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ABSTRACT
Urban mobility undergoes a profound decline in the aftermath of

a disaster, subsequently exhibiting a complex recovery trajectory.

Effectively capturing and predicting this dynamic recovery pro-

cess holds paramount importance for devising more efficient post-

disaster recovery strategies, such as resource allocation to areas

with protracted recovery periods. Existing models for post-disaster

mobility recovery predominantly employ basic mathematical meth-

ods, which are strongly based on simplifying assumptions, and

their limited parameters restrict their capacity to fully capture the

mobility recovery patterns. In response to this gap, we introduce

the Coupled Dynamic Graph ODE Network (CDGON) to model the

intricate dynamics of post-disaster mobility recovery. Our model

seamlessly integrates existing physical knowledge pertaining to

post-disaster mobility recovery and incorporates the nuanced inter-

actions between intra-regional and inter-regional population flows.

Extensive experimental results demonstrate the efficiency of our

model in capturing the dynamic recovery patterns of urban popula-

tion mobility in post-disaster scenarios, surpassing the capabilities

of current dynamic graph prediction models.
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Figure 1: Human mobility within each county over time in
South Carolina, where a line represents the intra-regional
population flow curve of a county, and different colors rep-
resent different counties.

1 INTRODUCTION
The fast progress of urbanization and frequently occurred extreme

events (disasters) around the world have caused a non-negligible

impact on the lives and safety of urban residents [14]. As a result,

there is an urgent need to have a deep understanding of urban

resilience, i.e., the ability of the city to rapidly recover its function-

alities from the shock of extreme events, where human mobility

within urban areas has played a critical role [23, 44]. On the one

hand, urban mobility reflects the behaviors of urban residents in

terms of traveling from residential areas to other functional areas

to acquire essential resources (e.g., food and money), thus serving

as a pivotal indicator of residents’ satisfaction with access to neces-

sities [23]. On the other hand, urban mobility is intricately linked

with the normal operation of urban infrastructures, e.g., transport

facilities and office buildings, thus reflecting the recovery status

of urban infrastructures [44]. Less resilient cities often need more

time to resume normal urban mobility, thereby causing greater

impacts on the lives of urban residents and more economic losses.

Thus, accurately predicting the recovery process of urban mobility

after disasters helps to detect high-risk urban communities, design

better emergency response strategies, and ultimately build a more

intelligent and resilient city [39].
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However, predicting the post-disaster recovery process of urban

mobility is also a difficult task with the following challenges. Firstly,

the post-disaster recovery of urban mobility has complicated pat-

terns intricately intertwined with diverse disaster situations and

their normal mobility characteristics before disasters [20, 38, 47].

For instance, as depicted in Fig. 1, the temporal recovery curves of

human mobility in different regions, i.e., counties in this instance,

of South Carolina after Hurricane Dorian in September 2019 exhibit

significant diversity and notable fluctuations. These phenomena

are largely caused by complicated disaster situations in different

regions, coupled with the inherent diversity in their normal mobil-

ity features before disasters. However, the underlying mechanisms

remain unclear and are difficult to be accurately modeled just using

observable data. Secondly, the recovery processes of different ur-

ban areas are interdependent. Interactions between regions, which

can be characterized by inter-regional population flows, have sig-

nificant influences on their recovery processes. Urban areas with

larger net population inflow will have a quicker recovery rate, as

they have a larger active population, thereby facilitating the recon-

struction and recovery process [43]. These interactions between

regions are also highly dynamic and further amplify the complexity

of effectively modeling and predicting their dynamics [11].

However, existing approaches for modeling the post-disaster

recovery process of urban mobility are mainly model-based meth-

ods [23, 38, 43]. They make strong simplifying assumptions about

urban mobility, and then employ mathematical models constructed

with a limited number of parameters with explicit physical inter-

pretations to fit its recovery process [23, 38, 43]. For example, Li et

al. [23] propose a hyperbolic model, which is called the spatiotem-

poral decay model, to describe the temporal recovery patterns of

urban mobility. Yabe et al. [43] developed two coupled differential

equation models to describe the recovering dynamics of the socio-

physical system composed of physical infrastructure and urban

mobility. Although these models provide valuable knowledge about

the recovery of post-disaster urban mobility, strong simplifying

assumptions and limited model parameters restrict their capacity

to fully capture the diverse and complicated recovery patterns of

post-disaster urban mobility. Moreover, all these models fail to ef-

fectively model the influence of inter-regional population flows on

their recovery.

