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Abstract

Large language model (LLM) agents have demonstrated
strong capabilities across diverse domains, yet automated
agent design remains a significant challenge. Current auto-
mated agent design approaches are often constrained by lim-
ited search spaces that primarily optimize workflows but fail
to integrate crucial human-designed components like mem-
ory, planning, and tool use. Furthermore, these methods are
hampered by high evaluation costs, as evaluating even a sin-
gle new agent on a benchmark can require tens of dollars. The
difficulty of this exploration is further exacerbated by ineffi-
cient search strategies that struggle to navigate the large de-
sign space effectively, making the discovery of novel agents
a slow and resource-intensive process. To address these chal-
lenges, we propose AgentSwift, a novel framework for auto-
mated agent design. We formalize a hierarchical search space
that jointly models agentic workflow and composable func-
tional components. This structure moves beyond optimizing
workflows alone by co-optimizing functional components,
which enables the discovery of more complex and effective
agent architectures. To make exploration within this expan-
sive space feasible, we mitigate high evaluation costs by train-
ing a value model on a high-quality dataset, generated via
a novel strategy combining combinatorial coverage and bal-
anced Bayesian sampling for low-cost evaluation. Guiding
the entire process is a hierarchical Monte Carlo Tree Search
(MCTS) strategy, which is informed by uncertainty to effi-
ciently navigate the search space. Evaluated across a compre-
hensive set of seven benchmarks spanning embodied, math,
web, tool, and game domains, AgentSwift discovers agents
that achieve an average performance gain of 8.34% over both
existing automated agent search methods and manually de-
signed agents. Moreover, our framework exhibits steeper and
more stable search trajectories. By enabling the efficient, au-
tomated composition of workflow with functional compo-
nents, AgentSwift provides a scalable methodology to ex-
plore complex agent designs. Our framework serves as a
launchpad for researchers to rapidly prototype and discover
powerful agent architectures without the impediment of pro-
hibitive evaluation costs.

Code — https://github.com/Ericccc02/AgentSwift
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Introduction

The recent rise of large language models (LLMs) (Brown
et al. 2020; Radford et al. 2018, 2019) has sparked an ex-
plosion of interest in agentic systems. Early forms of such
systems, like Chain-of-Thought (Wei et al. 2022), Tree-of-
Thought (Yao et al. 2023), Debate (Du et al. 2023) and
Self-Refine (Madaan et al. 2023), exemplify the agentic
workflow paradigm. These agentic workflows significantly
boosted performance on reasoning-intensive tasks, such as
mathematical problem (Romera-Paredes et al. 2024) and
logical deduction (Shang et al. 2024a). Subsequently, more
advanced systems like Voyager (Wang et al. 2024) and Au-
toAct (Qiao et al. 2024) incorporated structured components
such as planning, tool use, and memory. These functional
enhancements allowed agents to handle a broader range of
tasks—such as web interaction (Nakano et al. 2021), open-
ended exploration (Wang et al. 2024), and planning (Xie
et al. 2024)—further extending their capability. These de-
velopments highlight the importance of agent design, yet
building high-performing agents remains manual and labor-
intensive, motivating the need for automated agent search.
Despite recent progress, the design of agentic systems re-
mains largely manual and heuristic. Early efforts focused on
prompt optimization (Yang et al. 2024b; Khattab et al. 2023)
or agent profiling (Yuan et al. 2024), while graph-based ap-
proaches (Zhuge et al. 2024; Zhang et al. 2024a) explored
communication topology. These methods typically target
isolated subsystems such as prompts, roles, or message
flow. More recent works like AFlow (Zhang et al. 2024b),
ADAS (Hu, Lu, and Clune 2024), and AgentSquare (Shang
et al. 2024b) formulate agent design as a search problem
over agentic workflows, aiming to discover effective end-to-
end configurations. While these advances mark a shift to-
ward agent search, the search of agent remains inefficient.
This inefficiency stems from three major challenges.
First, there is an under-exploitation of proven human de-
signs: most existing methods restrict search to specific
parts of the agent, such as prompts, profiles, or workflows.
As a result, they fail to incorporate or discover critical
functional components like planning, tool use, and mem-
ory—elements essential for building agents capable of tack-
ling complex, multi-stage tasks. Second, the evaluation cost
of agent search remains prohibitively high. According to
AgentSquare (Shang et al. 2024b), evaluating a simple CoT



agent based on GPT-40 in ALFWorld (Shridhar et al. 2021)
requires around $60. In most existing methods, each newly
generated agent must be fully evaluated on benchmark tasks
to obtain feedback. This results in a large number of unnec-
essary evaluations for poorly performing agents, leading to
wasted computation and prolonged search cycles. Third, in
large design spaces, search efficiency suffers. While meth-
ods like AFlow and ADAS aim to optimize entire workflows
based on performance histories, they often employ search
strategies that explore the vast design space inefficiently.
Addressing these limitations is crucial to unlocking the full
potential of agentic system search.

