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ABSTRACT
The problem of cellular traffic generation in cities without histori-
cal traffic data is critical and urgently needs to be solved to assist
5G base station deployments in mobile networks. In this paper,
we propose ADAPTIVE, a deep transfer learning framework for
city-scale cellular traffic generation through the urban knowledge
graph. ADAPTIVE leverages historical data from other cities that
have deployed 5G networks to assist cities that are newly deploying
5G networks through deep transfer learning. Specifically, ADAP-
TIVE can align the representations of base stations in the target
city and source city while considering the environmental factors
of cities, spatial and environmental contextual relations between
base stations, and traffic temporal patterns at base stations. We next
design a feature-enhanced generative adversarial network, which
is trained based on the historical traffic data and representations
of base stations in the source city. By feeding the aligned target
city’s base station representations into the trained model, we can
then obtain the generated traffic data for the target city. Extensive
experiments on real-world cellular traffic datasets show that ADAP-
TIVE generally outperforms state-of-the-art baselines by more than
40% in terms of Jensen–Shannon divergence and root-mean-square
error. Also, ADAPTIVE has strong robustness based on the results
of various cross-city experiments. ADAPTIVE has been success-
fully deployed on the ‘Jiutian’ Artificial Intelligence Platform of
China Mobile to support cellular traffic generation and assist in the
construction and operation of mobile networks.

CCS CONCEPTS
• Networks → Network simulations; • Computing method-
ologies→Modeling and simulation; • Information systems
→ Spatial-temporal systems.
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1 INTRODUCTION
Mobile network infrastructures have evolved significantly over the
past few decades, moving from First Generation (1G) voice-only
networks to the present Fifth Generation (5G) ubiquitous connec-
tivity networks [1, 14]. 5G networks are recognized as providing
solutions for all applications, including networked vehicles [22], the
internet of things [8], augmented reality [34], virtual reality [30],
super-high quality online videos [27], and many more customized
services for subscribers. According to a report from the Global Mo-
bile Suppliers Association (GSA) [13], more than 70 countries had
been deploying 5G base stations by June 2022. At the same time, a
fundamental issue needs to be addressed urgently in deploying 5G
base stations: where and how to deploy 5G base stations.

The deployment of base stations traditionally relies on the expe-
riences of experts. Communication engineers manually plan out the
sites of base stations. Such a manual approach is limited by expen-
sive labor costs and cannot find optimal solutions for large-scale
areas, such as city-scale. Also, merely relying on human experiences
can easily result in a high mismatch between human traffic demand
and deployed base stations. Figure 1 shows the distribution of nor-
malized base station density and traffic volume of a provincial city
in China. We can observe a mismatch in region A, where the traffic
demand of users is relatively low, while the number of base stations
there remains high. This mismatch will lead to a waste of capital
and operating expenses in mobile networks. Hence, deploying base
stations according to the estimated traffic load is a more practical
approach, which has attracted wide attention from the industry.

Generating or estimating cellular traffic load for newly deployed
5G base stations is challenging due to the lack of historical data.
Notably, since 5G networks support a wider range of applications
compared to 4G networks, the traffic characteristics of 4G networks
differ from 5G networks [17]. As a result, historical data from 4G
networks is difficult to be applied to assist in the deployment of
5G networks. One possible and practical solution to address this
problem is to leverage the historical data from other cities that have
§Corresponding Author.
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Region A

(a) Normalized base station density.

Region A

(b) Normalized traffic volume.

Figure 1: Base station density and traffic volume. Relying on
human experiences alone results in a highmismatch between
traffic demand and deployed base stations in region A.

deployed 5G networks to assist cities that are newly deploying 5G
networks through deep transfer learning.

This paper aims to generate cellular traffic for cities without
historical data, i.e., the target cities, by leveraging the historical
data from other cities, i.e., source cities. Specifically, there are three
challenges to achieve this goal.

• How to build a bridge between the source city and the
target city for cellular traffic generation.We aim to leverage
the source city’s historical data for the target city’s cellular traffic
generation. As a result, one big challenge is finding a way to bridge
the source and target cities. The urban environment significantly
affects base stations’ traffic profiles. The urban environment affects
how mobile users behave online, such as using mobile apps, and
offline, like mobility behavior, which results in various cellular
traffic dynamics across base stations. Therefore, the first challenge is
how to effectively extract urban environmental factors and transfer
environmental knowledge between source and target cities.

• How to extract and represent relations between base
stations. Apart from environmental factors, the traffic profile of
one base station is still affected by nearby base stations. Following
Tobler’s first law of geography, base stations at a close distance
show similar traffic patterns. Meanwhile, base stations with similar
environmental contexts, such as surrounding point of interests, also
exhibit similar traffic patterns. Hence, we need to model both spatial
and environmental contextual relations between base stations and
transfer such relations across the source and target cities.

•How to transfer temporal patterns of base stations’ traffic.
The cellular traffic of one base station exhibits specific temporal
patterns. For example, base stations located in residential areas have
traffic that increases during the day, decreases during the night,
and peaks at around 8 p.m. because people generally go out to work
in the morning and return home at this time. For generating traffic
profiles of base stations, we also need to consider such temporal
patterns. Therefore, the last challenge is to transfer temporal traffic
patterns of base stations across the source and target cities.

