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Counterfactual mobility network embedding
reveals prevalent accessibility gaps in U.S. cities
Yunke Zhang 1,7, Fengli Xu1,7, Lin Chen 2, Yuan Yuan1, James Evans 3,4, Luis Bettencourt 4,5,6 &

Yong Li 1✉

Living in cities affords expanded access to various resources, infrastructures, and services at

reduced travel costs, which improves social life and promotes systemic gains. However,

recent research shows that urban dwellers also experience inequality in accessing urban

facilities, which manifests in distinct travel and visitation patterns for residents with different

demographic backgrounds. Here, we go beyond simple flawed correlation analysis and reveal

prevalent accessibility gaps by quantifying the causal effects of resident demographics on

mobility patterns extracted from U.S. residents’ detailed interactions with millions of urban

venues. Moreover, to efficiently reveal micro neighborhood-level accessibility gaps, we

design a novel Counterfactual RANdom-walks-based Embedding (CRANE) method to learn

continuous embedding vectors on urban mobility networks with confounding effects disen-

tangled. Our analysis reveals significant income and racial gaps in mobility frequency and

visitation rates to sports and education venues. Besides, bachelor’s degree holders experience

greater mobility reduction during the COVID-19 crisis. With extensive experiments on

neighborhood-level accessibility prediction and visualizing accessibility gaps with embed-

dings vectors, we demonstrate that the counterfactual mobility network embeddings can

improve the explanatory capacity and robustness of revealed accessibility gaps by extending

them from aggregate statistics to individual neighborhoods and allowing for cross-city

knowledge transfer. As such, urban mobility networks can reveal consistent accessibility gaps

in the U.S., calling for urgent urban design policies to fill in the gaps.
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Introduction

Urban dwellers live together in a compact environment but
increasingly experience inequality in accessing urban
venues and taking advantage of urban opportunities,

which stems from the severe mobility gaps across gender,
socioeconomic, and ethnic groups (Barbosa et al., 2021; Gauvin
et al., 2020; Moro et al., 2021; Wang et al., 2018). Although
urbanization improves venue accessibility and stimulates eco-
nomic growth (Bettencourt, 2021), growing inequalities in urban
mobility threaten the fabric that holds urban society together,
affecting the livelihood and well-being of each resident (Glaeser
et al., 2008). Inequality in urban mobility is entangled with
multiple factors, including cultural experience and expectations
(Wang et al., 2018), financial circumstance (Moro et al., 2021),
and physical wellness (Althoff et al., 2017). As a result, measuring
inequalities in urban mobility and dissecting its underlying fac-
tors represents a challenging task, but one that must be completed
to meet UN sustainable development goals (SDGs) in reducing
inequality and building resilient cities (Griggs et al., 2013).

There has been an increasing interest in uncovering mobility
inequalities in urban spaces concerning various factors (Barbosa
et al., 2021; Carra et al., 2016; Dueñas et al., 2021; Frias-Martinez
et al., 2012; Gauvin et al., 2020; Graells-Garrido et al., 2020; Law,
1999; Lenormand et al., 2015; Macedo et al., 2022; Moro et al.,
2021; Ng and Acker, 2018; Ryan et al., 2015; Sallis et al., 2018;
Uteng, 2012). An important study (Law, 1999) defines the topic of
“gender and daily mobility” and reviews studies on this from the
early 70s. From a gendered perspective, a study in Chile finds that
women not only visit fewer unique locations than men but also
distribute their duration less equally (Gauvin et al., 2020).
Mobility related to specific travel behaviors such as travel distance
and the number of trips has been examined by gender in eight
cities in multiple countries (Ng and Acker, 2018), with findings
that women tend to travel shorter distances than men. Much
research has investigated the relationship between other demo-
graphic or socioeconomic features and urban mobility. Both
higher socioeconomic status (Frias-Martinez et al., 2012) and
younger age (Lenormand et al. 2015) strongly correlate with a
larger mobility range. A study in South America finds that
middle-class travelers exhibit the most diverse mobility patterns,
while the lower classes manifest limited spatial exploration
(Macedo et al., 2022). Regarding the response to the COVID-19
pandemic, poorer populations show lower reductions in mobility
level (Dueñas et al., 2021). Moreover, planned spatial factors play
an important role in urban mobility, with previous studies
revealing that improved access to public transportation infra-
structure (Ryan et al., 2015) and well-designed neighborhood
walkability (Sallis et al., 2018) can enhance mobility within
urban areas.

Existing studies providing evidence on inequality in urban
mobility, however, remain woefully inadequate due to limitations
in datasets. Many efforts rely on small-scale survey data that is
expensive to collect and difficult to scale up (Sharkey and Elwert,
2011). Some research attempts large-scale estimation via hypo-
thetical models defined on spatial proximity (Hasthanasombat
and Mascolo, 2019; Saxon, 2021), but this inevitably leads to bias
in analytic results. Recent burgeoning precise mobility data pro-
vide the chance to compensate for the above deficiencies (Kadar
et al., 2020; Moro et al., 2021). Here we measure accessibility gaps
based on large-scale mobility data provided by SafeGraph com-
pany. SafeGraph curates mobile device users’ traces to obtain
fine-grained visitations to urban facilities represented as Points-
of-Interest (POIs). Covering over 35 million residents’ visits to
more than 4 million POI in the U.S. from 2019 to 2020, the large-
scale and accurate mobility dataset can sufficiently measure gaps
in various mobility patterns that depict a resident’s capability to

exploit urban opportunities. Beyond data limitations, previous
works also suffer from research methodologies. Most of them rely
on correlation analysis between mobility patterns and a few
specific demographic factors (Barbosa et al., 2021; Gauvin et al.,
2020; Wang et al., 2018), which cannot control for confounding
effects in urban mobility and may lead to inaccurate conclusions.
Findings from correlation analysis are often based on aggregate
statistics and provide limited insights into the micro-level causes
of accessibility gaps. Therefore, it is important to tease apart
potential confounding factors and probe micro-level gaps.

