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ABSTRACT
Dynamic link prediction is essential for a wide range of domains,
including social networks, bioinformatics, knowledge bases, and
recommender systems. Existing works have demonstrated that
structural information and temporal information are two of the
most important information for this problem. However, existing
works either focus on modeling them independently or modeling
the temporal dynamics of a single structural scale, neglecting the
complex correlations among them. This paper proposes to model
the inherent correlations among the evolving dynamics of different
structural scales for dynamic link prediction. Following this idea,
we propose an Attentional Multi-scale Co-evolving Network (AMC-
Net). Specifically, We model multi-scale structural information by a
motif-based graph neural network with multi-scale pooling. Then,
we design a hierarchical attention-based sequence-to-sequence
model for learning the complex correlations among the evolution
dynamics of different structural scales. Extensive experiments on
four real-world datasets with different characteristics demonstrate
that AMCNet significantly outperforms the state-of-the-art in both
single-step and multi-step dynamic link prediction tasks.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Networks
→ Online social networks.
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1 INTRODUCTION
Dynamic link prediction, i.e., estimating the likelihood of a future
connection between two given nodes in a time-varying network
based on observed data, is one of the most critical problems in
the network science literature [31, 37]. There has been a burst
of methods tackling the problem in the last few years and it has
been the foundation of various applications, such as recommender
systems [38, 40], social network analysis [11, 27], and anomaly
detection [20].

Previous works have demonstrated two types of most useful
information for the task. One is temporal information, which char-
acterizes the evolving dynamics of the network [22, 32, 34]. The
other is structural information that suggests that network topology
reflects whether two nodes are more likely to form a link in the
future [3, 15, 43].

As illustrated in Figure 1, these two types of information are
deeply connected. Specifically, from a structural perspective, we
can characterize a given network in three scales: microscopic level,
which focuses on the state of each node and edge; mesoscopic
level, which concerns the states of groups and communities; and
macroscopic level, which characterizes the state of the whole net-
work [2, 33], such as the degree distribution or the network growth
rate. Our key observation is that the temporal dynamics of differ-
ent structural scales complement one another and are coherent in
the meantime. We can illustrate it from two perspectives. On the
one hand, networks are constituted of individuals and their inter-
connections, and thus macroscopic temporal dynamics naturally
originate from microscopic temporal dynamics of how each indi-
vidual chooses to build connections with others. On the other hand,
research has suggested that human behaviors are dynamically in-
fluenced by their social connections [19], and this influence affects
a wide range of attributes and behaviors, such as political orienta-
tion, music tastes, and even how people choose new friends [4, 23].

https://doi.org/10.1145/3543507.3583396
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Figure 1: The illustration on the complex correlations among
the temporal dynamics of different structural scales.

In other words, microscopic temporal dynamics are affected by
mesoscopic temporal dynamics. Further, mesoscopic community
formation is affected by how networks evolve at a macroscopic
level [1].

Most of the existing works model the two types of informa-
tion independently [7, 9, 44], and thereby result in poor prediction
performance. Some recent advancements try to model the connec-
tions between the structural information and the temporal infor-
mation [6, 22, 27, 29, 43]. However, these works either only focus
on modeling the temporal dynamics of a single structural scale
or model different structural scales independently, neglecting the
complex correlations among the temporal dynamics of different
structural scales.

To bridge the gaps in the literature, we present an Attentional
Multi-scale Co-evolving Network (AMCNet) to model the coher-
ence among the evolving dynamics of different structural scales for
dynamic link prediction. Specifically, tomodel multi-scale structural
and temporal information, we first design a multi-scale represen-
tation learning module, which learns node embeddings based on
graph attentional networks and leverages amulti-scale pooling algo-
rithm to obtain embeddings that capture the structural information
of different scales. We further enhance the model’s representation
power at the mesoscopic level by introducing motifs [30], the ba-
sic building blocks of complex networks at a mesoscopic level, to
construct motif graphs and obtain mesoscopic node embedding by
fusing all the node embeddings learned from motif graphs. Second,
we develop a multi-scale co-evolving model to learn the temporal
dynamics of each structural scale. Third, to learn the inherent corre-
lations among the temporal dynamics of different structural scales,
we propose to leverage the higher-scale representations to guide
the learning process of the lower-scale representations by a novel
hierarchical attention-based model. Finally, we jointly leverage the
embeddings of different scales to predict future links. Extensive ex-
periments on four real-world datasets with different characteristics
demonstrate the superior performance of our proposed model. We
make our code and data publicly available1.

We summarize our main contributions as follows:
• To the best of our knowledge, we are the first to study the
inherent correlations among the evolving dynamics of dif-
ferent structural scales for dynamic link prediction.

• We propose a novel dynamic link prediction model, AMCNet,
which jointly models multi-scale structural information and
the complex correlations among the evolving dynamics of
different structural scales.

