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Developments in artificial intelligence (Al) have accelerated scientific discovery'.
Alongside recent Al-oriented Nobel prizes®?, these trends establish the role of Al tools in
science'. This advancement raises questions about the influence of Al tools on scientists
and science as awhole, and highlights a potential conflict between individual and
collective benefits™. To evaluate these questions, we used a pretrained language model
toidentify Al-augmented research, with an F1-score of 0.875 in validation against expert-
labelled data. Using a dataset of 41.3 million research papers across the natural sciences
and covering distinct eras of Al, here we show an accelerated adoption of Al tools
among scientists and consistent professional advantages associated with Al usage,
but a collective narrowing of scientific focus. Scientists who engage in Al-augmented
research publish 3.02 times more papers, receive 4.84 times more citations and
become research projectleaders 1.37 years earlier than those who do not. By contrast,
Aladoption shrinks the collective volume of scientific topics studied by 4.63% and
decreases scientists’ engagement with one another by 22%. By consequence, adoption
of Alin science presents what seems to be a paradox: an expansion of individual
scientists’impact but a contractionin collective science’s reach, as Al-augmented work
moves collectively towards areas richest in data. With reduced follow-on engagement,
Altools seem to automate established fields rather than explore new ones, highlighting

atension between personal advancement and collective scientific progress.

Artificial intelligence (Al) has made considerable stridesin recent dec-
ades, promising to affect myriad aspects of society, including educa-
tion'*, healthcare'*" and industry'®. Major investments in predictive
and generative Al have catalysed society-level debates over the future of
Alathomeandinthe workplace. Perhaps more than any other domain,
Altools have become deeply entwined with the process of knowledge
production, yielding findings that attract disproportionate attentionin
variousscientific fields'. For example, AlphaFold, which recently earned
the 2024 Nobel Prize, learns known protein structures to accurately
predict unexplored ones, circumventing the human and experimental
cost of conventional structural inference®”. Modelsimproved viadeep
reinforcement learning have sustained complex plasma configura-
tions in fusion reactors® and discovered new, hardware-optimized
forms of matrix multiplication that recursively accelerate deep learn-
ing itself. Autonomous laboratory systems driven by ChatGPT have
helped some chemists and materials scientists upscale the number of
adaptive high-throughput experiments?°*2, Recent developmentsin
large language models have also become increasingly used to assist
scientific writing®2® and facilitate the distillation of scientific findings,
but they raise concerns about weakened confidence in Al-generated
content®**?, Artificial intelligence’s increasing capabilities to influ-
ence scientificresearch suggest that it manifests the potential toboth
increase the productivity of individual scientists and raise the visibility
of the science it supports.

Despite theincreasing adoption of Alin science, large-scale empiri-
cal measurements of Al's scientificimpact are limited, and a detailed,
dynamic understanding of Al's influence on the entire character of
science remains largely unknown. Recent work suggests that Al has
brought widespread benefits to individual scientists but may lead to
demographic disparity resulting fromgaps in Aleducation’. Research-
ers have alsoidentified evolving citation patterns that signal achang-
ing scientific landscape in Al research?. Here we explore the impact
of Al in scientific research at different scales, and how the adoption
of Alinfluences both individual scientists’ careers and the collective
exploration of science as awhole.

We conduct a large-scale quantitative analysis of the impact of Al
onscientists and science, covering 41,298,433 research papers span-
ning from 1980 to 2025 in the OpenAlex dataset?, with patterns cor-
roborated using the Web of Science®***, Notably, we do not focus on
computer science or mathematics—fields which develop Almethodolo-
gies directly—but rather on papers that augment research in natural
science fields by adopting Al, primarily covering decades that involve
the development and deployment of conventional machine learning
algorithms, and also extend to a necessarily more preliminary analysis
of the latest generative Al techniques. Specifically, we select six rep-
resentative disciplines that cover the vast majority of natural science
contributions: biology, medicine, chemistry, physics, materials science
and geology. We then leverage a fine-tuned BERT language model?>*
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Fig.1|Increasing prevalence of Aladoptioninscience. a, Increasing
performance of Al paper identification during the two-stage fine-tuning of
BERT pre-trained models, where we use rough training datain stage1to
evolve precise assessmentsin stage 2. Weindependently train two models on
titles (green) and abstracts (purple), and thenintegrate theminto an ensemble
(orange) that selects the optimal models during both stages (red stars) to
identify all relevant papers. b, Accuracy evaluation of our identification
results by human experts. For samples spanning three eras of Al, experts
reached consensus, with k > 0.93. Our model identification results have strong
accuracyinvalidation against expert-labelled data, withan F1-score >0.85.

to accurately identify such Al-augmented research papers onthe basis
of their titles and abstracts.

We separate the periodsin which Alwas predominantly conventional
machinelearning, deep learning and, mostrecently, generative designs
such as large language models. With abundant data-based evidence
across decades of conventional machine learning and deep learning,
we validate these Al-based measurements and use them to reveal that
the adoption of Al leads to an amplifying effect on the career of indi-
vidual scientists, accelerating the production and visibility of science
produced by those scientists who incorporate Al. Nevertheless, this
effect corresponds with a contracted focus within collective science.
Measured with ‘knowledge extent’, the ‘diameter’ covered by asampled
batch of papers in vector space, Al-driven science spans less topical
ground andis associated with a decrease in follow-on scientific engage-
ment, suggesting that Al is currently more likely to focus on existing
popular research problems rather than explore new ones. Analyses
using currently available data within the latest era of generative Al
including large language models reveal consistency with past periods,
providingastarting point for further study as generative Al-enhanced
science develops over alonger period.