In this work, we propose a comprehensive framework
that addresses these inefficiencies through three key in-
novations. First, we construct a hierarchical search space
that includes both the agentic workflow and three func-
tional components—memory, tool use, and planning—that
can be modularly attached to the agentic workflow. This
search space extends the formulation of AFlow, enabling
richer design possibilities beyond fixed workflow structures.
This structured design space not only broadens the range
of agent designs but also facilitates more meaningful per-
formance modeling, making it well-suited for learning a
predictive model. Second, we develop a value model that
predicts the performance of a candidate agent given its
design and a task description. To support effective learn-
ing, we construct a high-quality training dataset by com-
bining pairwise covering arrays, which ensure comprehen-
sive coverage of interactions between workflows and com-
ponents, with balanced Bayesian sampling, which selects
agent candidates from both high- and low-performing re-
gions of the search space. This enables the model to gener-
alize across a broad design space and provide accurate, low-
cost predictions, effectively guiding the search process while
avoiding unnecessary real-world evaluations. Third, we de-
sign an uncertainty-guided hierarchical expansion strategy
based on Monte Carlo Tree Search (MCTS). During the
MCTS expansion phase, the agent is iteratively improved
through three operations—recombination, mutation, and re-
finement—applied hierarchically to both the agentic work-
flow and functional components. In the recombination step,
new candidates are sampled from a library of possible work-
flow structures or component implementations to replace
existing ones. Mutation explores new candidates based on
existing components and workflows, guided by the perfor-
mance of previously evaluated agents. Refinement adjusts
the agentic workflow and components based on feedback
from failure cases. These modifications are guided by the
value model’s predicted performance, ensuring the search
explores promising directions efficiently. By comparing pre-
dicted and actual performance, we obtain a natural measure
of uncertainty, which is integrated into the MCTS selection
strategy to guide which to expand during the search. This
integration of predictive modeling and uncertainty allows us
to prioritize promising agent candidates, avoid unproductive
regions, and conduct more targeted, efficient exploration of
the design space. The overview of this work is illustrated in
Figure 1.

We validate our framework across seven widely-used

benchmark datasets spanning domains such as math, web,

tool, and game. Experimental results show that our method

achieves an average performance improvement of 8.34%

over state-of-the-art baselines. The discovered agents gen-

eralize well across LLM backbones, demonstrating strong

model-agnosticity. Additionally, our approach exhibits a

steeper search trajectory, discovering high-performing agent

designs with significantly fewer agent evaluations. Beyond
final performance, our value model demonstrates high pre-
dictive accuracy and strong transferability to unseen tasks
with minimal fine-tuning.

The key contributions of this work are as follows:

* We formalize the agentic system optimization as a hierar-
chical search over agentic workflow and functional com-
ponents, establishing a general framework that extends
prior approaches.

* We train a value model that predicts agent performance
from agentic system and task description, enabling low-
cost, model-driven evaluation during the search process.

* We propose an uncertainty-guided hierarchical expansion
strategy based on MCTS, incorporating recombination,
mutation, and refinement steps over both workflow and
components.

* We empirically demonstrate the effectiveness of our
method on seven diverse benchmarks, showing consistent
improvements over state-of-the-art baselines.

Related work
LLM agent

Recent advances in LLM agents have introduced diverse
agentic workflows that support multi-step reasoning via re-
flection and debate (Wei et al. 2022; Madaan et al. 2023; Du
et al. 2023). These workflows are often complemented by
functional components that extend agent capability: mem-
ory supports long-term coherence and retrieval (Wang et al.
2024; Wen et al. 2024; Park et al. 2023), tool use enable in-
teraction with external APIs (Schick et al. 2023; Qin et al.
2023; Du, Wei, and Zhang 2024), and planning facilitates
subgoal decomposition and control (Ge et al. 2024; Wang
et al. 2024; Shen et al. 2023). However, most agents are
still manually designed for specific tasks, lacking a uni-
fied framework that can systematically search and optimize
across workflow and component design choices.

Automated agentic workflow design

Early work on automating agentic workflows has largely
focused on optimizing specific subsystems such as
prompts (Yang et al. 2024b; Fernando et al. 2023), agent
profiles (Chen et al. 2023a,b), and communication topolo-
gies (Zhuge et al. 2024; Qian et al. 2024; Niu et al. 2025).
While these methods improve local components, they do
not consider the agentic workflow as a whole. More re-
cent approaches have attempted end-to-end agentic work-
flow search (Zhang et al. 2024b; Hu, Lu, and Clune 2024,
Shang et al. 2024b; Zhang et al. 2025a). Extending this
direction, MaAS (Zhang et al. 2025b) shifts from search-
ing for a single optimal workflow to learning a query-
conditioned distribution over agentic architectures, enabling
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Figure 1: Overview of our framework. The framework integrates (a) hierarchical search space (b) uncertainty-guided MCTS

with hierarchical expansion (c) value model training

adaptive deployment. However, these approaches still oper-
ate within predefined workflow primitives and often over-
look the broader agent design space that includes functional
components, limiting adaptability and extensibility.

Performance predictor in AutoML

The development of performance predictors in Neural Ar-
chitecture Search (NAS) provides a valuable blueprint for
progress in agentic system search. Early NAS efforts pri-
marily focused on optimization strategies (Zoph and Le
2016; Real et al. 2019; Maziarz et al. 2018). While effective,
these methods required costly evaluations of many candidate
architectures. To overcome this limitation, the NAS com-
munity gradually introduced performance predictors (Kan-
dasamy et al. 2018; White, Neiswanger, and Savani 2021;
Qin et al. 2025). This shift in NAS, from pure search to
search guided by learned predictors, has led to significant
improvements in efficiency. Notably, the research paradigm
in NAS is closely aligned with the goals of agentic sys-
tem design, as both involve navigating large design spaces
under expensive evaluation constraints. Motivated by this
connection, we incorporate a value model into agentic sys-
tem search, enabling performance prediction for candidate
agents and guiding the search process more efficiently.

