2Vec [18]. Tile2Vec uses the triplet loss to minimize visual

representations of spatially near satellite images and maximize

those of distant pairs.

• READ [12]. READ uses limited label data to train a teacher-

student network with satellite imagery. The pre-trained model

in original paper is used for comparison.

The street view imagery-based baselines includes:

• Urban2Vec [45]. Urban2Vec follows the similar design with

Tile2Vec but focuses on street view imagery.

• SceneParse [52]. We use this scene parsing model to extract

street view imagery representations following [23, 25].

We also apply two baselines for both satellite and street view

imagery-based socioeconomic prediction:

• ResNet-18 [14]. ResNet-18 is pre-trained on ImageNet [9], which

is a backbone adopted in several related studies, and thus selected

for comparison in both satellite and street view imagery.

• PG-SimCLR [47]. PG-SimCLR originally employs SimCLR [7]

for satellite imagery-based socioeconomic prediction, with spa-

tiality and POI category distribution considered in similarity

metric design. We select it for both satellite and street view

imagery cases considering its competitive performance.

We implement the baselines following reported settings or using

pre-trained models in their original papers, and the obtained urban

imagery representations are fed into the MLP-based socioeconomic

indicator regression module for training and prediction.

5.1.3 Metrics & Implementation. We adopt the widely used rooted

mean squared error (RMSE) and coefficient of determination (𝑅2
)

[12, 17, 47] for evaluation metrics. For the implementation, ResNet-

18 [14] and CompGCN [39] are adopted for visual and semantic

encoders, respectively. We select Adam optimizer for parameter

learning. In the contrastive learning step, we set the KG embed-

ding dimension as 64 while the number of GCN layers is selected

from {1, 2, 3, 4}. The learning rate is set as 0.0003. In the socioe-

conomic prediction step, for each region, the learnt single urban

imagery representation vector is used to predict various socioe-

conomic indicators with the learning rate and dropout searched

from {0.0005, 0.001, 0.005} and {0.1, 0.3, 0.5}. Besides, we randomly

select 10 street view images for each region in the main experiment.

The implementation codes are available at the link
4
.

5.2 Performance Comparison
We evaluate the satellite imagery-based socioeconomic prediction

performance in Table 3. Results on three datasets across six types

of socioeconomic indicators demonstrate the superiority of our

proposed KnowCL model, which improves the best baseline (PG-

SimCLR) by 7%-79% on 𝑅2
in all cases. Especially, KnowCL achieves

the significant performance improvements owing to the compre-

hensive knowledge infused by the cross-modality based contrastive

learning. As for the performance comparison with contrastive learn-

ing based models like Tile2Vec and PG-SimCLR, the results show

that introducing more knowledge can bring better performance.

For example, Tile2Vec only considers spatiality knowledge in simi-

larity metric design while PG-SimCLR further considers function

knowledge, leading to over 15% improvements on 𝑅2
on average.

4
https://github.com/tsinghua-fib-lab/KnowCL

https://github.com/tsinghua-fib-lab/KnowCL
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Besides, traditional models focus on satellite images in grid shape,

failing to extract high-quality visual representations for the more

practical case of irregular shape partitioned by road network.

As for the street view imagery-based socioeconomic prediction

performance in Table 4, KnowCL also achieves state-of-the-art

results, which further validate the effectiveness and robustness.

Limited by the repetitive street view images collected in Shang-

hai dataset, all baselines perform poorly across population and

economic activeness prediction tasks therein, while KnowCL lever-

ages UrbanKGs for informative representation learning from urban

imagery with competitive performance achieved.

According to the absolute performance in Table 3 and Table 4, the

socioeconomic indicators of different cities show diverse preference

to urban imagery, e.g., KnowCL with satellite imagery obtains the

best absolute performance for population prediction in Beijing and

Shanghai, while the street view imagery becomes the better choice

for population and crime prediction in New York. This phenomenon

ismainly determined by city structures and socioeconomic indicator

characteristics. Different from complex city structures in Beijing

and Shanghai, New York follows the grid layout with block regions

in similar shapes, which provides limited information for population

estimation. Besides, the street view imagery can provide an internal

view for urban environment safety perception, as validated in [31].

