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ABSTRACT
Large-scale vehicle trajectories bring great benefits in understand-
ing urban mobility, and can be used to promote a wide range of
applications in building intelligent transportation systems. Tradi-
tional approaches cannot recover the trajectories of all the vehicles
on the roads since they are based on partial trajectory data. To
address it, we study the all-vehicle trajectory recovery based on
traffic camera video data. However, there are two challenges in this
study. First, the quality of the images captured by traffic cameras
is unbalanced, so it is hard to identify the same vehicles. Second,
the traffic camera observation data are sparse due to the incom-
pleteness of the traffic cameras and possible vehicle miss from the
traffic cameras. To deal with these challenges, we design a novel
system to recover the vehicle trajectory with the granularity of the
road intersection. In this system, we propose an iterative frame-
work to jointly optimize the vehicle re-identification and trajectory
recovery tasks. In the vehicle re-identification task, we propose an
effective strategy to guide the vehicle clustering based on visual
features and the spatio-temporal constraint features updated by
the trajectory discovery task. In the trajectory recovery task, we
model the spatial and temporal relations as well as the vehicle miss
problem by a probabilistic approach to recover the trajectories. Ex-
tensive experiments demonstrate that our framework outperforms
the existing state-of-art solutions. Finally, our system is deployed
in practical applications of SenseTime, China, including traffic con-
gestion analysis and traffic signal control.
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1 INTRODUCTION
Large-scale vehicle trajectories play an important role in under-
standing urban mobility, which brings great benefits to many appli-
cations in intelligent transportation systems, such as route planning,
traffic condition prediction, video surveillance, and traffic signal
control. The development of GPS-enabled devices provides an op-
portunity to record vehicle trajectories anywhere and anytime.
However, because of the constraints of devices, the quality of trajec-
tory data has uncertainty. Meanwhile, it is hard to share data from
different providers because of business and user privacy protection,
so the trajectories are usually biased towards a small number of
vehicles. Existing works [2, 20] study the trajectory recovery based
on low-sampling GPS data, which cannot well address the above
issues at the same time. Thus, it motivates us to design an effective
approach to recover the trajectories of all the vehicles in the road
network based on unbiased data.

Nowadays, the popularity of traffic cameras deployed at road
intersections makes it possible to obtain the trajectory data of all
the vehicles. To be specific, traffic cameras record all the vehicles
passing by the intersections at different times in terms of videos
or images. By utilizing large-scale video or image data from the
city-wide camera network, it is expected to recover the full-amount
vehicle trajectories. To sum up, our goal is to utilize the video data
obtained from traffic cameras to recover the vehicle trajectories.

To achieve this goal, we collect one-day-worth video data from
441 traffic cameras in a metropolis. Intuitively, a vehicle re-iden-
tification module and a spatio-temporal recovery module should
be introduced. The vehicle re-identification module is adopted to
extract the vehicle visual features based on camera video data and
perform the clustering algorithms to identify the same vehicles.
Based on the results of vehicle re-identification, the spatio-temporal
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module integrates the spatial and temporal constraints to recover
the intersection-level vehicle trajectories. However, due to the in-
fluence of several factors like the environment and the camera
coverage rate, there are two challenges in addressing the trajectory
recovery problem.
• Unbalanced quality of the captured images. Many fac-
tors have an impact on the quality of the image data cap-
tured by traffic cameras. For example, poor illumination or
low resolution makes the visual appearances of vehicles
ambiguous. On the contrary, good illumination or high res-
olution enables clear visual appearances. These lead to the
unbalanced quality of the captured images belonging to the
same vehicles, which further influences the results of vehi-
cle re-identification. In other words, the cluster of a vehicle
may contain the records belonging to other vehicles. Mean-
while, the records of the same vehicle would fall into other
clusters. More importantly, the inaccurate results of vehicle
re-identification would degrade the performance of the tra-
jectory recovery. Thus, it is challenging to accurately identify
the same vehicles.
• Sparse traffic camera observations. On the one hand, be-
cause of high economic costs, many intersections may not
have traffic cameras installed, which indicates that the trajec-
tories of the same vehicle cannot be fully tracked. Hence, for
two consecutive observations from the same vehicle, there
is more likely to be more than one possible path between
them. On the other hand, it is possible to miss capturing the
vehicles due to some factors like low camera performance
or high vehicle driving speed. These lead to the sparsity of
the traffic camera observations. Thus, it is challenging to
explore how to accurately recover the real trajectories based
on the sparse traffic camera observations.

To tackle the above challenges, we propose an iterative frame-
work to jointly optimize the vehicle re-identification and trajectory
recovery tasks based on traffic camera video data. In this framework,
a vehicle re-identification module and a spatio-temporal recovery
module interact with each other to improve their own performance.
To be specific, in the vehicle re-identification module, we utilize
the results of trajectory recovery with the spatial and temporal
constraints to guide the clustering process, which deals with the
problem of the unbalanced quality of the captured images. A novel
strategy is designed to dynamically adjust the feature representa-
tions of vehicles. In this strategy, the feature representations of
vehicles are divided into static and dynamic parts. The static part is
the vehicle visual feature representations, and the dynamic one con-
tains dynamic vehicle feature representations updated according
to the spatio-temporal constraints. In the spatio-temporal recovery
module, we introduce a probabilistic approach that integrates both
temporal and spatial relations to address the challenge of the spar-
sity of the camera observations. Considering that traffic cameras
may fail to capture a certain amount of vehicle images, we model it
in a probabilistic way under the condition that the candidate paths
have cameras.