Search space

More recent efforts like AFlow (Zhang et al. 2024b) and
ADAS (Hu, Lu, and Clune 2024) treat the agentic workflow
as a whole and perform end-to-end search over its structure.
Despite their broader scope, these methods do not support
flexible integration of functional components such as mem-
ory, planning, or tool use. Although AgentSquare (Shang
et al. 2024b) introduces these components into its design
space, they are combined under a fixed agentic workflow
template with rigid interfaces, and its search process remains
prompt-centric. In contrast, we propose a hierarchical search
space that jointly explores both the agentic workflow and
composable functional components.

Agentic workflow

Following AFlow (Zhang et al. 2024b), we define an agentic
workflow W as a series of LLM-invoking nodes connected
by edges to specify execution order. Formally, an agentic
workflow W consists of a set of nodes N and a set of edges
E, written as W = (N, E). Each node N; € N represents
a single execution step and is characterized by the following
parameters:

Ni = (Mza -P’L'a Tis Fl)a (1)
where M; € M is the language model used at this node,
P; € P is the prompt provided to the model, 7; € T is
the decoding temperature, and F; € F specifies the output
format. The edges £ C N x N define the control and data
flow between nodes, specifying the execution order.

The agentic workflow search space is defined as:

Sworkﬂow = {(N7E) ‘ Nz = (MiaPiaTiaFi)v
M,eM, PeP, €T, (2)
F;, e F, EQNXN}.

Functional components

In addition to the agentic workflow, we extend the search
space to include composable functional components that
provide essential agentic capabilities. Specifically, we con-
sider three component types: memory, tool use, and plan-
ning. These components are designed to be plug-and-play
and can be integrated at specific points within the agentic
workflow—for instance, a memory component may interact
with a node to retrieve or store context, tool use can augment
a node with external API calls, and planning can precede
downstream execution steps.

Memory. The memory component allows agents to re-
trieve and incorporate information. It is defined as M =
(m, 7, d), where m is the prompt used to query or up-
date memory, 7 is the decoding temperature for memory-
related LLM calls, and d denotes the external memory back-
end, such as a vector database.

Tool Use. The tool use component enables the agent to
interact with external APIs or environments. It is defined as
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T = (t, 7, u), where ¢ is the tool invocation prompt, 7
is the decoding temperature, and u represents the accessible
toolset.

Planning. The planning component supports task decom-
position and hierarchical control. It is defined as P =
(p, 7), where p is the prompt for generating subgoals or
plans, and T is the temperature used during plan generation.

The component search spaces are defined as:

Smemory = {(m, 7, d) [meP, 7€T, de D},
Sl ={(t, 7, u) | teP, TET, ucl}, 3)

Splanning = {(pa T) | pe P, TE T} .

Here, P is the prompt space, 7 is the temperature space,
D is the space of memory backends, and I/ is the space of
available tools.

Hierarchical search space

We define an agent A as a combination of an agentic work-
flow and a set of functional components. Formally, the agent
is represented as:
A=(W, M, T, P). “)
The full agent search space is given by:
Sagent = {Wa M7 T; P | W e SWOrkﬂ0W7 M e Smemorya

T e Stoola Pc Splanning}~

&)
This formulation defines a hierarchical search space where
both the structure of the agentic workflow and the configu-
rations of its functional components are jointly optimized,
enabling flexible composition, deeper architectural varia-
tions, and the reuse of classical human-designed modules.
It subsumes existing methods such as AFlow (Zhang et al.
2024b) and AgentSquare (Shang et al. 2024b) as special
cases within a more expressive and extensible design space.

AgentSwift framework
Overview

Given a task description d and a performance evaluation
function Evaly(-), our objective is to find the agent design
A* from the joint search space Sygen that maximizes ex-
pected task performance. The optimization problem is de-
fined as:
A" = argmaxEvaly(A) = argmax Eval,(W,P,T,M).
A€ESgem (W,P,T,M)
(6)

To address the challenges posed by expensive evaluation
and inefficient exploration in large agent design spaces, we
propose a unified search framework that integrates a predic-
tive value model with an uncertainty-guided hierarchical ex-

pansion strategy based on MCTS. The value model serves as
a surrogate evaluator, estimating the performance of candi-
date agents based on their architecture and task description.
This significantly reduces reliance on costly real-world eval-
uations by allowing the search to be guided by low-cost pre-
dictions. To cope with the vast combinatorial search space
defined by agentic workflows and functional components,
we propose a hierarchical expansion that operates over two
levels of abstraction: agentic workflow and functional com-
ponents. The expansion process includes three operations-
recombination, mutation, and refinement—each applied to
both levels. Crucially, we incorporate uncertainty estima-
tion from the value model to prioritize exploration of re-
gions where performance predictions are both high and un-
certain. Together, the predictive modeling and uncertainty-
aware MCTS enable scalable, sample-efficient discovery of
high-performing LLM agents. The algorithm is presented in
Appendix.

Value model

To efficiently guide the agent search process and reduce the
reliance on expensive real-world evaluations, we propose a
predictive value model that estimates the performance of
a candidate agent A = (W, M, T, P) on a given task d.
The model is trained to approximate the evaluation function
Evaly(-) via supervised learning:

b= fo(A,d), )
where fy denotes the learned value model and © is the pre-
dicted performance score.