At the same time, the rapid development of data-driven deep

learning technologies, represented by graph neural networks (GNN)

and neural ordinary differential equations (Neural ODE) [18, 50],

has equipped us with enhanced capabilities to model the dynamics

of co-evolved nodes and edges in graph structures. Furthermore,

the rise of physics-informed machine learning facilitates the in-

tegration of prior physical knowledge into data-driven modeling

frameworks [42]. These methodologies present a promising solu-

tion for effectively modeling and predicting post-disaster urban

mobility dynamics in the data-driven paradigm.

In this paper, we propose a deep learning framework, named

Coupled Dynamic Graph ODE Network (CDGON), to predict the

recovery process of post-disaster urban mobility. To overcome the

first challenge, we employ a paradigm of physics-inspired machine

learning to construct a neural ODE function guided by the spatio-

temporal decay model. It enables effective modeling of the diverse

and highly fluctuating urban mobility within different regions, and

jointly considers urban mobility before and after disasters. Further,

we introduce another set of coupled neural ODE functions to de-

scribe the dynamics of inter-regional population flows, which serve

as edges in the formed dynamic graph to characterize the compli-

cated post-disaster urban mobility. The two sets of neural ODE

functions jointly model the co-evolving process of nodes and edges

in the dynamic graph in terms of intra-regional and inter-regional

population flow, thus effectively solving the second challenge. Over-

all, our contributions can be summarized as follows:

• We integrate the physics-based knowledge from the spatio-

temporal decay model into the neural ODEmodel, and derive

a powerful framework for capturing the intertwined dynam-

ics of urban mobility before and after disasters.

• We employ coupled neural ODE functions to jointly model

the co-evolving process of intra-regional and inter-regional

population flow, capturing dynamic interactions between

regions in the post-disaster recovery process.

• Extensive experimental results demonstrate the efficiency

of our model in capturing the dynamic recovery patterns

of urban mobility in post-disaster scenarios, surpassing the

capabilities of current dynamic graph prediction models.

2 PRELIMINARIES
2.1 Spatiotemporal Decay Model (ST Decay

Model)
In this section, we introduce the Spatiotemporal Decay Model (ST

Decay Model) proposed by Li et al. [23]. This model is formulated

as a hyperbolic equation, represented as follows:

𝑟𝑖 (𝑡) =
𝑟𝑖

1 + 𝑘 (𝑡)∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡)
, (1)

where 𝑟𝑖 (𝑡) denotes the abnormal mobility in region 𝑖 after a dis-

aster, and 𝑟𝑖 represents the normal mobility of region 𝑖 prior to

the disaster. Eq. (1) illustrates that abnormal urban mobility after

disasters tends to normalize over time, attributable to the reduction

in the value of 𝑘 (𝑡)∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡). In this context, 𝑘 (𝑡) measures

temporal decay, capturing the decline in mobility behavior changes

over time, while

∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡) measures spatial decay. Here,𝑁 𝑗 (𝑡)
denotes the severity of the crisis in the region 𝑗 at time 𝑡 , where

region 𝑗 is a neighbor of the region 𝑖 , and𝑤𝑖 𝑗 represents the spatial

weight between 𝑖 and 𝑗 .

Specifically, the temporal decay function 𝑘 (𝑡) is best described
by the negative exponential function 𝑘0𝑒

−𝛼𝑡
[23] as follows:

𝑘 (𝑡) = 𝑘0𝑒
−𝛼𝑡 , (2)

where 𝛼 serves as the parameter that governs the rate of decay, and

𝑘0 represents the initial rate of change in mobility behavior.

2.2 Graph Neural ODE
Neural Ordinary Differential Equation (Neural ODE) is a type of

deep neural network introduced by Chen et al. [3], which merges

the neural networks with ordinary differential equations, offer-

ing a continuous generalization of the Residual Neural Network

(ResNet) [15]. Neural ODE facilitates the seamless incorporation

of neural networks for continuously learning residuals, thereby

endowing it with robust fitting capabilities. Poli et al. [29] integrate
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Graph Convolutional Networks (GCN) into Neural ODE. Following

this work, numerous studies incorporate GCN into Neural ODE

for dynamic graph prediction [12, 18, 50], which is one of the most

challenging tasks in graph learning. The equation of graph Neural

ODE can be described as follows:

𝑍𝑇 = 𝑍 0 +
∫ 𝑡=𝑇

𝑡=0

𝑓𝐺 (𝑍 𝑡 ,Θ)d𝑡, (3)

where 𝑍 0
represents the node embeddings in a graph at the initial

moment, and 𝑓𝐺 is a function designed for processing nodes em-

beddings with learnable parameters Θ. Here, 𝑓𝐺 is often replaced

with a graph convolution operation. Integration across the interval

[0,𝑇 ] yields 𝑍𝑇 , denoting the node embeddings at time 𝑇 .

