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Artificial intelligence tools expand scientists’ 
impact but contract science’s focus

Qianyue Hao1, Fengli Xu1 ✉, Yong Li1,2 ✉ & James Evans3,4 ✉

Developments in artificial intelligence (AI) have accelerated scientific discovery1. 
Alongside recent AI-oriented Nobel prizes2–9, these trends establish the role of AI tools in 
science10. This advancement raises questions about the influence of AI tools on scientists 
and science as a whole, and highlights a potential conflict between individual and 
collective benefits11. To evaluate these questions, we used a pretrained language model 
to identify AI-augmented research, with an F1-score of 0.875 in validation against expert-
labelled data. Using a dataset of 41.3 million research papers across the natural sciences 
and covering distinct eras of AI, here we show an accelerated adoption of AI tools 
among scientists and consistent professional advantages associated with AI usage,  
but a collective narrowing of scientific focus. Scientists who engage in AI-augmented 
research publish 3.02 times more papers, receive 4.84 times more citations and 
become research project leaders 1.37 years earlier than those who do not. By contrast, 
AI adoption shrinks the collective volume of scientific topics studied by 4.63% and 
decreases scientists’ engagement with one another by 22%. By consequence, adoption 
of AI in science presents what seems to be a paradox: an expansion of individual 
scientists’ impact but a contraction in collective science’s reach, as AI-augmented work 
moves collectively towards areas richest in data. With reduced follow-on engagement, 
AI tools seem to automate established fields rather than explore new ones, highlighting 
a tension between personal advancement and collective scientific progress.

Artificial intelligence (AI) has made considerable strides in recent dec-
ades, promising to affect myriad aspects of society, including educa-
tion12,13, healthcare14,15 and industry16. Major investments in predictive 
and generative AI have catalysed society-level debates over the future of 
AI at home and in the workplace. Perhaps more than any other domain, 
AI tools have become deeply entwined with the process of knowledge 
production, yielding findings that attract disproportionate attention in 
various scientific fields1. For example, AlphaFold, which recently earned 
the 2024 Nobel Prize, learns known protein structures to accurately 
predict unexplored ones, circumventing the human and experimental 
cost of conventional structural inference9,17. Models improved via deep 
reinforcement learning have sustained complex plasma configura-
tions in fusion reactors18 and discovered new, hardware-optimized 
forms of matrix multiplication that recursively accelerate deep learn-
ing itself19. Autonomous laboratory systems driven by ChatGPT have 
helped some chemists and materials scientists upscale the number of 
adaptive high-throughput experiments20–22. Recent developments in 
large language models have also become increasingly used to assist 
scientific writing23–26 and facilitate the distillation of scientific findings, 
but they raise concerns about weakened confidence in AI-generated 
content21,22,27. Artificial intelligence’s increasing capabilities to influ-
ence scientific research suggest that it manifests the potential to both 
increase the productivity of individual scientists and raise the visibility 
of the science it supports.

Despite the increasing adoption of AI in science, large-scale empiri-
cal measurements of AI’s scientific impact are limited, and a detailed, 
dynamic understanding of AI’s influence on the entire character of 
science remains largely unknown. Recent work suggests that AI has 
brought widespread benefits to individual scientists but may lead to 
demographic disparity resulting from gaps in AI education10. Research-
ers have also identified evolving citation patterns that signal a chang-
ing scientific landscape in AI research28. Here we explore the impact 
of AI in scientific research at different scales, and how the adoption 
of AI influences both individual scientists’ careers and the collective 
exploration of science as a whole.

We conduct a large-scale quantitative analysis of the impact of AI 
on scientists and science, covering 41,298,433 research papers span-
ning from 1980 to 2025 in the OpenAlex dataset29, with patterns cor-
roborated using the Web of Science30,31. Notably, we do not focus on 
computer science or mathematics—fields which develop AI methodolo-
gies directly—but rather on papers that augment research in natural 
science fields by adopting AI, primarily covering decades that involve 
the development and deployment of conventional machine learning 
algorithms, and also extend to a necessarily more preliminary analysis 
of the latest generative AI techniques. Specifically, we select six rep-
resentative disciplines that cover the vast majority of natural science 
contributions: biology, medicine, chemistry, physics, materials science 
and geology. We then leverage a fine-tuned BERT language model32,33 
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to accurately identify such AI-augmented research papers on the basis 
of their titles and abstracts.

We separate the periods in which AI was predominantly conventional 
machine learning, deep learning and, most recently, generative designs 
such as large language models. With abundant data-based evidence 
across decades of conventional machine learning and deep learning, 
we validate these AI-based measurements and use them to reveal that 
the adoption of AI leads to an amplifying effect on the career of indi-
vidual scientists, accelerating the production and visibility of science 
produced by those scientists who incorporate AI. Nevertheless, this 
effect corresponds with a contracted focus within collective science. 
Measured with ‘knowledge extent’, the ‘diameter’ covered by a sampled 
batch of papers in vector space, AI-driven science spans less topical 
ground and is associated with a decrease in follow-on scientific engage-
ment, suggesting that AI is currently more likely to focus on existing 
popular research problems rather than explore new ones. Analyses 
using currently available data within the latest era of generative AI 
including large language models reveal consistency with past periods, 
providing a starting point for further study as generative AI-enhanced 
science develops over a longer period.

Increasing prevalence of AI in science
Here we focus on research papers using AI methods in various fields 
of natural science, where we conduct our analysis on the basis of 

41,298,433 papers from the OpenAlex dataset29, covering six repre-
sentative disciplines: biology, chemistry, geology, materials science, 
medicine, and physics (Methods). According to the invention of mile-
stone technologies in the trend of AI development, we divide the past 
decades into three eras, namely, machine learning, deep learning and 
generative AI (Methods). To identify AI papers in various fields across 
eras, we fine-tune BERT32,33, an established language model34–36, on 
articles published in explicitly AI-oriented scientific journals and 
conferences to automatically extract and interpret information from 
context. Specifically, we use a two-stage fine-tuning process to adapt 
the pre-trained BERT model to the task of AI paper identification. We 
first independently train two models based on titles and abstracts of 
papers, respectively, then ensemble the optimized individual models to 
identify all selected papers (Fig. 1a, Methods and Extended Data Fig. 1). 
This approach eliminates the need for manual selection of AI-related 
trigger words, as demonstrated in previous research28.