Prior works have leveraged powerful LLM like GPT-40
as in-context predictors for this task, where historical agent
performance data is fed directly into the prompt to estimate
the success of a new agent (Shang et al. 2024b). However,
such in-context evaluation requires repeated invocation of
large models during search, resulting in high computational
overhead. In contrast, our approach distills this predictive
capability into a lightweight, task-generalized value model,
enabling fast and scalable inference with significantly lower
cost.

Dataset construction. To construct a high-quality train-

ing dataset D = {(A;,d;,v;)}¥,, we employ a two-stage

process designed to ensure both broad coverage and discrim-

inative diversity(Figure 2):

1. t-way combinatorial coverage: We begin by generating
an initial dataset using a ¢ = 2 covering array to ex-
haustively sample combinations of pairwise interactions
among the four key elements of the agent design: W,
M, T, and P. This ensures that all pairwise component



interactions are represented at least once, promoting cov-
erage.

2. Balanced Bayesian sampling: We augment the initial
dataset using a Balanced-Extreme Bayesian Optimiza-
tion strategy. We fit a Gaussian Process (GP) surrogate
over the discrete agent space, using a Hamming kernel.
The posterior mean p(A) and standard deviation o(A)
are used to define two acquisition functions:

avce(A) = p(A) + K- o(A), ®)

aLCB(A) = —,U,(A) + K- O'(A)
where £ is an exploration coefficient. In each sampling
round, we select a batch of ¢ new agent designs from the
candidate pool S:

high = [ 2] Glow = ¢ — Ghign, )
where ghignh maximizes aycp to explore high-performing
regions and ¢, maximizes aycp to explore potentially
underperforming yet uncertain configurations. This dual
exploration yields a diverse and discriminative dataset.
We repeat this process until a total of 220 labeled samples
are obtained, which are then randomly split into training,
validation, and test sets with a ratio of 8:1:1.

Model architecture and training. We implement the
value model using a pre-trained 7B language model aug-
mented with lightweight adapter modules, enabling robust
generalization across diverse tasks. The entire model is fine-
tuned end-to-end on the constructed dataset using mean
squared error (MSE) loss.

Uncertainty-guided MCTS

Initialization. To warm-start the search and improve
early-stage efficiency, we initialize a global experience pool
E = {(W,M, T,P,v)}, where v is the measured perfor-
mance of an agent. This pool is seeded using well-designed
baseline agents adapted from the AgentSquare (Shang et al.
2024b) codebase. The pools {W,M, T,P} are extracted
from these baselines and standardized.

Selection. We adopt a soft mixed probability selection
strategy that integrates observed performance and model un-
certainty, encouraging balanced exploration and exploita-
tion. Given a set of n candidate agents, the selection proba-
bility for agent ¢ is computed as:

E(sj,uj)=a-(1—=0)-s;+ 8 -u;j — Smax), (10)

. 1 exp (E(si, u;))

Phixed(i)) = A-—+(1—=X)- .11

et = A A T e (o)
where s; denotes the actual task performance of agent ¢, u;
is the uncertainty, and s, is the maximum composite score
across all candidates. A\, o, and S control the trade-off be-
tween uniform exploration, sensitivity to performance dif-
ferences, and the contribution of uncertainty, respectively.
This formulation extends AFlow’s (Zhang et al. 2024b) ap-
proach by incorporating epistemic uncertainty, thus encour-
aging the search to explore candidates that are either high-
performing or insufficiently evaluated.

Expansion. Starting from the parent agent returned by se-
lection, we perform a top-down hierarchical expansion com-
posed of three operations—recombination, mutation, and

refinement. These operations utilize task-agnostic prompts,
where only the task description varies for new applications.
Each operation generates a small batch of new agents and
the value model scores every candidate and the best one ad-
vances to the next operation.

1. Recombination An LLM proposer my (adapted from
AgentSquare) replaces one subsystem—agentic work-
flow, planning, tool use, or memory—with an alter-
native sampled from the corresponding pool. Given a
current agent (W, My, To,Pg) and experience pool
E, mp produces N candidate agents. For example,
(Wo, My, T, Pg) denotes a recombination where the

tool use component is replaced with a new T € T.
The value model ranks all candidates, and the top one
is passed to the next phase.

2. Mutation An LLM programmer m¢ generates a new
implementation of the selected subsystem by leverag-
ing task description, existing subsystems, and prior agent
performance from E. This yields N mutated agents; for
instance, (Wo, My, Ty, P*) represents a mutated vari-
ant where a new planning P* is synthesized. The value
model ranks all candidates, and the top one is passed to
next phase. Newly generated subsystems are appended to
the global pools so future searches can reuse them.

3. Refinement An LLM refiner 74 applies fine-grained ad-
justments to the selected agent by modifying a single
subsystem in light of failure cases. These refinements in-
clude prompt edits, temperature nudges or control-flow
modifications. For example, (W', My, Ty, PO) denotes
a refined variant with an updated workflow W . Among
the refined candidates, the one with the highest predicted
performance is inserted into the MCTS tree.