In this study, We present a novel framework to quantify
accessibility gaps in six metropolitan areas of the US. We employ
a propensity score matching (PSM) method that estimates the
causal effects of demographic features on mobility patterns.
Specifically, we look at the causal effect of gender, race, income,
physical disability, and education background on mobility fre-
quency and urban facility accessibility across different neighbor-
hoods, which quantify the number of movements per person and
the likelihood of accessing different urban facilities, respectively.
Furthermore, we design a novel Counterfactual RANdom-walks-
based Embedding (CRANE) to learn representations for micro-
level accessibility gaps on urban mobility networks. Specifically,
we use random-walk sampling to efficiently assess the empirically
observed association between demographic and urban facility
accessibility and the alternative outcomes in counterfactual sce-
narios where the demographic does not have a causal impact.
Drawing on the difference between the observed and alternative
outcomes, our CRANE method can efficiently approximate the
causal inference result by treating them as positive and negative
samples in representation learning, respectively. The representa-
tions for neighborhoods and POIs allow us to go beyond aggre-
gate statistics and extend our analysis to their micro-level
behaviors, enriching our understanding of the causes underlying
accessibility inequality.

We observe interesting findings regarding mobility inequality
in the US. Neighborhoods with higher average income and a
higher portion of the white population consistently present higher
mobility frequency across different cities, which suggests these
sub-populations have superior access to urban facilities. Neigh-
borhoods with a higher portion of bachelor’s degree holders
consistently manifest greater mobility reductions in response to
the COVID-19 pandemic, which implies that these neighbor-
hoods can afford fewer outdoor activities, likely from elasticity
regarding their work format. Sports and education venues are
more likely visited by white and higher-income populations.
Extensive experiments demonstrate that neighborhood and POI
embeddings learned from counterfactual random walks on urban
mobility networks can improve the performance of accessibility
prediction compared to traditional correlation-based methods. A
case study on the POI level illustrates that our method success-
fully disentangles confounding effects between neighborhood
demographics.

Methods
Demographic dataset. We collect demographic data from the
2019 U.S. Census Bureau’s American Community Survey 5-year
Estimates (ACS) as the independent variable of mobility patterns.
In this dataset, features are reported at the level of census block
groups (CBGs), the smallest geographical unit for publicly avail-
able census data. In this study, we use CBGs as a proxy for
neighborhoods. We focus on the six most populated metropolitan
statistical areas (MSAs) in the U.S.: New York-Newark-Jersey City,
NY-NJ-PA (hereby referred to as the “New York” MSA, “NY” for
short), Los Angeles-Long Beach-Anaheim, CA ("Los Angeles”,
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“LA”), Chicago-Naperville-Elgin, IL-IN-WI ("Chicago”, “Chi”),
Dallas-Fort Worth-Arlington, TX ("Dallas”, “Dal”), Houston-The
Woodlands-Sugar Land, TX ("Houston”, “Hou”), Washington-
Arlington-Alexandria, DC-VA-MD-WV ("Washington DC”,
“DC”). The numbers of neighborhoods in each MSA are listed as
NCBG in Table 1.

Table 1 gives an overview of the average population �NP and the
number of households �NH of neighborhoods in each MSA. We
extract the following demographic features as potential con-
tributors to urban accessibility gaps: (1) Female ratio is the
proportion of female residents in each neighborhood, which is
used to analyze the potential gender gap in urban mobility
(Gauvin et al., 2020). (2) White ratio is the neighborhood’s
proportion of white population, which corresponds to the
previous finding that the c racial minorities experience social
isolation when traveling in the city (Wang et al., 2018). (3)
Bachelor ratio is the proportion of people over 25 years that have
a bachelor’s degree or higher, reflecting the real-world observa-
tion that people with different educational backgrounds are likely
to exhibit different mobility patterns. (4) Average income is the
household average income in the past 12 months, corresponding
to diverse mobility patterns associated with economic status
(Macedo et al., 2022; Šćepanović et al., 2015). (5) Disability ratio
is the proportion of households with at least one disabled resident
whose mobility capability is constrained by the quality of urban
infrastructure (Saha et al., 2021). The average values of the above
neighborhood feature in each MSA are reported in Table 1.

Mobility dataset. To reflect the heterogeneity in mobility patterns
across the city, we utilize SafeGraph’s Patterns dataset (https://
docs.safegraph.com/docs/monthly-patterns) and Core Places
dataset (https://docs.safegraph.com/docs/core-places). By track-
ing GPS-equipped mobile devices under consent, the Patterns
dataset aggregates visit counts from CBGs to POIs each month,
providing fine-grained mobility records of urban dwellers and
detailed information about POIs. It is worth mentioning that
workers at POIs are excluded from the visit counts, reflecting
residents’ subjective capability of accessing urban venues instead
of objective requirements. Across the six MSAs, the dataset
records 155 million visits paid to 758 thousand POIs every month
on average. The Core Places dataset identifies each POI’s category
under the North American Industry Classification Systems
(NAICS).

Combining the Patterns and Core Places datasets, we can
quantify mobility patterns associated with each neighborhood. In
this study, we adopt Amartya Sen’s capability analysis framework
(Sen, 1980), where equality is defined as a person’s basic
capability of being able to do certain basic things in the
environment, e.g. move or be clothed. From the perspective of
mobility, the capability of accessing and visiting more urban
venues is often linked with higher social status (Barbosa et al.,
2021; Chang et al., 2021; Chen et al., 2022; Lenormand et al.,
2015; Wang et al., 2011; Xu et al., 2018). Thus, we are devoted to
revealing the gap in two measures of urban mobility capability,
namelymobility frequency (NM) and urban facility accessibility.

First, to depict aggregate mobility capability for each
neighborhood, we calculate its mobility frequency (NM) as
follows. We sum the neighborhood’s visits over POIs located in
the MSA in three months (from July to September) to obtain the
total number of visits made by its residents and then normalize it
by the neighborhood’s population to obtain the average number
of visits per 100 residents. To study the mobility patterns
influenced by the COVID-19 pandemic, we further calculate the
mobility reduction ΔM by comparing NM in 2019 and 2020. The
average mobility frequencies �NM and mobility reductions ΔM forT
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neighborhoods in each MSA are listed in Table 1. We can observe
a consistent reduction in all analyzed MSAs, which reflects the
overall impact of social distancing and stay-at-home orders
during the pandemic.