Increasing prevalence of Alin science

Here we focus on research papers using Al methods in various fields
of natural science, where we conduct our analysis on the basis of
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¢, Relative adoption frequency of the top 15 Almethods across all disciplines
forallselected Aldevelopmenteras.d,e, The growth of Al-augmented papers
(d, n=41,298,433) and Al-adopting researchers (e, n = 5,377,346) across machine
learning (ML), deep learning (DL) and generative Al (GAI) erasbetween 1980
and2025inselected scientific disciplines. The yaxes aresetto alogarithmic
scale. f, The average monthly growth rates for Al papers and researchers
acrossthe eras of ML, DLand GAl across all selected disciplines (n = 543 month
observations), where 99% confidence intervals (Cls) are shown as error bars
centred atthe mean.

41,298,433 papers from the OpenAlex dataset?, covering six repre-
sentative disciplines: biology, chemistry, geology, materials science,
medicine, and physics (Methods). According to the invention of mile-
stone technologiesin the trend of Al development, we divide the past
decadesinto three eras, namely, machine learning, deep learning and
generative Al (Methods). To identify Al papersin various fields across
eras, we fine-tune BERT*>*, an established language model**¢, on
articles published in explicitly Al-oriented scientific journals and
conferences to automatically extract and interpret information from
context. Specifically, we use a two-stage fine-tuning process to adapt
the pre-trained BERT model to the task of Al paper identification. We
firstindependently train two models based on titles and abstracts of
papers, respectively, then ensemble the optimized individual models to
identify all selected papers (Fig.1a, Methods and Extended Data Fig.1).
This approach eliminates the need for manual selection of Al-related
trigger words, as demonstrated in previous research®,

Toevaluate the accuracy of our identification, werecruited ateam of
human experts to validate these results (Methods and Extended Data
Fig.2). The experts formed a strong consensus across theirindependent
annotation of papers sampled at random from the six disciplines men-
tioned above, achieving an average Fleiss’ k of 0.964 (refs. 37,38). The
BERT model attains an average F1-score of 0.875 in an evaluation that
uses the expert labels as ground truth. The strong consensus among
experts and high quality for identification is consistent across samples
from different eras of Al, confirming the reliability of our identification
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a, Average (insets: top 1% and 10%) annual citations after publication of Al (red)
and non-Al (blue) papers (n=27,405,011), where Al papers attract more citations.
b, Average annual citations for researchers who use Aland their counterparts
whodonot(P<0.001,n=5,377,346), where researchers who adopt Al receive
4.84 times more citations. ¢, The probability of two role transitions between
juniorscientists who adopt Aland their counterparts who donot (n =46 year
observations for each field). Junior scientists who adopt Al have a higher

accuracy and laying arobust foundation for subsequent analysis (Fig. 1b
and Supplementary Tables 1-4). To provide a rationale and explain-
ability for our identification results, we visualize attention strengthsin
the BERT model with examples, where the model allocates substantial
attention to terms such as neural network and large language model,
illustrating how the model correctly interprets and accurately identi-
fies Al-related contents from papers published in different eras of Al
development (Supplementary Figs. 2 and 3).

Intotal we identify 310,957 Al-augmented papers, comprising 0.75%
of all selected papers. Semantically, the identified Al-related papers
tend to combine artificial intelligence and conventional research top-
ics across disciplines (Supplementary Fig. 4). Counting all eras and
disciplines collectively, the most commonly adopted Al methods in
natural science research include support vector machines and prin-
cipal component analysis from the machine learning era, and convo-
lutional neural networks and generative adversarial networks from
thedeep learning era. Large language models, which have emergedin
recentyears, alsorank among the most frequently used methods (Fig. 1c
and Supplementary Tables 5-11). Statistically, despite the overall rise
in the number of papers published annually across all disciplines®, the
share of Al-augmented papers surged by 10.70 (geology, Z=348.60,
P<0.001and degrees of freedom (df) =1ina Cochran-Armitage test)
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d, Survival functions for the transition from ajunior to anestablished researcher
(P<0.001,n=2,282,029). The survival functions can be well-fit with exponential
distributions, where junior scientists who adopt Albecome established earlier.
For all panels, 99% Cls areshown as error bars, with the insets of acentred at the
1% and 10% percentiles and other panels centred at the mean. All statistical
tests useatwo-sided t-test.

to 51.89 (biology, 7=1,388.70, P<0.001 and df=1in a Cochran-
Armitage test) times from 1980 to 2025 (Fig. 1d). Similarly, the propor-
tion of researchers adopting Al has grown even more rapidly: from
135.46 times in geology (Z=546.81, P< 0.001 and df =1ina Cochran-
Armitage test) to 362.16 in physics (Z=2,237.51,P<0.001and df =1
in a Cochran-Armitage test) (Fig. 1e). Meanwhile, growth rates for
Al-augmented papers and researchers have accelerated across the
three eras (Fig. 1f and Supplementary Figs. 5 and 6). These findings
underscore the increasing prevalence and rapid development of Al
inscience across all disciplines and the importance of understanding
Al'simpact on scientific research and progress.