Finally, we summarize our contributions as follows:
• We propose an iterative framework for the vehicle trajec-
tory recovery, which tackles two critical tasks including

vehicle re-identification and trajectory recovery. The vehi-
cle re-identification task utilizes the recovered trajectories
with the constraints of spatial and temporal information to
improve the performance of vehicle clustering. With the
enhanced vehicle clusters, the trajectory recovery task can
further obtain more accurate recovered trajectories.
• For the vehicle re-identification, we design a novel strategy
that guides the clustering process by dynamically adjusting
the input of the vehicle clustering algorithm, based on the
visual features and the spatio-temporal constraint features
updated by the trajectory recovery task.
• For the trajectory recovery, we propose a probabilistic spatio-
temporal vehicle trajectory recovery model, which considers
the case that traffic cameras fail to capture the vehicle images
with some probability.
• We conduct several experiments based on the real-world
data from traffic cameras. The results show that the perfor-
mance of our framework is superior to that of the state-of-art
baselines.
• We deploy our system in the practical applications of Sense-
Time, China, which can accurately identify the vehicles and
recover the vehicle trajectories.

2 PRELIMINARIES
We describe the key definitions and problem statement in this
section.

2.1 Definition
Road Network: we denote the road network as𝐺 = (𝑉 , 𝐸,𝑊 ), where
𝑉 and 𝐸 represent the set of nodes and edges respectively. 𝑣 ∈ 𝑉
is the road intersection. 𝑒 ∈ 𝐸 denotes the connection relationship
between intersections, whose weight 𝑤 (𝑒𝑖 , 𝑒 𝑗 ) is defined as the
geological distance between intersection 𝑖 and 𝑗 .

Traffic Camera Record: each record of traffic camera is repre-
sented as < 𝑐, 𝑡, 𝑝, 𝑣 >, which means that camera 𝑐 captured vehicle
𝑝 at the road intersection 𝑣 at time 𝑡 . This record can be extracted
from the raw video data in terms of the vehicle image. Note that
camera 𝑐 is located at the intersection 𝑣 , which is associated with
geographical coordinates of intersection 𝑖 in terms of longitude and
latitude.

Intersection-level Vehicle Trajectory: a vehicle trajectory𝑊𝑝 is
denoted as a time sequence [(𝑣1, 𝑡1), (𝑣2, 𝑡2), ..., (𝑣𝑛, 𝑡𝑛)] at the in-
tersection level, where each element represents that a vehicle 𝑝
passes the intersection 𝑣𝑖 at time 𝑡𝑖 . It is noted that the our work
focus on the continuous vehicle trajectory, where intersection 𝑣𝑖
and 𝑣𝑖+1 is adjacent.

GPS-based Vehicle Trajectory: we define a GPS-based vehicle tra-
jectory 𝑋𝑝 as a time sequence [(𝑑1, 𝑡1), (𝑑2, 𝑡2), ..., (𝑑𝑛, 𝑡𝑛)], where
each element represents a vehicle record with the GPS position 𝑑𝑖
and timestamp 𝑡𝑖 .

2.2 Problem Statement
Given the vehicle image data 𝑆 from 𝑁 traffic cameras, as well
as the historical GPS-based vehicle trajectories 𝑋 , our goal is to
recover the intersection-level vehicle trajectory𝑊𝑝 based on the
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Figure 1: The overall framework of our system.

road network 𝐺 , which can be expressed as:

𝑊𝑝 ← F (𝑆, 𝑋,𝐺), (1)

where F (·) is the function that learns to recover the vehicle trajec-
tories.

3 OUR APPROACH
3.1 Overall Framework
As displayed in Figure 1, the overall framework consists of a prepro-
cessor, a vehicle re-identification module, and a trajectory recovery
module. The three kinds of raw data are first preprocessed: vi-
sual features including appearance features and plate features are
extracted from camera snapshots following the same way as [7],
and a modern map-matching algorithm [23] is used to match the
historical trajectories with the road network.

In the vehicle re-identification module, a multi-modal similarity
clustering algorithm takes not only the visual features as the static
part of input but also a self-supervised embedding as the dynamic
part of input which is updated by the feedback module.

In the trajectory recovery module, a road speed estimator cal-
culates the speed distribution of each road in each time slot (1h)
from the map-matched trajectories where a matrix factorization
approach is taken to tackle the sparseness issue. Meanwhile, a road
transition estimator proposes a transition probability matrix based
on the transition frequencies from the map-matched trajectories
at each node on the road network depicting the prior probabilities
from its predecessor roads to its successor roads. Then, a maximum
posterior route searcher takes the clustering results as input and
searches the maximum a posterior route to recover the trajectory
between every two consecutive records in a cluster, where the travel
time between the two records is considered in the likelihood part
and the road transition is considered in the prior part.

As an iterative framework, the feedback module calculates the
spatio-temporal feasibility score of the recovered trajectories, based
on which it can detect noisy records and complement missing
records. The dynamic embeddings of the records are updated ac-
cordingly so that the clustering results will be improved in the next
iteration.
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Figure 2: The vehicle clustering pipeline.