This three-step pipeline simultaneously broadens explo-
ration (via recombination), unlocks novel behaviour (via
mutation), and polishes promising designs (via refinement)

Evaluation. Inspired by classic works on probabilis-
tic forecasting and sequential decision-making (Brier
1950; Auer, Cesa-Bianchi, and Fischer 2002; Kocsis and
Szepesvari 20006), the child agent is evaluated on the target
task to obtain its actual performance score Sy, . To quantify
the epistemic uncertainty of the value model’s prediction,
we define the uncertainty as the absolute deviation between
the predicted score 5 and the true performance:

U= ‘Sreal—§|. (12)
This uncertainty metric, rooted in the principles of fore-
cast calibration (Brier 1950), enables the search algorithm to
balance exploitation of high-performing configurations with
exploration of under-evaluated regions.

Backpropagation. After evaluation, the node records
its actual score s;e, together with the uncertainty w.
These statistics are then propagated upward, where each
ancestor node increments its visit count. Finally, node
(W,M, T,P, sra) is attached to the global experience
pool E, enlarging the candidate set for subsequent iterations.



Table 1: Performance comparison of our method against hand-crafted agents and agent search methods across seven diverse
benchmarks using GPT-4o0-mini. The results are averaged over three independent runs. Our method consistently achieves the

best performance across all benchmarks.

. Embodied Math Web Tool Game
Baseline Type Method
Alfworld SciWorld MATH WebShop M3Tool Travel PDDL

COT 0.512+0.009 0.3984+0.005 0.53240.004 0.490+0.011 0.42740.008 0.433+0.003 0.427+0.011
CoTSC 0.5454+0.006 0.412+0.004 0.543+0.002 0.4884+0.006 0.451+0.012 0.410+£0.001 0.410£0.009
TOT 0.530+£0.008 0.38440.004 0.54740.005 0.462+0.009 0.463+0.014 0.40740.007 0.433+0.007
Hand-crafted FoA 0.587£0.005 0.42740.008 0.55640.003 0.509+0.012 0.488+0.009 0.47440.006 0.472+0.007
Acents TP 0.373+£0.010 0.1954+0.009 0.54340.001 0.343+0.013 0.4024+0.007 0.38740.008 0.440+0.005
& SelfRefine  0.57540.007 0.375£0.006 0.55140.004 0.42540.010 0.463+0.010 0.04740.015 0.412+0.008
Dilu 0.451£0.009 0.3584+0.008 0.54540.003 0.492+0.008 0.476+0.011 0.36040.009 0.417+0.006
Voyager 0.336£0.011 0.38940.005 0.517£0.006 0.423+£0.012 0.317+0.014 0.51740.004 0.337£0.010
DEPS 0.493+0.007 0.4354+0.007 0.51340.005 0.308+0.015 0.3294+0.013 0.52340.003 0.463+0.007
Stepback 0.470£0.008 0.31440.009 0.53040.002 0.459+0.011 0.488+0.009 0.0334+0.012 0.403+0.009
AgentSquare 0.7014+0.07 0.47540.005 0.556+0.004 0.5204+0.009 0.56140.010 0.553+0.004 0.57740.008
Agent Search AFlow 0.6194+0.006 0.452+0.007 0.562+0.003 0.49740.011 0.5244+0.012 0.497+0.006 0.528+0.008
& ADAS 0.567+£0.009 0.4631+0.006 0.54340.005 0.436+£0.013 0.5004+0.011 0.45340.007 0.509+0.009
MaAS 0.6124+0.007 0.437+0.008 0.597£0.001 0.48540.010 0.5374+0.010 0.403+0.005 0.564+0.007
AgentSwift 0.806+£0.007 0.509+0.006 0.628+0.000 0.562+0.010 0.634+-0.013 0.573+0.002 0.614-+0.008
EXperimentS AgentSwift Search on Alfworld Ag ift Search on M IEval

Experimental setup R R — ‘E

Task setup. We evaluate our framework on seven bench-
mark spanning five representative task domains commonly
used in LLM evaluation (Ma et al. 2024; Xi et al. 2024).
More details are presented in Appendix.

Baselines. We compare our framework against two cate-
gories of baselines including manually designed agent and
automated agent search methods. More details are presented
in Appendix.

Implementation details.
ing closed-source LLMs (gpt-4o
gpt—-4o-mini (Achiam et al. 2023)) and
an open-source one (DeepSeek-v3 (Liu et al.
2024)). For the value model, we adopt two back-
bone LLMs: Mistral-7B-v0.3 (Jiang et al.
2024) and Qwen2.5-7B (Yang et al. 2024a).
To ensure fair comparison across agent search methods,
the evaluation budget is capped at 60 agents per method,
by which point all baselines converge. The value model is
trained on a server equipped with 3 A100 GPUs.

We conduct experiments us-
(OpenAI 2024),

Experimental results

Main results.

* Our method consistently discovers the best-
performing agents. Across all tasks, our framework
reliably identifies agent designs that outperform both
manually constructed baselines and agents discovered
by existing search methods. As shown in Table 1, our
best-found agents achieve substantial improvements over
the strongest competing methods. These consistent gains
highlight the advantage of searching over both agentic
workflows and composable functional components in
a unified hierarchical design space. Our formulation
enables richer architectural compositions beyond fixed or
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Figure 4: Left: search trajectory of different search strategies
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Right: search trajectory of different evaluate method on Alf-
world: AgentSwift, gpt-4o prediction, and full evaluation.

manually selected modules, yielding more generalizable
and effective agent behaviors.