To address the above challenges, we propose ADAPTIVE, an
urbAn knowleDge grAPhTransfer generatIve adVersarial nEtwork,
which is a deep transfer learning framework for city-scale cellular
traffic generation through the urban knowledge graph. Specifically,
we first construct an urban knowledge graph to model urban en-
vironmental factors for both source and target cities. The urban
knowledge graph takes urban content, such as point of interests
(POIs), regions, business areas, and base stations, as entities and

depicts how these entities relate to one another. Through a knowl-
edge graph embedding model, we can map the entities of both
source and target cities into the same latent space while the em-
beddings of entities retain the environmental knowledge of cities.
With the key design of the urban knowledge graph, we can bridge
the connection between the source and target cities and transfer
environmental knowledge to solve the first challenge. We next
leverage graph structure to represent the spatial relations between
base stations, where nodes represent base stations and two base
stations are connected through an edge if they are spatially close.
Moreover, we design a self-supervised task to extract the environ-
mental contextural relations between base stations. By applying a
graph neural network (GNN) on the base station graph and taking
urban knowledge graph embedding as initial features, we use the
representations of base stations to predict their surrounding POIs.
As a result, the base stations with similar environmental contexts
will have similar representations. By doing so, the second challenge
is solved. To solve the third challenge, we conduct a clustering anal-
ysis on the source city’s base stations according to their temporal
traffic profiles and then identify the central representations in each
cluster for typical temporal patterns. We then design an attention-
driven matching score to regulate the base stations’ representations
of target cities according to the central representations for trans-
ferring temporal patterns of base stations’ traffic. As a result, we
align the embeddings of base stations in the target city and source
city while considering the environmental factors of cities, spatial
and environmental contextual relations between base stations, and
traffic temporal patterns of base stations. After obtaining the final
representations of base stations in the target city, we feed them into
a conditional GAN trained with historical data from the source city
to generate cellular traffic for the base stations in the target city.

The contributions of our work can be summarized as follows.
• We investigate the problem of cellular traffic generation for

cities without historical data to assist 5G base station deployments.
To solve this problem, we propose using historical data from other
cities that have deployed 5G networks to assist cities that are newly
deploying 5G networks through deep transfer learning.

•We propose a new deep transfer learning framework, ADAP-
TIVE, for cellular traffic generation. ADAPTIVE can align the rep-
resentations of base stations in the target city and source city while
considering the environmental factors of cities, spatial and envi-
ronmental contextual relations between base stations, and traffic
temporal patterns of base stations.

• Extensive experiments on real-world cellular traffic datasets
show that ADAPTIVE generally outperforms state-of-the-art base-
lines by more than 40% in terms of Jensen–Shannon divergence and
root-mean-square error. Also, ADAPTIVE has strong robustness
based on the results of various cross-city experiments. ADAPTIVE
has been successfully deployed on the ‘Jiutian’ Artificial Intelligence
Platform of China Mobile to support cellular traffic generation and
assist in the construction and operation of mobile networks.

2 PRELIMINARIES
2.1 Traffic Patterns Across Base Stations
Many previous studies have demonstrated that base stations’ traffic
shows several patterns related to environmental context [28, 29, 38].
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Figure 2: Cellular traffic patterns under different environ-
mental contexts.

Each traffic pattern can be mapped to a class of geographic locations
relevant to regional functions, such as residential, office, transport,
and entertainment areas. Base stations in each type of area have
their specific traffic temporal patterns. In our paper, we conduct
clustering analysis on traffic profiles of Shanghai’s base stations and
observe four typical traffic patterns. Figure 2 shows the four traffic
temporal patterns derived from the Shanghai dataset. The four
temporal patterns differ in terms of when peak traffic volume occurs
and traffic volume on weekdays and weekends. For instance, as for
the base stations located in the residential area, the traffic volume is
higher at night than during the day because most people go out to
work in the morning and back home in the evening. As for the base
stations located in office areas, their traffic peaks during the daytime.
Also, the traffic volume on weekends is relatively lower than that
on weekdays because weekends are holidays and people do not go
to office areas. In addition, as for the base stations near subway and
bus stations, their traffic loads peak in the morning and evening
rush hour. Therefore, the environmental contexts of base stations
are essential factors that impact their traffic profiles. Base stations in
similar environmental contexts have similar traffic patterns and vice
versa. These findings motivate us to use environmental contexts as
a bridge between the source and target cities and to generate traffic
profiles of the base stations in the target city.

2.2 Urban Knowledge Graph
To characterize the environmental contexts of base stations, we
introduce an urban knowledge graph [33, 45]. A knowledge graph,
also known as a semantic network, depicts a network of real-world
entities and shows how they relate to one another. Similarly, the
urban knowledge graph takes urban content, such as base stations,
point of interests (POIs), and regions, as entities where spatial
and semantic dependencies are modeled as relations. Specifically,
there are six categories of entities in the urban knowledge graph:
base stations, POIs, regions, business areas, categories of POIs, and
brands of POIs. One base station is connected to other entities
with four relations. One base station is located at a region. One
base station belongs to a business area. A POI is served by a
base station. A base station borders another base station. We also
model semantic relations among other types of entities. For example,

Figure 3: The schema of the urban knowledge graph.

POIs belong to business areas, and business areas serve regions.
Figure 3 illustrates the schema of the urban knowledge graph that
encompasses the impact of urban environmental contexts on the
cellular traffic of base stations.

3 PROBLEM DEFINITION AND FRAMEWORK
OVERVIEW

3.1 Problem Definition
We give a formal mathematical definition of the cellular traffic
generation problem. LetX𝑆𝑅𝐶 = {𝑋𝑆𝑅𝐶

𝑖
}𝑁𝑆𝑅𝐶

𝑖=1 denote the historical
traffic data of the source city, where 𝑋𝑆𝑅𝐶

𝑖
represents the traffic

time-series of the 𝑖-th base station 𝐵𝑆𝑆𝑅𝐶
𝑖

in the source city and
𝑁𝑆𝑅𝐶 represents the number of base stations in the source city.
Also, we denote the urban knowledge graph of the source city
as G𝑆𝑅𝐶 = (E𝑆𝑅𝐶 ,R𝑆𝑅𝐶 , F 𝑆𝑅𝐶 ), where E𝑆𝑅𝐶 ,R𝑆𝑅𝐶 and F 𝑆𝑅𝐶
represent the sets of entities, relations, and facts, respectively. The
fact set includes triplets on factual knowledge, i.e., F = {(𝑒𝑠 , 𝑟 , 𝑒𝑜 ),
with 𝑒𝑠 , 𝑒𝑜 ∈ E𝑆𝑅𝐶 denoting subject and object entities respectively
and 𝑟 ∈ R𝑆𝑅𝐶 } denoting the relation between them. Similarly, we
denote the urban knowledge graph of the target city as G𝑇𝐺𝑇 =

(E𝑇𝐺𝑇 ,R𝑇𝐺𝑇 , F𝑇𝐺𝑇 ). Given the historical traffic dataset of the
source city X𝑆𝑅𝐶 and the urban knowledge graphs of the source
city G𝑆𝑅𝐶 and the target city G𝑇𝐺𝑇 , our goal is to generate city-
scale traffic X̂𝑇𝐺𝑇 for the base stations located in the target city.