Second, we calculate each neighborhood’s urban facility
accessibility, which is the proportion of its visits to a specific
category of POIs to its total visits NM. This pattern reflects urban
dwellers’ access to urban facilities. Specifically, we focus on four
representative categories, i.e., Art and Recreation, Sports,
Education, and Health. The average accessibility to four
categories in each MSA in 2019 is listed in Table 1 as “Art%”,
“Sports%”, “Edu%”, and “Health%”.

Preliminary analysis. We calculate the mobility patterns of each
neighborhood in the six most populated US metropolitan statis-
tical areas by the SafeGraph monthly patterns datasets covering
July through September in the years of 2019 and 2020. A simple
approach to measuring mobility inequality in an urban area is to
calculate the correlation between a neighborhood’s demographic
features and its mobility patterns (See Supplementary Fig. S1 for
the spatial distribution of mobility patterns and demographic
features in New York). Table 2 shows correlations between
mobility patterns and demographic features and their corre-
sponding significance levels (two-sided p-values) in New York
MSA as an example (See correlation tables of other MSAs in
Supplementary Table S1−5). Significant correlations indicate
mobility patterns vary substantially with the neighborhood’s
demographic features, indicating potential mobility inequalities.
For example, neighborhoods with a higher bachelor ratio are
correlated with higher mobility frequency. However, as observed
in Supplementary Fig. S1, the bachelor ratio is also positively
correlated with average income, which raises the concern of
confounding: the correlation between bachelor ratio and mobility
frequency might be sustained by their common correlations with
average income. To address this concern, our subsequent analysis
employs PSM to mitigate confounding bias and assess the impact
of each feature on mobility patterns independently.

Propensity score matching. We adopt the PSM method, a
matching method widely used in the causal inference literature
(Rosenbaum and Rubin, 1983), to estimate the causal effect of
demographic features on heterogeneous urban mobility patterns.
The procedure of this method is illustrated in Fig. 1.

The core concept is to account for potential confounding
factors denoted as covariates X by matching each neighborhood
with neighborhoods that share similar X values but differ in a
specific relevant demographic feature, referred to as the
treatmentT (Fig. 1A). The PSM procedure disentangles the
influence of confounding effects by creating a treatment group
comprising neighborhoods with comparable covariates X and
attributes the variations in mobility pattern within this group to
differences in the treatment level, i.e., differences in the relevant
demographic feature. However, exact matching based on high

dimensional covariates can be computationally expensive and
often leads to sparsity issues. To address this, we employ a
propensity score function b(X) to map covariates into a scalar
propensity score. Specifically, we first discretize the treatmentT
into five equally-sized bins, defined as treatment levels L(T).
Subsequently, we fit an ordinal regression model (McCullagh,
1980) to estimate propensity scores,

log
PðLðTÞ≤ L�Þ
PðLðTÞ>L�Þ ¼ θL� � wTX; ð1Þ

where L* represents the treatment level, and θL� along with w are
learnable model parameters. The ordinal regression model
satisfies the condition that treatment level L(T) and covariates
X are independent given b(X)=wTX. Therefore, We calculate
ŵTX as the estimated propensity score for each neighborhood,
with ŵ being the model’s fitted parameter. The distribution of X
conditioned on b(X) tends to be similar across different values of
L(T). As a result, the estimated propensity scores can be
employed as matching criteria. To perform matching, we define
the distance between two neighborhoods as the disparity in
estimated propensity scores divided by the difference in L(T).
Each neighborhood is then matched with its nearest neighbor
using this distance metric.

Once we have established pairs of matched neighborhoods
denoted asM= {(i, j)}, we estimate the average treatment effect of
T on a specific mobility behavior Y. This estimation is based on
the expected change in Y (which can represent mobility frequency
or urban facility accessibility) when the treatment level L(T) is
increased by one unit of level,

Average Treatment Effect ¼ 1
jMj ∑

ði;jÞ2M

Yi � Yj

LðTÞi � LðTÞj
: ð2Þ

A critical prerequisite for estimating unbiased treatment effects
of demographic features on mobility patterns is the selection of
covariates. In the PSM procedure, for each demographic feature
as the treatment, we choose other demographic features along
with the ratio of residents younger than 20 years and older than
60 years as covariates for the following reasons. First, all
demographic features can potentially influence urban mobility.
Previous studies have revealed disparities in urban mobility based
on gender (Gauvin et al., 2020), race (Wang et al., 2018),
economic status (Macedo et al., 2022), and disability (Saha et al.,
2021). Additionally, differences in mobility patterns among
different age groups are commonly observed in urban environ-
ments. Therefore, we consider all demographic features and age
distribution as potential covariates. Second, an important
characteristic of the urban environment is circular causality
(Bettencourt, 2021). Demographic features at the CBG level also
exhibit this characteristic. For example, CBGs with a higher
percentage of bachelor’s degree holders may attract residents with
higher-paying careers, resulting in a higher average income for
that CBG. Conversely, CBGs with better economic conditions
may be more appealing to highly educated residents, leading to an

Table 2 The correlation between demographic feature and mobility behavior in New York metropolitan statistical area.

Female% White% Bachelor% Income Disability%

NM2019 −0.037*** 0.111*** 0.054*** 0.132*** −0.003
ΔM −0.025** −0.067*** 0.076*** 0.035*** −0.040***
Art% 0.095*** −0.265*** −0.052*** −0.205*** 0.073***
Sports % −0.040*** 0.520*** 0.673*** 0.643*** −0.289***
Education % −0.026** 0.336*** 0.117*** 0.370*** −0.017*
Health % 0.061*** 0.020* −0.140*** −0.076*** 0.133***

Significance level: *p < 0.05; **p < 0.01; ***p < 0.001. Bold text indicates that the corresponding correlation coefficient has the opposite sign to the treatment effect.
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increased bachelor ratio. Therefore, for each treatment variable T,
we include the other demographic features along with the age
distribution within the CBG as covariates represented by vector
X. In each MSA, we employ PSM to estimate the average
treatment effects of five demographic features on mobility
patterns, including mobility frequency in 2019, its reduction in
2020, and urban facility accessibility to four POI categories.