• Extensive experiments on four real-world datasets with dif-
ferent characteristics demonstrate that AMCNet significantly

1https://github.com/tsinghua-fib-lab/AMCNet

outperforms the state-of-the-art in both single-step andmulti-
step dynamic link prediction tasks, and it achieves a perfor-
mance gain of up to 7.2% in terms of AUC compared with
the best baseline.

2 PROBLEM FORMULATION
The goal of dynamic link prediction is to predict the future connec-
tions between two given nodes in a time-varying network based
on historical data. Let 𝐺 = (V,E) denotes a time-varying network,
where V is the node set and E is the link set, with its adjecent
matrix denoted as𝐴. Following prior works, we split G into a series
of equal-spaced snapshots𝐺 = {𝐺1,𝐺2, . . . ,𝐺𝑁 }, and we formally
define dynamic graph prediction as follows: given a historical se-
ries of snapshots 𝐺 = {𝐺1,𝐺2, . . . ,𝐺𝑇 }, we aim to predict the link
structure at future time steps, i.e., 𝐺 = {𝐺𝑇+1,𝐺𝑇+2, . . . ,𝐺𝑇+𝑛}.

3 ATTENTIONAL MULTI-SCALE
CO-EVOLVING NETWORK (AMCNET)

To learn the inherent correlations among the evolving dynamics of
different structural scales, we propose AMCNet and show its overall
architecture in Figure 2. It contains two key components: a multi-
scale representation learning module and a multi-scale evolving
module. The main idea is to learn the representation of different
scales with the multi-scale representation learning module first, and
then build connections among the temporal dynamics of different
scales and learn the complex co-evolving dynamics with the multi-
scale evolving module. In the following sections, we elaborate on
the details of the two key modules.

3.1 Multi-scale Representation Learning
Microscopic Representation. To obtain microscopic represen-
tations, i.e., node representation, of each snapshot, graph neural
networks are common choices, which have a better representation
power compared with traditional random-walk-based methods [14]
and can handle graphs with or without features at the same time.
We adopt Graph Attention Network [35] (GAT), one of the state-
of-the-art graph neural network architectures, so that the model
can focus on the most important information. For each time snap-
shots, It takes node features 𝑥𝑡

𝑖
as inputs and outputs the learned

representations of 𝐻𝑡 , which can be formulated as follows,

𝑒𝑡𝑖 𝑗 = 𝜎

(
𝑎𝑇

[
𝑊𝑥𝑡𝑖 ∥𝑊𝑥𝑡𝑗

] )
, ∀(𝑖, 𝑗) ∈ E𝑡 ,

𝛼𝑡𝑖 𝑗 =

exp
(
𝑒𝑡
𝑖 𝑗

)
∑
𝑘∈N𝑖

exp
(
𝑒𝑡
𝑖𝑘

) , ∀(𝑖, 𝑗) ∈ E𝑡 ,

𝐻𝑡
𝑖 = 𝜎

©­«
∑︁
𝑗∈N𝑖

𝛼𝑡𝑖 𝑗𝑊𝑥𝑡𝑗
ª®¬ ∀𝑖 ∈ V𝑡 ,

(1)

where N𝑖 denotes the neighbors of node 𝑖 and 𝐻𝑡
𝑖
denotes the node

representation of node 𝑖 at the snapshot 𝑡 . 𝐻𝑡 = [𝐻𝑡
1, 𝐻

𝑡
2, . . . , 𝐻

𝑡
𝑁𝑣

],
𝑁𝑣 = |V |. 𝑎 and𝑊 are learnable parameters. 𝜎 (·) is a non-linear
activation function, and we adopt ReLU [26] in our implementation.{
𝑥𝑡
𝑖
∈ R𝐷 ,∀𝑖 ∈ V

}
with 𝐷 as the dimension of node features.

Mesoscopic Representation. As the connection between the
microscopic graph structure and macroscopic graph structure, the
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Figure 2: The architecture of AMCNet. It contains two modules: a multi-scale representation learning module, which can learn
embeddings that capture the structural information of different scales, and a multi-scale co-evolving module with a novel
hierarchical attention mechanism, which can capture the complex correlations among the evolution dynamics of different
structural scales.
mesoscopic graph structure contains the richest information. Most
existing works neglect this structural scale [6, 22] and thus are not
able to learn the complex correlations between different structural
scales.

At first, we follow prior works and obtain mesoscopic represen-
tation by performing a simple mean pooling on the microscopic
representations [13]. However, in our experiments, we found that
such an operation without learnable parameters is not enough to
capture the rich information on the mesoscopic scale. To solve this
challenge, we introduce motif, a special subgraph that is regarded
as the basic building block of complex networks, and propose a
motif-based local pooling method to enhance the mesoscopic rep-
resentation module.