3.2 Framework Overview
As a solution, we propose ADAPTIVE, a deep transfer learning
framework for city-scale cellular traffic generation through the
urban knowledge graph. We present an overview of our proposed
framework in Figure 4. There are four steps in our framework: (1)
knowledge graph embedding, (2) learning base station representa-
tions, (3) aligning base station representations, (4) cellular traffic
generation. The design and details of each step of our proposed
framework are given below in the following sections.

4 METHOD
4.1 Knowledge Graph Embedding
We construct urban knowledge graphs for both source and target
cities to model and extract the urban environmental factors, where
urban contents like base stations, regions, and POIs are modeled as
entities, and their spatial and semantic correlations are modeled as
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Figure 4: Framework overview. There are four steps in our framework: (1) knowledge graph embedding, (2) learning base
station representations, (3) aligning base station representations, (4) cellular traffic generation.

relations. Specifically, as shown in Figure 3, a base station is linked
to other entities via four types of relations in the urban knowledge
graph. 1) a base station is located at region; 2) a base station belongs
to a business area; 3) a base station serves a POI; 4) a base station
borders another base station.

To fully exploit environmental features modeled in urban knowl-
edge graphs, we first leverage knowledge graph embedding to
learn low-dimensional vectors (embeddings) of entities while pre-
serving their semantic meaning [23]. We adopt a commonly used
embedding model, TuckER [4]. TuckER is a state-of-art tensor fac-
torization method for knowledge graph embedding, outperforming
many translation-based models (e.g., TransE), bilinear models (e.g.,
ComplEx), and neural network models (e.g., ConvE) in practice.
TuckER model measures the plausibility scores based on the triplets
F = {(𝑒𝑠 , 𝑟 , 𝑒𝑜 )} in the urban knowledge graph and uses the cross-
entropy loss function for learning embeddings of graph entities.
By feeding urban knowledge graphs of the source city G𝑆𝑅𝐶 and
target city G𝑇𝐺𝑇 into the TuckER model, we then obtain the em-
beddings of base station entities 𝐸𝑆𝑅𝐶

𝐵𝑆
and 𝐸𝑇𝐺𝑇

𝐵𝑆
for the source city

and target city, respectively.

4.2 Learning Base Station Representations
To characterize the spatial relationships between base stations, we
construct base station graphs 𝐺𝑆𝑅𝐶

𝐵𝑆
and 𝐺𝑇𝐺𝑇

𝐵𝑆
for both the source

city and the target city, respectively. The base station graph is
a weighted attributed graph, denoted by 𝐺𝐵𝑆 = (𝑉𝐵𝑆 , 𝐴𝐵𝑆 , 𝐻𝐵𝑆 ).
Vertices 𝑉𝐵𝑆 represent base stations, adjacency matrix 𝐴𝐵𝑆 depicts
the geographical distance between base stations, and 𝐻𝐵𝑆 is the
set of initial feature vectors of base stations. In our case, we take
the embeddings of base station entities learned from the urban
knowledge graph as the initial features of vertices in the base station
graph. Specifically, a base station is connected with its top𝑀 closest
base stations. By denoting the geographical distance between base
station 𝑖 and 𝑗 as 𝐷𝑖𝑠𝑡 (𝑖, 𝑗), the weight of the edge connecting base
stations 𝑖 and 𝑗 , denoted by 𝐴𝐵𝑆 (𝑖, 𝑗), can be computed as,

𝐴𝐵𝑆 (𝑖, 𝑗) =
1/𝐷𝑖𝑠𝑡 (𝑖, 𝑗)

𝑚𝑎𝑥
𝑖, 𝑗

(1/𝐷𝑖𝑠𝑡 (𝑖, 𝑗)) , (1)

where the edge weights represents the normalized spatial similarity
between base stations and belongs to the interval [0, 1].

We next apply a graph neural network (GNN) on the base station
graph to embed graph structure information, i.e., spatial relations of
base stations, into the node features. The key idea of graph neural
networks is to aggregate features from neighbors of nodes. The
message-passing phase and the aggregating and updating phase
are the two stages that typically make up a GNN computation [44].
Specifically, a node passes its feature vector to its first-order neigh-
bors via the graph structure during the message-passing phase. In
the aggregating and updating phase, a node first aggregates the
representation vectors received from neighbors with its representa-
tion. The node then updates its representation with the aggregated
one. By increasing the network layers, each node can incorporate
information from higher-order neighbors and thus integrate graph
structure information into node representations. In our case, we use
the graph convolutional network (GCN) [26] to learn base station
representations. Thus, the representations of base stations of the
𝑙-th layer of graph convolutional network can be expressed as,

𝐻
(𝑙 )
𝐵𝑆

= 𝜎

(
𝐷
− 1

2
𝐵𝑆
𝐴𝐵𝑆𝐷

− 1
2

𝐵𝑆
𝑊 (𝑙 )𝐻 (𝑙−1)

𝐵𝑆

)
, (2)

where𝐻 (𝑙 )
𝐵𝑆

denotes the base station representations of the 𝑙-th layer
of graph convolutional network, 𝐷𝐵𝑆 denotes the degree matrices
for the base station graph, 𝜎 (·) denotes the sigmoid activation func-
tion, and𝑊 (𝑙 ) is the learnable weight matrix for the 𝑙-th layer. The
initial features of base stations are the embeddings of base station
entities learned from the urban knowledge graph, i.e., 𝐻 (0)

𝐵𝑆
= 𝐸𝐵𝑆 .