3.2 Vehicle Re-identification
3.2.1 Vehicle Feature Representation. The raw video data captured
by traffic cameras are sampled and cropped to form a collection
of individual vehicle images. We use two separately pretrained
and finetuned ResNet-50 model to extract 256-dimensional vehicle
appearance features and 256-dimensional vehicle plate features
from the images. However, we remark that the plate feature is not
always available due to the low quality of the image, the obstruction
of other vehicles, or the viewing angle.

3.2.2 Vehicle Clustering. As mentioned above, the multi-modal
similarity clustering algorithm takes as input the appearance fea-
ture 𝒇𝑎 and plate feature 𝒇𝑝 of each vehicle, as well as a dynamic
embedding 𝒇𝑑 which is initialized the same as the appearance fea-
ture and updated by the feedbackmodule in our iterative framework.
For two records 𝑖 and 𝑗 , we define their similarity as the weighted
sum of the cosine similarity of their features. When the plate feature
is not available for either of the two records, the overall similarity
is calculated without the plate feature similarity. Assuming that the
features are normalized, the total similarity is

S𝑖, 𝑗 =


𝑤𝑎𝒇

𝑖
𝑎 · 𝒇

𝑗
𝑎 +𝑤𝑝𝒇

𝑖
𝑝 · 𝒇

𝑗
𝑝 +𝑤𝑑𝒇

𝑖
𝑑
· 𝒇 𝑗

𝑑

𝑤𝑎 +𝑤𝑝 +𝑤𝑑

, if 𝒇 𝑖𝑝 and 𝒇 𝑗
𝑝 available,

𝑤𝑎𝒇
𝑖
𝑎 · 𝒇

𝑗
𝑎 +𝑤𝑑𝒇

𝑖
𝑑
· 𝒇 𝑗

𝑑

𝑤𝑎 +𝑤𝑑

, if 𝒇 𝑖𝑝 or 𝒇 𝑗
𝑝 unavailable.

(2)

The weights𝑤𝑎,𝑤𝑝 ,𝑤𝑑 are hyper-parameters. We generally as-
sign the plate feature with a larger weight than the appearance
feature, since vehicle appearance can be rather confusing. It is
common for different vehicles to have similar appearances while
the same vehicle can appear quite different under various lighting
conditions.

The clustering algorithm is two-fold, as shown in Figure 2. First,
we search each vehicle record’s top 𝑘 nearest neighbors among all
the vehicle records by the appearance features and the plate features
respectively, and the similar records are gathered to form its KNN
records set. Second, we go through the records one by one and decide
whether to add them to existing clusters or to build new clusters
based on multi-modal similarity. Specifically, for each current record,
we calculate its multi-modal similarities with candidate clusters that
contain its KNN records. If the maximum similarity is greater than
a predefined threshold, the record is added to the cluster with the
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Figure 3: The iteration pipeline.

maximum similarity; otherwise, a new cluster containing only this
record is built.

Note that clustering algorithms like K-Means and HDBSCAN
are not suitable for our task. The K-Means algorithm requires the
number of clusters as a hyper-parameter, which in our task is the
number of vehicles that is unknown and hard to tune. Likewise,
the demanding requirement of time and memory of HDBSCAN
algorithm renders it implausible to be used in the case of millions
of inputs and hundreds of thousands of clusters.

3.3 Spatio-temporal Vehicle Trajectory
Recovery

In the real-world transportation systems, traffic cameras are not
installed at all the intersections, and vehicles are not captured every
time they pass by a camera. Thus, using the records of the vehicle
alone is not sufficient to fully determine its trajectory. To address
it, we use a spatio-temporal vehicle trajectory recovery module to
recover the most probable trajectory between consecutive records.

Given the start point 𝑟𝑠 , start time 𝑡𝑠 , end point 𝑟𝑒 and end
time 𝑡𝑒 , we denote the trajectory connecting the two points as
𝑝 = {𝑠1, ..., 𝑠𝑛}, where 𝑠𝑖 represents the road segment. Let Δ𝑡 =

𝑡𝑒 − 𝑡𝑠 . The posterior probability of the trajectory given the above
information can be factorized into two parts:

Pr(𝑝 |𝑟𝑠 , 𝑡𝑠 , 𝑟𝑒 , 𝑡𝑒 ) ∝ Pr(𝑝,Δ𝑡 |𝑟𝑠 , 𝑟𝑒 , 𝑡𝑒 )
= Pr(𝑝 |𝑟𝑠 , 𝑟𝑒 , 𝑡𝑒 ) Pr(Δ𝑡 |𝑝, 𝑡𝑒 )
≈ Pr(𝑝 |𝑟𝑠 , 𝑟𝑒 ) Pr(Δ𝑡 |𝑝, 𝑡𝑒 ) . (3)

The approximation is due to the weak dependence of the choice of
trajectory with the time of the day given 𝑟𝑠 and 𝑟𝑒 .

Intuitively, the first factor is a prior probability that drivers who
intend to move from 𝑟𝑠 to 𝑟𝑒 will choose this trajectory as their
route, which accounts for the general popularity of the trajectory.
The second factor is the likelihood that Δ𝑡 is taken to travel along
this trajectory in a certain time slot of a day, which accounts for
the consistency between the actual travel time and the expected
travel time determined by the real-time traffic condition.