Al enhancesindividual scientists

From statistics across 27,405,011 papers with intact reference records
in the OpenAlex dataset, we note that, from the publication date of
each paper across subsequent decades, annual citations to Al papers
are 98.70% higher than those to non-Al papers on average (Fig. 2a,
t>8.33,P<0.001and df > 10%in t-test on any year). Inaddition to higher
annual average citations, the greater scientificimpact of Al-augmented
papers is also reflected by multiple alternative statistical indicators,
including measures of both the highest and lowest annual citation
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count (Supplementary Fig. 8). Furthermore, Al papers consistently
receive more citations, regardless of the era in which they are pub-
lished (Extended Data Fig. 3, t > 4.06, P< 0.001 and df >10%in a t-test
onany era). We also examine the distribution of Al-augmented papers
across journals of varying Journal Citation Report quantiles*° (Sup-
plementary Fig. 14). We find that the proportion of Al papers in Q1
journals is 18.60% higher than that of non-Al papers in all journals; in
Q2journals, the Al proportionis 1.59% higher; whereas Q3 and Q4 jour-
nals hold a relatively lower proportion of papers with Al (y*=3629.11,
P<0.001and df=3inay*test). Theseresultsindicate a heterogeneous
distribution of Al-augmented papers across journals, with a higher
prevalence in high-impact journals. Paralleled by the attention paid
to Al papers, theimpact of Alresearchers also substantially increases.
Onaverage, researchers adopting Alannually publish 3.02 times more
papers (t >47.18, P<0.001and df > 10%in t-test on any discipline) and
garner 4.84 times more citations (¢ >30.32, P< 0.001 and df > 10%in
t-test on any discipline) than those not adopting Al, with consistency
across disciplines and robustness for coreresearchers with multi-year
continuous publication records* (Fig. 2b, Extended Data Fig. 4 and Sup-
plementaryFig.17). Furthermore, when controlling for and comparing
scientists with similar early career positions, the enhanced productivity
andimpactstill hold (Supplementary Fig.16). This suggests that, after
accounting for potential selection-biases among researchers with
different original achievements that may influence their choice of Al
adoption, Al itself contributes to the observed advantages.

To identify the implications of Al adoption on a scientist’s career
development, we classify the scientists into ‘junior’ and ‘established’;
junior scientists are defined as newcomers who have not yet led a
research project, whereas established scientists are defined as those
who have led one or more research projects (Methods and Extended
Data Fig. 5). We extract the career trajectories of 2,282,029 scientists
from the dataset, each initially identified as a junior scientist (Meth-
ods). Theresults reveal that Al-augmented researchis associated with
reduced research team sizes, averaging 1.33 (19.29%) fewer scientists
(t=20.47,P<0.001and df > 10%in at-test; Extended Data Fig. 6). Specifi-
cally, the average number of junior scientists decreased from 2.89 in
non-Alteams to1.99 (31.14%) in Al teams (¢ =19.02, P < 0.001 and df > 10°
int-test), whereas the number of established scientists decreased from
4.0linnon-Alteamsto3.58 (10.77%) in Al teams (¢ = 20.82, P < 0.001and
df>10%int-test). Thisindicates that Aladoption primarily contributes
toareductioninthe number of junior scientistsinteams, whereas the
decreaseinthe number of established scientists is relatively moderate.
Giventhedeclineinthe number of junior scientists, we further calculate
the probability of junior scientists becoming established scientists or
leaving academia (Fig. 2c). Across all studied disciplines, the probability
that Al-adoptingjunior scientists become established scientists is 45%,
which is 13.64% higher than for their counterparts who do not adopt
Al(¢21.40,P<0.2and df =90 inat-test on four out of six disciplines).
Thisindicates that Al-adopting scientists are associated withincreased
opportunities tolead research projects and reduced risks of dropping
outofacademia, thereby experiencing accelerated career transitions
fromjunior to established scientists.

To further quantify this effect, we measure the accelerated career
development of junior scientists by using a birth-death model**and
fitting the model parameter A with scientists’ career trajectories (Fig. 2d
and Methods). We find that the anticipated transition time tobecoming
established is1.37 years shorter for Al-adopting junior scientists than
for their counterparts who do not adopt Al. The expected transition
time is 7.33 years for junior scientists who adopt Al (R? = 0.995) and
8.70 years for those who do not (R? = 0.987). This demonstrates how Al
adoptionaffordsjunior scientists with opportunities to lead research
projectsand become established earlier. Further analysis reveals that
thisreductioninthe transition time for Al-adopting junior scientists to
becomeestablished is universal across examined disciplines (Extended
Data Fig. 7). Moreover, established scientists involved in Al papers
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are, on average, 10.77% younger than those involved in non-Al papers
(Extended Data Fig. 6; ¢ >2.12, P< 0.05 and df > 10% in a ¢-test on most
year). Collectively, these findings suggest that Al research receives
more attention from academia, and Al-adopting scientists are associ-
ated with higher scholarly productivity and impact. In this way, they
have a higher probability of becoming established scientists, and at
earlier ages, therefore experiencing accelerated career development.