To evaluate the accuracy of our identification, we recruited a team of 
human experts to validate these results (Methods and Extended Data 
Fig. 2). The experts formed a strong consensus across their independent 
annotation of papers sampled at random from the six disciplines men-
tioned above, achieving an average Fleiss’ κ of 0.964 (refs. 37,38). The 
BERT model attains an average F1-score of 0.875 in an evaluation that 
uses the expert labels as ground truth. The strong consensus among 
experts and high quality for identification is consistent across samples 
from different eras of AI, confirming the reliability of our identification 
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Fig. 1 | Increasing prevalence of AI adoption in science. a, Increasing 
performance of AI paper identification during the two-stage fine-tuning of 
BERT pre-trained models, where we use rough training data in stage 1 to  
evolve precise assessments in stage 2. We independently train two models on 
titles (green) and abstracts (purple), and then integrate them into an ensemble 
(orange) that selects the optimal models during both stages (red stars) to 
identify all relevant papers. b, Accuracy evaluation of our identification  
results by human experts. For samples spanning three eras of AI, experts 
reached consensus, with κ ≥ 0.93. Our model identification results have strong 
accuracy in validation against expert-labelled data, with an F1-score ≥0.85.  

c, Relative adoption frequency of the top 15 AI methods across all disciplines 
for all selected AI development eras. d,e, The growth of AI-augmented papers 
(d, n = 41,298,433) and AI-adopting researchers (e, n = 5,377,346) across machine 
learning (ML), deep learning (DL) and generative AI (GAI) eras between 1980 
and 2025 in selected scientific disciplines. The y axes are set to a logarithmic 
scale. f, The average monthly growth rates for AI papers and researchers  
across the eras of ML, DL and GAI across all selected disciplines (n = 543 month 
observations), where 99% confidence intervals (CIs) are shown as error bars 
centred at the mean.
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accuracy and laying a robust foundation for subsequent analysis (Fig. 1b 
and Supplementary Tables 1–4). To provide a rationale and explain-
ability for our identification results, we visualize attention strengths in 
the BERT model with examples, where the model allocates substantial 
attention to terms such as neural network and large language model, 
illustrating how the model correctly interprets and accurately identi-
fies AI-related contents from papers published in different eras of AI 
development (Supplementary Figs. 2 and 3).

In total we identify 310,957 AI-augmented papers, comprising 0.75% 
of all selected papers. Semantically, the identified AI-related papers 
tend to combine artificial intelligence and conventional research top-
ics across disciplines (Supplementary Fig. 4). Counting all eras and 
disciplines collectively, the most commonly adopted AI methods in 
natural science research include support vector machines and prin-
cipal component analysis from the machine learning era, and convo-
lutional neural networks and generative adversarial networks from 
the deep learning era. Large language models, which have emerged in 
recent years, also rank among the most frequently used methods (Fig. 1c 
and Supplementary Tables 5–11). Statistically, despite the overall rise 
in the number of papers published annually across all disciplines39, the 
share of AI-augmented papers surged by 10.70 (geology, Z = 348.60, 
P < 0.001 and degrees of freedom (df) = 1 in a Cochran–Armitage test)  

to 51.89 (biology, Z = 1,388.70, P < 0.001 and df = 1 in a Cochran– 
Armitage test) times from 1980 to 2025 (Fig. 1d). Similarly, the propor-
tion of researchers adopting AI has grown even more rapidly: from 
135.46 times in geology (Z = 546.81, P < 0.001 and df = 1 in a Cochran–
Armitage test) to 362.16 in physics (Z = 2,237.51, P < 0.001 and df = 1 
in a Cochran–Armitage test) (Fig. 1e). Meanwhile, growth rates for 
AI-augmented papers and researchers have accelerated across the 
three eras (Fig. 1f and Supplementary Figs. 5 and 6). These findings 
underscore the increasing prevalence and rapid development of AI 
in science across all disciplines and the importance of understanding 
AI’s impact on scientific research and progress.

AI enhances individual scientists
From statistics across 27,405,011 papers with intact reference records 
in the OpenAlex dataset, we note that, from the publication date of 
each paper across subsequent decades, annual citations to AI papers 
are 98.70% higher than those to non-AI papers on average (Fig. 2a, 
t ≥ 8.33, P < 0.001 and df > 103 in t-test on any year). In addition to higher 
annual average citations, the greater scientific impact of AI-augmented 
papers is also reflected by multiple alternative statistical indicators, 
including measures of both the highest and lowest annual citation 
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Fig. 2 | AI enlarges paper impact and enhances researcher careers.  
a, Average (insets: top 1% and 10%) annual citations after publication of AI (red) 
and non-AI (blue) papers (n = 27,405,011), where AI papers attract more citations. 
b, Average annual citations for researchers who use AI and their counterparts 
who do not (P < 0.001, n = 5,377,346), where researchers who adopt AI receive 
4.84 times more citations. c, The probability of two role transitions between 
junior scientists who adopt AI and their counterparts who do not (n = 46 year 
observations for each field). Junior scientists who adopt AI have a higher 

probability of becoming established researchers and a lower probability of 
exiting academia compared with their counterparts who do not adopt AI.  
d, Survival functions for the transition from a junior to an established researcher 
(P < 0.001, n = 2,282,029). The survival functions can be well-fit with exponential 
distributions, where junior scientists who adopt AI become established earlier. 
For all panels, 99% CIs are shown as error bars, with the insets of a centred at the 
1% and 10% percentiles and other panels centred at the mean. All statistical 
tests use a two-sided t-test.
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count (Supplementary Fig. 8). Furthermore, AI papers consistently 
receive more citations, regardless of the era in which they are pub-
lished (Extended Data Fig. 3, t ≥ 4.06, P < 0.001 and df > 103 in a t-test 
on any era). We also examine the distribution of AI-augmented papers 
across journals of varying Journal Citation Report quantiles40 (Sup-
plementary Fig. 14). We find that the proportion of AI papers in Q1 
journals is 18.60% higher than that of non-AI papers in all journals; in 
Q2 journals, the AI proportion is 1.59% higher; whereas Q3 and Q4 jour-
nals hold a relatively lower proportion of papers with AI (χ2 = 3629.11, 
P < 0.001 and df = 3 in a χ2-test). These results indicate a heterogeneous 
distribution of AI-augmented papers across journals, with a higher 
prevalence in high-impact journals. Paralleled by the attention paid 
to AI papers, the impact of AI researchers also substantially increases. 
On average, researchers adopting AI annually publish 3.02 times more 
papers (t ≥ 47.18, P < 0.001 and df > 103 in t-test on any discipline) and 
garner 4.84 times more citations (t ≥ 30.32, P < 0.001 and df > 103 in 
t-test on any discipline) than those not adopting AI, with consistency 
across disciplines and robustness for core researchers with multi-year 
continuous publication records41 (Fig. 2b, Extended Data Fig. 4 and Sup-
plementary Fig. 17). Furthermore, when controlling for and comparing 
scientists with similar early career positions, the enhanced productivity 
and impact still hold (Supplementary Fig. 16). This suggests that, after 
accounting for potential selection-biases among researchers with 
different original achievements that may influence their choice of AI 
adoption, AI itself contributes to the observed advantages.

To identify the implications of AI adoption on a scientist’s career 
development, we classify the scientists into ‘junior’ and ‘established’; 
junior scientists are defined as newcomers who have not yet led a 
research project, whereas established scientists are defined as those 
who have led one or more research projects (Methods and Extended 
Data Fig. 5). We extract the career trajectories of 2,282,029 scientists 
from the dataset, each initially identified as a junior scientist (Meth-
ods). The results reveal that AI-augmented research is associated with 
reduced research team sizes, averaging 1.33 (19.29%) fewer scientists 
(t = 20.47, P < 0.001 and df > 103 in a t-test; Extended Data Fig. 6). Specifi-
cally, the average number of junior scientists decreased from 2.89 in 
non-AI teams to 1.99 (31.14%) in AI teams (t = 19.02, P < 0.001 and df > 103 
in t-test), whereas the number of established scientists decreased from 
4.01 in non-AI teams to 3.58 (10.77%) in AI teams (t = 20.82, P < 0.001 and 
df > 103 in t-test). This indicates that AI adoption primarily contributes 
to a reduction in the number of junior scientists in teams, whereas the 
decrease in the number of established scientists is relatively moderate. 
Given the decline in the number of junior scientists, we further calculate 
the probability of junior scientists becoming established scientists or 
leaving academia (Fig. 2c). Across all studied disciplines, the probability 
that AI-adopting junior scientists become established scientists is 45%, 
which is 13.64% higher than for their counterparts who do not adopt 
AI (t ≥ 1.40, P < 0.2 and df = 90 in a t-test on four out of six disciplines). 
This indicates that AI-adopting scientists are associated with increased 
opportunities to lead research projects and reduced risks of dropping 
out of academia, thereby experiencing accelerated career transitions 
from junior to established scientists.