Counterfactual random walk on urban mobility network.
While PSM estimation is effective, it has limitations as it can only
produce aggregate statistics at the MSA level, i.e., average treat-
ment effects. These statistics provide limited insights into the
micro-level mechanisms of mobility inequality and are not easily
applicable to downstream applications or analyses. Drawing

inspiration from recent studies that uncover gender disparities
using word embeddings (Garg et al., 2018), we develop a novel
representation learning algorithm to capture micro-level dis-
parities in facility accessibility using continuous embedding vec-
tors. Our approach involves conducting counterfactual random
walks on an urban mobility network to assess the empirical
association between a specific demographic feature and the
accessibility of a particular category of POI. We compare these
associations with alternative outcomes that would occur if the
demographic feature did not causally affect access to the POI
category. This process allows us to update corresponding
embeddings that preserve real-world gaps in accessibility data.

Specifically, we first construct an urban mobility network that
consists of four types of heterogeneous nodes, representing POI
categories, POIs, neighborhoods (CBGs), and demographic
features, shown in Fig. 2. There are three types of edges in the
constructed network, i.e., POI-category edges and neighborhood-
demographic edges that connect each POI and neighborhood to
its category and demographic feature, respectively, and POI-
neighborhood edges weighted by visitation frequency in mobility
data. In each random walk, we first select a POI category Q and
sample a specific POI Pi based on its total visitation frequency.
Then, we sample a neighborhood Co with probability propor-
tional to the edge weights wio between Pi and Co, normalized by
the out-degree of Co, i.e., Prob(Co∣Pi) ~ wio/∑kwko. It captures the
likelihood for neighborhood Co to visit that POI, i.e., the
accessibility of that urban facilities. Finally, we look up the value
of the interested demographic feature of Co as the observed
outcomeo. Following this procedure, we can sample a Q→ Pi→
Co→ o path that iteratively connects the POI category, POI,
neighborhood, and its demographic feature. It serves as a sample
of the empirically observed accessibility from the interested
demographic feature to a POI category.

Aside from the observed outcome, we sample a neighborhood
Ca as the alternative outcome in the counterfactual scenario that
the interested demographic feature does not have a causal effect
on the access to that POI category. Specifically, we mimic the

Fig. 1 A schematic representation of the propensity score matching method. A Treatment and covariates of urban CBGs. Treatment is stratified into 5
levels, denoted as L(T). B Estimation of propensity scores by fitting an ordinal regression on L(T) by covariates. C Matching two closest CBGs according to
their distance determined as the difference in propensity scores divided by the difference in L(T). D Calculating average treatment effect from matched
CBG pairs M.

Fig. 2 Illustration of counterfactual random walks on urban mobility
network. Starting from a POI category, a POI is sampled based on its total
visitation frequency and an observed neighborhood is sampled based on its
normalized visitation frequency to the sampled POI. An alternative
neighborhood is sampled from all neighborhoods that have covariates
identical to the observed neighborhood.
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matching process in PSM to sample a neighborhood Ca with the
same stratified covariates as Co and take its demographic feature
as the alternative outcomea. For instance, as shown in Fig. 2,
we randomly sample a neighborhood from the pool that has the
same stratified covariates as Co and take its female ratio as the
alternative outcome. Intuitively, the alternative outcome assesses
the counterfactual scenario that the demographic feature has no
causal impact on the accessibility to specific urban facilities, and
hence its distribution is solely conditioned on the covariates.
Therefore, if the observed outcome and alternative outcome follow
significantly different distributions, it indicates the counterfactual
scenario is unlikely and the demographic feature probably has a
causal effect, which provides a signal to update the node
embeddings.

Network embedding for mobility inequality. On top of the
sampled random walks, we seek to preserve the difference
between observed and alternative outcomes in the embedding
space to capture the gaps in urban facility accessibility. Specifi-
cally, the alternative outcomes serve as the negative samples that
the examined demographic feature does not have a causal impact.
Therefore, in each random walk, we maximize the embedding
similarity for the co-occurrences of observed outcome, observed
neighborhood, POI, and POI category, and minimize the
embedding similarity for the co-occurrences of alternative out-
come, alternative neighborhood, POI and POI category.

In each MSA, we learn an embedding vector for each of the
following entities: four POI categories, all POIs, all neighbor-
hoods, and all treatment levels of five neighborhood demographic
features. Observed outcomes and alternative outcomes are
represented as the vector of its corresponding treatment level
L(T). We train embedding vectors to minimize the following loss
function:

Loss ¼ ∑
fðc;P;Co;Ca;o;aÞg

� log σðvcT � voÞ � log σð�vc
T � vaÞ

� log σðvcT � vCo
Þ � log σð�vc

T � vCa
Þ � log σðvPT � voÞ

� log σð�vP
T � vaÞ � log σðvPT � vCo

Þ � log σð�vP
T � vCa

Þ;
ð3Þ

where {(c, P, Co, Ca, o, a)} is the set containing the sampled
category, POI, neighborhood, alternative neighborhood, observed
outcome, and alternative outcome walks, vc, vP, vCo

are the POI
category, POI, and neighborhood embedding vectors, σ( ⋅ ) is the
sigmoid function, vo and va are embedding vectors of observed
outcome and alternative outcome’s treatment levels, respectively.

Regularization terms are added to the loss function to achieve
spatial smoothness of neighborhood embeddings and continuity
in demographic feature embeddings. According to the First Law
of Geography (Miller, 2004), nearby things are more related to
one another. Two nearby neighborhoods should also be adjacent
to our embedding space. The spatial regularization term is the
weighted sum of squared distances between adjacent neighbor-
hoods in the embedding space. Weights are defined as
expð� d2

2σ2s ÞÞ=ð2πσ
2
s Þ for each pair of neighborhoods with distance

d less than a threshold σs. The demographic regularization term is
the sum of squared distances between adjacent L(T)’s in the
embedding space, e.g. the lowest and second-lowest level of
average income. We use the Adam optimizer (Kingma and Ba,
2015) to learn 64-dimensional embedding vectors for each
category, POI, neighborhood, and L(T) to minimize the loss
function (3). The spatial threshold σs is set to 2.5 kilometers, and
the strength of regularization is 0.0001 and 0.01 for spatial and
demographic feature continuity. See Supplementary Note S1.2 for
implementation details and complexity analysis of the algorithm.