Specifically, given an undirected graph 𝐺 and a set of motifs
M = {𝑀0, 𝑀1, . . . , 𝑀𝑚} with𝑚 as the number of chosen motifs, we
can construct a set of motif-based graphs from the original graph
with their adjacent matrices denoted as A𝑡 =

{
𝐴𝑡
0, 𝐴

𝑡
1, . . . , 𝐴

𝑡
𝑚

}
by

assigning an edge to two nodes if they are in the same motif in the
original graph, which can be fomulated as follows,

(
𝐴𝑡
𝑛

)
𝑖, 𝑗 =


1 𝑖 = 𝑗,

1 𝑖, 𝑗 are in the same motif𝑀𝑛,

0 otherwise.
(2)

With the motif-based graphs, we can obtain mesoscopic repre-
sentations 𝐸𝑡 by performing a weighted pooling on the learned
microscopic representations, which can be formulated as follows,

𝛼𝑡𝑛 = 𝑎𝑇𝑛𝐻
𝑡 ,

𝐸𝑡 = Σ𝑚𝑛=0𝛼
𝑡
𝑛𝐴

𝑡
𝑛𝐻

𝑡 (diag(𝐴𝑡
𝑛
®1))−1,

(3)

where 𝑎𝑛 is a learnable parameter and 𝛼𝑛 is the learnable weight
corresponding to the 𝑛-th motif. Note that we normalize the meso-
scopic representations for each node by its degree. diag(·) refers to
the operation of constructing a diagonal matrix.

Macroscopic Representation. Following prior works, we use a
global pooling to encode the whole graph information and derive its
macroscopic representation 𝑍 𝑡 , which can be formulated as follows,

𝑍 𝑡 =
1

|V𝑡 |
∑︁
𝑖∈V𝑡

𝐻𝑡
𝑖 . (4)

Note that since the core idea of this paper is to model the complex
relationship among the temporal dynamics of different structural
scales, obtaining the representations of each structural scale is only
its first step. To validate our idea, we aim to capture the information
of different structural scales with a minimal design in the multi-
scale representation learning module. These designs can be easily
extended tomore complicated ones, such as hyperbolic graph neural
networks [5] and self-attention-based graph pooling [18] for better
practical performance.

3.2 Multi-scale Co-evolving module
From the multi-scale representation learning module, we obtain
the microscopic representation 𝐻𝑡 , mesoscopic representation 𝐸𝑡 ,
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and macroscopic representation 𝑍 𝑡 of the graph at the snapshot 𝑡 .
To learn the inherent correlations among the evolving dynamics
of different structural scales, we propose a multi-scale co-evolving
module. Our main idea is that modeling the coherence among
multi-scale structural-temporal dynamics is critical for dynamic link
prediction, and we can explain why it works from two perspectives:

• First, from an information theory perspective, the amount of
noise in the data and the level of information aggregation are
typically inversely correlated. The higher the structural level,
the less the information, and the smaller the noise. Thus, the
temporal dynamics of the higher structural scale are more
predictable than the lower structural scale. Therefore, higher-
scale predictions help correct the potential systematic bias
of the lower-scale predictions, which impose a constraint on
the learned model to be scale-invariant.

• Second, the information of different structural scales cap-
tures different characteristics of the graph and thus comple-
ments one another [3, 22]. Jointly modeling the temporal
dynamics of different scales enables the model to leverage
information from a different range of contexts to make pre-
dictions.

To realize our idea, we designed a hierarchical attention-based
model with two key designs. The first is to learn the evolving
dynamics of different structural scales simultaneously. The second
is to build connections between the learning process of different
scales by a co-evolving attention mechanism, which uses higher-
scale representations to guide the learning process of the lower-
scale representations.

Sequence to Sequence Backbone. Tomodel the temporal infor-
mation of each structural scale, we leverage a sequence-to-sequence
model (Seq2Seq) as the backbone. In this way, we can deal with
single-step link prediction and multiple-step link prediction simul-
taneously. Specifically, we use a traditional encoder-decoder frame-
work constructed with LSTM blocks and feed the representations
of different structural scales into a different Seq2Seq model to learn
their evolving dynamics simultaneously. Taking the microscopic
scale as an example, we can formulate the process as follows,[

ℎ𝑡𝐻 , 𝑐
𝑡
𝐻

]
= LSTM

(
𝐻𝑡 , ℎ𝑡−1𝐻 , 𝑐𝑡−1𝐻

)
,[

ℎ𝑡
�̂�
, 𝑐𝑡
�̂�

]
= LSTM

(
�̂�𝑡−1, ℎ𝑡−1

�̂�
, 𝑐𝑡−1
�̂�

)
,

�̂�𝑡 = tanh
(
𝑊ℎ𝑡𝐻

) (5)

where ℎ𝑡
𝐻
and ℎ𝑡

�̂�
refer to the hidden state of the encoder and the

decoder, respectively. 𝑐𝑡
𝐻
and 𝑐𝑡

�̂�
are the states of the memory cell

of the encoder and the decoder, respectively. �̂�𝑡 is the predicted
microscopic representations at time t. Similarly, we obtain the meso-
scopic representations 𝐸𝑡 and macroscopic representations 𝑍 𝑡 , as
illustrated in Figure 2.