To further quantify this effect, we measure the accelerated career 
development of junior scientists by using a birth–death model42 and 
fitting the model parameter λ with scientists’ career trajectories (Fig. 2d 
and Methods). We find that the anticipated transition time to becoming 
established is 1.37 years shorter for AI-adopting junior scientists than 
for their counterparts who do not adopt AI. The expected transition 
time is 7.33 years for junior scientists who adopt AI (R2 = 0.995) and 
8.70 years for those who do not (R2 = 0.987). This demonstrates how AI 
adoption affords junior scientists with opportunities to lead research 
projects and become established earlier. Further analysis reveals that 
this reduction in the transition time for AI-adopting junior scientists to 
become established is universal across examined disciplines (Extended 
Data Fig. 7). Moreover, established scientists involved in AI papers 

are, on average, 10.77% younger than those involved in non-AI papers 
(Extended Data Fig. 6; t ≥ 2.12, P < 0.05 and df > 103 in a t-test on most 
year). Collectively, these findings suggest that AI research receives 
more attention from academia, and AI-adopting scientists are associ-
ated with higher scholarly productivity and impact. In this way, they 
have a higher probability of becoming established scientists, and at 
earlier ages, therefore experiencing accelerated career development.

AI contracts science’s focus
The accelerating use of AI in science and its impact on individual scien-
tists raises questions about its influence across the entire field of sci-
ence. To evaluate how AI collectively impacts the frontiers of scientific 
exploration, we design a measurement to characterize the breadth of 
scholarly attention represented by a collection of research papers. We 
use SPECTER 2.0—a specialized text embedding model pre-trained 
on a large scientific literature corpus and fine-tuned with citation  
information36—to project research articles onto its 768-dimensional 
embedding space of science (Fig. 3a).

Within this high-dimensional embedding space, we measure knowl-
edge extent as the ‘diameter’ of vector space covered by a sampled 
batch of papers, which allows us to compare the coverage of topical 
ground between AI and non-AI papers in each given domain43,44 (Fig. 3b 
and Methods). Compared with conventional research, AI research is 
associated with a 4.63% contracted median collective knowledge extent 
across science, which is consistent across all six disciplines (Fig. 3c and 
Extended Data Fig. 8; χ2 ≥ 84.05, P < 0.001 and df = 1 in a median test on 
any discipline). Moreover, when dividing these disciplines into more 
than two hundred sub-fields, the contraction of knowledge extent can 
be observed in more than 70% of them (Extended Data Fig. 9). When we 
compare the median entropy of knowledge distribution between AI and 
non-AI research in each domain (Fig. 3d), results demonstrate that the 
knowledge distribution of AI research has a lower entropy (χ2 ≥ 79.20, 
P < 0.001 and df = 1 in a median test on any discipline), indicating an 
increasingly disproportionate focus on specific core problems within 
established fields.

These results generally highlight an emerging conflict between indi-
vidual and collective incentives to adopt AI in science, where scientists 
receive expanded personal reach and impact, but the knowledge extent 
of entire scientific fields tends to shrink and focus attention on a sub-
set of topical areas. According to analyses on possible factors that 
may influence the selectivity of AI adoption across different topics, 
we find that factors such as inherent topicality, original impact and 
funding priority remain almost unrelated to the disproportionate AI 
adoption (Supplementary Figs. 22–24). By contrast, data availability 
seems to be a major impacting factor, where areas with an abundance of 
data are increasingly and disproportionately amenable to AI research, 
contributing to the observed concentration within knowledge space 
(Supplementary Fig. 25).

AI reduces scientific engagement
To analyse mechanisms underlying the conflict between the grow-
ing influence of individual papers and researchers and the narrowing 
of domain knowledge within AI research, we examine the relation-
ship between articles that cite AI and non-AI work. We first examine 
the knowledge extent of ‘paper families’, that is, a focal paper and its 
follow-on citations, which measures the size of the space covered 
by research derived from each original paper (Fig. 4a and Methods). 
Results show that the knowledge extent of AI papers’ citation families 
is on average 3.46% more expanded than that of non-AI papers (t ≥ 1.91, 
P ≤ 0.1 and df > 103 in t-test on 30 out of 32 pairs of data). The contrac-
tion of knowledge space in AI research is therefore not attributable 
to the narrowing of knowledge space that can be derived from each 
original research work.
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To further investigate engagement, we examine relationships 
between papers by measuring the degree of follow-on paper engage-
ment, namely, how frequently citations of the same original paper cite 
each other (Fig. 4b and Methods). Results demonstrate AI research 
spawns 22% less follow-on engagement (t ≥ 8.10, P < 0.001 and df > 103 
in t-test on any discipline), suggesting that AI papers tend to only con-
centrate on the original paper, rather than forming dense interactions 
among each other, which is the characteristic of emerging fields45. This 
results in a star-like structure around specific popular research topics, 
rather than a network of emergent and interconnected research works. 
Further evidence of this concentration is found in the Matthew effect46 
among AI paper citations across different fields (Fig. 4c and Extended 
Data Fig. 10). In AI research, a small number of superstar papers domi-
nate the field, with 22.20% of top papers receiving 80% of the citations 
and the top 54.14% receiving 95% of citations. This unequal distribution 
leads to a Gini coefficient of 0.754 in citation patterns surrounding AI 
research, higher than 0.690 for non-AI papers (t = 27.86, P < 0.001 and 
df = 198 in t-test), signalling a disparity in recognition.

To further analyse the impact of reduced follow-on engagement, 
we sample 590,325,130 pairs of papers, where each pair cites the same 
original work. Among these, 51,723,984 pairs not only cite the same 
original work but also cite each other (engaged), whereas the remain-
ing pairs do not cite each other (disengaged). We examine distances 
between these pairs of papers within our 768-dimensional vector 
space (Fig. 4d) and find that median distance between paper pairs 
that are disengaged from one another tends to be 18.11% larger than 
between paper pairs that are engaged with each other. By contrast, 
the closest disengaged paper pairs are 76.51% closer to one another 
than the closest engaged paper pairs. Taken together, a pair of disen-
gaged papers commonly focus on less related topics and lie farther 
apart in the embedding space. Occasionally, however, owing to the 
lack of reciprocal engagement, it is possible that mutually unaware 
papers lie very close to each other, which indicates more overlapping 
research. These findings suggest that AI in science has become more 
concentrated around popular research topics that become ‘lonely 
crowds’ with reduced interaction among papers, linking to more 
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algorithm to flatten the high-dimensional embeddings of a random batch of 
10,000 papers (half of which are AI papers) into a two-dimensional plot. As 
shown by the solid arrows and circular boundaries, the knowledge extent of AI 
papers (calculated in the unflattened space) is smaller across the entirety of the 

natural sciences. Furthermore, AI papers are more clustered in knowledge 
space, indicating a higher concentration on specific problems. c, Knowledge 
extent of AI and non-AI papers in each field (P < 0.001, n = 1,000 samples in  
each field), where AI research focuses on a more contracted knowledge space. 
d, Knowledge entropy of AI and non-AI papers in each field (P < 0.001, n = 1,000 
samples in each field), where AI research has a lower entropy. For panels c  
and d, boxplots are centred at the median and bounded at the first and third 
quartiles (Q1 and Q3), with 1.5 times the interquartile range shown as whiskers 
from the box. All statistical tests use a median-test.
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overlapping research and a contraction in knowledge extent and diversity  
across science.