We next design a POI distribution reconstruction task to incorpo-
rate environmental contextual relations between base stations into
their representations, where GCN is trained to produce base station
representations to reconstruct the surrounding POI distributions of
corresponding base stations. In practice, we use a two-layer GCN
model and concatenate the output of each layer to form the final
representations of base stations,

𝑍𝐵𝑆 = [𝐻 (1)
𝐵𝑆
, 𝐻

(2)
𝐵𝑆

], (3)

where 𝑍𝐵𝑆 denotes the final representations of base stations and
[·] denotes the concatenation operation. We then apply a MLP to
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reconstruct the surrounding POI base station distributions,
ˆ𝑃𝐷 = MLP(𝑍𝐵𝑆 ), (4)

where ˆ𝑃𝐷 denotes the POI distributions predicted by theMLPmodel.
We then use the Kullback-Leibler divergence [25] to measure the
distance between the predicted distribution ˆ𝑃𝐷 and the ground
truth 𝑃𝐷 and take this as POI similarity loss L𝑃𝑂𝐼 ,

L𝑃𝑂𝐼 = 𝐾𝐿( ˆ𝑃𝐷, 𝑃𝐷), (5)

where 𝐾𝐿(·) denotes the Kullback-Leibler divergence. The ground
truth of POI distributions of base stations is obtained by counting
the number of POIs of each category within the coverage area of
each base station. As for the source city, its base station represen-
tations 𝑍𝑆𝑅𝐶

𝐵𝑆
are obtained by training GCN and MLP models with

the POI similarity loss, as depicted by the blue part of Figure 4.

4.3 Aligning Base Station Representations
We next conduct a clustering operation on the historical traffic time
series of base stations in the source city for explicitly capturing
traffic temporal patterns. After clustering, we obtain each base
station’s cluster labels, denoted by 𝐶𝐵𝑆 . We then compute the base
station representation of each cluster center as,

𝑧𝐵𝑆,𝑐 =
1

𝑁𝐵𝑆,𝑐

∑︁
𝑐𝐵𝑆𝑖 ==𝑐

𝑧𝑆𝑅𝐶𝐵𝑆𝑖
, (6)

where 𝑧𝐵𝑆,𝑐 denotes the central base station representation of the
cluster 𝑐 , 𝑁𝐵𝑆,𝑐 denotes the number of base stations in the cluster
𝑐 . As a result, 𝑍𝐵𝑆 = {𝑧𝐵𝑆,1, 𝑧𝐵𝑆,2, ...} depicts typical base station
representations for traffic temporal patterns.

To transfer temporal patterns of base stations’ traffic, we de-
sign an attention-driven matching score to align the base station
representations of the target city with the typical base station repre-
sentations of traffic temporal patterns. As for the 𝑖-th base station in
the target city 𝐵𝑆𝑇𝐺𝑇

𝑖
, we define its matching score as𝑀 (𝐵𝑆𝑇𝐺𝑇

𝑖
),

𝑀 (𝐵𝑆𝑇𝐺𝑇𝑖 ) =
exp(𝑠𝑖𝑚(𝑧𝑇𝐺𝑇

𝐵𝑆𝑖
, 𝑧𝐵𝑆,𝑘 ))∑𝐾

𝑗 exp(𝑠𝑖𝑚(𝑧𝑇𝐺𝑇
𝐵𝑆𝑖

, 𝑧𝐵𝑆,𝑗 )
, (7)

where 𝑧𝑇𝐺𝑇
𝐵𝑆𝑖

denotes the representation vector of the 𝑖-th base sta-
tion in the target city, 𝐾 denotes the number of clusters, and 𝑠𝑖𝑚(·)
denotes the cosine similarity. 𝑘 = argmax

𝑗

𝑠𝑖𝑚(𝑧𝑇𝐺𝑇
𝐵𝑆𝑖

, 𝑧𝐵𝑆,𝑗 ) denotes

the cluster having the highest cosine similarity to the representa-
tions with the base station 𝐵𝑆𝑇𝐺𝑇

𝑖
. Following the design of focal

loss, we define the pattern matching loss L𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ,

L𝑃𝑎𝑡𝑡𝑒𝑟𝑛 = −
∑︁
𝑖

(1 −𝑀 (𝐵𝑆𝑇𝐺𝑇𝑖 )) log(𝑀 (𝐵𝑆𝑇𝐺𝑇𝑖 )) . (8)

As for the target city, its base station representations 𝑍𝑇𝐴𝐺
𝐵𝑆

are
then obtained by training GCN and MLP models with both the POI
similarity loss L𝑃𝑂𝐼 and the pattern matching loss L𝑃𝑎𝑡𝑡𝑒𝑟𝑛 .

4.4 Cellular Traffic Generation
We propose a feature-enhanced generative adversarial network
(GAN) for cellular traffic generation [21]. As shown in Figure 5,
there are two parts of the inputs for the generation model: random
noise and representations of base stations. Similar to traditional
GAN [15], We input random noise to introduce the randomness of
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Figure 5: Traffic generation model.

base stations for traffic generation. In addition to the noise, repre-
sentations of base stations also act as a part of inputs, providing
conditions for traffic generation. We leverage a multi-generator
structure to capture the daily pattern and weekly pattern of the
traffic time series. We train the feature-enhanced generative adver-
sarial network with Wasserstein loss [2] based on the historical
traffic data and representations of base stations in the source city.
By feeding the noise and the target city’s representations into the
trained model, we can obtain the generated traffic data for the target
city.

5 EXPERIMENTS
5.1 Experimental Settings
In this section, we conduct extensive experiments on multiple traf-
fic datasets collected from real-world mobile networks and com-
pare the performance of our proposed method, ADAPTIVE, with
state-of-the-art baselines. We also run ablation studies to verify the
effectiveness of individual modules and test the model’s robustness
across different cities. The experiments are performed on the Jiutian
Artificial Intelligence Platform.

5.1.1 Dataset. We collected three large-scale cellular traffic datasets
from three Chinese cities: Shanghai, Nanjing, and Beijing.

• Shanghai The dataset covered the network traffic data of 5,326
base stations in Shanghai and was collected over one month in 2021.
The traffic information of each base station is collected every hour.

• Beijing. The dataset covered the network traffic data of 4,351
base stations in Beijing and was collected over one week of October
2021. The records of each base station are collected every hour.