3 PROBLEM FORMULATION
The discrete dynamic populationmobility graph sequence is defined

as G = {𝐺0,𝐺1, . . . ,𝐺𝑇 }, where 𝐺𝑡 = (V, E𝑡 , 𝑋 𝑡 , 𝐴𝑡 ) is a human

mobility graph with V denoting the set of 𝑛 regions, which is

treated as nodes. The feature matrix at timestamp 𝑡 is represented

as 𝑋 𝑡
. The set E𝑡

indicates the population flows between different

regions at timestamp 𝑡 , which is treated as edges, with their features

forming the weighted adjacency matrix 𝐴𝑡
at timestamp 𝑡 .

Since population mobility recovers day by day instead of hour by

hour, thus𝐺𝑡
denotes the population mobility on day 𝑡 . The related

definitions of the features on nodes and edges are as follows:

Definition 1 (Intra-regional Population Flow). The intra-
regional population flow within region 𝑖 ∈ V at day 𝑡 is denoted as
𝑥𝑡
𝑖
∈ R. This node feature measures the total population that moved

within this region, representing the population mobility of region 𝑖 .
Consequently, the feature matrix of nodes at day 𝑡 is 𝑋 𝑡 ∈ R𝑁×1,
with its dynamic sequence represented as X = {𝑋 0, 𝑋 1, . . . , 𝑋𝑇 }.

Definition 2 (Inter-regional Population Flow). The inter-
regional population flow from region 𝑖 to region 𝑗 at day 𝑡 is denoted
as 𝑥𝑡

𝑖 𝑗
∈ R. This feature on edge 𝑒𝑡

𝑖 𝑗
∈ E𝑡 calculates the volume of the

population that moves from region 𝑖 to region 𝑗 at day 𝑡 and represents
the populationmobility between these two regions. Therefore, the corre-
sponding weighted adjacent matrix sequence isA = {𝐴0, 𝐴1, . . . , 𝐴𝑇 }
where the element in the 𝑖th row and 𝑗 th column of 𝐴𝑡 is 𝑥𝑡

𝑖 𝑗
.

In the realm of dynamic graph prediction, traditional meth-

ods typically leverage historical graph sequences to predict future

graphs, performing well under normal circumstances as population

mobility tends to fluctuate periodically within a predictable range.

However, the occurrence of a disaster disrupts this regular pattern,

leading to a shift in population mobility towards an abnormal state.

Consequently, historical population mobility patterns prior to the

disaster become inadequate for predicting the mobility recovery

process under abnormal conditions.

To address this challenge, letting G represent the sequence of

abnormal population mobility graphs during the recovery process,

with the landfall day of the disaster as the initial moment, we define

a normal population mobility graph to guide the abnormal mobility

recovery as follows:

Definition 3 (normal population mobility graph). The nor-
mal population mobility graph is defined as 𝐺 = (V, E𝑡 , 𝑋,𝐴),
where the normal intra-regional population flow matrix is 𝑋 =

1

𝑇1−𝑇2

∑𝑡=𝑇2

𝑡=𝑇1

𝑋 𝑡 and the normal weighted adjacent matrix is 𝐴 =

1

𝑇1−𝑇2

∑𝑡=𝑇2

𝑡=𝑇1

𝐴𝑡 . Here, 𝑇1 and 𝑇2 are the starting and ending days of
a normal period before a disaster.

We now define the post-disaster dynamic population mobility

graph prediction problem as follows:

Definition 4 (Post-disaster Dynamic Population Mobility

Graph Prediction Problem). Given the initial abnormal popula-
tion mobility graph𝐺0 and normal population mobility graph𝐺 , pre-
dict the subsequent population mobility graphs𝐺𝑡 , 𝑡 ∈ {1, 2, . . . ,𝑇 }
during the recovery process after the disaster.