Discussion
Here we perform a large-scale empirical measurement of the effect 
of adopting AI in science on both individual scientists and scientific 
communities. We identify three waves of AI adoption in science, which 
correspond to the dominance of machine learning, deep learning and 
generative AI, respectively. Each wave is marked with an accelerated 
AI adoption rate in research papers and authors. In all natural science 
research fields we studied, we find that individual scientists are increas-
ingly rewarded with expanded academic impact and accelerated career 
development for incorporating AI assistance in research across each 
of these waves. On average, AI adoption helps individual scientists 
publish 3.02 times more papers, receive 4.84 times more citations and 
become team leaders 1.37 years sooner. This probably results from 
improved modelling and prediction of field-specific data, resulting 
in higher performance on recognized benchmarks. The substantial 
academic benefits of AI use may be a driving force behind its acceler-
ated rate of adoption; however, we also find unintended consequences 
from the increased prevalence of AI-augmented research. In all fields, 

AI-augmented research focuses on a narrower scope of scientific topics 
and reduces the scientific engagement of follow-on research, leading 
to more overlapping research work that slows the expansion of knowl-
edge. Further, with a greater concentration of collective attention to the 
same AI papers, the adoption of AI seems to induce authors to converge 
on the same solutions to known problems rather than create new ones.

These findings raise critical questions for science policy. What are 
the topics that are most likely to be left behind from AI-augmented 
research across fields? Those with less available data include critical 
scientific questions regarding the origins of natural phenomena, where 
data are necessarily reduced. Accelerating scientific activity under the 
light cast by highly visible, data-rich phenomena moves science away 
from many foundational questions and towards operational ones. By 
driving attention towards the most popular new developments, AI 
seems to drive problem solution over generation. These issues become 
particularly concerning in the face of calls to further increase sup-
port for AI-augmented science47,48, coupled with the personal scien-
tific incentives we observe. This could shift collective attention away 
from new and original questions that lack the data required for AI to 
demonstrate benefit. It is true that more overlapping attention and 
a contracted focus may benefit scientific replication and extension, 
accelerating the emergence of solid and practical solutions to core 
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Fig. 4 | Reduced follow-on engagement and more overlapping works in  
AI research. a, Knowledge extent of individual AI (red) and non-AI (blue) paper 
families, that is, an original paper and its cumulative citations (n = 27,405,011), 
where the knowledge space of individual AI paper families is broader and  
grows faster. b, Engagement among papers that cite AI versus non-AI papers 
(P < 0.001, n = 23,342,516), where there are fewer follow-on interactions among 
papers that cite the same original paper in AI research. c, Distribution of 
citations to AI versus non-AI papers, where AI papers tend to concentrate  

more on a smaller number of top papers (P < 0.001, n = 100 sampled paper 
groups). d, Distribution of distances between paper pairs that cite the same 
previous research, with or without citing one another, namely, engaged (green) 
versus disengaged (purple) (n = 590,325,130 sampled paper pairs). Results 
show that for papers not engaged with each other, the median distance is 
larger, but the minimum distance is smaller, indicating a higher probability of 
overlaps in knowledge space. For all panels, 99% CIs are shown as error bars or 
error bands centred at the mean. All statistical tests use a two-sided t-test.
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questions. Insofar as scientific discovery represents a vast and complex 
landscape, however, concentrating attention on the same develop-
ments may increase the likelihood that science becomes fixed on local 
maxima of scientific explanation and prediction rather than searching 
in a more broad, decoupled and diverse way.

Although our analysis provides new insight into AI’s impact on sci-
ence, clear limitations remain. Our identification approach—although 
validated by experts—misses subtle and unmentioned forms of AI use, 
and our focus on natural sciences excludes important domains in which 
AI adoption patterns may differ. Moreover, despite consistently sug-
gestive evidence, we cannot fully identify the causal linkage between AI 
adoption and scientific impact. Nevertheless, our findings demonstrate 
that currently attributed uses of AI in science primarily augment cogni-
tive tasks through data processing and pattern recognition. Looking 
forward, these findings illuminate a critical and expansive pathway 
for AI development in science. To preserve collective exploration in 
an era of AI use, we will need to reimagine AI systems that expand not 
only cognitive capacity but also sensory and experimental capacity49,50, 
enabling and incentivizing scientists to search, select and gather new 
types of data from previously inaccessible domains rather than merely 
optimizing analysis of standing data. The history of major discoveries 
has been most consistently linked with new views on nature51. Expand-
ing the scope of AI’s deployment in science will be required for sustained 
scientific research and to stimulate new fields rather than merely auto-
mate existing ones.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09922-y.

1.	 Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 
(2023).

2.	 Hopfield, J. J. Neural networks and physical systems with emergent collective 
computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

3.	 Hopfield, J. J. Neurons with graded response have collective computational properties 
like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088–3092 (1984).

4.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
5.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional 

neural networks. Commun. ACM, 60, 84–90 (2012).
6.	 Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural 

networks. Science 313, 504–507 (2006).
7.	 Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural 

Comput. 14, 1771–1800 (2002).
8.	 Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. 

Science 302, 1364–1368 (2003).
9.	 Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 

583–589 (2021).
10.	 Gao, J. & Wang, D. Quantifying the use and potential benefits of artificial intelligence in 

scientific research. Nat. Human Behav. 8, 2281–2292 (2024).
11.	 Evans, J. A. Electronic publication and the narrowing of science and scholarship. Science 

321, 395–399 (2008).
12.	 Adıgüzel, T., Kaya, M. H. & Cansu, F. K. Revolutionizing education with AI: exploring  

the transformative potential of ChatGPT. Contemp. Educat. Technol. 15, ep429  
(2023).

13.	 Akgun, S. & Greenhow, C. Artificial intelligence in education: addressing ethical 
challenges in K-12 settings. AI Ethics 2, 431–440 (2022).

14.	 Meskó, B. & Topol, E. J. The imperative for regulatory oversight of large language models 
(or generative AI) in healthcare. npj Digital Med. 6, 120 (2023).

15.	 Loh, H. W. et al. Application of explainable artificial intelligence for healthcare:  
a systematic review of the last decade (2011–2022). Comput. Methods Prog. Biomed. 226, 
107161 (2022).

16.	 Ahmed, I., Jeon, G. & Piccialli, F. From artificial intelligence to explainable artificial 
intelligence in industry 4.0: a survey on what, how, and where. IEEE Trans. Indust. Inform. 
18, 5031–5042 (2022).