Such results further indicate that both satellite and street view

imagery can provide complementary information to each other,

and our proposed KnowCL model can fully exploit the value of

urban imagery, which is quite essential for urban environment

perception and SDG monitoring.
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Figure 3: Predicted population versus true population across
all regions on Beijing dataset. Blue line is at 45°. 𝑅2 and 𝑅2

𝑎

correspond to the results of testing regions (red dots) and all
regions (red and blue dots), respectively

To further analyze the predictive power of our proposed KnowCL

model, in Figure 3, we compare the predicted and true population

for all regions in Beijing dataset, and results for other datasets are

provided in Section B. The results show that KnowCL can well

replicate the population of most regions (see the dots along 45°

line) via urban imagery, explaining 52%-63% of the variation in

population on two datasets.

5.3 Ablation Study
5.3.1 Effectiveness of Knowledge Identification. To validate the ef-

fectiveness of identified knowledge in UrbanKG, Figure 4 presents

the performance comparison of UrbanKG without certain type of

knowledge. We select Beijing and New York datasets for evaluation,

on which satellite and street view imagery inputs achieve the best

absolute performance, respectively. The business knowledge on

New York dataset is not provided in UrbanKG and thus not reported.
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Figure 4: Performance comparison of different identified
knowledge on Beijing and New York datasets with satellite
and street view imagery, respectively.

All four types of semantic knowledge identified by UrbanKG are

essential for socioeconomic prediction, according to the findings

in Figure 4. Particularly, the knowledge that is hardly captured

by urban imagery is more important, e.g., the mobility knowledge

of crowd flow transitions between regions brings 5%-30% gains

for predicting all socioeconomic indicators, because both satellite

and street view imagery cannot capture such dynamic information

without additional knowledge infused. Additionally, the impacts of

various types of semantic knowledge vary to socioeconomic indi-

cators. For example, in New York dataset, the education indicator

is highly correlated with function knowledge while the population

indicator prefers to spatiality knowledge, which enlightens us to

identify comprehensive knowledge for a broader urban imagery-

based socioeconomic prediction with more indicators considered.

5.3.2 Effectiveness of Knowledge Infusion. A major novelty of this

paper is introducing the cross-modality based contrastive learn-

ing with the image-KG contrastive loss for knowledge infusion,

which is different from the single-modality based ones in exist-

ing studies [18, 47]. To validate the effectiveness, we develop a

direct image-image contrastive loss for knowledge infusion, which

is similar to PG-SimCLR [47], termed as KG-SimCLR. Specifically,

KG-SimCLR calculates KG embedding similarity for positive region

pairs, and requires their associated urban images to be closer in

visual representation space.

Table 5: Performance comparison 𝑅2 of different knowledge
infusion ways on Beijing and New York datasets.

Beijing New York
Model Pop. Econ. Rest. Consp. Pop. Edu. Crime

SI KG-SimCLR 0.272 0.197 0.192 0.175 -0.302 0.555 0.341

KnowCL 0.479 0.532 0.493 0.443 0.153 0.658 0.536

SV KG-SimCLR 0.209 0.229 0.299 0.329 0.053 0.382 0.294

KnowCL 0.416 0.557 0.470 0.449 0.377 0.586 0.552

Table 5 presents the performance comparison betweenKG-SimCLR

and KnowCL with different urban imagery inputs. The significant

performance gaps between two models on both satellite and street

view imagery-based socioeconomic prediction indicate that simply

using existing image view-based contrastive loss cannot achieve
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Figure 5: Most similar urban imagery matching between Bei-
jing and Shanghai datasets via learnt urban imagery repre-
sentations by KnowCL. The population indicator and cosine
similarity are presented below the images. Satellite images
might be in irregular shape due to the shape of associated
regions.
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Figure 6: The 𝑅2 for the transferability test on satellite and
street view imagery-based population prediction.

effective knowledge infusion. Especially, directly modeling the

comprehensive knowledge in KG as a similarity metric provides a

quite weak self-supervision signal for visual representation learn-

ing, while our proposed cross-modality based contrastive learning

framework infuses such knowledge via similarity matching in rep-

resentation space. Overall, the ablation studies demonstrate the

effectiveness of our proposed knowledge infusion design and can

potentially apply in various urban imagery-based research.