For the first factor, we assume that the transition from one road
segment to another is independent from the start point 𝑟𝑠 and
satisfies Markov property given the end point 𝑟𝑒 , which is both
intuitive and widely adopted in other works [6, 7, 14, 20].

Pr(𝑝 |𝑟𝑠 , 𝑟𝑒 ) = Pr(𝑠1, ..., 𝑠𝑛 |𝑟𝑠 , 𝑟𝑒 )

= Pr(𝑠1 |𝑟𝑠 , 𝑟𝑒 )
𝑛−1∏
𝑖=1

Pr(𝑠𝑖+1 |𝑠𝑖 , 𝑟𝑒 ). (4)

We refer to Pr(𝑠 |𝑟, 𝑟𝑒 ) as start segment probability and Pr(𝑠 ′ |𝑠, 𝑟𝑒 )
as segment transition probability. To obtain the probability values,
we use a uniform Dirichlet prior and fit the model with the data of
147,661 vehicle GPS trajectories collected in 24 hours.
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Figure 4: The feedback module for detecting noises and re-
calling missing records.

For the second factor, we quantize 𝑡𝑒 into 24 time slots with the
length of 1 hour and calculate the average driving speed on each
road by time slot. We also adopt the matrix factorization method
proposed in [20] to solve the data sparsity issue. Assuming that the
relative deviation of average time follows a normal distribution, the
likelihood of the total traveling time can be expressed as

Pr(Δ𝑡 |𝑝, 𝑡𝑒 ) = exp(−(Δ𝑡/Δ𝑡 − 1)2/2𝜎2), (5)

where Δ𝑡 is the sum of the average traveling time of 𝑝 at time
slot 𝑡𝑒 , and 𝜎 is a hyper-parameter finetuned around the empirical
standard deviation of the dataset.

To find optimal 𝑝∗ that maximizes Equation 3, we use a greedy
search algorithm that starts at 𝑟𝑠 , expands outward, and maintains
a set of at most 𝑘 best trajectories until 𝑟𝑒 is reached.

3.4 Co-optimization of Vehicle Re-identification
and Trajectory Recovery

The trajectory recovery module takes the clustering results as input
and recovers the maximum a posteriori trajectories. On the one
hand, the best achievable accuracy of the recovered trajectories is
bounded by the quality of the clustering results. Specifically, the
mis-clustered records (noises) should be as few as possible for the
recovered trajectory to faithfully reflect the true trajectory of a sin-
gle vehicle. The more records correctly recalled, the less uncertain
the possible trajectories are, leading to a more accurate recover-
ing result. On the other hand, the infeasibility of the recovered
trajectory can serve as a clue to underlying noises and missing
records.

Therefore, an iterative pipeline is designed to achieve the co-
optimization of vehicle re-identification and trajectory recovery,
which is shown in Figure 3. In the following part, we introduce how
spatio-temporal information is incorporated in the feedbackmodule
to detect noises and recall missing records to refine and complement
clustering results, as well as how to update the dynamic embedding
part of the record feature accordingly. An illustration of how the
feedback module works is shown in Figure 4.

3.4.1 Denoising. The intuition is that if there are noises in a cluster,
the probability score of the recovered trajectory will be low. For
example, the trajectory suffering from noisy records may consec-
utively pass two distant records in a short time, or demonstrates
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abnormal behaviors like driving in opposite directions. These anom-
alies are reflected in our probabilistic model as low speed probability
(deviation from mean road speed) and low road transition probabil-
ity. Therefore, we can use the spatio-temporal trajectory recovery
method described in Section 3.3 to find an optimal subset of records
that achieves the highest trajectory feasibility score so that the
records outside of the optimal subset are detected as noises.

Specifically, given a set of records in chronological order, 𝑅 =

{𝑟1, ..., 𝑟𝑛}, we denote the set of all possible trajectories that pass
through the records in 𝑅 sequentially as P(𝑅). For each trajectory
𝑃 ∈ P(𝑅), its score is calculated using a trajectory scoring function
𝑓 (·). We aim to find the optimal subset 𝑅∗ = {𝑟∗1 , ..., 𝑟

∗
𝑚∗ } ⊂ 𝑅 that

maximizes the score of the highest-scored trajectory, i.e.

𝑅∗ = argmax
𝑅′⊂𝑅

max
𝑃 ∈P(𝑅′)

𝑓 (𝑃) . (6)

For the outer maximization, we adopt a greedy approach that enu-
merates the 𝑘 largest subsets of 𝑅 instead of examining all 2𝑛 −𝑛−1
possible subsets for the sake of efficiency as the number of all possi-
ble subsets grows exponentially. Besides, it is reasonable to search
only large subsets since the number of underlying noises generally
takes up only a small portion.

As for the inner maximization, note that for 𝑅′ = {𝑟 ′1, ..., 𝑟
′
𝑚′},

each trajectory 𝑃 is divided into sub-trajectories 𝑝1, ..., 𝑝𝑚′−1 by
the 𝑚′ records. The scoring function is defined as compensated
geometric mean of the probability of each sub-trajectory.