* Our method enables steeper and more efficient search
trajectories. Figures 3 present the search trajectories of
our method and strong baselines. Our method demon-
strates a noticeably steeper and more stable performance
curve across tasks, indicating faster discovery of high-
performing agent. In contrast, methods such as AFlow
and ADAS either stagnate due to limited agentic work-
flow variation or require significantly more iterations and
time to escape local optima. These results validate the
synergistic effectiveness of predictive modeling and struc-
tured, uncertainty-aware search in accelerating agent dis-
covery. For brevity, search trajectories for other tasks,
alongside detailed analyses of wall-clock time and the
cost-performance Pareto front, are provided in the Ap-
pendix.



Table 2: Performance comparison of different surro-
gate models on all benchmarks. Our method consistently
achieves the best performance across all metrics.

Method MSE MAE R? Spearman
AgentSwiftiyisiral 0.0060 0.0530 0.8068  0.9026
AgentSwiftqwen 0.0054 0.0547 0.8275  0.8987
vanilla 0.1572 0.3593 -4.0590 0.2467
gpt-4o few shot 0.0162 0.0893 0.4793  0.7654
gpt-4o zero shot 0.0675 0.2067 -1.1708  0.0563

gpt-4o-mini few shot 0.0307 0.1179 0.0114  0.5410
gpt-4o-mini zero shot 0.0820 0.2370 -1.6403  -0.0774

Analysis of value model. We evaluate the effectiveness of
our value model by comparing it with several baseline pre-
dictors trained on the same dataset, including a vanilla su-
pervised model and in-context learning methods using GPT-
40 and GPT-40-mini in both zero-shot and few-shot settings.
As shown in Table 2, our approach achieves the best perfor-
mance across all metrics—MSE, MAE, R?, and Spearman
correlation—demonstrating superior accuracy in both abso-
lute prediction and ranking quality.

Analysis of search strategy. We analyze the effect of our
search design by comparing variants of our method on the
AlfWorld. As shown in Figure 4 (Left), removing MCTS or
uncertainty guidance significantly flattens the search trajec-
tory. Without MCTS, the algorithm lacks hierarchical ex-
ploration and becomes overly local, while without uncer-
tainty, the search tends to exploit familiar regions and misses
promising but uncertain candidates. On the right, we com-
pare different evaluation strategies. Our value model enables
faster improvement than GPT-40 few-shot due to its higher
prediction accuracy. In contrast, full evaluation progresses
the slowest, as it exhausts much of the evaluation budget on
low-performing agents. These results highlight the impor-
tance of accurate value estimation and selective evaluation
in enabling efficient and targeted agent discovery.

Model-agnostic. To assess the transferability of discov-
ered agents across different LLMs, we perform agent search
using gpt—4o-mini and then directly evaluate the result-
ing agent architectures on other models. Our framework
demonstrates strong cross-model transferability, as detailed
in the table presented in the Appendix.

Hyperparameter Sensitivity. We analyze the sensitivity
of our search strategy’s key hyperparameters: «, A, and .
Our default configuration uses @« = 3.0, A = 0.3, and
B = 0.4. As shown in Table 3, we varied each parame-
ter individually while holding the others constant, evaluat-
ing performance on the Alfworld benchmarks. The results
demonstrate that AgentSwift is robust to variations in these
hyperparameters, maintaining strong performance across a
range of values.

Generalization analysis

We evaluate the generalization ability of our value model
by adapting it to the unseen M3ToolEval benchmark using
a varying number of labeled examples for few-shot adapta-
tion. As shown in Figure 5, which plots MSE against the

Table 3: Sensitivity analysis of hyperparameters «;, A, and 3
on Alfworld benchmarks. Performance is robust across dif-
ferent settings.

Hyperparameter Alfworld

a=2.0 0.784
o = 3.0 (default)  0.806
a=4.0 0.813
a=5.0 0.799
A=0.1 0.768
A=02 0.795
A = 0.3 (defaulty  0.806
=04 0.784
B=0.2 0.793
B=0.3 0.785
B = 0.4 (default)  0.806
B=05 0.801
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—— AgentSwift
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Figure 5: Performance comparison on M3ToolEval under
few-shot adaptation.

number of adaptation samples, our value model demon-
strates remarkable sample efficiency. With as few as 30
labeled examples, our model’s performance already ap-
proaches the oracle performance achieved when trained on
the full dataset. This strong generalization capability is at-
tributed to the highly structured agent representation: the hi-
erarchical design of agentic workflow and functional com-
ponents forms a compositional abstraction that is both inter-
pretable and transferable across tasks. This allows the model
to learn the relationship between agent and performance ef-
fectively, even with minimal supervision on a new task.

Ablation study

To assess the contribution of each stage in our hierarchi-
cal search strategy, we conduct ablations by individually re-
moving the recombination, mutation, and refinement stages.
More details are presented in Appendix.

Conclusion

In this work, we propose a unified framework for automated
agentic system search that combines a hierarchical search
space with a value model and an uncertainty-guided hier-
archical MCTS strategy. Our formulation captures both the
structural workflow and functional components of agents,
enabling rich architectural variation and compositional rea-
soning. The value model provides accurate and low-cost
performance prediction, while the uncertainty-aware search
strategy efficiently explores the vast design space by priori-
tizing promising candidates.



References

Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing, 47: 235-256.

Brier, G. W. 1950. Verification of forecasts expressed in
terms of probability. Monthly weather review, 78(1): 1-3.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877—

1901.