• Nanjing. The dataset covered the network traffic data of 6,890
base stations in Nanjing andwas collected over one week of October
2021. The records of each base station are collected every hour.

5.1.2 Baselines. We compare our proposed model with the fol-
lowing three baselines. Notably, we evaluate each model with four
different kinds of inputs: 1) noise vectors only, 2) noise vectors and
urban knowledge graph embedding 𝐸𝐵𝑆 , 3) noise vectors and POI
distribution vector 𝑃𝐷 , 4) noise vectors and base station represen-
tations learned by our model 𝑍𝐵𝑆 .

• TransGAN. TransGAN [24] is a transformer-based GAN that
combines a multi-scale discriminator to concurrently capture low-
level textures and semantic contexts with a generator using trans-
former blocks that gradually enhance feature resolution. We change
the transformer block sizes for cellular traffic generation.
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Table 1: Traffic generation performance when Shanghai is the source city and Nanjing and Beijing are the target cities. Bold
denotes the best results and underline denotes the second-best results. ‘𝐸𝐵𝑆 ’ stands for using urban knowledge embedding 𝐸𝐵𝑆
for transfer learning. ‘𝑃𝐷 ’ stands for using POI distribution vectors of base stations for transfer learning, and ‘𝑍𝐵𝑆 ’ stands for
using the base station representations learned by our model for transfer learning.

Cities Shanghai (Source) → Nanjing (Target) Shanghai (Source)→ Beijing (Target)

Methods Traffic Volume First-order
Difference

Daily Periodic
Component

Traffic Volume First-order
Difference

Daily Periodic
Component

JSD Δ JSD Δ RMSE Δ JSD Δ JSD Δ RMSE Δ

Trans 0.5378 47.79% 0.1656 160.38% 0.0587 12.67% 0.5869 104.49% 0.1857 166.05% 0.1021 63.1%
Trans+ 𝑃𝐷 0.5101 40.18% 0.1666 161.95% 0.0594 14.01% 0.5743 100.1% 0.1851 165.19% 0.1031 64.7%
Trans+ 𝐸𝐵𝑆 0.5307 45.84% 0.1564 145.91% 0.0589 13.05% 0.5883 104.98% 0.1749 150.57% 0.1024 63.58%
Trans+ 𝑍𝐵𝑆 0.5140 41.25% 0.1540 142.14% 0.0566 8.64% 0.5759 100.66% 0.1575 125.64% 0.1023 63.42%

RNN 0.7294 100.44% 0.0863 35.69% 0.0567 8.83% 0.7103 147.49% 0.1846 164.47% 0.1054 68.37%
RNN+ 𝑃𝐷 0.5914 62.52% 0.1328 108.81% 0.0638 22.46% 0.6613 130.42% 0.0944 42.41% 0.1079 72.36%
RNN+ 𝐸𝐵𝑆 0.6226 71.09% 0.0931 46.38% 0.0523 0.38% 0.7026 144.81% 0.0766 9.74% 0.1010 61.34%
RNN+ 𝑍𝐵𝑆 0.5913 62.49% 0.1328 108.81% 0.0638 22.46% 0.6613 130.42% 0.0944 35.24% 0.1078 72.2%

TCN 0.7626 109.56% 0.1426 124.21% 0.1289 147.41% 0.5774 101.18% 0.1853 165.47% 0.1076 71.88%
TCN+ 𝑃𝐷 0.5945 63.37% 0.1328 108.81% 0.1036 98.85% 0.4259 48.4% 0.0995 42.55% 0.1016 62.3%
TCN+ 𝐸𝐵𝑆 0.7814 68.73% 0.1085 70.6% 0.0927 77.93% 0.8513 196.62% 0.0858 22.92% 0.0965 54.15%
TCN+ 𝑍𝐵𝑆 0.5674 55.92% 0.0963 51.42% 0.0847 62.57% 0.4133 44.01% 0.0844 20.92% 0.0841 34.35%

ADAPTIVE 0.7173 97.11% 0.1047 64.62% 0.0516 -0.96% 0.5703 98.71% 0.1454 108.31% 0.0890 42.17%
ADAPTIVE+ 𝑃𝐷 0.5853 60.84% 0.0998 56.92% 0.0540 3.65% 0.5045 75.78% 0.0679 -2.72% 0.0698 11.5%
ADAPTIVE+ 𝐸𝐵𝑆 0.4985 36.99% 0.0972 52.83% 0.0470 -9.79% 0.3444 20.0% 0.1782 155.3% 0.0712 13.74%
ADAPTIVE+ 𝑍𝐵𝑆 0.3639 0 0.0636 0 0.0521 0 0.2870 0 0.0698 0 0.0626 0

• LSTM-based GAN. Long short-term memory (LSTM) [19] is
of the recurrent neural network structure renowned for storing
historical values across variable periods. Two LSTMs are used as
the generator and discriminator in constructing the GAN.

• TCN-based GAN. We construct a GAN using temporal con-
volutional networks (TCNs) [3] as the generator and discriminator
for cellular traffic generation.

5.1.3 Metrics. We evaluate our model via the following metrics:
Traffic Volume. We evaluate the distribution of traffic volume

for the generated cellular traffic by comparing with the real distri-
bution. Jensen–Shannon divergence (JSD) [12] is a commonly used
metric to describe the similarity between two distributions, which
is defined as,

𝐽 𝑆𝐷 (X̂𝑇𝐺𝑇 ,X𝑇𝐺𝑇 ) =

√︄
𝐾𝐿 (X𝑇𝐺𝑇 ∥ X̂𝑇𝐺𝑇 ) +𝐾𝐿 (X̂𝑇𝐺𝑇 ∥ (X𝑇𝐺𝑇 )

2
, (9)

where X𝑇𝐺𝑇 represents the real data, X̂𝑇𝐺𝑇 represents the gener-
ated data, and KL(·) is the Kullback-Leibler divergence. A lower
JSD implies a better generation model since the distribution of the
generated data is more similar to the real data.