17.	 Varadi, M. et al. Alphafold protein structure database: massively expanding the structural 
coverage of protein-sequence space with high-accuracy models. Nucl. Acids Res. 50, 
D439–D444 (2022).

18.	 Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement 
learning. Nature 602, 414–419 (2022).

19.	 Fawzi, A. et al. Discovering faster matrix multiplication algorithms with reinforcement 
learning. Nature 610, 47–53 (2022).

20.	 Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with 
large language models. Nature 624, 570–578 (2023).

21.	 Stokel-Walker, C. & Van Noorden, R. What ChatGPT and generative AI mean for science. 
Nature 614, 214–216 (2023).

22.	 Gilson, A. et al. How does ChatGPT perform on the United States medical licensing 
examination? The implications of large language models for medical education and 
knowledge assessment. JMIR Med. Educat. 9, e45312 (2023).

23.	 Salimi, A. & Saheb, H. Large language models in ophthalmology scientific writing:  
ethical considerations blurred lines or not at all? Am. J. Ophthalmol. 254, 177–181 (2023).

24.	 Liang, W. et al. Mapping the increasing use of LLMs in scientific papers. In Proc. 1st 
Conference on Language Modeling (COLM, USA, 2024).

25.	 Hwang, T. et al. Can ChatGPT assist authors with abstract writing in medical journals? 
Evaluating the quality of scientific abstracts generated by ChatGPT and original abstracts. 
PLoS ONE 19, e0297701 (2024).

26.	 Kobak, D., González-Márquez, R., Horvát, E.-Á. & Lause, J. Delving into LLM-assisted 
writing in biomedical publications through excess vocabulary. Sci. Adv. 11, eadt3813 (2025).

27.	 Wojtowicz, Z. & DeDeo, S. Undermining Mental Proof: How AI Can Make Cooperation 
Harder by Making Thinking Easier Vol. 39, 1592–1600 (2025).

28.	 Frank, M. R., Wang, D., Cebrian, M. & Rahwan, I. The evolution of citation graphs in 
artificial intelligence research. Nat. Mach. Intell. 1, 79–85 (2019).

29.	 OpenAlex (OpenAlex, 2025); https://openalex.org/.
30.	 Clarivate (Web of Science, 2025); https://www.webofscience.com.
31.	 Mongeon, P. & Paul-Hus, A. The journal coverage of web of science and scopus:  

a comparative analysis. Scientometrics 106, 213–228 (2016).
32.	 Devlin, J. et al. BERT: pre-training of deep bidirectional transformers for language 

understanding. In Proc. 57th Annual Meeting of the Association for Computational 
Linguistics 4171–4186 (ACL, Italy, 2019).

33.	 Wolf, T. et al. Transformers: State-of-the-art natural language processing. In Proc. 58th 
Annual Meeting of the Association for Computational Linguistics 38–45 (ACL, 2020).

34.	 Beltagy, I., Lo, K. & Cohan, A. SciBERT: a pretrained language model for scientific text.  
In Proc. 57th Annual Meeting of the Association for Computational Linguistics 3613–3618 
(ACL, Italy, 2019).

35.	 Cohan, A., Feldman, S., Beltagy, I., Downey, D. & Weld, D. S. SPECTER: document-level 
representation learning using citation-informed transformers. In Proc. 58th Annual 
Meeting of the Association for Computational Linguistics 2270–2282 (ACL, 2020).

36.	 Singh, A., D’Arcy, M., Cohan, A., Downey, D. & Feldman, S. SciRepEval: a multi-format 
benchmark for scientific document representations. In Proc. 61st Annual Meeting of the 
Association for Computational Linguistics 5548–5566 (ACL, Canada, 2023).

37.	 Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. 
Biometrics 33, 159–174 (1977).

38.	 Fleiss, J. L. Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378 
(1971).

39.	 Chu, J. S. & Evans, J. A. Slowed canonical progress in large fields of science. Proc. Natl 
Acad. Sci. USA 118, e2021636118 (2021).

40.	 Journal Citation Reports (Clarivate, 2021); https://jcr.clarivate.com/jcr/home.
41.	 Ioannidis, J. P., Boyack, K. W. & Klavans, R. Estimates of the continuously publishing core 

in the scientific workforce. PloS ONE 9, e101698 (2014).
42.	 Kendall, D. G. Birth-and-death processes, and the theory of carcinogenesis. Biometrika 

47, 13–21 (1960).
43.	 Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).
44.	 Milojević, S. Quantifying the cognitive extent of science. J. Informetrics 9, 962–973 (2015).
45.	 McMahan, P. & Evans, J. Ambiguity and engagement. Am. J. Sociol. 124, 860–912 (2018).
46.	 Merton, R. K. The matthew effect in science: the reward and communication systems of 

science are considered. Science 159, 56–63 (1968).
47.	 Borger, J. G. et al. Artificial intelligence takes center stage: exploring the capabilities and 

implications of chatgpt and other AI-assisted technologies in scientific research and 
education. Immunol. Cell Biol. 101, 923–935 (2023).

48.	 Lawrence, N. D. & Montgomery, J. Accelerating AI for science: open data science for 
science. Royal Soc. Open Sci. 11, 231130 (2024).

49.	 King, R. D. et al. The automation of science. Science 324, 85–89 (2009).
50.	 Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).
51.	 Krauss, A. Debunking Revolutionary Paradigm Shifts: Evidence of Cumulative Scientific 

Progress Across Science Vol. 480, 20240141 (The Royal Society, 2024).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this 
article under a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2026

https://doi.org/10.1038/s41586-025-09922-y
https://openalex.org/
https://www.webofscience.com
https://jcr.clarivate.com/jcr/home


Article
Methods

Dataset and paper selection
In this section we introduce the procedure of selecting the research 
papers included in our analysis. We conduct our major analyses on 
OpenAlex29—a scientific research database built on the foundation 
of the Microsoft Academic Graph (MAG)52,53. Supported by non-profit 
organizations, OpenAlex is continuously updated, providing a sus-
tainable global resource for research information. As of March 2025, 
OpenAlex contains 265.7 million research papers, along with related 
data about citation, author, institution and so on. Among the mas-
sive quantity of papers in the OpenAlex dataset, we select 66,117,158 
English research papers published in journals and conferences span-
ning from 1980 to 2025 and filter out those with incomplete titles or 
abstracts. We identify the scientific discipline each paper belongs to 
by making use of the topics noted in OpenAlex, which are extracted 
using a natural language processing approach that annotates titles 
and abstracts with Wikipedia article titles as topics sharing textual 
similarity. In the raw dataset, these topics form a hierarchical struc-
ture and each paper is associated with several. Adopting the 19 basic 
scientific disciplines in MAG52,53, that is, art, biology, business, chem-
istry, computer science, economics, engineering, environmental sci-
ence, geography, geology, history, materials science, mathematics, 
medicine, philosophy, physics, political science, psychology, and 
sociology, we trace along the hierarchy and determine to which dis-
ciplines each topic belongs. We note that because the original topics 
of one paper may be retraced to different topics, the scientific dis-
cipline of each paper may not be unique. In other words, one paper 
may span two or more academic disciplines, for example, chemistry 
and biology, which reflects the common phenomena of borderline or  
interdisciplinary research54.