Co-evolving Attention Mechanism. To learn the coherence
among the evolving dynamics of different scales, we leverage the
higher-scale representations to guide the learning process of the
lower-scale representations by a novel hierarchical attention mech-
anism. Specifically, as illustrated in Figure 2, we change the input
of the lower level Seq2Seq model from the hidden states of the last
time step to a state that learned from both the lower structural

scale’s hidden states and the higher structural scale’s hidden states
with an element-wise co-evolving attention mechanism. In other
words, we let macroscopic hidden states ℎ𝑡

𝑍
guide the evolution

learning process of mesoscopic hidden states ℎ𝑡
𝐸
and mesoscopic

hidden statesℎ𝑡
𝐸
guide the evolution learning process ofmicroscopic

hidden states ℎ𝑡
𝐻
. Taking the microscopic scale as an example, we

formulate the attention mechanism as follows,

𝛽𝑡 = softmax
(
𝜎

(
𝑊𝛽

[
ℎ𝑡𝐻 ∥ℎ𝑡𝐸

] ))
,

ℎ̃𝑡𝐻 = 𝛽𝑡 ⊙ ℎ𝑡𝐻

(6)

where 𝛽𝑡 is the attention vector,𝑊𝛽 is a learnable parameter, and
⊙ refers to the element-wise product. We can further reformulate
the sequence-to-sequence structure with a hierarchical co-evolving
attention mechanism. For the encoder,

ℎ̃𝑡−1𝐻 = Attention(ℎ𝑡−1𝐻 , ℎ𝑡−1𝐸 ),[
ℎ𝑡𝐻 , 𝑐

𝑡
𝐻

]
= LSTM

(
𝐻𝑡 , ℎ̃𝑡−1𝐻 , 𝑐𝑡−1𝐻

)
,

(7)

For the decoder,

ℎ̃𝑡−1
�̂�

= Attention(ℎ𝑡−1
�̂�

, ℎ𝑡−1
𝐸

),[
ℎ𝑡
�̂�
, 𝑐𝑡
�̂�

]
= LSTM

(
�̂�𝑡 , ℎ̃𝑡−1

�̂�
, 𝑐𝑡−1𝐻

)
,

�̂�𝑡 = tanh
(
𝑊ℎ̃𝑡𝐻

)
.

(8)

We can obtain themesoscopic representations in a similar way. Note
that in the computational process, the model must first complete
the computation of the hidden states of the higher structural scale
at time 𝑡 (e.g., ℎ𝑡

𝐸
). Only then can it compute the hidden states of

the lower structural scale (e.g., ℎ𝑡
𝐻
).

3.3 Link Prediction Based on Multi-scale
Representations

Through the multi-scale co-evolving module, we obtain representa-
tions of different structural scales for each node. We jointly leverage
them for link prediction by training a predictor network with two
fully connected layers. For example, to predict whether there will
be a link at time 𝑡 between two nodes 𝑖 and 𝑗 , we can develop the
formulation as follows,

𝑌 𝑡
𝑖 = Concat

(
�̂�𝑡
𝑖 , 𝐸

𝑡
𝑖 , 𝑍

𝑡
𝑖

)
∀𝑖 ∈ 𝑉 ,

𝑃𝑡 (𝑖, 𝑗) = 𝜎

(
𝑊2

(
𝜎

(
𝑊1

[
𝑌 𝑡
𝑖 | |𝑌

𝑡
𝑗

] )
+ 𝑏1

))
+ 𝑏2,

(9)

where 𝑃𝑡 (𝑖, 𝑗) ∈ [0, 1] represents the probability of forming a link
between node 𝑖 and node 𝑗 in the future.𝑊1,𝑊2, 𝑏1, 𝑏2 are trainable
parameters.

3.4 Training
We first train the GAT to get micro representation 𝐻𝑡

𝑖
of each node

at each snapshot. We expect the node representations to learn the
structural information of the graph sufficiently well so that it is
able to perform well in link prediction tasks. Inspired by the work
of Sankar et al. [29], we let the nodes co-occurring in a fix-length
random walk to have similar representations by leveraging a binary
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Datasets Enron UCI Youtube Foursquare
Node Feature ✕ ✕ ✕ ✓

# Nodes 150 1899 2993 2940
# Links 1526 13838 88587 6772

Timespan (days) 1137 193 165 665
Slice days 45 9 7 20
# snapshots 26 21 24 34

# Avg links per snapshot 616 11258 45810 4807
# Avg new links per snapshot 177 898 3691 199

Table 1: Summary statistics of the four datasets.

cross-entropy loss based on fixed-length random walks, which can
be formulated as follows,

L =

𝑇∑︁
𝑡=1

∑︁
𝑣∈V

©­­«
∑︁

𝑢∈N𝑡
walk (𝑣)

− log
(
𝜎
(〈
𝐻𝑡
𝑢 , 𝐻

𝑡
𝑣

〉) )
−

𝑤𝑛

∑︁
𝑢′∈𝑃𝑡

𝑛 (𝑣)
log

(
1 − 𝜎

(〈
𝐻𝑡
𝑢′ , 𝐻

𝑡
𝑣

〉) )ª®¬ ,
(10)

where N𝑡
walk (𝑣) is the set of co-occurring nodes of node 𝑣 in the

fixed-length random walks at the time snapshot 𝑡 . 𝑃𝑡𝑛 (𝑣) is a neg-
ative sampling distribution correlated to degrees, and 𝑤𝑛 is the
negative sampling ratio.