Al contracts science’s focus

Theaccelerating use of Alin science and itsimpact onindividual scien-
tists raises questions about its influence across the entire field of sci-
ence. Toevaluate how Al collectively impacts the frontiers of scientific
exploration, we design ameasurement to characterize the breadth of
scholarly attention represented by a collection of research papers. We
use SPECTER 2.0—a specialized text embedding model pre-trained
on a large scientific literature corpus and fine-tuned with citation
information®—to project research articles onto its 768-dimensional
embedding space of science (Fig. 3a).

Within this high-dimensional embedding space, we measure knowl-
edge extent as the ‘diameter’ of vector space covered by a sampled
batch of papers, which allows us to compare the coverage of topical
ground between Aland non-Al papersin each given domain*** (Fig. 3b
and Methods). Compared with conventional research, Al research is
associated with a4.63% contracted median collective knowledge extent
acrossscience, whichis consistent across all six disciplines (Fig.3c and
Extended DataFig. 8; x> > 84.05,P<0.001and df =1inamedianteston
any discipline). Moreover, when dividing these disciplines into more
thantwo hundred sub-fields, the contraction of knowledge extent can
be observed inmore than 70% of them (Extended Data Fig. 9). When we
compare the median entropy of knowledge distribution between Aland
non-Alresearchineach domain (Fig. 3d), results demonstrate that the
knowledge distribution of Al research has a lower entropy (x> > 79.20,
P<0.001and df =1in a median test on any discipline), indicating an
increasingly disproportionate focus on specific core problems within
established fields.

These results generally highlight an emerging conflict betweenindi-
vidualand collective incentives to adopt Alin science, where scientists
receive expanded personal reach and impact, but the knowledge extent
of entire scientific fields tends to shrink and focus attention on a sub-
set of topical areas. According to analyses on possible factors that
may influence the selectivity of Al adoption across different topics,
we find that factors such as inherent topicality, original impact and
funding priority remain almost unrelated to the disproportionate Al
adoption (Supplementary Figs. 22-24). By contrast, data availability
seems to be amajorimpacting factor, where areas with an abundance of
dataareincreasingly and disproportionately amenable to Al research,
contributing to the observed concentration within knowledge space
(Supplementary Fig. 25).

Alreduces scientific engagement

To analyse mechanisms underlying the conflict between the grow-
inginfluence of individual papers and researchers and the narrowing
of domain knowledge within Al research, we examine the relation-
ship between articles that cite Al and non-Al work. We first examine
the knowledge extent of ‘paper families’, that is, a focal paper and its
follow-on citations, which measures the size of the space covered
by research derived from each original paper (Fig. 4a and Methods).
Results show that the knowledge extent of Al papers’ citation families
isonaverage 3.46% more expanded than that of non-Al papers (¢>1.91,
P<0.1and df>10?%in t-test on 30 out of 32 pairs of data). The contrac-
tion of knowledge space in Al research is therefore not attributable
to the narrowing of knowledge space that can be derived from each
original research work.
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To further investigate engagement, we examine relationships
between papers by measuring the degree of follow-on paper engage-
ment, namely, how frequently citations of the same original paper cite
each other (Fig. 4b and Methods). Results demonstrate Al research
spawns 22% less follow-on engagement (¢ > 8.10, P < 0.001and df > 10°
int-testonanydiscipline), suggesting that Al papers tend to only con-
centrate onthe original paper, rather than forming dense interactions
among each other, whichis the characteristic of emerging fields*. This
resultsinastar-like structure around specific popular research topics,
rather thananetwork of emergent andinterconnected research works.
Furtherevidence of this concentrationis found in the Matthew effect*
among Al paper citations across different fields (Fig. 4c and Extended
DataFig.10).In Alresearch, asmall number of superstar papers domi-
nate thefield, with 22.20% of top papers receiving 80% of the citations
andthetop 54.14% receiving 95% of citations. This unequal distribution
leads to a Gini coefficient of 0.754 in citation patterns surrounding Al
research, higher than 0.690 for non-Al papers (¢ = 27.86, P < 0.001and
df =198 in t-test), signalling a disparity in recognition.
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natural sciences. Furthermore, Al papers are more clustered in knowledge
space, indicating a higher concentration on specific problems. ¢, Knowledge
extent of Aland non-Al papersineach field (P<0.001,n=1,000 samplesin
each field), where Al research focuses on amore contracted knowledge space.
d, Knowledge entropy of Aland non-Al papersineachfield (P<0.001,n=1,000
samplesineachfield), where Alresearch has alower entropy. For panels ¢
andd, boxplotsare centred at the median and bounded at the first and third
quartiles (Qland Q3), with1.5times the interquartile range shown as whiskers
fromthebox. All statistical tests use amedian-test.