Here we emphasize the adoption of AI methods in conventional 
natural science disciplines and exclude research developing AI meth-
odologies themselves, separating the influence of AI on science from 
AI’s own invention and refinement. We therefore select biology, medi-
cine, chemistry, physics, materials science and geology as represent-
atives of natural science disciplines, but exclude computer science 
and mathematics, where most works introducing and developing AI 
methods are published. We also exclude art, business, economics, 
history, philosophy, political science, psychology and sociology to 
focus on how AI is changing the natural sciences and career trajecto-
ries in those sciences. Our six natural science disciplines include the 
majority of OpenAlex articles, resulting in 41,298,433 papers, con-
taining 18,392,040 in biology, 4,209,771 in chemistry and 2,380,666 
in geology, 4,755,717 in materials science, 24,315,342 in medicine and 
5,138,488 in physics. The selected disciplines cover various dimensions 
of natural science, representing a broad view of scientific research  
as a whole.

Divide into three stages of AI development
We divide the history of AI development into three key eras: the tradi-
tional machine learning era (1980–2014), the deep learning era (2015–
2022) and the generative AI era (2023 to present). We consider 1980 as 
the start of the traditional machine learning era because several land-
mark works were published in the 1980s, such as the back-propagating 
method55,56. We regard the deep learning era to have begun in 2015, as 
indicated by breakthroughs such as ResNet, which enabled the training 
of ultra-deep neural networks, revolutionizing fields such as computer 
vision and speech recognition57. Finally, we define the generative AI era 
as beginning in 2023, following the publication of ChatGPT—the first 
widely used large language model—in December 2022. This marked 
the advent of large-scale transformer-based models capable of strong 
generalized performance across a wide range of tasks, sparking new 
applications in natural language processing and beyond. Each of these 
transitions was driven by advances in algorithms, computational power 

and data availability, substantially expanding the capabilities and scope 
of AI for science.

Design and fine-tune the language model for AI paper 
identification
Insofar as both a paper’s title and abstract contain important informa-
tion about its content, we independently train two separate models on 
the basis of paper titles and abstracts, and then integrate the two mod-
els into an ensembled one by averaging their outputs. The structure of 
our natural language processing model for paper identification consists 
of two parts. The backbone network is a twelve-layer BERT model with 
twelve attention heads in each layer, and the sequence classification 
head is a linear layer with a two-dimensional output atop the BERT out-
put. We normalize the two-dimensional output with a softmax function 
and obtain the probability that the paper involves AI-assistance. We use 
the BERT model called BERT-base-uncased from Hugging Face58, which 
is pre-trained with a large-scale general corpus, and set the maximum 
length of tokenization to be 16 for titles and 256 for abstracts. We design 
a two-stage fine-tuning process with training and validation sets, which 
we extracted from the OpenAlex dataset, to transfer the pre-trained 
model to our paper identification task. The construction of positive 
and negative data is different between the two stages. In both stages, 
we randomly split the positive and negative data into 90% and 10% sets, 
which correspond to training and validation sets, respectively. We use 
the training set for model training and use the validation set to select 
the optimal model. As the numbers of positive and negative cases are 
unbalanced, we use the bootstrap sample technique on positive cases 
to balance its number with negative cases at both stages.

In the first stage, we construct relatively coarse positive data, only 
considering eight typical AI journals and conferences, including Nature 
Machine Intelligence, Machine Learning, Artificial Intelligence, Journal 
of Machine Learning Research ( JMLR), International Conference on 
Machine Learning (ICML), International Conference on Learning Repre-
sentations (ICLR) and the AAAI Conference on Artificial Intelligence and 
International Joint Conference on Artificial Intelligence (IJCAI). Among 
the papers belonging to our chosen six disciplines, we extract all papers 
published in these venues as positive cases and randomly sample 1% of 
the remaining papers in our six chosen natural science fields as nega-
tive cases, resulting in 26,165 positive and 291,035 negative cases. We 
fine-tune the pre-trained model for 30 epochs on the training set and 
select the optimal model according to the F1-score on the validation set.

In the second stage, we construct more precise positive data on the 
basis of the optimal model obtained in the first stage. We identify papers 
in the whole OpenAlex dataset and aggregate the results for each venue, 
obtaining the probability that each venue in OpenAlex is an AI venue by 
averaging the AI probability for all papers within it. We then select the 
venues with >80% AI probability and >100 papers as AI venues. We also 
incorporate venues with ‘machine learning’ or ‘artificial intelligence’ 
in their names. In papers belonging to our six chosen disciplines, we 
extract all papers published in the selected AI venues as positive cases 
and randomly sample 1% of those remaining as negative cases, result-
ing in 31,311 positive and 231,258 negative cases. We then fine-tune the 
obtained optimal model in the first stage for another 30 epochs with 
the new training set and select the best model according to F1-score on 
the new validation set. Finally, we use optimal ensemble models during 
both stages to identify all papers that use AI to support natural science 
research from the selected representative natural science disciplines.

Scrutinization of our identification results by disciplinary experts
We arbitrarily sample 220 papers (110 papers × 2 groups) from each 
of the six disciplines, resulting in twelve paper groups in total. We 
enlisted twelve experts with abundant AI research experience (Sup-
plementary Table 1) and assigned three different groups of papers to 
each. Without revealing the classification results obtained from the 
BERT model, we queried our experts on whether each paper was an 



AI paper. In this way, each paper is repeatedly labelled by three dis-
tinct experts, and we evaluate the consistency among these experts 
on the basis of Fleiss’s κ (refs. 37,38), which is an unsupervised meas-
urement for assessing the agreement between independent raters. 
Having confirmed consensus among our experts, we draw the final 
expert label of each paper from the three experts according to the 
principle of the minority obeying the majority. We regard the expert 
labels as ground truth and validate the result of our BERT model 
against them with the F1-score, which is a supervised measurement  
of accuracy.

Determine the project leader of papers
Here we define the project leader as the last author of a research paper, 
in alignment with conventions established by previous studies59. To 
ensure that in most papers, the last author represents the project 
leader, we examine the fraction of papers that list authors following 
alphabetical order. First, we directly traverse all selected papers and 
obtain the prevalence of papers listing authors in alphabetical order, 
which ranges from 14.87% in materials science to 22.15% in geology. 
Nevertheless, it is difficult to distinguish whether these papers actu-
ally intended to list the authors in alphabetical order or according to 
their roles, which unintentionally fall in alphabetical order. The latter 
situation is more likely to occur when there are fewer authors (two or 
three). To tackle this analytical challenge, we determine the fraction of 
unintended alphabetical author lists through a Monte Carlo method. 
We generate ten randomly shuffled copies of the author list for each 
paper and find that from 13.82% (materials science, σ = 0.02) to 20.28% 
(geology, σ = 0.03) of papers have alphabetically listed authors among 
the random author lists. This indicates the proportion of ‘unintended’ 
alphabetical author lists, and we can derive the actual fraction of papers 
with intentionally alphabetical author lists by the difference between 
the above two sets of statistical results. The actual fraction obtained 
illustrates that only 1.58% of papers across all disciplines intentionally 
list the authors in alphabetical order (Supplementary Table 12) and 
therefore, we can, with negligible interference, assume that we can 
identify last authors as team leaders.