𝑓 (𝑃) = exp
1

𝑚′ + 𝛼

𝑚′∑︁
𝑖=1

log Pr(𝑝𝑖 ), (7)

here 𝛼 > 0 is a hyper-parameter that compensates for the size of
𝑅′ so that a subset with more records is favored.

Finally, the records outside of the optimal subsets are recognized
as noises, and the dynamic embedding of noise records 𝒇𝑑𝑛𝑜𝑖𝑠𝑒 will
be update away from the average embedding of the non-noise
records 𝒇𝑑𝑛𝑜𝑛−𝑛𝑜𝑖𝑠𝑒 in the next iteration, i.e.

𝒇𝑑𝑛𝑜𝑖𝑠𝑒,𝑡+1 = 𝒇𝑑𝑛𝑜𝑖𝑠𝑒,𝑡 + 𝜆(𝒇
𝑑
𝑛𝑜𝑖𝑠𝑒,𝑡 − 𝒇𝑑𝑛𝑜𝑛−𝑛𝑜𝑖𝑠𝑒,𝑡 ), (8)

where 𝜆 is a hyper-parameter determining how much the noises
are moved away from non-noise records.

3.4.2 Complement. The complement step tries to add missing
records that mistakenly clustered into other clusters back to the
cluster that they truly belong to. Practically, there are two major
missing cases and two complement methods are designed respec-
tively.

The first case is called point-missing, where the recovered trajec-
tory passes through a camera but there is no corresponding record
in this cluster at that camera. Hypothesis 𝐻0 is that the vehicle is
not captured by the camera. Hypothesis 𝐻1 is that the vehicle is
captured but the record is not in the cluster. Either way, we search
for the record 𝑟𝑖 with the highest visual and plate similarity to the
cluster center in all the records at the camera that are marked as
noise of other clusters in the denoising step. We denote the previous
record and next record in the trajectory as 𝑟𝑖−1 and 𝑟𝑖+1, and denote
the capture rate of the camera as 𝑝𝑐 , which is calculated from the

dataset. The decision rule is

Pr(𝑟𝑖+1 |𝑟𝑖−1) (1 − 𝑝𝑐 )
𝐻0
⋛
𝐻1

Pr(𝑟𝑖 |𝑟𝑖−1) Pr(𝑟𝑖+1 |𝑟𝑖 )𝑝𝑐 . (9)

If 𝐻1 is accepted, record 𝑟𝑖 will be added to the cluster in the next
iteration 𝑡 + 1, and its dynamic embedding will be updated as the
cluster mean 𝒇𝑑𝑡 at current iteration 𝑡 .

𝒇𝑑𝑟𝑖 ,𝑡+1 = 𝒇𝑑𝑡 . (10)

The second case is called block-missing or batch-missing, where
the records of the same vehicle are scattered into several clusters in
the form of record blocks. It is very likely that the large blocks are
included in the optimal subset of their clusters and thus not detected
as noises. To recall these records, for each cluster, we search for
the clusters with high multi-modal similarities and test one by one
if merging the two clusters yields an optimal subset with a higher
score. If such an optimal subset is found, the records in the new
optimal subset from other clusters will be added to this cluster, and
their dynamic embeddings will be updated as the cluster mean the
same way as in Equation 10.

4 EXPERIMENTS
We conduct extensive experiments to evaluate the performance of
the proposed framework based on real-world data from traffic cam-
eras. In the experiments, we make efforts to answer the following
research questions:

• RQ1: How is the performance of our model compared with
different baselines in vehicle clustering and trajectory recov-
ery tasks?
• RQ2: How do different important modules influence the
performance of our model?
• RQ3: How do the parameter settings affect the model per-
formance?
• RQ4: How does the iterative approach play the role in prac-
tical scenarios?
• RQ5: How is our model used in practical applications in the
transportation system?

4.1 Dataset
We collect video footages in a day (8 a.m. to 8 p.m.) from 441 cameras
in a metropolis. The graph constructed from the map of the area
contains 2,966 edges and 1,263 nodes. The raw video footages are
preprocessed into cropped images of individual vehicles, based
on which 256-dimensional visual features and 256-dimensional
plate features are extracted. In total, the dataset contains 4,000,000
vehicle records, which are quadruples of visual feature, plate feature,
camera ID, and timestamp. The re-identification ground truth is a
set of 4,760 records as one of 197 vehicles. The trajectory recovery
ground truth is the GPS trajectory of the 197 vehicles map-matched
onto the road network.

We also sample a smaller dataset of 1 million records from the
complete dataset for a more comprehensive comparison of model
performance in terms of varying dataset sizes. The full dataset is
referred to as dataset D4M and the smaller one as dataset D1M.
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4.2 Experimental Settings
4.2.1 Metrics. For the evaluation of trajectory recovery, we use
common metrics including Longest Common SubSequence (LCSS),
Edit Distance on Real sequence (EDR), and Spatio-Temporal Linear
Combine distance (STLC) [15].