To further analyse the impact of reduced follow-on engagement,
we sample 590,325,130 pairs of papers, where each pair cites the same
original work. Among these, 51,723,984 pairs not only cite the same
original work but also cite each other (engaged), whereas the remain-
ing pairs do not cite each other (disengaged). We examine distances
between these pairs of papers within our 768-dimensional vector
space (Fig. 4d) and find that median distance between paper pairs
that are disengaged from one another tends to be 18.11% larger than
between paper pairs that are engaged with each other. By contrast,
the closest disengaged paper pairs are 76.51% closer to one another
than the closest engaged paper pairs. Taken together, a pair of disen-
gaged papers commonly focus on less related topics and lie farther
apart in the embedding space. Occasionally, however, owing to the
lack of reciprocal engagement, it is possible that mutually unaware
paperslie very close to each other, which indicates more overlapping
research. These findings suggest that Al in science has become more
concentrated around popular research topics that become ‘lonely
crowds’ with reduced interaction among papers, linking to more
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Fig.4 |Reduced follow-on engagement and more overlapping works in
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where the knowledge space of individual Al paper families is broader and
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papersthatcite the same original paperin Al research. ¢, Distribution of
citations to Al versus non-Al papers, where Al papers tend to concentrate

overlappingresearchandacontractioninknowledge extentand diversity
acrossscience.

Discussion

Here we perform a large-scale empirical measurement of the effect
of adopting Alin science on both individual scientists and scientific
communities. We identify three waves of Aladoptionin science, which
correspond to the dominance of machine learning, deep learning and
generative Al, respectively. Each wave is marked with an accelerated
Aladoptionrate inresearch papers and authors. In all natural science
research fields we studied, we find that individual scientists are increas-
ingly rewarded with expanded academicimpact and accelerated career
development for incorporating Al assistance in research across each
of these waves. On average, Al adoption helps individual scientists
publish3.02 times more papers, receive 4.84 times more citations and
become team leaders 1.37 years sooner. This probably results from
improved modelling and prediction of field-specific data, resulting
in higher performance on recognized benchmarks. The substantial
academic benefits of Al use may be a driving force behind its acceler-
ated rate of adoption; however, we also find unintended consequences
fromtheincreased prevalence of Al-augmented research. Inallfields,
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moreonasmaller number of top papers (P<0.001,n=100 sampled paper
groups).d, Distribution of distances between paper pairs that cite the same
previousresearch, with or without citing one another, namely, engaged (green)
versus disengaged (purple) (n=590,325,130 sampled paper pairs). Results
show that for papers not engaged with each other, the median distanceis
larger, but the minimum distance is smaller, indicating a higher probability of
overlapsinknowledge space. For all panels, 99% Cls are shown as error bars or
error bands centred at the mean. All statistical tests use atwo-sided t-test.

Al-augmented research focuses on anarrower scope of scientific topics
and reduces the scientific engagement of follow-on research, leading
tomore overlapping research work that slows the expansion of knowl-
edge. Further, withagreater concentration of collective attention to the
same Al papers, theadoption of Alseemstoinduce authorsto converge
onthe samesolutions toknown problemsrather than create new ones.

These findings raise critical questions for science policy. What are
the topics that are most likely to be left behind from Al-augmented
research across fields? Those with less available data include critical
scientific questions regarding the origins of natural phenomena, where
dataare necessarily reduced. Accelerating scientific activity under the
light cast by highly visible, data-rich phenomena moves science away
from many foundational questions and towards operational ones. By
driving attention towards the most popular new developments, Al
seems todrive problemsolution over generation. These issuesbecome
particularly concerning in the face of calls to further increase sup-
port for Al-augmented science**8, coupled with the personal scien-
tificincentives we observe. This could shift collective attention away
from new and original questions that lack the data required for Al to
demonstrate benefit. It is true that more overlapping attention and
a contracted focus may benefit scientific replication and extension,
accelerating the emergence of solid and practical solutions to core



questions. Insofar as scientific discovery represents a vast and complex
landscape, however, concentrating attention on the same develop-
ments may increase the likelihood that science becomes fixed onlocal
maxima of scientificexplanationand predictionrather than searching
inamorebroad, decoupled and diverse way.

Although our analysis provides new insight into Al'simpact on sci-
ence, clear limitations remain. Our identification approach—although
validated by experts—misses subtle and unmentioned forms of Al use,
and our focus on natural sciences excludesimportant domainsinwhich
Al adoption patterns may differ. Moreover, despite consistently sug-
gestive evidence, we cannot fully identify the causal linkage between Al
adoption and scientificimpact. Nevertheless, our findings demonstrate
that currently attributed uses of Alin science primarily augment cogni-
tive tasks through data processing and pattern recognition. Looking
forward, these findings illuminate a critical and expansive pathway
for Al development in science. To preserve collective explorationin
an era of Al use, we will need to reimagine Al systems that expand not
only cognitive capacity but also sensory and experimental capacity*>°,
enabling and incentivizing scientists to search, select and gather new
types of datafrom previously inaccessible domains rather than merely
optimizing analysis of standing data. The history of major discoveries
has been most consistently linked with new views on nature®. Expand-
ingthescope of Al'sdeploymentinscience will be required for sustained
scientific research and to stimulate new fields rather than merely auto-
mate existing ones.
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Methods