Chen, G.; Dong, S.; Shu, Y.; Zhang, G.; Sesay, J.; Karls-
son, B. F; Fu, J.; and Shi, Y. 2023a. AutoAgents: A
Framework for Automatic Agent Generation. arXiv preprint
arXiv:2309.17288.

Chen, W.; Su, Y.; Zuo, J.; Yang, C.; Yuan, C.; Chan, C.-M.;
Yu, H.; Lu, Y;; Hung, Y.-H.; Qian, C.; et al. 2023b. Agent-
verse: Facilitating multi-agent collaboration and exploring
emergent behaviors. In The Twelfth International Confer-
ence on Learning Representations.

Du, Y.; Li, S.; Torralba, A.; Tenenbaum, J. B.; and Mor-
datch, I. 2023. Improving Factuality and Reasoning in Lan-
guage Models through Multiagent Debate. arXiv preprint
arXiv:2305.14325.

Du, Y.; Wei, F; and Zhang, H. 2024. Anytool: Self-
reflective, hierarchical agents for large-scale api calls. arXiv
preprint arXiv:2402.04253.

Fernando, C.; Banarse, D.; Michalewski, H.; Osindero, S.;
and Rocktéschel, T. 2023. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797.

Ge, Y.; Hua, W.; Mei, K.; Tan, J.; Xu, S.; Li, Z.; Zhang,
Y.; et al. 2024. Openagi: When Ilm meets domain experts.
Advances in Neural Information Processing Systems, 36.

Hu, S.; Lu, C.; and Clune, J. 2024. Automated design of
agentic systems. arXiv preprint arXiv:2408.08435.

Jiang, A.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chap-
lot, D.; Casas, D.; Bressand, F.; Lengyel, G.; Lample, G.;
Saulnier, L.; et al. 2024. Mistral 7B. arXiv 2023. arXiv
preprint arXiv:2310.06825.

Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.;
and Xing, E. P. 2018. Neural architecture search with
bayesian optimisation and optimal transport. Advances in
neural information processing systems, 31.

Khattab, O.; Singhvi, A.; Maheshwari, P.; Zhang, Z.; San-
thanam, K.; Vardhamanan, S.; Haq, S.; Sharma, A.; Joshi,
T. T.; Moazam, H.; et al. 2023. Dspy: Compiling declarative
language model calls into self-improving pipelines. arXiv
preprint arXiv:2310.03714.

Kocsis, L.; and Szepesvari, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282-293. Springer.

Liu, A.; Feng, B.; Xue, B.; Wang, B.; Wu, B.; Lu, C.; Zhao,
C.; Deng, C.; Zhang, C.; Ruan, C.; et al. 2024. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437.

Ma, C.; Zhang, J.; Zhu, Z.; Yang, C.; Yang, Y.; Jin, Y.; Lan,
Z.; Kong, L.; and He, J. 2024. AgentBoard: An Analytical
Evaluation Board of Multi-turn LLM Agents. arXiv preprint
arXiv:2401.13178.

Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; et al. 2023. Self-refine: Iterative refinement with self-
feedback. arXiv preprint arXiv:2303.17651.

Maziarz, K.; Khorlin, A.; de Laroussilhe, Q.; and Ges-
mundo, A. 2018. Evolutionary-Neural Hybrid Agents for
Architecture Search. arXiv preprint arXiv:1811.09828.

Nakano, R.; Hilton, J.; Balaji, S.; Wu, J.; Ouyang, L.; Kim,
C.; Hesse, C.; Jain, S.; Kosaraju, V.; Saunders, W.; et al.
2021. Webgpt: Browser-assisted question-answering with
human feedback. arXiv preprint arXiv:2112.09332.

Niu, B.; Song, Y.; Lian, K.; Shen, Y.; Yao, Y.; Zhang,
K.; and Liu, T. 2025. Flow: A Modular Approach to
Automated Agentic Workflow Generation. arXiv preprint
arXiv:2501.07834.

OpenAl. 2024. Hello GPT-40. https://openai.com/index/
hello-gpt-4o/.

Park, J. S.; O’Brien, J.; Cai, C. J.; Morris, M. R.; Liang, P,;
and Bernstein, M. S. 2023. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and tech-
nology, 1-22.

Qian, C.; Xie, Z.; Wang, Y.; Liu, W.; Dang, Y.; Du, Z.;
Chen, W.; Yang, C.; Liu, Z.; and Sun, M. 2024. Scal-
ing large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155.

Qiao, S.; Zhang, N.; Fang, R.; Luo, Y.; Zhou, W.; Jiang,
Y. E.; Lv, C.; and Chen, H. 2024. AutoAct: Automatic
agent learning from scratch for QA via self-planning. arXiv
preprint arXiv:2401.05268.

Qin, S.; Kadlecova, G.; Pilat, M.; Cohen, S. B.; Neruda,
R.; Crowley, E. J.; Lukasik, J.; and Ericsson, L. 2025.
Transferrable Surrogates in Expressive Neural Architecture
Search Spaces. arXiv preprint arXiv:2504.12971.

Qin, Y.; Liang, S.; Ye, Y.; Zhu, K; Yan, L.; Lu, Y.; Lin, Y.;
Cong, X.; Tang, X.; Qian, B.; et al. 2023. Toolllm: Facil-
itating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.;
et al. 2018. Improving language understanding by gener-
ative pre-training.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I; et al. 2019. Language models are unsupervised
multitask learners. OpenAl blog, 1(8): 9.