5.4 Transferability Study
5.4.1 Prediction Performance Across Cities/Countries. The experi-
ment results above validate the effectiveness of UrbanKG, which

however might be not available in underdeveloped and developing

cities/countries due to data deficiency. Thus, here we investigate

the practical case of socioeconomic prediction in transfer setting

[35]: Given the visual encoder of a KnowCL model trained on a

source city with urban imagery and UrbanKG data, we apply it for

socioeconomic prediction in target cities where only urban imagery

data are available. The transferability task checks whether KnowCL

infuses shared knowledge across cities into the visual encoder for

urban imagery-based socioeconomic prediction.

We vary the source-target city pairs and report the population

prediction performance in Figure 6, where both satellite imagery

and street view imagery are evaluated. Here 40 street view images

for each region in off-diagonal transfer experiments are used for

robust performance. According to the results, the diagonal line

shows the highest correlation due to the same city transferred from

the source to the target. Moreover, compared with baselines trained

and evaluated on the same dataset in Table 3 and Table 4, KnowCL

achieves competitive transfer performance for both satellite and

street view imagery-based population prediction in Bejing and

New York datasets, as validated by similar scatter sizes in each row.

For example, SH→BJ transfer experiment achieves a 𝑅2
of 0.373

compared with 0.356 of the best baseline (PG-SimCLR) achieved

in non-transfer setting. Such results validate the transferability of

our proposed KnowCL model for socioeconomic prediction across

cities/countries, which mainly owes to the shared knowledge iden-

tified in UrbanKG and infused in visual encoder by cross-modality

based contrastive learning. Hence, pre-trained KnowCL model can

be leveraged for socioeconomic prediction in cities without Ur-

banKG. Besides, we also investigate the transferability of the best

baseline PG-SimCLR in Section B, which is less competitive due to

limited knowledge considered.

5.4.2 Visual Analogies Across Cities. We also investigate the visual

similarity between urban imagery across cities. Specifically, given

an urban image in source city, we compute the cosine similarity

between its visual representation and all visual representations in

another city, and select the most similar ones for comparison [45],

as shown in Figure 5. As for the satellite imagery matching in Fig-

ure 5(a), similar regions share the similar distribution of buildings

as well as populations. On the other hand, the street view imagery

matching in Figure 5(b) successfully identifies regions with similar

physical appearance and populations. Thus, the knowledge-infused

urban imagery representations capture not only visual features but

also socioeconomic information associated with regions.

6 CONCLUSION
In this paper, we present a novel approach to make predictions on

population, economic activity, consumption, education, and public

safety indicators from web-collected urban imagery covering both

satellite and street view imagery. Our proposed knowledge-infused

contrastive learning model KnowCL is built upon the comprehen-

sive knowledge identified by urban knowledge graph, and further

designs an image-KG contrastive loss for effective knowledge infu-

sion into urban imagery representations. KnowCL is the first solu-

tion that introduces the knowledge graph and the cross-modality

based contrastive learning framework for urban imagery-based so-

cioeconomic prediction. Extensive experiments validate the model

effectiveness and transferability in different cities across several

socioeconomic indicators.

We demonstrated model’s potential in socioeconomic prediction

with ubiquitous urban imagery, which is of great importance to

sustainable development in data-poor regions and countries. Al-

though our model outperforms baselines, the results may be less

interpretable, so in future work we will consider exploring in-depth

the semantics of UrbanKG for interpretability.
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A DETAILS OF DATASET
A.1 UrbanKG Construction
Here we introduce the details of urbanKG construction. For region

entities in UrbanKG for Beijing and Shanghai datasets, we partition

the city into multiple regions by the road network, which are shown

in Figure 7. The region entities in New York dataset follows the CBG

division by US Census Bureau, whose visualization can be referred

to the official link
5
. Each region entity is provided with a sequence

of longitude-latitude pairs 𝐿𝑎 = {(𝑙𝑛𝑔1

𝑎, 𝑙𝑎𝑡
1

𝑎), · · · , (𝑙𝑛𝑔𝑘𝑎 , 𝑙𝑎𝑡𝑘𝑎 )} as
region boundary. POI entities and business center entities are pro-

vided with location information of longitude-latitude pairs like

𝑙𝑖 = (𝑙𝑛𝑔𝑖 , 𝑙𝑎𝑡𝑖 ). The category entities are POI properties identified

by experts, e.g., food, shopping, accommodation, business, resi-

dence, education, etc.