4 METHODOLOGY
4.1 Framework of Proposed Method
The goal of our Coupled Dynamic Graph ODE Network (CDGON)

is to predict the population mobility recovery process post-disaster

using the initial abnormal populationmobility graph and the normal

population mobility graph, which is challenging since the available

data is limited. To address this difficulty, we leverage the prior

physical knowledge derived from the ST Decay Model to design our

node ODE function and carefully model the co-evolution of nodes

and edges, effectively solving the post-disaster dynamic population

mobility graph prediction problem.

Fig. 2 presents an overview of ourmodel architecture, comprising

the Encoder, the ST Decay Model Informed Neural ODE, and the

Decoder. The Encoder first maps the initial abnormal population

mobility graph and normal intra-regional population flow into a

latent space. Then, the ST Decay Model Informed Neural ODE

captures the dynamic of the mobility recovery. Finally, the Decoder

generates the predictive graph and filters out unreasonable results.

4.2 Encoder for Population Mobility Graph
To initiate the modeling process, the initial abnormal intra-regional

population flows 𝑥0

𝑖
within nodes and corresponding normal intra-

regional population flows 𝑥𝑖 are jointly encoded through an identi-

cal node encoder 𝐹𝐸𝑛𝑐𝑁 : R1 → R𝑑 as follows:

𝑧0

𝑖 = 𝐹𝐸𝑛𝑐𝑁 (𝑥0

𝑖 ), (4)

𝑧𝑖 = 𝐹𝐸𝑛𝑐𝑁 (𝑥𝑖 ), (5)

where 𝑧0

𝑖
and 𝑧𝑖 are both 𝑑-dimensional vectors.

Additionally, the initial abnormal inter-regional population flows

𝑥0

𝑖 𝑗
on edges are encoded through the edge encoder 𝐹𝐸𝑛𝑐𝐸 : R1 →

R𝑑 , producing the edge latent state 𝑧0

𝑖 𝑗
, which is also a𝑑-dimensional

vector:

𝑧0

𝑖 𝑗 = 𝐹𝐸𝑛𝑐𝐸 (𝑥𝑖 𝑗 ). (6)

4.3 ST Decay Model Informed Neural ODE
After acquiring the initial state of node 𝑧0

𝑖
and edge 𝑧0

𝑖 𝑗
, our ST

Decay Model Informed Neural ODE utilizes them to generate the

subsequent latent states 𝑧1

𝑖
, 𝑧2

𝑖
, . . . , 𝑧𝑇

𝑖
for nodes and 𝑧1

𝑖 𝑗
, 𝑧2

𝑖 𝑗
, . . . , 𝑧𝑇

𝑖 𝑗

for edges, where 𝑇 is the observed recovery time length. Notably,

this generation process is guided by the latent state of normal

intra-regional mobility 𝑧𝑖 .
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Figure 2: Model architectrue.

This section introduces two primary components of our ST De-

cay Model Informed Neural ODE: the Physics-informed Dynamic

Module (PIDM) and the Node-Edge Interaction Module (NEIM).

4.3.1 Physics-informed Dynamic Module. Before we delve into our
PIDM, we first introduce the theorem that is deduced from the ST

Decay Model:

Theorem 1. Denote 𝑟𝑖 (𝑡) as the abnormal intra-regional population
flow of region 𝑖 after a disaster, which is described in the ST Decay
Model shown in Eq. (1). The derivative of 𝑟𝑖 (𝑡) satisfies the following
differential equation:

d𝑟𝑖 (𝑡)
d𝑡

= 𝛼
𝑟𝑖 (𝑡)
𝑟𝑖

[𝑟𝑖 − 𝑟𝑖 (𝑡)], (7)

where 𝛼 indicates the decay coefficient. It implies that 𝑟𝑖 (𝑡) will ap-
proach to the normal intra-regional population flow 𝑟𝑖 over time
governed by 𝛼 .

Proof. See the Appendix for proof. □

Eq. (7) inTheorem1 describes the self-evolution of intra-regional
population flow in the region 𝑖 . Therefore, it can inform the de-

sign of our node ODE function. However, Eq. (7) describes the

1-dimensional dynamics of mobility recovery. Modeling this in a

𝑑-dimensional space requires a well-designed network structure.

Consequently, we proposed PIDM, structurally resembling Eq. (7),

to capture the self-evolution of the node latent state. The module is

depicted as follows:

d𝑧𝑡
𝑖

d𝑡
= ®𝛼𝑡𝑖 ⊙ (

𝑓𝜃 (𝑧𝑡𝑖 )
𝑓𝜃 (𝑧𝑖 )

⊙ 𝑅𝑒𝐿𝑈 (𝑧𝑖 − 𝑧𝑡𝑖 )𝑊1), (8)

where ⊙ indicates the element-wise product, and ®𝛼𝑡
𝑖
∈ R𝑑 rep-

resents the decay coefficient vector for region 𝑖 , analogous to the

parameter 𝛼 in Eq. (7), which means we calculate a decay parameter

for each element in the hidden state vector.