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search. In

Proceedings of the aaai conference on artificial intelligence,
volume 33, 4780-4789.



Romera-Paredes, B.; Barekatain, M.; Novikov, A.; Balog,
M.; Kumar, M. P.; Dupont, E.; Ruiz, F. J.; Ellenberg, J. S.;
Wang, P.; Fawzi, O.; et al. 2024. Mathematical discoveries
from program search with large language models. Nature,
625(7995): 468-475.

Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Hambro, E.; Zettlemoyer, L.; Cancedda, N.; and
Scialom, T. 2023. Toolformer: Language models can teach

themselves to use tools. Advances in Neural Information
Processing Systems, 36: 68539-68551.

Shang, Y.; Li, Y.; Xu, F; and Li, Y. 2024a. DefInt:
A Default-interventionist Framework for Efficient Reason-
ing with Hybrid Large Language Models. arXiv preprint
arXiv:2402.02563.

Shang, Y.; Li, Y.; Zhao, K.; Ma, L.; Liu, J.; Xu, F.; and Li, Y.
2024b. Agentsquare: Automatic 1lm agent search in modular
design space. arXiv preprint arXiv:2410.06153.

Shen, Y.; Song, K.; Tan, X.; Li, D.; Lu, W.; and Zhuang,
Y. 2023. Hugginggpt: Solving ai tasks with chatgpt and its
friends in hugging face. Advances in Neural Information
Processing Systems, 36: 38154-38180.

Shridhar, M.; Yuan, X.; Cote, M.-A.; Bisk, Y.; Trischler, A.;
and Hausknecht, M. 2021. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning. In Inter-
national Conference on Learning Representations.

Wang, G.; Xie, Y.; Jiang, Y.; Mandlekar, A.; Xiao, C.;
Zhu, Y.; Fan, L.; and Anandkumar, A. 2024. Voyager: An
Open-Ended Embodied Agent with Large Language Mod-
els. Transactions on Machine Learning Research.

Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F,;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in Neural Information Processing Systems,
35: 24824-24837.

Wen, L.; Fu, D.; Li, X.; Cai, X.; MA, T.; Cai, P.; Dou, M.;
Shi, B.; He, L.; and Qiao, Y. 2024. DiLu: A Knowledge-
Driven Approach to Autonomous Driving with Large Lan-
guage Models. In The Twelfth International Conference on
Learning Representations.

White, C.; Neiswanger, W.; and Savani, Y. 2021. Bananas:
Bayesian optimization with neural architectures for neural
architecture search. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, 10293-10301.

Xi, Z.; Ding, Y.; Chen, W.; Hong, B.; Guo, H.; Wang, J.;
Yang, D.; Liao, C.; Guo, X.; He, W.; et al. 2024. Agent-
Gym: Evolving Large Language Model-based Agents across
Diverse Environments. arXiv preprint arXiv:2406.04151.

Xie, J.; Zhang, K.; Chen, J.; Zhu, T.; Lou, R.; Tian, Y.; Xiao,
Y.; and Su, Y. 2024. TravelPlanner: A Benchmark for Real-
World Planning with Language Agents. In Forty-first Inter-
national Conference on Machine Learning.

Yang, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.; Yu, B;
Li, C.; Liu, D.; Huang, F.; Wei, H.; et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Yang, C.; Wang, X.; Lu, Y.; Liu, H.; Le, Q. V,; Zhou, D.;
and Chen, X. 2024b. Large Language Models as Optimiz-
ers. In The Twelfth International Conference on Learning
Representations.

Yao, S.; Yu, D.; Zhao, J.; Shafran, 1.; Griffiths, T. L.; Cao,
Y.; and Narasimhan, K. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv preprint
arXiv:2305.10601.

Yuan, S.; Song, K.; Chen, J.; Tan, X.; Li, D.; and Yang,
D. 2024. EvoAgent: Towards Automatic Multi-Agent
Generation via Evolutionary Algorithms. arXiv preprint
arXiv:2406.14228.

Zhang, G.; Chen, K.; Wan, G.; Chang, H.; Cheng, H.;
Wang, K.; Hu, S.; and Bai, L. 2025a. EvoFlow: Evolv-
ing Diverse Agentic Workflows On The Fly. arXiv preprint
arXiv:2502.07373.

Zhang, G.; Niu, L.; Fang, J.; Wang, K.; Bai, L.; and Wang,
X. 2025b. Multi-agent Architecture Search via Agentic Su-
pernet. arXiv preprint arXiv:2502.04180.

Zhang, G.; Yue, Y.; Sun, X.; Wan, G.; Yu, M.; Fang, J.;
Wang, K.; Chen, T.; and Cheng, D. 2024a. G-designer: Ar-
chitecting multi-agent communication topologies via graph
neural networks. arXiv preprint arXiv:2410.11782.

Zhang, J.; Xiang, J.; Yu, Z.; Teng, F.; Chen, X.; Chen, J.;
Zhuge, M.; Cheng, X.; Hong, S.; Wang, J.; et al. 2024b.
Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Zhuge, M.; Wang, W.; Kirsch, L.; Faccio, F.; Khizbullin, D.;
and Schmidhuber, J. 2024. GPTSwarm: Language Agents as
Optimizable Graphs. In Forty-first International Conference
on Machine Learning.

Zoph, B.; and Le, Q. V. 2016. Neural architec-

ture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.