(a) Beijing (b) Shanghai

Figure 7: Visualization of region entities in UrbanKG for
Beijing and Shanghai datasets.

Based on the entities above, the relational links defined in Table 1

can be extracted as follows.

• borderBy. Given two regions 𝑎, 𝑏, they are connected by borderBy
if |𝐿𝑎 ∩ 𝐿𝑏 | > 0, i.e., sharing the same boundary points.

• nearBy. Given two regions 𝑎, 𝑏, they are connected by nearBy if

∥𝐿𝑎 − 𝐿𝑏 ∥ ≤ 1𝑘𝑚, where 𝐿𝑎, 𝐿𝑏 are center location of regions.

• locateAt. Given a POI 𝑝 and a region 𝑎, they are connected by

locateAt if 𝑙𝑝 is in the closure by region boundary 𝐿𝑎 .

• flowTransition. Given two regions 𝑎, 𝑏, they are connected by

flowTransition if the aggregated flow transition between two

regions exceeds the threshold.

• similarFunction. Given two regions 𝑎, 𝑏 and the category dis-

tribution vectors of POIs therein 𝒛𝑎, 𝒛𝑏 , they are connected by

similarrFunction if 𝑐𝑜𝑠 (𝒛𝑎, 𝒛𝑏 ) ≥ 0.95 with cosine similarity.

• coCheckin.Given two POIs𝑝1, 𝑝2, they are connected by coCheckin
if the number of records that consecutively visit 𝑝1 and 𝑝2 ex-

ceeds the threshold.

• cateOf. A POI is connected to its associated category by cateOf.
• provideService. Given a region 𝑎 and a business center 𝑏𝑐 , they

are connected by provideService if ∥𝐿𝑎 − 𝑙𝑏𝑐 ∥ ≤ 3𝑘𝑚.

• belongTo. Given a POI 𝑝 and a business center 𝑏𝑐 , they are con-

nected by belongTo if ∥𝑙𝑝 − 𝑙𝑏𝑐 ∥ ≤ 3𝑘𝑚.

• competitive. Given two POIs 𝑝1, 𝑝2, they are connected by com-
petitive if ∥𝑙𝑝1

− 𝑙𝑝2
∥ ≤ 500𝑚 and they are in the same category.

5
https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf

A.2 Data Sources & Preprocessing
The data sources in our experiments and their links are provided

as follows.

• Satellite imagery data. ArGIS, https://geoenrich.arcgis.com/.

• Street view imagery data in Beijing & Shanghai. Baidu Map

API, http://api.map.baidu.com.

• Street view imagery data in New York. Google Street API,
https://maps.googleapis.com/.

• Population data in Beijing & Shanghai. WorldPop. https:

//www.worldpop.org/.

• Population & education data in New York. SafeGraph, https:
//www.safegraph.com/.

• Crime data in New York. NYC Open Data, https://opendata.

cityofnewyork.us/.

Since we focus on the more practical case of irregular region

boundaries partitioned by road network, in the data preprocessing

step, we merge multiple grid-based satellite images to match the

region boundary. Thus, the satellite images for regions might be in

irregular shape, as shown in Figure 5(a).

B MODEL DETAILS & EXPERIMENT RESULTS
B.1 Training Algorithm
Algorithm 1 summarizes the learning procedure of our proposed

KnowCL model for urban imagery-based socioeconomic prediction.

The overall framework is divided into two steps of knowledge-

infused contrastive learning and socioeconomic prediction. In the

first step, lines 4-5 build semantic encoder and visual encoder for

different modalities of inputs, and lines 6-11 execute the cross-

modality based contrastive learning in a minibatch way with model

parameter updated. As for the second step in lines 12-14, only the

regressionmodule is trainedwith observed socioeconomic indicator

data, which is then used for socioeconomic prediction.

Algorithm 1 Learning procedure of KnowCL model.

1: Input: UrbanKG G = (E,R, F ), urban imagery data I, region
set A, socioeconomic indicator data D = {(𝑎,𝑦𝑎) |𝑎 ∈ A}.