First-order Difference. To evaluate the variation between ev-
ery two adjacent generated traffic point, we compute the first-order
difference of time series, denoted by X̂𝑇𝐺𝑇

𝑑
= 𝑥𝑇𝐺𝑇

𝑡+1 − 𝑥𝑇𝐺𝑇𝑡 . We
then compute the JSD between the first-order differences of gener-
ated datasets and their corresponding real dataset.

Daily Frequency Component. We evaluate the daily periodic-
ity of the generated traffic via calculating daily frequency compo-
nent. Firstly, we compute the frequency of each generated cellular
traffic time series X̂𝑇𝐺𝑇 , which is denoted as 𝐹 = 𝐹𝐹𝑇 (X̂𝑇𝐺𝑇 ).
𝐹𝐹𝑇 (·) denotes the fast Fourier transform operation [18], which

extracts frequency components of time series. We then compute
the root-mean-square error (𝑅𝑀𝑆𝐸) between the generated one and
the real cellular traffic series on daily frequency component 𝐹 =

𝐹𝐹𝑇 (X𝑇𝐺𝑇 ), which can be denoted as 𝑅𝑀𝑆𝐸 (𝐹, 𝐹 ) =
√︃
(𝐹 − 𝐹 )2.

5.2 Overall Performance Evaluation
Table 1 shows the experimental results of the proposed model
and the baseline model on the task of cellular traffic generation,
where Shanghai is the source city, and Nanjing and Beijing are
the target cities. ‘Trans’ represents TransGAN with noise vectors
only inputs. ‘RNN’ represents RNN-based GAN with noise vectors
only inputs. ‘TCN’ represents TCN-based GAN with noise vectors
only inputs. ‘ADAPTIVE’ represents our proposed model. ‘𝐸𝐵𝑆 ’
stands for using urban knowledge embedding 𝐸𝐵𝑆 for transfer
learning. ‘𝑃𝐷’ stands for using POI distribution vectors of base
stations for transfer learning, and ‘𝑍𝐵𝑆 ’ stands for using the base
station representations learned by our model for transfer learning.

In most cases, the base station representations, learned by our
model as a transfer bridge to link the source city and target city,
perform the best to improve each model’s performance on the traf-
fic generation for the target city. Also, the generation models with
knowledge graph embeddings have a relatively good performance,
demonstrating the effectiveness of leveraging the urban knowledge
graph to extract urban environmental factors and transfer envi-
ronmental knowledge between source and target cities for cellular
traffic generation. Specifically, according to the JSD of traffic volume
and the JSD of the first-order differences, our model ADAPTIVE
provides the best result. This indicates that our model outperforms
the other models in capturing both cellular traffic volume distribu-
tion and traffic time series changing trends. RNN-based GAN also
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Figure 6: Comparisons of traffic generation results on different functional regions.
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Figure 7: Sensitivity to the training data size by changing the
proportion of base stations in the training dataset.
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Figure 8: Sensitivity to the scale of knowledge graphs by
changing the proportion of POIs in the knowledge graph.

has an acceptable performance in terms of the first-order difference
metric since it is good at capturing short-term changes. As for daily
periodicity, our model still outperforms the other models, proving
that we can successfully learn and transfer the daily traffic temporal
patterns across the source and target cities.

We also conduct a case study, which selects four functional re-
gions, residential area, office area, entertainment area, and transport
area, in the target city, and compares the generated traffic and real
one across different functional regions. As shown in Figure 6, we can
observe apparent daily and weekly traffic temporal patterns of gen-
erated traffic data. The temporal patterns of the traffic time series
generated by our model are consistent with real traffic. This veri-
fies that the traffic temporal patterns are successfully transferred
from the source city to the target city across different functional
regions, demonstrating the effectiveness of the key designs of the
knowledge graph module and attention-driven matching score.

5.3 Ablation Studies
We next conduct ablation studies to test the sensitivity of our
method for the training data size, the scale of knowledge graphs,
the number of traffic pattern clusters, and the dimension of base
station representations.

Training data size: We test how the generation performance
of ADAPTIVE changes with the training data size by varying the
number of base stations in the training dataset, where Shanghai is
the source city and Beijing is the target city. As shown in Figure 7,
the model performance improves with the increase in the number
of base stations in the training set. Notably, the model performance
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Figure 9: Sensitivity to the number of traffic pattern clusters.
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Figure 10: Sensitivity to the dimensions of base station rep-
resentations.

increases dramatically at the initial stage when the proportion of
base stations increases from 0 to 40%. After that, there is a plateau
stage. However, when the proportion exceeds 80%, the model per-
formance continues to increase. These findings indicate that our
model does not have overfitting problems due to unsupervised clus-
tering to classify different temporal patterns. Also, if we cannot
collect over 80% of base stations’ historical data due to time and
expenditure costs, then collecting 40% of base stations’ historical
data is the most cost-effective option.

Scale of urban knowledge graphs: We next investigate how
the generation performance of ADAPTIVE changes with the scale
of urban knowledge graphs by randomly removing the POI entities
in the target city, where Shanghai is the source city and Beijing is
the target city. As shown in Figure 8, our method is highly sensitive
to the amount of knowledge introduced into the target city. Only
with complete urban environment information, the ADAPTIVE
can achieve the best transfer performance. As a result, compared
with the scale of historical data, environmental factors play a more
critical role in the traffic generation task.

Number of traffic pattern clusters: We set the number of
clusters as 2, 4, 8, 16, 32, and 64, respectively. As shown in Figure 9,
the performance first increases as the number of cluster categories
increases because, in this range, increasing clusters can clearly dis-
tinguish the temporal pattern difference between clusters, namely
having a low inter-cluster distance while a high intra-cluster dis-
tance. However, if we continue to increase the number of clusters,
the performance will degenerate. That is because too many clusters
will make the difference between clustered patterns smaller and
make it difficult for the model to learn the correct pattern.
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Table 2: Traffic generation performance when Beijing is the source city and Shanghai and Nanjing are the target cities.