Dataset and paper selection

In this section we introduce the procedure of selecting the research
papers included in our analysis. We conduct our major analyses on
OpenAlex?—a scientific research database built on the foundation
of the Microsoft Academic Graph (MAG)*>**. Supported by non-profit
organizations, OpenAlex is continuously updated, providing a sus-
tainable global resource for research information. As of March 2025,
OpenAlex contains 265.7 million research papers, along with related
data about citation, author, institution and so on. Among the mas-
sive quantity of papers in the OpenAlex dataset, we select 66,117,158
English research papers published in journals and conferences span-
ning from 1980 to 2025 and filter out those with incomplete titles or
abstracts. We identify the scientific discipline each paper belongs to
by making use of the topics noted in OpenAlex, which are extracted
using a natural language processing approach that annotates titles
and abstracts with Wikipedia article titles as topics sharing textual
similarity. In the raw dataset, these topics form a hierarchical struc-
ture and each paper is associated with several. Adopting the 19 basic
scientific disciplines in MAG*>*, that is, art, biology, business, chem-
istry, computer science, economics, engineering, environmental sci-
ence, geography, geology, history, materials science, mathematics,
medicine, philosophy, physics, political science, psychology, and
sociology, we trace along the hierarchy and determine to which dis-
ciplines each topic belongs. We note that because the original topics
of one paper may be retraced to different topics, the scientific dis-
cipline of each paper may not be unique. In other words, one paper
may span two or more academic disciplines, for example, chemistry
and biology, which reflects the common phenomena of borderline or
interdisciplinary research®.

Here we emphasize the adoption of Al methods in conventional
natural science disciplines and exclude research developing Al meth-
odologies themselves, separating the influence of Al on science from
Al'sowninventionand refinement. We therefore select biology, medi-
cine, chemistry, physics, materials science and geology as represent-
atives of natural science disciplines, but exclude computer science
and mathematics, where most works introducing and developing Al
methods are published. We also exclude art, business, economics,
history, philosophy, political science, psychology and sociology to
focus on how Al is changing the natural sciences and career trajecto-
ries in those sciences. Our six natural science disciplines include the
majority of OpenAlex articles, resulting in 41,298,433 papers, con-
taining 18,392,040 in biology, 4,209,771 in chemistry and 2,380,666
ingeology, 4,755,717 in materials science, 24,315,342 in medicine and
5,138,488 inphysics. The selected disciplines cover various dimensions
of natural science, representing a broad view of scientific research
asawhole.

Divide into three stages of Al development

We divide the history of Al development into three key eras: the tradi-
tional machinelearning era (1980-2014), the deep learning era (2015-
2022) and the generative Al era (2023 to present). We consider 1980 as
the start of the traditional machine learning era because several land-
mark works were published inthe 1980s, such as the back-propagating
method®**. Weregard the deep learning era to have begun in 2015, as
indicated by breakthroughs such as ResNet, which enabled the training
of ultra-deep neural networks, revolutionizing fields such as computer
vision and speech recognition®. Finally, we define the generative Al era
as beginning in 2023, following the publication of ChatGPT—the first
widely used large language model—in December 2022. This marked
theadvent of large-scale transformer-based models capable of strong
generalized performance across a wide range of tasks, sparking new
applicationsin natural language processing and beyond. Each of these
transitions was driven by advancesin algorithms, computational power

and dataavailability, substantially expanding the capabilities and scope
of Al for science.

Design and fine-tune the language model for Al paper
identification

Insofar asboth apaper’stitle and abstract containimportantinforma-
tionaboutits content, we independently traintwo separate models on
thebasis of paper titles and abstracts, and then integrate the two mod-
elsinto an ensembled one by averaging their outputs. The structure of
our natural language processing model for paper identification consists
oftwo parts. The backbone networkis atwelve-layer BERT model with
twelve attention heads in each layer, and the sequence classification
headisalinearlayer with atwo-dimensional output atop the BERT out-
put. We normalize the two-dimensional output with a softmax function
and obtain the probability that the paper involves Al-assistance. We use
the BERT model called BERT-base-uncased from Hugging Face’, which
is pre-trained with alarge-scale general corpus, and set the maximum
length of tokenization tobe 16 for titles and 256 for abstracts. We design
atwo-stage fine-tuning process with training and validation sets, which
we extracted from the OpenAlex dataset, to transfer the pre-trained
model to our paper identification task. The construction of positive
and negative data is different between the two stages. In both stages,
werandomly split the positive and negative datainto 90% and 10% sets,
which correspond to training and validation sets, respectively. We use
the training set for model training and use the validation set to select
the optimal model. As the numbers of positive and negative cases are
unbalanced, we use the bootstrap sample technique on positive cases
to balance its number with negative cases at both stages.

In the first stage, we construct relatively coarse positive data, only
considering eight typical Aljournals and conferences, including Nature
Machinentelligence, Machine Learning, Artificial Intelligence, Journal
of Machine Learning Research (JMLR), International Conference on
Machine Learning (ICML), International Conference on Learning Repre-
sentations (ICLR) and the AAAI Conference on Artificial Intelligence and
Internationaljoint Conferenceon Artificial Intelligence () CAl). Among
the papersbelonging to our chosensix disciplines, we extract all papers
publishedinthese venues as positive cases and randomly sample 1% of
the remaining papers in our six chosen natural science fields as nega-
tive cases, resulting in 26,165 positive and 291,035 negative cases. We
fine-tune the pre-trained model for 30 epochs on the training set and
select the optimal model accordingto the F1-score onthe validation set.