Then, we train the multi-scale co-evolving module by optimizing
a loss function that consists of two parts. The first part is the mean
square error loss (MSE) of the Seq2Seq model, which characterizes
how well the model captures the evolution dynamics and can be
formulated as follows,

L1 =
1

𝑘 |𝑉 |

𝑡0+𝑘∑︁
𝑡=𝑡0+1

∑︁
𝑖∈V𝑡



𝑌 𝑡
𝑖 − 𝑌 𝑡

𝑖



2
2 , (11)

where 𝑌 𝑡
𝑖
is the output of the decoder, and 𝑘 is the required predic-

tion steps. The second part is a binary cross-entropy loss for the
link predictor that predicts whether there will be a link between
two nodes, which can be formulated as follows,

L2 = −
𝑡0+𝑘∑︁
𝑡=𝑡0+1

©­«
∑︁

𝑒𝑖 𝑗 ∈E𝑡

ln (𝜎 (𝑃𝑡 (𝑖, 𝑗))) +
∑︁

𝑒𝑖 𝑗∉E𝑡

ln (1 − 𝜎 (𝑃𝑡 (𝑖, 𝑗)))
ª®¬ .

(12)
We optimize the weighted sum of the two losses during training,
which can be formulated as follows,

Levolve = L1 + 𝛼L2, (13)

where 𝛼 is a tunable hyper-parameter that balances the two losses.

4 EXPERIMENTS
4.1 Datasets
We conduct experiments on four dynamic network datasets that
differ in category, scale and density. The statistics of the datasets is
shown in Table 1. Here, we briefly introduce them as follows:

Enron [28]: An email communication network where each edge
represents an email interaction between two people. Enron is a
small network with only 150 nodes and 1526 time-stamped edges

spanning more than three years. It is denser than other networks
where the average node degree equals 4.

UC Irvine messages (UCI) [17]: UCI is a network of online fo-
rums at the University of California, Irvine. If two students interact
on the same forum post, they are connected. It has a total of 1899
nodes spanning in half a year.

Youtube [25]: Youtube is a popular video sharing website. We
obtain the data between February 2007 and July 2007, including
over 1.1 million users and 4.9 million edges, which denotes users’
following relationships. Considering the computational efficiency,
we randomly select 3,000 active users with their corresponding
edges.

Foursquare [41]: This dataset includes check-in data collected
from Foursquare on a global scale from April 2012 to January 2014,
as well as two snapshots of users’ social networks before and after
the data collection period. In this work, we use the data collected
from Tokyo and focus on the evolution of social networks. To
obtain fine-grained time-stamped social networks, we first obtain
new relationships by calculating the difference between the two
social network snapshots. Then, we assume these new relationships
are formed when two users post a check-in at the same place at the
same time the first time.

4.2 Baselines and Experiment Settings
Baselines.We compare the performance of AMCNet with eleven
state-of-the-art methods from three research lines, which we intro-
duce as follows:

Heuristics methods:
• Common Neighbors(CN) [21]: A heuristics method based on
a similarity score that measures how many mutual friends
two have.

• Newton [36]: It takes inspiration from Newton’s gravita-
tional law and models the degree centrality as the mass of
the nodes and the lengths of shortest paths between two
nodes as distances.

Static Link Prediction methods:
• Node2vec [14]: A node embedding method based on biased
random walk sampling.

• GCN [16]: An inductive node representation learning frame-
work for the graph.

• GAT [35]: A variant of GCN that use self-attention to aggre-
gate messages.

• HARP [7]: a hierarchical method for learning low dimen-
sional embeddings of a graph’s nodeswhich preserves higher-
order structural features.

Dynamic Link Prediction methods:
• DySAT [29]: A dynamic graph neural network which com-
putes node representations through joint self-attention along
the two dimensions of the structural neighborhood and tem-
poral dynamics.

• DynamicTriad [43]: A dynamic graph embedding technique
that preserves both structural information and evolution
patterns through modeling the triadic closure process.