Given that the true values of population mobility can reach

several million for regions with large populations, a potential nu-

merical explosion might occur for the term (𝑧𝑡
𝑖
)2

in

𝑧𝑡
𝑖

𝑧𝑖
[𝑧𝑖 − 𝑧𝑡

𝑖
]

if we design the node ODE directly as in Eq. (7). Therefore, we

replace

𝑧𝑡
𝑖

𝑧𝑖
∈ R𝑑 with

𝑓𝜃 (𝑧𝑡𝑖 )
𝑓𝜃 (𝑧𝑖 ) ∈ R1

, where 𝑓𝜃 : R𝑑 → R1
calculates

a scalar from a 𝑑-dimensional vector, helping to avoid the potential

numerical explosion problem. While 𝑧𝑖 − 𝑧𝑡
𝑖
remains unchanged,

analogous to 𝑟𝑖 − 𝑟𝑖 (𝑡), but we also use a 𝑅𝑒𝐿𝑈 and a learnable

transformation matrix𝑊1 ∈ R𝑑×𝑑 to enhance the model’s learning

capacity.

4.3.2 Node-Edge Interaction Module (NEIM). With the develop-

ment of our PIDM, it is imperative to acknowledge that, in reality,

intra-regional population flow within a region is influenced by

inter-regional population flows from other regions [47]. Particu-

larly after a disaster, people who sought refuge in distant areas

will return to their original locations. This surge in population in-

flow leads to a rapid recovery of intra-regional flow in urban areas

near the disaster center, especially in cities with large populations.

Therefore, considering the interaction between nodes and edges is

crucial.

Notably, although the initial edge information is known, the

populationmobility graph structure is dynamic, meaning edgesmay

vanish or emerge during the evolution. To capture this dynamic,
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we compute an adaptive graph weight adjacent matrix
ˆ𝐴𝑡
:

ˆ𝐴𝑡 = [𝑎𝑡𝑖 𝑗 ]𝑛×𝑛, (9)

𝑎𝑡𝑖 𝑗 = 𝑅𝑒𝐿𝑈 (𝑔𝐸𝑡𝑉 (𝑔𝑁𝑡𝐸 ( [𝑧𝑡𝑖 ∥𝑧
𝑡
𝑗 ]))), (10)

where ∥ denotes the horizontal concatenation, and 𝑎𝑡
𝑖 𝑗
in the 𝑖th

row and 𝑗th column of
ˆ𝐴𝑡
is learned from the concatenation of

the two corresponding nodes through 𝑔𝑁𝑡𝐸 : R2𝑑 → R𝑑 and

𝑔𝐸𝑡𝑉 : R𝑑 → R1
. Besides, the 𝑅𝑒𝐿𝑈 activation function is used to

eliminate the negative values.

After
ˆ𝐴𝑡
is generated, drawing inspiration from Coupled Graph

ODE [18], we design the edge ODE function as follows:

d𝑧𝑡
𝑖 𝑗

d𝑡
= 𝑒𝑡𝑖 𝑗 [𝑓𝐸𝑡𝐸 (𝑧

𝑡
𝑖 𝑗 ) + 𝑓𝑁𝑡𝐸 ( [𝑧𝑡𝑖 ∥𝑧

𝑡
𝑗 ])], (11)

where 𝑓𝐸𝑡𝐸 : R𝑑 → R𝑑 computes the self-evolution of edges, and

𝑓𝑁𝑡𝐸 : R2𝑑 → R𝑑 captures information from the concatenation

of the two connected nodes. Both 𝑓𝐸𝑡𝐸 and 𝑓𝑁𝑡𝐸 are linear layers.

Specifically, the edge indicator 𝑒𝑡
𝑖 𝑗
denotes the connectivity of node

𝑖 and node 𝑗 based on 𝑎𝑡
𝑖 𝑗
:

𝑒𝑡𝑖 𝑗 =

{
1, if 𝑎𝑡

𝑖 𝑗
≥ 1

0, if 𝑎𝑡
𝑖 𝑗

< 1

(12)

where 𝑒𝑡
𝑖 𝑗
will be 1 if 𝑎𝑡

𝑖 𝑗
exceeds 1, indicating that population flow

from region 𝑖 to region 𝑗 exists and the edge should be updated.