In addition, as the recovered trajectory is strongly affected by
clustering, we also evaluate the precision, recall, F1-score and ex-
pansion of clustering results. We denote the set of all clusters as
C = {𝑐1, ..., 𝑐𝑛}, and the set of ground truth vehicles as 𝑉 . For each
ground truth vehicle 𝑣 ∈ 𝑉 , we denote the set of records belonging
to 𝑣 as 𝑅(𝑣) and define 𝐶 (𝑣) = argmax𝑐∈C |𝑅(𝑣) ∩ 𝑐 |. Then the
average precision, recall, F1-score and expansion are formulated as

Precision =
1
|𝑉 |

∑︁
𝑣∈𝑉

|𝑅(𝑣) ∩𝐶 (𝑣) |
|𝐶 (𝑣) | . (11)

Recall =
1
|𝑉 |

∑︁
𝑣∈𝑉

|𝑅(𝑣) ∩𝐶 (𝑣) |
|𝑅(𝑣) | . (12)

F1-score =
Precision ∗ Recall
Precision + Recall . (13)

Expansion =
1
|𝑉 |

∑︁
𝑣∈𝑉

∑︁
𝑐∈C
I |𝑅 (𝑣)∩𝑐 |≠0 . (14)

4.2.2 Baselines. The task of recovering vehicle trajectories directly
from vehicle records captured by traffic cameras is a relatively new
problem, and only a few existing works have been done on this
problem.

Traditional re-identification models are not well designed or
optimized for their outputs to be used for trajectory recovery.
And without joint training or proper feedback mechanism, the
re-identification models cannot utilize information like the feasi-
bility of recovered trajectory to correct clustering results. As for
trajectory recovery models, they usually take as input the sparse
or noisy GPS trajectory of a single vehicle, while in our problem
the noises are misidentified records of other vehicles, which are
fundamentally different from the GPS sampling noise.

Therefore, for the baselines of this problem, we choose one re-
identification model and two representative high-performance mod-
els that can recover vehicle trajectories from vehicle records.

BNN [11] It is a strong baseline for deep person re-identification
with a novel batch normalization neck structure. We tailor this
method to our problem setting for vehicle feature extraction and
re-identification, and use the shortest path algorithm to recover
trajectories from clustering results.

VeTrac [17] It builds a weighted graph based on the visual simi-
larities of vehicle snapshots and employs a graph convolution pro-
cess that iteratively updates the representation of vehicle snapshots
according to the spatio-temporal similarities of the snapshots. We
replace the HDBSCAN clustering algorithm with K-Means because
even the most efficient HDBSCAN implementation1 we manage to
find cannot finish running on the dataset in a reasonable time.

MMVC [7] It uses an iterative framework to combine both vehi-
cle clustering and trajectory recovery tasks. It proposes a visual-
feature-based vehicle clustering process and then adopts an HMM
map-matching algorithm to recover vehicle trajectory given the
clustering results.
1https://github.com/scikit-learn-contrib/hdbscan

Dataset Method Precision Recall F1-score Expansion

D1M

BNN 0.5561 0.4269 0.4830 9.0355
VeTrac 0.7369 0.5624 0.6379 4.2944
MMVC 0.8621 0.7971 0.8283 3.8071
Ours 0.8890 0.8254 0.8560 3.7513
Gain 3.1% 3.5% 3.3% 1.5%

D4M

BNN 0.3613 0.4183 0.3877 9.3959
VeTrac 0.7093 0.5605 0.6262 5.3249
MMVC 0.8258 0.7705 0.7972 4.2335
Ours 0.8557 0.8158 0.8353 4.0203
Gain 3.6% 5.9% 4.8% 5.0%

Table 1: Performance comparison of our method and base-
lines in terms of clustering output.

Dataset Method LCSS EDR STLC

D1M

BNN 0.7590 33.52 0.5158
VeTrac 0.6984 21.62 0.5802
MMVC 0.6210 16.95 0.6478
Ours 0.5879 15.22 0.6753
Gain 5.3% 10.2% 4.2%

D4M

BNN 0.8301 57.72 0.4670
VeTrac 0.7091 27.94 0.5605
MMVC 0.6251 17.98 0.6381
Ours 0.5828 15.52 0.6665
Gain 6.8% 13.7% 4.5%

Table 2: Performance comparison of our method and base-
lines in terms of trajectory recovery.

Setting Precision Recall F1-score Expansion
CSP 0.8621 0.7971 0.8283 3.8071
CDSP 0.8973 0.7977 0.8446 4.1574
CRSP 0.8580 0.8214 0.8393 3.6345
CMSP 0.8823 0.8232 0.8517 3.6142

CFSP/FULL* 0.8890 0.8254 0.8560 3.7513
*FULL and CFSP only differ in trajectory recovery, not clustering.

Table 3: The clustering performance of different settings.

Setting LCSS EDR STLC
CSP 0.6210 16.95 0.6478
CDSP 0.6153 16.91 0.6513
CRSP 0.6191 18.52 0.6494
CMSP 0.6137 16.88 0.6564
CFSP 0.6137 15.81 0.6571
FULL 0.5879 15.22 0.6753

Table 4: The recovery performance of different settings.