• GC-LSTM [8]: GC-LSTM embeds the two-layer GCN in the
LSTM to learn the spatio-temporal information for end-to-
end dynamic link prediction.
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Models Enron UCI Youtube Foursquare
AUC MAP AUC MAP AUC MAP AUC MAP

CN [21] 0.686 0.678 0.528 0.524 0.570 0.562 0.504 0.504
Newton [36] 0.685 0.691 0.570 0.566 0.570 0.570 0.510 0.511
node2vec [14] 0.720 0.707 0.641 0.614 0.644 0.642 0.732 0.769
GCN [16] 0.529 0.535 0.647 0.647 0.622 0.683 0.562 0.583
GAT [35] 0.525 0.533 0.599 0.615 0.645 0.575 0.551 0.578
HARP [7] 0.534 0.504 0.670 0.682 0.635 0.613 0.580 0.577
DySAT [29] 0.600 0.606 0.651 0.626 0.654 0.613 0.633 0.617

DynamicTriad [43] 0.532 0.529 0.656 0.649 0.677 0.664 0.559 0.562
GC-LSTM [8] 0.574 0.556 0.687 0.687 0.623 0.621 0.616 0.605
TGAT [40] 0.583 0.567 0.654 0.659 0.637 0.618 0.599 0.593
CAW-N [39] 0.733 0.758 0.718 0.711 0.689 0.665 0.768 0.775
HTGN [42] 0.660 0.667 0.704 0.696 0.711 0.695 0.699 0.682
AMCNet 0.750 0.766 0.731 0.712 0.762 0.715 0.781 0.800

Table 2: The performance evaluation results on four different datasets for multi-step prediction.

• TGAT [40]: It proposes the temporal graph attention layer
to capture the temporal-topological features.

• CAW-N [39]: CAW-N is a state-of-the-art dynamic graph
representation learning method based on causal anonymous
walks, which leverages a novel strategy to make the node
identities anonymized.

• HTGN [42]: It leverages hyperbolic graph neural network
and hyperbolic gated recurrent neural network to model the
evolving dynamics of the graph.

Note that most of the existing methods cannot directly fit into
the multi-step link prediction setting. Following prior works [29],
we use the latest learned embeddings to predict multiple future
time steps independently.

Experiment Settings.We test our model on both multi-scale
link prediction and single-step link prediction tasks. For both tasks,
we train our model on the historically observed graph snapshots
𝐺 = {𝐺1,𝐺2, . . . ,𝐺𝑇 } to derive the multi-scale representations cor-
responding to each time step and let it predict the connections in
the future 𝑘 time steps, where 𝑘 = 1 for single-step link prediction
and 𝑘 > 1 for multi-step link prediction. In our experiment, we
use the first 9 snapshots as the training samples, the next 3 snap-
shots as the validation samples, and the next 6 snapshots as the
test samples. All the experiments are conducted in transductive
settings. We focus on newly added links in future snapshots and
regard them as positive samples while sampling an equal number
of non-links as negative samples. We use the area under ROC curve
(AUC) [14] and mean average precision (MAP) [12] to evaluate
model performances.

Reproducibility. In the multi-scale representation learning
module, We adopt a two-layer GAT network with 16 and 8 attention
heads, respectively, and an embedding size of 128. When optimiz-
ing loss function Eqs.(10), we follow the strategy of DySAT[29],
sampling 10 walks of length 20 per node, each with a context win-
dow size of 10. In order to avoid over-fitting, we apply 𝑙2 regu-
larization with 𝜆 = 5𝑒−4 and dropout rate of 0.5. We use mini-
batch gradient descent with Adam for training, and perform a
grid search on the learning rate in a range of {1e-4,5e-4,1e-3,5e-
3,1e-2,5e-2}. In constructing the mesoscopic representation, the
motif weights are learnable parameters with initialized value of
{0.4,0.1,0.1,0.1,0.1,0.1,0.1,0.1}. In the multi-scale co-evolving module,

Models Enron UCI Youtube Foursquare
CN [21] 0.673 0.589 0.561 0.508

Newton [36] 0.726 0.662 0.562 0.511
node2vec [14] 0.800 0.640 0.631 0.733
GCN [16] 0.505 0.581 0.608 0.569
GAT [35] 0.544 0.617 0.677 0.563
HARP [7] 0.408 0.680 0.648 0.585
DySAT [29] 0.607 0.616 0.657 0.623

DynamicTriad [43] 0.504 0.643 0.701 0.556
GC-LSTM [8] 0.530 0.736 0.642 0.646
TGAT [40] 0.608 0.671 0.644 0.623
CAW-N [39] 0.834 0.741 0.706 0.773
HTGN [42] 0.692 0.728 0.717 0.703
AMCNet 0.838 0.739 0.767 0.772

Table 3: The AUC of the single-step link prediction results.

the input and output steps of the sequence-to-sequence model are
set to three. The model’s learning rate has a grid search range of
{0.0005, 0.001, 0.005, 0.01}.When optimizing the joint loss function 11
and 12, we determine the grid search range of the hyper-parameter
𝛼 with regards to the magnitudes of L1 and L2. As a result, the
grid search range for 𝛼 is set as {1e-2,5e-2,1e-3,5e-3,1e-4,5e-4}. We
also perform a grid search on other hyper-parameters, including
the batch size and the 𝑙2 regularization coefficient, to find the best
hyper-parameters for AMCNet. For reproducibility, we make our
implementation codes of AMCNet available (the link is presented
in the introduction section).