Inthe second stage, we construct more precise positive dataonthe
basis of the optimal model obtainedin the first stage. We identify papers
inthewhole OpenAlex dataset and aggregate the results for each venue,
obtaining the probability that each venue in OpenAlexis an Al venue by
averaging the Al probability for all papers withinit. We then select the
venues with>80% Al probability and >100 papers as Al venues. We also
incorporate venues with ‘machine learning’ or “artificial intelligence’
in their names. In papers belonging to our six chosen disciplines, we
extractall papers published inthe selected Al venues as positive cases
and randomly sample 1% of those remaining as negative cases, result-
ingin 31,311 positive and 231,258 negative cases. We then fine-tune the
obtained optimal model in the first stage for another 30 epochs with
the new training set and select the best model accordingto F1-score on
the new validation set. Finally, we use optimal ensemble models during
bothstages toidentify all papers that use Al to support natural science
research fromthe selected representative natural science disciplines.

Scrutinization of our identification results by disciplinary experts
We arbitrarily sample 220 papers (110 papers x 2 groups) from each
of the six disciplines, resulting in twelve paper groups in total. We
enlisted twelve experts with abundant Al research experience (Sup-
plementary Table 1) and assigned three different groups of papers to
each. Without revealing the classification results obtained from the
BERT model, we queried our experts on whether each paper was an



Al paper. In this way, each paper is repeatedly labelled by three dis-
tinct experts, and we evaluate the consistency among these experts
on the basis of Fleiss’s k (refs. 37,38), which is an unsupervised meas-
urement for assessing the agreement between independent raters.
Having confirmed consensus among our experts, we draw the final
expert label of each paper from the three experts according to the
principle of the minority obeying the majority. We regard the expert
labels as ground truth and validate the result of our BERT model
against them with the F1-score, which is a supervised measurement
ofaccuracy.

Determine the project leader of papers

Here we define the project leader as the last author of aresearch paper,
in alignment with conventions established by previous studies®. To
ensure that in most papers, the last author represents the project
leader, we examine the fraction of papers that list authors following
alphabetical order. First, we directly traverse all selected papers and
obtain the prevalence of papers listing authors in alphabetical order,
which ranges from 14.87% in materials science to 22.15% in geology.
Nevertheless, it is difficult to distinguish whether these papers actu-
ally intended to list the authors in alphabetical order or according to
their roles, which unintentionally fall in alphabetical order. The latter
situation is more likely to occur when there are fewer authors (two or
three). To tackle this analytical challenge, we determine the fraction of
unintended alphabetical author lists through a Monte Carlo method.
We generate ten randomly shuffled copies of the author list for each
paper and find that from13.82% (materials science, 0= 0.02) t0 20.28%
(geology,0=0.03) of papers have alphabetically listed authors among
therandom author lists. Thisindicates the proportion of ‘unintended’
alphabetical author lists,and we can derive the actual fraction of papers
withintentionally alphabetical author lists by the difference between
the above two sets of statistical results. The actual fraction obtained
illustrates that only 1.58% of papers across all disciplines intentionally
list the authors in alphabetical order (Supplementary Table 12) and
therefore, we can, with negligible interference, assume that we can
identify last authors as team leaders.

Detect scientists’ career role transition

The OpenAlex datasetincorporates a well-designed author name dis-
ambiguation mechanism?, which uses an XGBoost model*’ to predict
the likelihood that two authors are the same on the basis of features
such as their institutions, co-authors and citations, and then applies
a custom, ORCID-anchored clustering process to group their works,
assigning aunique ID to each author. Simply using unique IDs, we are
able to track a large number of authors at the same time®, where we
depictanindividual scientist’s career trajectory using arole transition
model (Extended DataFig.4a) and extract the role transition trajecto-
ries for scientists.

First we traverse all selected papersinthe six disciplines and extract
all the scientists involved in any of these papers. Then, for each indi-
vidual scientist, we extract all papersin which they have beeninvolved
and record the time of their first publication in any role, the time of
their first publication as team leader (if ever), and the time of their last
publication. We then filter out scientists whose publication records
span only a single year. We also filter out those who directly start as
established scientists leading research teams without arole transition
from junior scientists. Finally, we detect the time that each scientist
abandons academic publishing. Considering that one scientist may
not publish papers continuously every year, we cannot regard them
as having left academia on the basis of their absence in the published
record for a single year. We therefore follow the settings used in pre-
vious work® to use a threshold of three years and regard scientists
who have no more publications after 2022 as having exited academia,
whereas those whosstill publish papers after 2022 are considered to have
anunclear ultimate status and are excluded from the analysis. Finally,

weobtain 2,282,029 scientists in the six disciplines with complete role
transition trajectories. We also classify them into Aland non-Al scien-
tistsaccording towhether they have published Al-augmented papers.

Moreover, by analysing author contribution statements collected
in previous studies®®***, we further validate our detection results by
examining changesin scientists’ self-reported contributions through-
out their careers (Extended Data Fig. 4b). Results indicate that junior
scientists primarily engage in technical tasks, such as conducting
experiments and analysing data, and less in conceptual tasks, such as
conceiving ideas and writing papers. Nevertheless, the proportion of
conceptual work significantly rises (P < 0.01and df =1in a Cochran-
Armitage test) during their tenure asjunior scientists, reaching satura-
tionatahighlevel (60% or more) ontransitionto becoming established
scientists. This finding validates our definition of role transition by
demonstrating a shift in the nature of scientists’ contributions from
participating in research projects to leading them.