Results
Consistent gaps in urban accessibility
Mobility frequency. The first row in Fig. 3 shows the estimated
treatment effects of demographic features on mobility frequency
in each MSA. Each panel represents the effects of one demo-
graphic feature on NM in six MSAs. Positive and negative effects
are indicated by blue and red columns, respectively. Whiskers
represent the 95% confidence interval of the treatment effect.
Significant gaps are indicated by dark columns with a confidence
interval on one side of the x-axis. According to Amartya Sen’s
capability analysis framework, increased mobility frequency sig-
nifies an enhanced capability to access and visit urban facilities.
Negative treatment effects on mobility frequency imply reduced
capability as the demographic feature increases within the
neighborhood.

From our analysis of treatment effects, we summarize three key
observations of mobility frequency gaps. First, neighborhoods
with higher average income have higher mobility frequency. In all
MSAs, treatment effects are over 30, implying that a neighbor-
hood with one unit higher L(income) will have approximately 30
more visits per 100 residents in three months. This is consistent
with previous findings that low-income residents have lower
mobility rates (Pucher and Renne, 2003), revealing an unignor-
able cost of moving around the city. Second, in terms of
education, neighborhoods with a higher proportion of bachelor’s

Fig. 3 The treatment effects on mobility frequency in 2019 and mobility reduction during COVID-19 pandemic. Each panel denotes the treatment effects
of one demographic feature on a mobility pattern in six MSAs. Blue and red bars indicate positive and negative effects, respectively. Whiskers correspond
to the 95% confidence intervals.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02570-5

6 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |           (2024) 11:87 | https://doi.org/10.1057/s41599-023-02570-5



degree holders demonstrate significantly lower mobility frequen-
cies in most MSAs. This negative effect is opposite to the positive
correlation reported in Table 2, underscoring the necessity of
controlling for confounding demographic features. This differ-
ence implies that among individuals with similar income levels
and other demographic characteristics, highly educated indivi-
duals access urban facilities less frequently. Third, neighborhoods
with a higher white ratio have significantly higher mobility
frequencies in most MSAs, which means that the white
population is clearly advantaged in accessing urban facilities.
This observation reveals the superior access to urban essential
facilities of the white population in these MSAs.

Mobility reduction during the COVID-19 pandemic. Since the
COVID-19 outbreak, authorities have issued mobility control
measures such as social distancing and stay-at-home orders to
request that urban dwellers reduce unnecessary travel. Although
we observe a consistent reduction in the overall mobility fre-
quency, such reduction is not experienced equally by all. To
measure this gap, we show the treatment effect of neighborhood
demographics on the reduction of mobility frequency in 2020 in
the second row of Fig. 3, where blue columns indicate that a
higher L(T) of the demographic feature results in a larger mobility
reduction.

We summarize two key observations as follows. First, we find
that neighborhoods with a higher bachelor ratio have greater
mobility reduction in all six MSAs. One explanation is that
highly-educated residents can more easily transition to telework
due to the nature of their occupations, e.g., working on personal
computers (Lund et al., 2020). In contrast, people with inferior
educational backgrounds are more likely to be essential workers
whose work cannot be performed remotely, such as building
cleaning and equipment maintenance. As a result, when public
health crises force people to reduce mobility, inequalities faced by
people of different educational backgrounds become exacerbated.

Second, we find that residents with different ethnicities are
unequally affected by the pandemic. Specifically, neighborhoods
with a higher white ratio have less mobility reduction in all 6

MSAs, which widens the pre-existing accessibility gap among
ethnic groups. This is likely because white populations have
superior access to urban facilities and opportunities, making them
more resilient to pandemic shocks.

Urban facility accessibility. The treatment effects of neighborhood
demographics on residents’ accessibility to four venue categories -
Art & Recreation, Sports, Education, and Health in the six most
populated MSAs are shown in Fig. 4.

Art and recreational venues are more accessed by neighbor-
hoods with a higher bachelor ratio. Treatment effects are over
0.2% in New York and Washington DC. This reveals a difference
in utilizing urban facilities of art and culture, with highly
educated residents more likely to visit these venues. Sports
facilities are more accessed by neighborhoods with higher average
income, bachelor ratio, white ratio, and lower disability rates.
This suggests that disabled residents have very limited access to
sports facilities.

Meanwhile, uneven access is also prominently associated with
income, race, and educational background. Educational POIs are
more accessed by neighborhoods with higher average income,
disability ratio, white ratio, and lower bachelor ratio. This
indicates that wealthy and white populations are most advantaged
in accessing educational facilities. Health services are more
accessed by neighborhoods with higher disability rates and female
ratios. This is reasonable as people with disabilities seek health
services and rehabilitation more frequently and females carry
more healthcare burdens. Surprisingly, neighborhoods with lower
average income also pay a higher ratio of visits to health services
in Chicago, Dallas, Houston, and Washington DC. It is likely
because wealthier people resort more often to doctor home visits
for care. This also reflects discrepancies in health status and
healthcare needs, as wealthier people are also more likely to
maintain better health with reduced onsite healthcare needs.

Besides identifying notable inequalities in mobility frequency
and urban facility accessibility, we find interesting results showing
how the PSM procedure alleviates confounding effects by
balancing covariates. For instance, bachelor ratio is negatively

Fig. 4 The treatment effects on the accessibility to four POI categories. Each panel denotes the treatment effects of one demographic feature on the
accessibility to a POI category in six MSAs. Blue and red bars indicate positive and negative effects, respectively. Whiskers correspond to the 95%
confidence intervals.
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correlated with art & recreation choice in the New York MSA.
After controlling for white ratio, the treatment effect of bachelor
ratio on art choice is positive. Cases where the treatment effect
reverses correlation direction are marked as bold in Table 2.
These reversals of direction demonstrate the importance of PSM
to identify inequalities from a causal perspective.