2: Output: The socioeconomic indicator 𝑦𝑎′ for a region 𝑎′ with-
out observed label.

3: Step 1: Knowledge-infused Contrastive Learning

4: Initialize semantic encoder 𝑓 KG (·);
5: Initialize visual encoder 𝑓 Image (·);
6: for 𝑖 = 1, 2, · · · , 𝑛iter do
7: Sample a minibatch A

batch
∈ A of size𝑚;

8: 𝒆𝑎 = 𝑓 KG (G, 𝑎), 𝑰𝑎 = 𝑓 Image (𝐼𝑎),∀𝑎 ∈ A
batch

;

9: �̃�𝑎 = 𝑔KG (𝒆𝑎), 𝑰𝑎 = 𝑔Image (𝑰𝑎),∀𝑎 ∈ A
batch

;

10: Compute the image-KG contrastive loss L𝑎 using (5);

11: Update encoder parameters w.r.t. the gradients, ∇L𝑎 .

12: Step 2: Socioeconomic Prediction

13: Train regression module MLP(·) on D;

14: Predict socioeconomic indicator 𝑦𝑎′ = MLP(𝑓 Image (𝐼𝑎′ )).

B.2 Predicted v.s. True Indicators
Similar to the setting in Figure 3, we present the comparison of

predicted and true population results on Shanghai and New York in

https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf
https://geoenrich.arcgis.com/
http://api.map.baidu.com
https://maps.googleapis.com/
https://www.worldpop.org/
https://www.worldpop.org/
https://www.safegraph.com/
https://www.safegraph.com/
https://opendata.cityofnewyork.us/
https://opendata.cityofnewyork.us/
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Figure 8: Predicted population versus true population across all regions on Shanghai and New York datasets. Blue line is at 45°.
𝑅2 and 𝑅2

𝑎 correspond the results of testing regions (red dots) and all regions (red and blue dots), respectively
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(f) Street View (NY)

Figure 9: Visualization of urban imagery based on PCA algorithm, where dot color represents the value of corresponding
population to the urban imagery.
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Figure 10: The 𝑅2 for the transferability test of PG-SimCLR
on satellite and street view imagery-based population pre-
diction. The visual encoder is trained on one source city and
then evaluated on other target cities.

Figure 8. It can be observed that most predicted samples are located

along the line at 45°.

B.3 Transferability Study
To validate the transferability of our proposed KnowCL model, we

also investigate the transferability of the best baseline PG-SimCLR

in Figure 10. Compared with results of KnowCL in Figure 6, PG-

SimCLR is less competitive in transfer setting.

B.4 Parameter Study
Figure 11 further investigates the influence of street view images

on Beijing and New York datasets. Specifically, in the knowledge-

infused contrastive learning step, we keep the number of street

view images per region to 10, and tune the number of street view

images used in socioeconomic prediction step. According to the

results, with the increasing of used street view images, the pre-

diction performance across most of socioeconomic indicators first
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Figure 11: 𝑅2 versus the number of street view images per
region used for socioeconomic prediction on two datasets.
increases and then converges. This phenomenon may partly owe

to the image quality as well as the limited information captured in

street view imagery. Moreover, such results also imply that intro-

ducing more stree view images for socioeconomic prediction may

not bring performance improvement, which is heavily affected by

the noise therein.

B.5 Component Analyses
To analyze the information captured in urban imagery representa-

tions, we employ principal component analysis (PCA) algorithm on

learnt visual representations by KnowCL for dimension reduction,

which are presented in Figure 9. We use the dot color to indicate

the population at corresponding regions. Especially, the cluster-

ing phenomenon in respective of populations can be observed in

Figure 9(a)-(d) on Beijing and Shanghai datasets, which validate

the effectiveness of cross-modality based contrastive learning even

without population supervision signals. As for the results in New

York dataset, such phenomenon is not that obvious because the

population in New York is uniformly distributed in block based

regions, as we can see that most dots in Figure 9(e)-(f) are in similar

colors. All the experiment results validate the effectiveness and ro-

bustness of our proposed knowledge-infused contrastive learning

model for urban imagery-based socioeconomic prediction.
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