Estimate the birth-death model for career development of
junior scientists
To obtain a more precise quantification of how much Al acceler-
ates the career development of junior scientists, we use a general
birth-death model*. This type of stochastic process model depicts
the dynamic evolution of a population as members join and exit. In
our context, it models the role transitions of junior scientists. Spe-
cifically, we use two separate birth-death models for junior scien-
tists who eventually become established and for those who leave
academia, respectively. Here, ‘birth’ processes refer to the entry of
junior scientists into academic publishing, and ‘death’ processes
symbolize their transition out of the junior stage, either by becom-
ing established scientists or quitting academia. As the entry and exit
of each junior scientist are independent from one another, we use
Poisson processes to model ‘birth’ (entry) and ‘death’ (exit) events,
respectively.

The Poisson processis atypical stochastic process model for describ-
ing the occurrence of random events that are independent of each
other®, The mathematical formula of the Poisson process is:

_ oo Qot* i _ 1
P(N(tg) =k) == 7€, 5> 0,k=0,1,2, ..., )

where N(¢,) denotes the number of random events that happened
before time ¢,, and A, is the parameter of the Poisson process, depict-
ing the happening rate of random events. We consider a birth-death
modelinwhichbirth and death dynamics are both Poisson processes,
and rate parameters are i and w, respectively. Through mathematical
derivation®®, we conclude that the duration time ¢ from birth to death
follows an exponential distribution with the parameter w — u, where
the exact form of the probability density function is:
P(t) = (w-p)e @Mt t>0. ()
We consider the difference between the two rate parameters w — u
as awhole and fit it with a single parameter A. The transition time for
junior scientists to become established scientists or leave academia
then follows the exponential distribution:

P()=2e™,t>0, 3)
and the corresponding survival function is
t
s@=1- Pwdu=e™,t>0. )
0

Hence the average transition time is the conditional expectation of
the distribution defined as follows:
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F=E[de>1] :ftx P(r)dr:ftme‘“dt: % 1 )

Wefitthe role transition time of scientists with the aforementioned
exponential distribution, thereby determining the respective values of 1
for Al-adoptingjunior scientists and their non-Al counterparts. Guided
by the underlying mechanism of junior scientists’ career development
incorporated within the birth-death model, expectations from the
model offer a more accurate estimate of the average role transition
time.

Measure the knowledge extent of papers
To assess the knowledge extent of a set of research papers within their
high-dimensional embeddings

{p(1], p(2], ..., p[nl}, plil € K%, (6)

we first compute the centroid as the mean of their vector locations:

> plil. )

i=1

1
c=—
n

Next, we compute the Euclidean distance from each embedding to
the centroid, where the knowledge extent (KE) of the set of papers is

defined as the maximum distance or ‘diameter’ of the vector space
covered:

KE = max|plil - cll. (8)

We note that Euclidean distance is highly correlated with the cosine
andrelated angular distances.

In practice, the number of Aland non-Al papers in each domain dif-
fers considerably, introducing bias to the measurement of knowledge
extent. To address this issue, we build on past work** about cognitive
extent, whichisameasure of the breadth of ascientific field’s cognitive
territory, and is quantified by the number of unique phrases—as a proxy
for scientific concepts—found within a sampled batch of papers of a
given size. For each domain, we randomly sample 1,000 papers from
both Al and non-Al categories, compute their respective knowledge
extent, and repeat this process 1,000 times. By comparing knowledge
extent values across these 1,000 random samples, we ensure that the
number of Al and non-Al papers is balanced, making our knowledge
extent results comparable.

Measure the knowledge extent of paper families

To measure how much knowledge space can be derived from each
original paper, we calculate the knowledge extent of ‘paper families’,
thatis, afocal paper andits follow-on citations. Focusing on an original
research paper ¢, which corresponds to a high-dimensional embed-
ding vectorp, € R7%8, we extract all n, research papers that cite this
original paper. These papers are sorted chronologically by publication
date, fromearliest to most recent. The corresponding high-dimensional
embeddings of these sorted papers are:

{p,[1,p,[2], ..., p,[n,1}, p, il € R (9)

Thereby, we calculate knowledge extent covered by the ‘paper fam-
ily’ consisting of the original paper ¢ and the first n follow-on papers,
citingit(1<n<n,)as:

KE[n]= max ¢|Ip¢[l] ~Pyll2- 10)
Measure follow-on engagement among papers

To quantify how frequently citations of the same original paper inter-
act with each other, we design a metric called follow-on engagement,

building on previous work®. For an original paper with n citations,
there are at most “*~Y possible citations among these n citing papers
if everyone cites all papers published earlier than their own. We then
count how many times these n citing papers actually cite one another,
denoted as k. Our metric for follow-on engagement (EG) is calculated
as the ratio of actual to maximum possible citations:

K 2% 2%
"("T*D_n(n—l)_n(n—l)

EG= %100 (%). (11)

This metric helps quantify the degree of interactions and collabo-
ration among papers that cite the same original work. Past work has
demonstrated a positive association between the ambiguity of afocal
work and follow-on engagement®.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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