For the original node ODE function in PIDM, instead of ag-

gregating neighbor information as in [18], we aggregate edges

surrounding the node:

d𝑧𝑡
𝑖

d𝑡
= ®𝛼𝑡𝑖 ⊙ (

𝑓𝜃 (𝑧𝑡𝑖 )
𝑓𝜃 (𝑧𝑖 )

⊙ 𝑅𝑒𝐿𝑈 (𝑧𝑖 − 𝑧𝑡𝑖 )𝑊1)

+
∑︁

𝑗∈𝑁 (𝑖 )

ˆ𝑒𝑡
𝑖 𝑗
®𝛾𝑡𝑖 𝑗 ⊙ 𝑧𝑡𝑖 𝑗 +

∑︁
𝑗∈𝑁 (𝑖 )

ˆ𝑒𝑡
𝑗𝑖
®𝛾𝑡𝑗𝑖 ⊙ 𝑧𝑡𝑗𝑖 ,

(13)

where 𝑁 (𝑖) represents all nodes in the graph except for node 𝑖 , and

𝑒𝑡
𝑖 𝑗

detects whether the edge exists. Additionally, the parameter

®𝛾𝑡
𝑖 𝑗

∈ R𝑑 is used to control the degree of aggregation.

Since the recovery rate of the intra-regional population flow

differs for each region, we allocate different decay coefficients ®𝛼𝑡
𝑖

for each region. Moreover, the recovery rate of a region not only

depends on itself but also depends on its neighbors. For example,

two regions suffering similar damage will recover at different rates

if one has healthier neighbors. Consequently, we employ graph

convolution to infer ®𝛼𝑡
𝑖
based on the adaptive graph weight adjacent

matrix
ˆ𝐴𝑡
:

[ ®𝛼𝑡
1
, ®𝛼𝑡

2
, ..., ®𝛼𝑡𝑛]𝑇 =

ℎ𝛼 (�̂�−1/2 ˆ𝐴𝑡 �̂�−1/2𝑍 𝑡𝑊 )
𝑚𝑎𝑥 ( |ℎ𝛼 (�̂�−1/2 ˆ𝐴𝑡 �̂�−1/2𝑍 𝑡𝑊 ) |)

, (14)

where �̂�−1/2
is the degree matrix of

ˆ𝐴𝑡
, and 𝑍𝑇 = [𝑧𝑡

1
, 𝑧𝑡

2
, . . . , 𝑧𝑡𝑛]𝑇

represents the graph signals composed of all latent node states.

After performing graph convolution, a linear layer ℎ𝛼 is applied.

While it is common to normalize each value of ®𝛼𝑡
𝑖
into the range

[0,1] to indicate a recovery trend, we observe that, in Fig. 1, some

counties face a decline shortly in just one or two days after the

Dorian for uncertain reasons, which can be subsequent effects of the

disaster or the arrival of the workday. Therefore, absolute maximum

normalization is applied to normalize the result to the range [-1,1]

instead of [0,1], allowing the model to capture both the rising and

falling during recovery.

Equally important, the population inflow to a region might not

always promote recovery of this region, as some people who just

arrived might leave on the next day for various reasons. Similarly,

the population outflow from a region might not necessarily damage

the recovery process. Hence, we do not directly add edge states to

the node state but use a linear layer ℎ𝛾 to infer ®𝛾𝑡
𝑖 𝑗
, which controls

the influence of an edge to a node:

®𝛾𝑡𝑖 𝑗 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ𝛾 (𝑧𝑡𝑖 𝑗 )), (15)

where the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 activation function is used.

Once our ordinary differential equations for node

d𝑧𝑡
𝑖

d𝑡
and edge

d𝑧𝑡
𝑖 𝑗

d𝑡
are obtained, given the initial node embedding 𝑧0

𝑖
and edge

embedding 𝑧0

𝑖 𝑗
, we can generate subsequent latent states of intra-

regional and inter-regional population flow using a Neural ODE

solver. This process involves repeated integration at equidistant

intervals △𝑡 , where each integration is performed based on the

previous integration result:

𝑧𝑡+△𝑡𝑖 = 𝑧𝑡𝑖 +
∫ 𝑡+△𝑡

𝑡

d𝑧𝑡
𝑖

d𝑡
𝑑𝑡, (16)