Detect scientists’ career role transition
The OpenAlex dataset incorporates a well-designed author name dis-
ambiguation mechanism29, which uses an XGBoost model60 to predict 
the likelihood that two authors are the same on the basis of features 
such as their institutions, co-authors and citations, and then applies 
a custom, ORCID-anchored clustering process to group their works, 
assigning a unique ID to each author. Simply using unique IDs, we are 
able to track a large number of authors at the same time61, where we 
depict an individual scientist’s career trajectory using a role transition 
model (Extended Data Fig. 4a) and extract the role transition trajecto-
ries for scientists.

First we traverse all selected papers in the six disciplines and extract 
all the scientists involved in any of these papers. Then, for each indi-
vidual scientist, we extract all papers in which they have been involved 
and record the time of their first publication in any role, the time of 
their first publication as team leader (if ever), and the time of their last 
publication. We then filter out scientists whose publication records 
span only a single year. We also filter out those who directly start as 
established scientists leading research teams without a role transition 
from junior scientists. Finally, we detect the time that each scientist 
abandons academic publishing. Considering that one scientist may 
not publish papers continuously every year, we cannot regard them 
as having left academia on the basis of their absence in the published 
record for a single year. We therefore follow the settings used in pre-
vious work62 to use a threshold of three years and regard scientists 
who have no more publications after 2022 as having exited academia, 
whereas those who still publish papers after 2022 are considered to have 
an unclear ultimate status and are excluded from the analysis. Finally, 

we obtain 2,282,029 scientists in the six disciplines with complete role 
transition trajectories. We also classify them into AI and non-AI scien-
tists according to whether they have published AI-augmented papers.

Moreover, by analysing author contribution statements collected 
in previous studies63,64, we further validate our detection results by 
examining changes in scientists’ self-reported contributions through-
out their careers (Extended Data Fig. 4b). Results indicate that junior 
scientists primarily engage in technical tasks, such as conducting 
experiments and analysing data, and less in conceptual tasks, such as 
conceiving ideas and writing papers. Nevertheless, the proportion of 
conceptual work significantly rises (P < 0.01 and df = 1 in a Cochran–
Armitage test) during their tenure as junior scientists, reaching satura-
tion at a high level (60% or more) on transition to becoming established 
scientists. This finding validates our definition of role transition by 
demonstrating a shift in the nature of scientists’ contributions from 
participating in research projects to leading them.

Estimate the birth–death model for career development of 
junior scientists
To obtain a more precise quantification of how much AI acceler-
ates the career development of junior scientists, we use a general 
birth–death model42. This type of stochastic process model depicts 
the dynamic evolution of a population as members join and exit. In 
our context, it models the role transitions of junior scientists. Spe-
cifically, we use two separate birth–death models for junior scien-
tists who eventually become established and for those who leave 
academia, respectively. Here, ‘birth’ processes refer to the entry of 
junior scientists into academic publishing, and ‘death’ processes 
symbolize their transition out of the junior stage, either by becom-
ing established scientists or quitting academia. As the entry and exit 
of each junior scientist are independent from one another, we use 
Poisson processes to model ‘birth’ (entry) and ‘death’ (exit) events,  
respectively.

The Poisson process is a typical stochastic process model for describ-
ing the occurrence of random events that are independent of each 
other65. The mathematical formula of the Poisson process is:

P N t k
λ t

k
e t k( ( ) = ) =

( )
!

, > 0, = 0, 1, 2, …, (1)
k

λ t
0

0 0 −
0

0 0

where N(t0) denotes the number of random events that happened 
before time t0, and λ0 is the parameter of the Poisson process, depict-
ing the happening rate of random events. We consider a birth–death 
model in which birth and death dynamics are both Poisson processes, 
and rate parameters are μ and ω, respectively. Through mathematical 
derivation66, we conclude that the duration time t from birth to death 
follows an exponential distribution with the parameter ω − μ, where 
the exact form of the probability density function is:

P t ω μ e t( ) = ( − ) , > 0. (2)ω μ t−( − )

We consider the difference between the two rate parameters ω − μ 
as a whole and fit it with a single parameter λ. The transition time for 
junior scientists to become established scientists or leave academia 
then follows the exponential distribution:

P t λe t( ) = , > 0, (3)λt−

and the corresponding survival function is

∫S t P u du e t( ) = 1− ( ) = , > 0. (4)
t

λt

0

−

Hence the average transition time is the conditional expectation of 
the distribution defined as follows:
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We fit the role transition time of scientists with the aforementioned 
exponential distribution, thereby determining the respective values of λ 
for AI-adopting junior scientists and their non-AI counterparts. Guided 
by the underlying mechanism of junior scientists’ career development 
incorporated within the birth–death model, expectations from the 
model offer a more accurate estimate of the average role transition 
time.

Measure the knowledge extent of papers
To assess the knowledge extent of a set of research papers within their 
high-dimensional embeddings

{ [ ], [ ], …, [ ]}, [ ] ∈ , (6)768Rp 1 p 2 p n p i

we first compute the centroid as the mean of their vector locations:

c p i∑n
=

1
[ ]. (7)

i

n

=1

Next, we compute the Euclidean distance from each embedding to 
the centroid, where the knowledge extent (KE) of the set of papers is 
defined as the maximum distance or ‘diameter’ of the vector space 
covered:

∥ ∥p i cKE = max [ ] − . (8)
i n1≤ ≤

2

We note that Euclidean distance is highly correlated with the cosine 
and related angular distances.

In practice, the number of AI and non-AI papers in each domain dif-
fers considerably, introducing bias to the measurement of knowledge 
extent. To address this issue, we build on past work44 about cognitive 
extent, which is a measure of the breadth of a scientific field’s cognitive 
territory, and is quantified by the number of unique phrases—as a proxy 
for scientific concepts—found within a sampled batch of papers of a 
given size. For each domain, we randomly sample 1,000 papers from 
both AI and non-AI categories, compute their respective knowledge 
extent, and repeat this process 1,000 times. By comparing knowledge 
extent values across these 1,000 random samples, we ensure that the 
number of AI and non-AI papers is balanced, making our knowledge 
extent results comparable.

Measure the knowledge extent of paper families
To measure how much knowledge space can be derived from each 
original paper, we calculate the knowledge extent of ‘paper families’, 
that is, a focal paper and its follow-on citations. Focusing on an original 
research paper ϕ, which corresponds to a high-dimensional embed-
ding vector p R∈ϕ

768 , we extract all nϕ research papers that cite this 
original paper. These papers are sorted chronologically by publication 
date, from earliest to most recent. The corresponding high-dimensional 
embeddings of these sorted papers are:

p 1 p 2 p n p i R{ [ ], [ ], …, [ ]}, [ ] ∈ . (9)ϕ ϕ ϕ ϕ ϕ
768

Thereby, we calculate knowledge extent covered by the ‘paper fam-
ily’ consisting of the original paper ϕ and the first n follow-on papers, 
citing it (1 ≤ n ≤ nϕ) as:

∥ ∥p i pnKE [ ] = max [ ] − . (10)ϕ
i n n ϕ ϕ1≤ ≤ ≤

2
ϕ

Measure follow-on engagement among papers
To quantify how frequently citations of the same original paper inter-
act with each other, we design a metric called follow-on engagement, 

building on previous work45. For an original paper with n citations, 
there are at most n n( − 1)

2
 possible citations among these n citing papers 

if everyone cites all papers published earlier than their own. We then 
count how many times these n citing papers actually cite one another, 
denoted as k. Our metric for follow-on engagement (EG) is calculated 
as the ratio of actual to maximum possible citations:

k k
n n

k
n n

EG = =
2

( − 1)
=

2
( − 1)