Counterfactual network embeddings
Justification of CRANE. We justify the effectiveness of CRANE by
examining two stages, the counterfactual random walk stage and
the network embedding learning stage, respectively.

First, we justify our proposed counterfactual random walk by
examining its consistency with PSM. In the design of the
counterfactual random walk, observed outcomes should charac-
terize the characteristics of neighborhoods with higher urban
facility accessibility. Therefore, for demographic features with
significant positive treatment effects on urban facility accessibility
given by PSM, observed outcomes are expected to be larger than
the alternative outcomes. We count the total number of pairs
among 77 demographic feature-POI category pairs that violate

this law on different sample sizes and draw their relationship in
Fig. 5A. We find that when we sample more random walks, the
violation percentage decreases rapidly and drops below 10% when
the sample size reaches 100,000. Thus, with a sufficiently large
sample size, the counterfactual random walk serves as an effective
approximation of the traditional PSM procedure. In the following
experiments, we sample 200,000 random walks for each category,
ensuring the credibility of our analysis.

Second, we evaluate the effectiveness of our embedding
algorithm by comparing each feature’s treatment effect on urban
resource access and the regression coefficient between L(T) and
its proximity with POI categories in the embedding space. We
measure proximities with the inner product between L(T) and
POI category’s embedding vectors. Regression coefficients are
listed in Table 3 (See Supplementary Table S6 for significance
levels). Insignificant treatment effects of demographic features on
urban facility accessibility are marked in white cells. Among 77
significant demographic-category pairs (p < 0.05), 92.2% (71)
pairs have identical directions in treatment effect with regression
coefficient marked by green cells. 6 pairs that have the opposite

Fig. 5 Demonstration of the convergence and effectiveness of CRANE. A Convergence with sample size. The percentage of difference with PSM results
decreases with the number of sampled random walks on the urban mobility network and is reduced under 10% when the sample size is over 200,000.
B 2D visualization of learned embeddings. Four category embeddings are fixed to be projected onto (0,1), (1,0), (0,-1), and (-1,0). Dashed arrows represent
the directions pointing to the highest L(T) from the lowest L(T)’s embedding in the projected 2D space of each demographic feature.

Table 3 Regression coefficients between each demographic feature and its proximity with POI categories in the
embedding space.

Significant inequalities in PSM analysis are highlighted, where the green (red) color indicates consistent (contradictory) directions.
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direction are marked in red cells. This result confirms the
consistency between the embedding algorithm and matching
analysis.

We further illustrate the proximity between the POI category
and demographic embeddings with the highest and lowest L(T) in
Chicago in Fig. 5B. Embedding vectors are projected to a 2D
plane where proximities are preserved. To better demonstrate
gaps in urban facility accessibility, we mark the direction from
lowest L(T) to highest L(T) for each demographic feature in the
plane. The visualization demonstrates (1) the association between
high L(bachelor%) and high accessibility to sports and educa-
tional facilities, and (2) the association between high L(white%)
and high accessibility to art and sports facilities. Based on the
above observations, the counterfactual network representation
learning method effectively captures MSA-level accessibility gaps
across neighborhoods of different demographic backgrounds.

Predictive analysis. Given that the learned embedding vectors can
successfully capture macro MSA-level treatment effects, we pro-
ceed to employ these vectors for predicting facility accessibility at
the micro neighborhood-level, thus confirming their ability to

capture causal relations in fine-grained accessibility gaps. Speci-
fically, we first conduct a within-city prediction task. In each
MSA, we randomly select 80% of the neighborhoods as the
training set, on which we perform counterfactual random walks
and the network embedding algorithm. We combine the raw
demographic features of each neighborhood with the dot pro-
ducts between their corresponding L(T)’s embedding vectors and
all category embedding vectors as the input for Multilayer Per-
ceptron (MLP) regression models to fit the neighborhood’s
accessibility to four categories from the training set. Then we test
the fitted models on the remaining 20% neighborhoods and
estimate performance as the average explained variance on five
train/test random splits (see Supplementary Notes S1.3 for
implementation details).

We compare CRANE to four baselines with different model
input combinations. The first baseline only utilizes the neighbor-
hood’s raw demographic features. The second baseline utilizes
both raw demographic features and aggregate statistics of urban
facility accessibility from the training set. For instance, if a
neighborhood has the highest L(white%), the average urban
facility accessibilities of all neighborhoods with the highest

Table 4 Predicting the urban facility accessibility of out-of-sample neighborhoods.

Category Input NY LA Chi Dal Hou DC

Art & Recreation mobility statistics 14.13% 3.04% 9.72% 8.17% − 2.50% 12.74%
LINE embedding 19.58% 4.44% 15.70% 8.40% 1.63% 20.00%
node2vec embedding 22.56% 4.72% 26.36% 7.68% 2.10% 18.84%
CRANE embedding 37.18% 3.65% 33.66% 8.56% 2.43% 20.27%

Sports mobility statistics 5.79% 0.57% 6.89% 5.16% 5.94% 3.35%
LINE embedding 4.97% 1.01% 7.61% 6.66% 7.92% 4.56%
node2vec embedding 4.71% 0.88% 7.12% 6.71% 8.17% 4.16%
CRANE embedding 5.98% 1.06% 7.94% 7.29% 8.36% 5.03%

Education mobility statistics 17.90% 7.79% 24.23% 8.58% 4.85% 10.54%
LINE embedding 20.72% 10.66% 30.16% 9.20% 10.26% 7.79%
node2vec embedding 23.49% 11.01% 28.15% 12.28% 11.25% 13.29%
CRANE embedding 35.39% 11.95% 31.54% 14.99% 10.16% 14.27%

Health mobility statistics 95.45% 277.39% 18.15% 27.07% 25.51% 39.90%
LINE embedding 78.44% 292.94% 21.61% 15.83% 34.46% 33.15%
node2vec embedding 100.61% 266.29% 19.39% 22.07% 36.78% 33.70%
CRANE embedding 105.14% 276.85% 22.36% 33.84% 44.34% 32.09%

The values show the relative improvement in explained variance compared to using raw demographic features as model input. Bold text indicates the most improved method for prediction performance.