𝑧𝑡+△𝑡𝑖 𝑗 = 𝑧𝑡𝑖 𝑗 +
∫ 𝑡+△𝑡

𝑡

d𝑧𝑡
𝑖 𝑗

d𝑡
𝑑𝑡 . (17)

4.4 Decoder for Population Mobility Graph
Finally, the node decoder 𝐹𝐷𝑒𝑐𝑁 : R𝑑 → R1

and edge decoder

𝐹𝐷𝑒𝑐𝐸 : R𝑑 → R1
generate the ultimate predictive outputs for

nodes and edges on the corresponding day 𝑡 :

ˆ𝑥𝑡
𝑖
= 𝐹𝐷𝑒𝑐𝑁 (𝑧𝑡𝑖 ), (18)

ˆ𝑥𝑡
𝑖 𝑗

= 𝑒𝑡𝑖 𝑗𝐹𝐷𝑒𝑐𝐸 (𝑧𝑡𝑖 𝑗 ), (19)

where the use of 𝑒𝑡
𝑖 𝑗
ensures consistency with the network structure

during the integration process. Since
ˆ𝑥𝑡
𝑖 𝑗
represents the absolute

value of the predicted inter-regional population flow, it is treated

as non-existent if its value is less than 1. Thus, the filtering process

is defined as:

ˆ𝑥𝑡
𝑖 𝑗

=

{
ˆ𝑥𝑖 𝑗
𝑡 , if ˆ𝑥𝑖 𝑗

𝑡 ≥ 1

0. if ˆ𝑥𝑖 𝑗
𝑡 < 1

(20)

4.5 Model Optimization
Our objective is to minimize the prediction error of population

mobility recovery, for which we use the following loss function:

L =

√√√
1

𝑛 ×𝑇

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

(𝑥𝑡
𝑖
− ˆ𝑥𝑡

𝑖
)2 +

𝜆

√√√√
1

𝑛 × 𝑛 ×𝑇

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑥𝑡
𝑖 𝑗
− ˆ𝑥𝑡

𝑖 𝑗
)2,

(21)

which calculates the weighted sum of root-mean-square errors

(RMSE) between the predicted value
ˆ𝑥𝑡
𝑖
,

ˆ𝑥𝑡
𝑖 𝑗
and the true value 𝑥𝑡

𝑖
,
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Table 1: The life of Hurricane Dorian (2019).

Date Intensity State
Aug 01 ∼ Aug 24 - Unborn
Aug 24 ∼ Seq 01 TD⇒ H5 Approaching USA

Sep 02 H5 Arriving at FL
Sep 04 H2 Arriving at GA
Sep 05 H3 Arriving at SC

Sep 05 ∼ Sep 09 H3 ⇒ ET Fading away

Table 2: Population mobility data description in three states,
where NoC is the short of Number of Counties.

State FL GA SC

Original NoC 67 159 46

Filter NoC 55 107 38

𝑉𝑎𝑟 (𝑥𝑡
𝑖
) 1.1011 × 10

12
6.9274 × 10

9
3.8356 × 10

10

𝑉𝑎𝑟 (𝑥𝑡
𝑖 𝑗
) 1.2892 × 10

8
8.9060 × 10

5
2.3480 × 10

7

𝑀𝑎𝑥 (𝑥𝑡
𝑖
) 6506832 596636 813207

𝑄25 (𝑥𝑡𝑖 ) 46936 10755 31331

𝑀𝑒𝑎𝑛(𝑥𝑡
𝑖
) 648269 50373 160973

𝑥𝑡
𝑖 𝑗
over the recovery period of 𝑇 days. In the experiment, we ob-

served that inter-regional population flows are significantly smaller

compared to intra-regional flows, leading the model to overlook

edge predictions. Therefore, the parameter 𝜆 is used to adjust the

importance of edge predictions in our model. We use 𝐴𝑑𝑎𝑚𝑊 [25]

as our optimizer.

5 EXPERIMENT
5.1 Experimental Settings
5.1.1 Scenario. We select hurricane Dorian (2019) [34], which was

delisted for the extensive damage it caused, as our disaster scenario.

Dorian was born on August 24, 2019, then approached Florida (FL)

and made landfall in FL on September 2nd, Georgia (GA) on Septem-

ber 4th, South Carolina (SC) on September 5th, and finally dissipated

on September 9th, resulting in significant damage. Consequently,

we conduct experiments in these three states. The temporal changes

in hurricane Dorian’s intensity and states are outlined in Table 1.