4.3 Main Results
Multi-step Link Prediction. To examine the effectiveness of our
model, we compare it with the state-of-the-art baselines from three
groups of research lines for multi-step link prediction and show
the results in Table 2. Overall, we have three key observations.

• First, AMCNet consistently outperforms all state-of-the-art
baselines across all four real-world datasets. Specifically, it
provides a relative performance gain of 2.3%, 1.8%, 7.2%, 1.7%
in terms of AUC, and 1.1%, 1.4%, 2.9%, 3.2% in terms of mAP,
on the Enron, UCI, Youtube, and Foursquare dataset, respec-
tively, which demonstrates its effectiveness and robustness.
The results also indicate that learning the complex correla-
tions of the temporal dynamics of different structural scales
is indeed important for the multi-step link prediction task.
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Figure 3: (a) The model’s performance in a longer time steps on the Youtube dataset. (b) An illustration of motifs and the
distribution of the learned motif weights.

• Second, among all baseline models, dynamic link predic-
tion methods generally perform better than static ones since
they incorporate temporal information into the model de-
sign. Heuristic methods, including Common Neighbor and
Newton’s method, perform well on small and dense datasets
Enron but are close to random prediction on other large
datasets.

• Third, on larger and more dynamic datasets, such as the
Youtube dataset, our model performs consistently better than
other models, which demonstrates its superior scalability.

Single-step Link Prediction. Since most of the past literature
has focused on single-step prediction tasks for link prediction, we
also compare the performance of the present model, AMCNet, on
single-step prediction with the baseline methods. The evaluation
metric is the single-step AUC based on new links, and the results
are shown in Table 3.We can see that our model outperforms almost
all state-of-the-art models on the single-step link prediction task
with more significant improvements for the larger datasets with
more nodes, which demonstrates its effectiveness.

Generalizability in longer step predictions. To further inves-
tigate our model’s generalizability along the temporal dimension,
we test the performances of AMCNet with longer time steps. Specif-
ically, we conduct an experiment on the Youtube dataset to predict
the next 9 time steps and visualize the result in Figure 3(a). We can
see that our models’ performance is stable as time goes by, which
suggests the model has good generalizability along the temporal
dimension.

4.4 Ablation Study
Our model consists of two main modules, the multi-scale represen-
tation learning module and the multi-scale co-evolving module. To
further verify the effectiveness of the two modules, we set up a
series of ablation study.

The Effectiveness of the Multi-scale Representation. The
model has three scales of representation: microscopic, mesoscopic,
and macroscopic. To verify their effectiveness, we remove the

macroscopic and mesoscopic representations separately while re-
taining the sequence-to-sequence structure and attention mecha-
nism. The experimental results show that both the introduction of
mesoscopic and macroscopic representations improve the model’s
performance, which suggests that jointly modeling the temporal
dynamics of different scales is effective. We further examine the ef-
fectiveness of the motif-based mesoscopic modeling by substituting
it with attention-based pooling [18]. The results are shown in Ta-
ble 4 (Without motifs). It shows that the model’s performance drops
significantly without our proposed motif-based designs, demon-
strating its effectiveness.

The Effectiveness of the Sequence-to-Sequence Structure.
We introduce a sequence-to-sequence structure to learn the evolu-
tionary dynamics of the graph. To demonstrate the effectiveness of
the design, we remove the sequence-to-sequence structure in the
ablation study and directly leverage the multi-scale representations
on the last time snapshot of the training set to make predictions fol-
lowing prior works [29]. Specifically, 𝑌 𝑡0 = Concat

(
𝐻𝑡0 , 𝐸𝑡0 , 𝑍 𝑡0

)
is used to predict the probability of an future edge of node 𝑣 from
𝑡0 + 1 to 𝑡0 + 𝑘 . As shown in Table 4, the sequence-to-sequence
structure learns the underlying graph evolution patterns and is able
to improve the accuracy of future multi-step predictions.

The Effectiveness of the Co-evolving Attention Mecha-
nism. To model the complex correlations among the temporal
dynamics of different structural scales, the model is designed with
learnable attention weights that explicitly characterize the micro-
meso-macro relationship. In this ablation experiment, we remove
the mechanism, i.e., the three scales of representation are learned
separately. The experimental results show that the model’s perfor-
mance drops significantly without the attention mechanism, which
supports our main motivation that modeling the complex correla-
tions among the temporal dynamics of different structural scales is
critical for dynamic link prediction.