4.3 Overall Performance (RQ1)
For a more comprehensive comparison, we evaluate both the clustering
results and final trajectory recovery results on datasets D1M and D4M.
The results are displayed in Table 1 and Table 2 respectively. We have the
following observations:

• Our method consistently outperforms all the baselines in both the
vehicle re-identification task and the trajectory recovery task across
various metrics on both the full-sized dataset D4M and the sampled
dataset D1M. The relative gain compared to the best baseline is
shown in the tables.
• As D4M introduces a huge amount of vehicles and their records, the
vehicle re-identification task becomes more challenging. An obvious
drop in performance can be seen in all the methods. However, our
method achieves an even greater gain in performance compared
to that of D1M, which indicates that our method is more robust
to noise and can better handle large-scale datasets and thus more
suitable for real-world applications.
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Setting Cluster Module Feedback Module Trajectory Recovery
Denoising Complement Miss-capture Shortest Path Spatio-temporal

CSP ✓ ✓

CDSP ✓ ✓ ✓

CRSP ✓ ✓ ✓

CMSP ✓ ✓ ✓ ✓

CFSP ✓ ✓ ✓ ✓ ✓

FULL ✓ ✓ ✓ ✓ ✓

Table 5: Settings for ablation study.

4.4 Ablation Study (RQ2)
To demonstrate the importance and contribution of each module to the
final performance of our method, we test our method in several cases as
summarized in Table 5.

The clustering performance of these settings on dataset D1M is
shown in Table 3 and the trajectory recovery performance is shown
in Table 4. We have the following observations:
• Comparing CSP and CDSP, we can see that the denoising
step effectively removes noisy records and improves cluster-
ing precision by 4.1%, and F1-score by 2.0%. The trajectory
recovery results are also improved as there is less interfer-
ence from inaccurate records.
• Compared with CSP, CRSP has a higher recall and F1-score.
The recall is improved by 3.0% and F1-score is improved by
1.3%. But its precision is slightly lower. This makes sense
as the act of merging clusters may introduce some noises
that not only are visually similar but also have a high spatio-
temporal likelihood score.
• Among CSP, CDSP, CRSP and CMSP, CMSP achieves the
highest recall and F1-score. It combines the strength of de-
noising and complement so that the noises introduced in
the complement step are removed in the next iteration of
denoising. And through the probabilistic modeling of the
cameras’ miss-capture, CFSP further improves the results.
• FULL achieves the best performance of all the above settings
in the trajectory recovery results. Compared with CFSP, the
incorporation of spatio-temporal information in trajectory
recovery greatly improves the accuracy of the results as the
maximum likelihood trajectories can better reflect real-life
driving behavior and drivers’ preference in road selection.

4.5 Parameter Analysis (RQ3)
One of the major parameters that influence the overall perfor-
mance is the multi-modal similarity threshold in the vehicle re-
identification module which determines how the clustering algo-
rithmmakes the trade-off between the precision and recall. Another
important parameter is the number of iterations which decides how
many times the spatio-temporal feedback is drawn from the recov-
ered trajectory and the dynamic embedding is updated accordingly.
We explore the effects of the two major parameters by fixing one
of them and adjusting another and comparing the clustering result.
The experiments are set on the D1M with all other parameters con-
sistent with the experiments carried out in the overall performance
part above.

Similarity Threshold. We fix the number of iterations as 3 and
vary the clustering similarity threshold from 0.6 to 0.95. The result
is shown in Figure 5. The precision and expansion monotonically
increase with the similarity threshold and recall monotonically
decreases as expected. As a result, the F1-score first rises and then
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Figure 5: The influence of similarity threshold.
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Figure 6: The influence of the number of iterations.
drops. Therefore, a moderate similarity threshold helps achieve a
suitable trade-off between precision and recall for a better F1-score.

Number of Iteration. We fix the similarity threshold as 0.8 and
vary the number of iterations from 0 to 7. From Figure 6, it can be
seen that the precision, F1-score, and recall overall keep increasing
during the first 5 iterations except for the subtle drops of precision
in the 4th iteration and recall in the 5th iteration. The trend of
the expansion curve also suggests that the first few iterations are
beneficial. This demonstrates the effectiveness of the proposed feed-
back module and iterative framework. The reason why precision
or recall can experience a subtle drop while F1-score rises is that
both noise detection and missing complement step can make some
mistakes. In general, the noise detection step increases precision at
cost of recall and the missing complement step increases recall at
cost of precision, while both of them boost the F1-score anyway.
For example, there is a major rise in recall during the 4th iteration
so that the precision drops a little. Another observation is that all
the metrics go worse when the number of iterations goes too large,
and this is because some hard cases exist so that the corresponding
noises or missing records cannot be detected and those detectable
records are already fixed during the first few iterations.

4.6 Case Study (RQ4)
To showcase the effectiveness of our iterative framework, we track
the clustering result and the corresponding recovered trajectory
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Figure 7: The initial result and the result after 3 iterations.
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Figure 8: An example of final output of the system, including
the recovered trajectory and related image records.

of a vehicle with ground truth clustering labels. As shown in Fig-
ure 7, the initial clustering result, which is fully based on visual
features, suffers from some noises and missing records. However,
during 3 iterations, where the feedback module detects noises and
complements missing records based on spatio-temporal constraints
contained in the recovered trajectory, 3 noises are removed and 5
missing records are complemented. Specifically, the 3 noises are far
away from true records so that the recovered trajectory between
noises and true records has a small feasibility score because of the
small speed likelihood and transition prior, and the block of 5 miss-
ing records is complemented when other clusters are merged into
this cluster because the extended optimal subset corresponds to a
more feasible recovered trajectory.