Cities Beijing (Source)→ Shanghai (Target) Beijing (Source)→ Nanjing (Target)

Methods Traffic Volume First-order
Difference

Daily Periodic
Component

Traffic Volume First-order
Difference

Daily Periodic
Component

JSD Δ JSD Δ RMSE Δ JSD Δ JSD Δ RMSE Δ

Trans 0.4258 131.16% 0.1429 54.65% 0.0731 -0.14% 0.5310 58.89% 0.1656 161.67% 0.0819 94.54%
Trans+ 𝑃𝐷 0.4040 119.33% 0.1409 52.49% 0.0740 1.09% 0.5100 52.6% 0.1666 161.83% 0.0594 41.09%
Trans+ 𝐸𝐵𝑆 0.4303 133.6% 0.1277 38.2% 0.0730 -0.27% 0.5307 58.8% 0.1564 148.74% 0.0589 39.9%
Trans+ 𝑍𝐵𝑆 0.3979 116.02% 0.0988 6.93% 0.0734 0.27% 0.5134 53.62% 0.1540 154.1% 0.0574 36.34%

RNN 0.6584 257.44% 0.0709 -23.27% 0.0796 8.74% 0.7293 118.22% 0.0862 35.96% 0.0566 34.44%
RNN+ 𝑃𝐷 0.5043 173.78% 0.1311 41.88% 0.0786 7.38% 0.6154 84.14% 0.1427 125.08% 0.0737 75.06%
RNN+ 𝐸𝐵𝑆 0.5219 183.33% 0.1336 44.59% 0.0848 15.85% 0.7129 113.32% 0.0774 22.08% 0.0587 39.43%
RNN+ 𝑍𝐵𝑆 0.5042 173.72% 0.1311 41.88% 0.0786 7.38% 0.5914 76.96% 0.1322 108.52% 0.062 47.27%

TCN 0.5849 217.54% 0.1344 45.45% 0.0784 7.1% 0.8416 151.83% 0.1019 60.73% 0.0636 51.07%
TCN+ 𝑃𝐷 0.4592 149.29% 0.0669 -27.6% 0.0784 7.1% 0.6013 79.92% 0.1097 73.03% 0.0636 51.07%
TCN+ 𝐸𝐵𝑆 0.4252 130.84% 0.0979 5.95% 0.0780 6.56% 0.8242 146.62% 0.1443 127.6% 0.0537 27.55%
TCN+ 𝑍𝐵𝑆 0.3770 104.67% 0.0734 -20.56% 0.0784 7.1% 0.4739 41.8% 0.1023 61.36% 0.0636 51.07%

ADAPTIVE 0.3247 76.28% 0.1304 41.13% 0.0641 -12.43% 0.5561 66.4% 0.1710 169.72% 0.0517 22.8%
ADAPTIVE+ 𝑃𝐷 0.6250 239.31% 0.1119 21.1% 0.0457 -37.57% 0.7109 112.72% 0.1444 127.76% 0.0363 -13.78%
ADAPTIVE+ 𝐸𝐵𝑆 0.2304 25.08% 0.0729 -21.1% 0.0658 -10.11% 0.4951 48.14% 0.1311 106.78% 0.0457 8.55%
ADAPTIVE+𝑍𝐵𝑆 0.1842 0 0.0924 0 0.0732 0 0.3342 0 0.0634 0 0.0421 0

Table 3: Traffic generation performance when Nanjing is the source city and Beijing and Shanghai are the target cities.

Cities Nanjing (Source) → Beijing (Target) Nanjing (Source)→ Shanghai (Target)

Methods Traffic Volume First-order
Difference

Daily Periodic
Component

Traffic Volume First-order
Difference

Daily Periodic
Component

JSD Δ JSD Δ RMSE Δ JSD Δ JSD Δ RMSE Δ

Trans 0.5869 185.46% 0.1857 125.64% 0.1021 89.78% 0.4173 165.46% 0.1326 79.67% 0.0713 -9.06%
Trans+ 𝑃𝐷 0.6734 227.53% 0.1894 130.13% 0.1037 92.75% 0.3946 151.02% 0.1266 71.54% 0.0720 -8.16%
Trans+ 𝐸𝐵𝑆 0.6814 231.42% 0.1803 119.08% 0.1012 88.1% 0.4319 174.75% 0.1022 38.48% 0.0712 -9.18%
Trans+ 𝑍𝐵𝑆 0.6627 222.32% 0.1653 100.85% 0.0987 83.46% 0.3879 146.76% 0.0924 25.2% 0.0696 -11.22%

RNN 0.7712 275.1% 0.1314 59.66% 0.0999 85.69% 0.5876 273.79% 0.0903 22.36% 0.0710 -9.44%
RNN+ 𝑃𝐷 0.7016 241.25% 0.1049 27.46% 0.1088 102.23% 0.4418 181.04% 0.101 36.86% 0.0786 0.26%
RNN+ 𝐸𝐵𝑆 0.7185 249.46% 0.0894 8.63% 0.1041 93.49% 0.4697 198.79% 0.1353 83.33% 0.0854 8.93%
RNN+ 𝑍𝐵𝑆 0.6016 192.61% 0.0944 14.7% 0.1078 100.37% 0.4416 180.92% 0.1011 36.99% 0.0717 -8.55%

TCN 0.6037 193.63% 0.1623 97.21% 0.1068 98.51% 0.5926 276.97% 0.1097 48.64% 0.0777 -0.89%
TCN+ 𝑃𝐷 0.5012 143.77% 0.0867 5.35% 0.1076 100.0% 0.516 228.24% 0.0965 30.76% 0.0816 4.08%
TCN+ 𝐸𝐵𝑆 0.8513 314.06% 0.0858 4.25% 0.0965 79.37% 0.5144 227.23% 0.1079 46.21% 0.0890 13.52%
TCN+ 𝑍𝐵𝑆 0.3855 87.5% 0.1218 48.0% 0.1076 100.0% 0.3682 134.22% 0.0876 18.7% 0.0748 -4.59%