4.5 The Role of Different Motifs
To better understand the role that different motifs play in the model,
we carry out a more in-depth analysis of the importance of each mo-
tif. All motifs involved in the experiment are shown in Figure 3(b).
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Models Enron UCI Youtube Foursquare
AUC MAP AUC MAP AUC MAP AUC MAP

Only Micro 0.700 0.686 0.690 0.660 0.735 0.682 0.725 0.743
Only Micro and Meso 0.739 0.740 0.726 0.696 0.745 0.699 0.760 0.780

Without motifs 0.717 0.714 0.725 0.695 0.756 0.698 0.785 0.801
Without the Seq2Seq Structure 0.739 0.727 0.675 0.653 0.748 0.700 0.694 0.698

Without the Co-evolving Attention Mechanism 0.733 0.732 0.731 0.711 0.736 0.695 0.759 0.788
AMCNet 0.750 0.766 0.731 0.712 0.762 0.715 0.794 0.816

Table 4: The ablation study results.

Models Enron UCI Youtube Foursquare
Without motifs 0.717 0.725 0.756 0.785

Add three-node motifs 0.748 0.730 0.762 0.794
Add four-node motifs 0.750 0.731 0.762 0.794

Table 5: The AUC of AMCNet with two-node, three-node and
four-node motifs on the four datasets.

We aim to answer the following questions: Can the introduction
of motifs with a higher number of nodes improve the model’s per-
formance? How do different motifs contribute to the dynamic link
prediction, and why are some motifs more informative?

As shown in Table 5, the introduction of three-nodemotifs boosts
the AUC on all four datasets, but when we include the four-node
motifs, there is a relatively small performance improvement on
two datasets and no change on the other two. The results suggest
that three-node motifs are the most informative, and the marginal
effect of adding more motifs decreases as the number of nodes in
the motif increases.

Figure 3(b) shows the distribution of the learned motif weights
on the four datasets. As we can see, there are two important obser-
vations. First, m1/m3/m4 play a positive role, while m2/m6/m7 play
a negative role. Second, m1/m3/m4/m7 have less variance on dif-
ferent datasets. A possible explanation for the phenomenon is that
open triads with three nodes tend to be connected with each other,
which is the most informative for the link prediction tasks. This
phenomenon is also referred to as the triadic closure process [10].
Specifically, m1/m3/m4 contain open triangles. Thus, when we
construct the motif-based adjacency matrix, the social theory is
inherently integrated into the mesoscopic modeling to strengthen
the connections between nodes with common neighbors, thus en-
hancing the model’s effectiveness. In contrast, m2/m6/m7, which
contain only closed triangles, focus only on nodes that are already
closely connected. Thus, it contains redundant information similar
to microscopic node representations and thereby has less effect on
the model’s prediction results.

5 RELATEDWORK
Link prediction has been a long-standing problem in the network
science literature. In the early days, researchers typically neglected
the temporal characteristics of links and formulated it as a static
prediction problem [21, 24]. Despite its simplicity, this formula-
tion has limited downstream applications. With the maturity of
recurrent neural networks and the attention mechanism, there has

been a burst of methods for dynamic link prediction in the last few
years [31, 37], which is also the focus of this work.

Existing works have demonstrated two types of most useful in-
formation for this problem: temporal information and structural
information [3, 15, 22, 32, 34, 43]. Most of the existing works model
them independently [7, 9, 44]. For example, to model the structural
information better, Chen et al. [7] propose a hierarchical representa-
tion learning framework based on existing randomwalk based node
embedding algorithms. In terms of capturing the temporal informa-
tion, a representative strategy is temporal smoothness that imposes
constraints to ensure the network embeddings do not change dra-
matically in consecutive time steps [9, 44]. The performance of
these methods is generally unsatisfactory and unstable.

A few recent studies try to leverage both information simulta-
neously [6, 22, 27, 29, 43]. For example, Sankar et al. [29] propose
DySAT, which jointly leverages structural and temporal informa-
tion by applying self-attention to learn the network embeddings
and the temporal dynamics. Wang et al [39] propose CAW-N that
applies a novel anonymization strategy on temporal random walks
to make the method inductive and capable of modeling temporal
network motifs. Zhou et al. [43] explicitly model the triadic closure
process in a temporal smoothness model. However, these works fail
to capture the complex relationships between the temporal infor-
mation and the structural information of different scales. To tackle
this challenge, we present an attentional multi-scale co-evolving
network that can learn the inherent correlation among the evolving
dynamics of different structural scales for dynamic link prediction.

6 CONCLUSION
In this paper, we propose an attentional multi-scale co-evolving
network, AMCNet, to model the inhernt correlations among the
evolving dynamics of different structural scales. Extensive exper-
iments on four real-world datasets with different characteristics
demonstrate its superior performance on both single-step andmulti-
step dynamic link prediction tasks. Further ablation study shows
the effectiveness of our designs. A meaningful future direction is
to investigate how to model multi-scale co-evolving dynamics in
continuous time rather than in snapshots.
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