Table 5 Predicting the urban facility accessibility of the neighborhoods in Chicago MSA by transferring the knowledge from
other MSAs.

Category Input NY LA Dal Hou DC

Art & Recreation mobility statistics 8.31% 6.36% 2.89% 7.80% 4.92%
LINE embedding 8.04% 11.79% 14.65% 11.12% 14.11%
node2vec embedding 18.05% 26.98% 26.38% 21.50% 21.72%
CRANE embedding 30.06% 30.26% 30.34% 26.52% 31.13%

Sports mobility statistics 5.46% 5.28% 4.75% 5.33% 5.14%
LINE embedding 6.81% 6.75% 6.92% 6.66% 6.73%
node2vec embedding 6.93% 6.85% 7.17% 7.48% 6.86%
CRANE embedding 7.80% 7.89% 7.71% 7.54% 7.61%

Education mobility statistics 12.98% 13.75% 11.97% 12.81% 14.16%
LINE embedding 29.31% 25.51% 31.35% 29.31% 33.07%
node2vec embedding 28.41% 27.40% 31.65 29.30% 30.84%
CRANE embedding 29.59% 30.00% 30.81% 29.41% 27.12%

Health mobility statistics 10.90% 15.70% 12.42% 17.45% 15.09%
LINE embedding 21.47% 20.46% 19.83% 21.16% 15.37%
node2vec embedding 21.65% 18.62% 18.30% 23.49% 13.86%
CRANE embedding 22.13% 22.04% 14.42% 11.43% 15.41%

The values show the relative improvement in explained variance compared to using raw demographic features as model input. Bold text indicates the most improved method for prediction performance.
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L(white%) in the training set are concatenated with this
neighborhood’s raw features as model input. The third and
fourth baselines utilize embedding vectors learned by two graph
embedding methods, namely LINE (Tang et al., 2015) and
node2vec (Grover and Leskovec, 2016). The two embedding
methods are correlation-based and do not incorporate specific
designs to account for causal relationships. We construct a
category-neighborhood-feature network with urban facility acces-
sibility as edge weights and use unsupervised versions of these
methods to learn embedding vectors that retain proximity. Dot
products between treatment level vectors and all category vectors
are combined with the neighborhood’s demographic features as
the input of regression models. The relative improvements of the
three methods compared with raw features are listed in Table 4.

Among all the methods considered, CRANE outperforms
others in 20 out of the 24 prediction tasks, particularly in the New
York, Chicago, and Dallas datasets. On average, CRANE
improves the explained variance in these tasks by 12.57%. This
underscores the benefit of employing a causal matching strategy
to learn embedding vectors for out-of-sample prediction tasks.
Unlike correlation-based methods which are susceptible to
confounding effects and distribution shifts between training and
test sets, CRANE’s counterfactual random walk strategy offers
greater stability in prediction performance by capturing
embedded micro-level causal relationships.

In addition to within-city prediction tasks, we further test
CRANE’s ability to transfer knowledge of micro-level accessibility
gaps across MSAs. Specifically, we utilize embedding vectors and
aggregate statistics learned from other MSA mobility networks to
predict urban facility accessibility in Chicago MSA (see
Supplementary Notes S1.3 for implementation details). Improve-
ments in explained variance compared with raw features as input
are listed in Table 5. Each column represents the performance of
transferring knowledge from another MSA to Chicago. Our
embedding methods achieve the best performance in 16 out of 20
tasks, especially in predicting art and sports choices. Conse-
quently, CRANE effectively distills knowledge pertaining to
micro-level accessibility gaps that are universal across MSAs,
thereby enhancing its capacity to generate insights with limited
data availability.

Visualizing maps of urban accessibility gap. Having demonstrated
CRANE’s effectiveness in capturing MSA- and neighborhood-
level accessibility gaps, we now assess its capacity to provide
micro POI-level insights through a case study in Houston. Sup-
pose we want to query the top 10 sports POIs preferred by high-
income neighborhoods. The first method is to directly look at the
mobility statistics and retrieve the top 10 sports POIs with the
highest accessibility from neighborhoods with the highest
L(income). The second method, i.e., our CRANE method, is to
retrieve the top 10 sports POIs whose embedding vectors have the
highest inner product with the embedding vector of the highest
L(income). As a comparison, we plot the spatial distribution of
queried POIs in Fig. 6. We use black, red, and blue colors to
denote POIs that are queried (1) by both methods, (2) only by
mobility statistics, and (3) only by CRANE embeddings.
Although all queried POIs are located within rich regions of the
city, the two methods make largely different choices. The reason
lies in a confounding variable, white ratio. In Houston, average
income and white ratio are positively correlated and they are both
positively correlated with accessibility to sports POIs. After dis-
tinguishing neighborhoods in Houston by the difference in their
L(income) and L(white%), we observe that most sports POIs
queried by mobility statistics (red pins) are located within regions
where L(income) and L(white%) are both high (white color). In
contrast, most sports POIs queried by embedding (blue pins) are

located within regions where L(income) is greater than L(white%)
(green color). This observation suggests that the advantage of
high L(income) in sports accessibility among low L(white%)
regions is captured and emphasized by CRANE, while unob-
served in mobility statistics. Therefore, our CRANE framework
can successfully untangle strong correlations between demo-
graphic features to generate POI-level causal representations.

Discussion
Traveling without limitation in the urban space is an essential
capability for urban dwellers to sufficiently exploit urban
opportunities. Our analysis of detailed mobility data covering two
years reveals significant gaps in mobility behaviors from various
demographic perspectives. Clear implications for urban planners
and researchers can be drawn from the findings.