× 100 (%). (11)n n( − 1)
2

This metric helps quantify the degree of interactions and collabo-
ration among papers that cite the same original work. Past work has 
demonstrated a positive association between the ambiguity of a focal 
work and follow-on engagement45.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The OpenAlex dataset for research papers and researchers is avail-
able at https://docs.openalex.org/download-all-data/openalex- 
snapshot. The Web of Science dataset for research papers and research-
ers is available at https://clarivate.com/academia-government/ 
scientific-and-academic-research/research-discovery-and-referencing/ 
web-of-science/web-of-science-core-collection. The Journal Citation 
Report dataset for the journal quantile is retrieved from https://jcr.
clarivate.com/jcr/browse-journals. The author contribution dataset 
is available at https://zenodo.org/records/6569339. The pre-trained 
parameters for the BERT language model are available at https://hug-
gingface.co/docs/transformers. The pre-trained parameters for the 
SPECTER 2.0 text embedding model are available at https://hugging-
face.co/allenai/specter2. Source data are provided with this paper.

Code availability
This study used Python 3.11.0 with software packages to conduct data 
analysis. Required packages are NumPy (v.1.26.4), pandas (v.2.2.3), 
SciPy (v.1.15.2), scikit-learn (v.1.6.1) and matplotlib (v.3.10.1). The t-SNE 
algorithm used is imported from the sklearn package. The codes devel-
oped in this study can be found at https://github.com/tsinghua-fib-lab/
AI-Impacts-Science.
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Extended Data Fig. 1 | Illustration for the method of identifying AI usage  
in research papers with fine-tuned language models. (a) Structure of our 
deployed language model, which consists of the tokenizer, the core BERT 

model, and the linear layer. (b) Procedure of the two-stage model fine-tuning 
process, where we design specific approaches for constructing positive and 
negative data at each stage.
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Extended Data Fig. 2 | Procedure of accuracy evaluation via expert 
evaluation. We randomly sample 1320 papers and delegate three experts to 
scrutinize the identification results for each paper. We then draw the final 
expert label of each paper from the three experts according to the principle of 

the minority obeying the majority and validate the result of the language model 
with it. Results indicate strong consistency among experts and high accuracy 
with our identification results.
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Extended Data Fig. 3 | Comparison of the total citations of AI and non-AI 
papers published in different eras. Results show that AI papers consistently 
attract more citations over different eras (P < 0.001, n = 27,405,011), indicating 
a higher academic impact than non-AI papers. 99% CIs are shown as error bars 
centred at the mean, and the statistical tests use a two-sided t-test.



Extended Data Fig. 4 | Annual publications of researchers adopting AI and 
their counterparts without AI. Results show that in all 6 scientific disciplines, 
researchers adopting AI are more productive than their counterparts without 
AI (P < 0.001, n = 5,377,346). On average, researchers adopting AI annually 
publish 3.02 times more papers compared with those not using AI. 99% CIs  
are shown as error bars centred at the mean, and the statistical tests use a 
two-sided t-test.
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Extended Data Fig. 5 | Scientists’ career role transition. (a) The career role 
transition of researchers. We consider the last author of each paper as research 
project leader and researchers who have been research project leaders as 
established researchers. Researchers who have yet to lead a research project 
are junior researchers, and they have two potential role transition pathways in 
the future: (1) become established researchers (solid arrow), and (2) abandon 

academia (dashed arrow). (b) Change in the ratio of conceptual work across the 
research career, before and after becoming an established researcher. The 
ratio increases rapidly before the role transition to established researchers, 
while it remains stable and high after that transition. 99% CIs are shown as error 
bands centred at the mean.
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Extended Data Fig. 6 | Team composition of AI and non-AI papers. (a) AI 
research is associated with reduced research team sizes, averaging 1.33 fewer 
scientists (P < 0.001, n = 33,528,469). Specifically, the average number of junior 
scientists decreased from 2.89 in non-AI teams to 1.99 in AI teams (31.14%), 
while the number of established scientists decreased from 4.01 to 3.58 (10.77%). 
(b)-(d) Change in team size, average number of junior researchers, and average 
number of established researchers. These findings indicate that within the 
overall trend of increasing size of scientific research teams, AI adoption primarily 

contributes to a reduction in the number of junior scientists in teams, while a 
decrease in the number of established scientists is more moderate. (e) The 
average career age of team leaders in AI and non-AI papers. (f) The average 
career age of all involved established researchers in AI and non-AI papers. 
Results indicate that AI accelerates the transition from junior to established 
scientists, enabling AI-adopted researchers to become established at a younger 
age than those without AI. For all panels, 99% CIs are shown as error bars or 
error bands centred at the mean. All statistical tests use a two-sided t-test.
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Extended Data Fig. 7 | Model fitting the role transition time of junior 
scientists. (a) (c) (e) Survival functions for the transition from junior to 
established researcher in (a) biology (n = 625,093), (c) medicine (n = 1,137,076), 
and (e) physics (n = 120,366). (b) (d) (f) Survival functions for the transition 
from junior researcher to leave academia in (b) biology (n = 625,093), (d) medicine 
(n = 1,137,076), and (f) physics (n = 120,366). All survival functions can be well-fit 
with exponential distributions, where the expected time for junior scientists to 

become established is shorter for those who adopt AI (P < 0.001), while the 
expected time for junior scientists to abandon academia is similar or slightly 
longer for those who adopt AI. Results indicate that AI not only provides  
junior scientists opportunities to become established scientists at a younger 
age, but also reduces the risk of their exiting academia early. For all panels,  
99% CIs are shown as error bars centred at the mean. All statistical tests use a 
two-sided t-test.



Extended Data Fig. 8 | The knowledge extent of AI and non-AI papers.  
Here we visualize the embeddings of a small random sample of 2,000 papers, 
half of which are AI papers and half are non-AI papers. To eliminate randomness 
introduced by the t-SNE algorithm, here we simply pick out the first two 
dimensions of the high-dimensional embeddings to flatten them into a  

2-D plot, and we provide 5 different random batches for each field to ensure 
robustness. As shown by the solid arrows and circular boundaries, the 
knowledge extent of AI papers is smaller than that of a comparable sample of 
non-AI papers, which is consistent across the fields studied in our analysis.
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Extended Data Fig. 9 | The knowledge extent of AI and non-AI papers in each 
subfield. Compared with conventional research, AI research is associated with a 
shrinkage in the collective knowledge extent of science, where the contraction 
of knowledge extent can be observed in more than 70% of over two hundred 
sub-fields (n = 1,000 samples in each subfield). For all subfields, 99% CIs are 
shown as error bars centred at the mean.
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Extended Data Fig. 10 | The Matthew effect in citations to AI and non-AI 
papers. In AI research, a small number of superstar papers dominate the field, 
with approximately 20% of top papers receiving 80% of citations and 50% 
receiving 95%. This unequal distribution leads to a higher Gini coefficient in 

citation patterns surrounding AI research (P < 0.001, n = 100 sampled paper 
groups for each discipline). Such disparity in the recognition of AI papers is 
consistent across all fields examined. For all panels, 99% CIs are shown as error 
bars or error bands centred at the mean. All statistical tests use a two-sided t-test.
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