ADAPTIVE 0.3406 65.66% 0.1635 98.66% 0.0711 32.16% 0.3430 118.19% 0.1406 90.51% 0.0633 -19.26%
ADAPTIVE+ 𝑃𝐷 0.4311 109.68% 0.0453 -44.96% 0.0692 28.62% 0.5881 274.11% 0.0864 17.07% 0.0454 -42.09%
ADAPTIVE+ 𝐸𝐵𝑆 0.3303 60.65% 0.0584 -29.04% 0.0711 32.16% 0.2218 41.09% 0.0728 -1.36% 0.0656 -16.33%
ADAPTIVE+ 𝑍𝐵𝑆 0.2056 0 0.0823 0 0.0538 0 0.1572 0 0.0738 0 0.0784 0

Dimensions of base station representations: We also eval-
uate the impact of the dimensions of base station representations.
As shown in Figure 10, the generation performance increases with
the representation dimensions rise. The performance converges
when the representation dimensions exceed 128, reflecting that
128-dimensional vectors can represent base stations in a city while
containing information on the environmental factors of cities, spa-
tial and environmental contextual relations between base stations,
and traffic temporal patterns of base stations.

5.4 Generalization and Robustness
We use Beijing, Shanghai, and Nanjing as the source and destina-
tion cities one by one to perform cross-city experiments to verify
whether our transfer learningmethod is robust in different cities. As
shown in Tables 1, 2, and 3, ADAPTIVE can always get a good perfor-
mance according to traffic volume, first-order difference, and daily
periodic component. In different groups of experiments, our model
improved the performance compared to baselines by at least 41.8%.
The extensive cross-city experimental results show that our model
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has good generalization and robustness while outperforming the
baseline model. Based on the base station representations learned
by our method, the generation performance generally improves
20% for ADAPTIVE; it also improves the generation performance
for other baseline models. As a result, our method can be effective
in traffic generation for transferring cross-city knowledge and has
generalization and robustness. Our method also paves the way to
use urban knowledge to assist traffic generation.

6 RELATEDWORK
6.1 Network Traffic Generation
Network traffic is initially generated by mathematic models [37, 40],
e.g., Poisson model, to test network equipment, network services,
and security products [43]. With the development of machine learn-
ing and artificial intelligence, machine learning tools, like auto-
regressive models [5, 41], are applied to network traffic generation.
The generative adversarial network, as a state-of-the-art generative
model, is also becoming popular for generating network traffic.
For instance, Ring et al. [35] generate network traffic flows using a
three GAN-based pre-processing strategy. Dowoo et al. [11] suggest
creating network packet traces using the PcapGAN model trained
on network packet-level data. Lin et al. [31] and Lin et al. [42] pro-
pose the DoppelGANger model to simultaneously generate packet
attributes and feature series. However, the aforementioned GAN
models concentrate on producing traffic packets for a single base
station, necessitating detailed configurations of network packets,
including network protocols, IP addresses, etc. Thus, extending to
larger-scale generation tasks is hard, particularly at a city-scale
traffic generation. In a nutshell, the aforementioned GAN cannot
solve the problem of cellular traffic generation for cities without
historical data to assist 5G base station deployment.

6.2 Knowledge Graph Application
By adding rich structured knowledge to assist representation learn-
ing, knowledge graphs [6] are often employed in several real-world
artificial intelligence applications, including natural language un-
derstanding [10], question-answering [20, 23], and recommenda-
tion systems [16]. For instance, Sun et al. [36] leveraged a language
knowledge graph to integrate knowledge information into the con-
tinuous multitask learning language model. Liu et al. [32] used
domain knowledge in the BERT contextual encoder. Chen et al. [7]
proposed to use the large-scale language knowledge graph to repre-
sent the two-way interaction between questions via a bidirectional
attention mechanism. Ding et al. [9] suggest multi-hop reasoning to
integrate implicit extraction and explicit reasoning and build a cog-
nitive knowledge graph model based on graph neural networks. By
exchanging latent characteristics and simulating high-order item-
entity interaction, Wang et al. [39] propose a multi-interaction item
knowledge graph to link the multitask representation and recom-
mendation for the suggested items. The aforementioned studies
demonstrate how well knowledge graphs function in a variety of
applications. Therefore, we are motivated to develop urban knowl-
edge graphs to represent the urban environment for various urban
applications, including cellular traffic generation.

7 DISCUSSION AND APPLICATION ON
SYSTEMS

ADAPTIVE can be used for base station site selection for new re-
gions or cities lacking historical data. Base station deployment
directly affects communication services and network performance.
Our method verifies that the urban structure information can be
used to realize the generation of cross-city transfer learning for
cellular traffic generation, which can assist in the deployment of
5G base stations. Notably, ADAPTIVE provides a general ‘what-if’
service, i.e., what the traffic pattern of the base station would be if
it were deployed in a supposed manner. The user can then adjust
the deployment plan of base stations based on the generated traffic
patterns. The pre-defined base station graph can be obtained with
two commonly used approaches. One hands-on approach is to be
designed by communication experts. Experts can use our model to
adjust and improve their manually designed schemes. The other
approach is to generate a base station deployment scheme with
a reinforcement learning model. The interaction with our model
can then improve the deployment schemes. ADAPTIVE has been
deployed on the Jiutian Artificial Intelligence (AI) Platform1. Jiutian
Artificial Intelligence (AI) Platform is China Mobile’s self-developed
AI innovation platform, providing intelligent decision-making sup-
port for mobile networks. ADAPTIVE can act as a basic model to
support downstream applications, including intelligent base station
deployment, mobile network simulation, and benchmark dataset
generation.

8 CONCLUSION
In this paper, we investigated the problem of cellular traffic gen-
eration for cities without historical data to assist 5G base station
deployments. To solve this problem, we proposed ADAPTIVE, a
deep transfer learning framework for city-scale cellular traffic gen-
eration through the urban knowledge graph. Extensive experiments
on real-world datasets demonstrated the effectiveness, generaliza-
tion, and robustness of our proposed methods. ADAPTIVE has
been successfully deployed on the ‘Jiutian’ Artificial Intelligence
Platform of China Mobile to support cellular traffic generation
and assist in intelligent base station deployment, mobile network
simulation, and benchmark traffic dataset generation.
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