We first quantify the neighborhood-level treatment effects of
demographic features on the mobility frequency before the
COVID-19 pandemic by PSM. Significant treatment effects with
identical direction among the majority of studied MSAs indicate
serious inequality in mobility frequency. Neighborhoods with
lower income have lower mobility frequencies. This is in line with
long-standing social issues in class inequality across the U.S.,
which impairs equal sharing in urban opportunity. Such a gap
might result from the interplay of the low-income group’s seg-
regation from the mainstream communities (Moro et al., 2021)
and the high cost of urban transportation (Barbosa et al., 2021).
In addition, the racial gap that neighborhoods with a more white
population have higher mobility frequency is observed in all six
MSAs but the capital city. Such class and racial inequalities in
mobility frequency raise the concern on equality of citizens
sharing opportunities in the urban space, calling for the design of
urban policies that mitigate them. When we control race, income,
and other confounding covariates, the bachelor ratio presents a

Fig. 6 The spatial distribution of queried POIs in Houston. We query
sports POIs by two methods - retrieving POIs with the highest accessibility
from high-income neighborhoods and POIs with the highest inner product
with the embedding of the highest L(income). Red, blue, and black pointers
represent POIs retrieved by the statistic method, embedding method, and
both methods. Compared with red pointers, blue pointers locate in regions
where the income level is greater than the white ratio level, capturing the
advantage of income on accessing sports POIs in low white ratio
neighborhoods.
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negative treatment effect in five MSAs. This evidence reflects the
small commuting burden for highly-educated citizens under
similar socioeconomic status. As opposed to the widely observed
gender inequality in urban mobility in other countries (Gauvin
et al., 2020; Ng and Acker, 2018), women’s mobility frequency is
not different from men’s significantly in US cities. Additionally,
we observe an insignificant treatment effect related to the dis-
ability household ratio, suggesting that urban spaces in the U.S.
offer relatively equal opportunities for all genders and are
accommodating for disabled individuals.

During the COVID-19 pandemic, mobility frequencies in large
U.S. cities drop around 25% due to lockdown policies and POI
shutdowns. By analyzing demographic features’ effects on the
reduction in mobility frequency in 2020, we reveal gaps in resi-
dents’ capability of responding to an abrupt outbreak of infectious
disease. Neighborhoods with a higher bachelor ratio reduce their
mobility frequency more drastically in all six MSAs. Similarly,
high-income neighborhoods also possess significant large mobi-
lity reductions in three MSAs. The above evidence reveals the gap
in the capability to positively respond to mandate lockdown
policies. Highly-educated people and people with better socio-
economic conditions have the advantage of accomplishing work
remotely and living with their savings. By contrast, the nature of
work for people with lower educational backgrounds requires
them to travel in cities despite the social distancing and lockdown
policies. The white population demonstrates better resilience
during the pandemic shock. Neighborhoods with a higher white
ratio have less mobility reduction in all six MSAs. This evidence
suggests that the mobility gap between the white population and
the minorities is exacerbated during the pandemic. The mino-
rities are gradually pushed to the fringes of society, losing their
rights and capability to exploit urban resources. Local govern-
ment could assign economic support to the population in need
and improve their remote working condition.

Furthermore, we analyze differences in residents’ accessibility
to different types of POIs. Both PSM and network representations
demonstrate differences in accessibility to various urban venues.
Sports venues are highly accessed by neighborhoods with higher
average income, higher bachelor ratios, and higher white popu-
lation ratios. Similarly, neighborhoods with higher average
income and higher white population ratios have a higher pro-
portion of visits to educational POIs. The class and racial gaps in
education and sports accessibility urgently require policies striv-
ing for low-cost and quality opportunities for being educated and
exercising for minorities and low-income populations. Neigh-
borhoods with higher disability ratio and female ratio have higher
urban facility accessibility to health POIs in New York, Chicago,
Dallas, and Houston MSAs, indicating a high level of healthcare
burden for women and people with disabilities.

Aside from the PSM method, we propose a counterfactual
random walk-based representation learning algorithm called
CRANE to capture the micro-mechanism of urban mobility
inequality in an embedding space. Within- and cross-city pre-
diction tasks confirm the effectiveness of the embedding vectors
performing better and more stable in the prediction of urban
facility accessibility. By querying proximity representation vectors
in the embedding space, we can visualize the micro-level causal
mechanism of gaps in urban facility accessibility. The effort of
capturing accessibility gaps by representation learning approaches
opens the door to understanding the micro-level mechanism of
inequality and applying representation vectors for more urban
tasks. For example, we can analyze POIs in which locations
possess the harshest racial gaps. POI recommendations and site
selection problems should also consider gaps in residents’
mobility patterns in the embedding space to promote equal access
to urban facilities.

It is possible that factors beyond our consideration may also
contribute to gaps in mobility patterns, including spatial factors
such as road network structures and the availability of public
transportation. Our current focus is on assessing accessibility gaps
across various demographic backgrounds. Given that demo-
graphic attributes largely determine residential choices and living
contexts (Clark, 1992; Wilson, 2006), we have not included spatial
factors as potential covariates that could confound demographic
features. In future research, natural experiments could be con-
ducted to analyze the impact of spatial factors on accessibility
gaps. Here, by combining large-scale mobility data and leveraging
causal analysis to balance key demographic covariates, we dra-
matically reduce confounding effects, providing an in-depth
understanding of inequality in urban mobility. In addition, with
the reopening policies and cancellation of mask mandates in years
after 2021, consumption, production, and life are back on track.
Future research can assess the inequality in the recovery of urban
mobility in the post-pandemic era, revealing gaps in citizens’
mobility resilience and how the pandemic shapes their mobility.

Overall, our study suggests that in urban planning and govern-
ance, more attention should be paid to ensuring equal accessibility
to urban venues so that a city can truly become a sustainable place
that “provides something to everybody” (Jacobs, 1961).

Data availability
The SafeGraph Monthly Patterns datasets that support the find-
ings in this study are available from SafeGraph through the
SafeGraph Data for Academics program. The availability of these
data is under strict restriction under the Data License Agreement
of SafeGraph. The data are used under the license for this study
and are not publicly available. The conditions and limitations of
access to the data can be found at https://www.safegraph.com/
academics. The demographic data can be publicly obtained from
U.S. Decennial Census and American Community Survey data at
https://www.safegraph.com/free-data/open-census-data. Codes
for reproducing the CRANE algorithm are available at https://
github.com/tsinghua-fib-lab/CRANE.
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