4.7 Practical Deployment (RQ5)
The system is deployed in a district of a city in China, processing
vehicle records from 673 cameras that cover an area of 76 km2. The
output trajectories are used by downstream applications, including
an intelligent traffic light control system which analyzes the vehicle
trajectories and adjust the phases of traffic lights. In average, the
vehicle speed is improved by 20%, and the travelling time is reduced
by 15.3%.

We showcase one of the recovered trajectories and the corre-
sponding captured images in Figure 8. All the 10 captured images
are retrieved from the massive dataset with millions of records.
Even though there are far-away records, the trajectory is mostly
correctly recovered, as can be seen by comparing the ground truth
(dashed red line) and the recovered trajectory (solid black line).

5 RELATEDWORK
5.1 Vehicle Re-identification
Vehicle re-identification (ReID) is an important task in intelligent
transportation systems, which distinguishes the same vehicle from
images or videos. Accurate ReID benefits many applications like
vehicle trajectory recovery. Several existing works focus on ReID
to distinguish the vehicle appearance features [1, 3, 10, 12, 27]. For
instance, Zapletal et al. [25] use 3D bounding box to extract key
vehicle features represented as color histogram and histogram of
oriented gradients. Wang et al. [19] propose an orientation invari-
ant feature embedding module to extract local region features of
different orientations, and a spatial-temporal regularization module
to model the spatial-temporal constraints. Recently, some works
incorporate spatio-temporal information into the task of vehicle
ReID. Liu et al. [9] exploit the spatio-temporal relations to re-rank
the vehicles to improve the performance of the vehicle ReID. Au-
thors in [14] propose to use visual-spatial-temporal path informa-
tion for vehicle identification based on a two-stage framework,
which employs a chain Markov random fields model to generate
visual-spatio-temporal path proposals, and then adopts a Siamese-
CNN+Path-LSTM model to calculate the similarity scores between
paths. Unlike them, in this work, an iterative framework is designed
to jointly optimize the vehicle ReID task and the vehicle recovery
task, where spatial and temporal constraints in the vehicle recovery
task are explored to guide the ReID process.

5.2 Vehicle Trajectory Recovery
The task of vehicle trajectory recovery is to recover high-sampling
trajectories from sparsely-sampled trajectories. Most works pro-
pose their approaches to solve vehicle trajectory recovery based on
GPS data from GPS-enabled mobile devices [24, 26]. Liao et al. [6]
synthesize routes for low sampling trajectories based on an Absorb-
ing Markov Chain model. Authors in [5] adopt the logit model to
infer the route traveled by vehicles based on the hidden Markov
model. Wu et al. [20] propose a route recovery system based on
probabilistic models that integrate both spatial and temporal con-
straints. Banerjee et al. [2] propose a network mobility model to
infer the vehicle trajectory by learning the mobility patterns that
capture spatial patterns and temporal properties from historical
trajectories. Recent works adopt deep learning techniques to tackle
the complex factors in the vehicle trajectory recovery [13, 18, 21].
For example, Ren et al. [13] propose a map-constrained trajectory
recovery model to recover the trajectories by utilizing the sequence-
to-sequence multi-task learning. Different from them, our work
studies the vehicle trajectory recovery based on the traffic camera
data, which records all the vehicles passed by in the road network.
Moreover, because of the low quality of videos or images captured
by traffic cameras, it is hard to identify the sparsely-sampled trajec-
tories for each vehicle. In other words, there are many noises in the
trajectory of a vehicle, which brings the challenge to recover the
trajectories. Thus, we propose to jointly optimize the vehicle ReID
and the vehicle recovery tasks. Although our previous work [7] at-
tempts to address it, it only performs the de-noise and complement
process based on the clustering results, which fails to implement
the iterative optimization systematically.
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5.3 Multi-camera Vehicle Tracking
Multi-camera vehicle tracking aims to track the same vehicle among
massive vehicles based on the vehicle images captured by cameras.
Several existingworks focus on tracking the targeted vehicles across
multiple cameras [4, 8, 16, 22]. For example, Tang et al. [16] build
the benchmark for multi-camera vehicle tracking based on a city-
scale traffic camera dataset. Yan et al. [22] adopt the multi-grain
ranking constraints to accurately search the vehicles with visually
similar appearances of vehicle images. In our work, we recover
the vehicle trajectories based on the intersection level no matter if
there are cameras at the intersections, which is the main difference
compared with the problem of multi-camera vehicle tracking.

6 CONCLUSION
We design a novel system to recover the vehicle trajectories based
on the video data from widely deployed traffic cameras. The core
of our system is an iterative framework to co-optimize both the
vehicle re-identification and trajectory recovery tasks. Specifically,
the vehicle re-identification task provides basic trajectory points
at the intersection level for trajectory recovery based on vehicle
visual features and dynamic spatio-temporal constraint features.
The trajectory recovery task adopts a probabilistic approach to
model spatio-temporal dependencies and vehicle miss problems
for the trajectory recovery, and provides the spatio-temporal in-
formation for the vehicle re-identification task. We conduct exten-
sive experiments to evaluate the effectiveness of our framework,
and the results demonstrate that the performance of the proposed
model is superior to the state-of-the-art methods. Importantly, we
also deploy our system in the practical applications of SenseTime,
China. This system can provide accurate results of both vehicle
re-identification and intersection-level vehicle trajectory recovery,
which benefits many important applications including traffic signal
control and congestion analysis.
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