𝑇𝐷 and 𝐸𝑇 are short of "Tropical Depressions" and "Extratropical

Transition", respectively, representing the beginning and end of

Dorian in this scenario.

5.1.2 Dataset. The original population mobility data sourced from

SafeGraph records the daily number of people moving between

different Census Block Groups (CBGs) from August 1st to Septem-

ber 10th, 2019. We aggregate this inter-CBG daily mobility data

by counties to construct the daily within-county population flows

and between-county population flows, corresponding to the intra-

regional population flows on nodes 𝑥𝑡
𝑖
and inter-regional popula-

tion flows on edges 𝑥𝑡
𝑖 𝑗
. Based on the trajectory of Dorian, certain

counties in these three states are located far from the hurricane’s

center. Therefore, we implement a county filtering process based on

weather conditions during Dorian and individually generate pop-

ulation mobility graphs for FL, GA, and SC. Detailed information

about the county filtering process can be found in the Appendix.

The description of processed population mobility data is shown

in Table 2, from which we can find that the variance of the intra-

regional population flows 𝑥𝑡
𝑖
and the inter-regional population

flows 𝑥𝑡
𝑖 𝑗

are huge. Besides, the highest recorded intra-regional

population flows can reach 6,506,832 people in one day.

5.1.3 Metrics. We employ several metrics to evaluate the perfor-

mance of our model, including Mean Absolute Error (MAE), Nor-
malized Root-Mean-Square Error (NRMSE), and Coefficient of De-

termination (R2). MAE measures the average magnitude of the

prediction errors. NRMSE is a dimensionless metric that normal-

izes the accuracy of a predictive model, accounting for the data

variability:

𝑁𝑅𝑀𝑆𝐸 (𝑥𝑡𝑖 , ˆ𝑥𝑡
𝑖
) =

√︃∑𝑇
𝑡=1

∑𝑛
𝑖=1

(𝑥𝑡
𝑖
− ˆ𝑥𝑡

𝑖
)2/(𝑇 × 𝑛)√︃∑𝑇

𝑡=1

∑𝑛
𝑖=1

(𝑥𝑡
𝑖
− 𝑥)2/(𝑇 × 𝑛)

, (22)

where 𝑥 is the mean of the true values computed over all regions

𝑖 and all times 𝑡 , serving as the baseline for comparison. A lower

NRMSE value indicates better model performance. R2 provides an
unbiased measure of model quality, representing the proportion

of the total variation in the dependent variable explained by the

model. An R2 value closer to 1 indicates higher model performance.

5.1.4 Baseline. We compare our model CDGONwith the following

six classical baselines.

• LSTM [16] is a classic recurrent neural network designed to

predict future sequences by learning patterns from historical

data.

• AGCRN [1] combines GCN and Gated Recurrent Units

(GRU) for dynamic graph prediction, enabling the adaptively

learned graph structures.

• NDCN [50] focuses on capturing dynamics in complex net-

works with a Neural ODE designed with one GCN layer.

• CG-ODE [18] constructs temporal links between historical

graphs and develops a Variational AutoEncoder(VAE)-based

model to capture the co-evolution of nodes and edges using

coupled Neural ODE functions.

• STG-NCDE [10] employs Neural Controlled Differential

Equations (NCDE), incorporating trajectory gradients
d𝑋 (𝑡 )

d𝑡
generated through the natural cubic spline of original signals.

• PatchTST [28] divides historical sequences into a series

of equal-length patches, then develops a transformer-based

model to predict the trajectories of multivariate data.

5.2 Performance Evaluation
We assess the performance of different models in each of the three

states individually. Due to the nature of our CDGON model, in ad-

dition to the initial abnormal population mobility graph on the day

Dorian arrived, CDGON requires the normal intra-regional popu-

lation flow prior to the disaster as input. During training, several

post-disaster graph snapshots are needed as labels. Consequently,

the dynamic graphs in the recovery process are divided into two

parts: the former for training and the latter for testing.
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Table 3: Performance comparison of ourmodel and baselines on three states for predicting the recovery process of intra-regional
population flows, where lower NRMSE and MAE, higher 𝑅2 are better. Bold denotes best results.

Model

Region FL GA SC

Metrics MAE NRMSE 𝑅2
MAE NRMSE 𝑅2

MAE NRMSE 𝑅2

LSTM 302884.0938 0.6689 0.5526 27099.3320 0.8700 0.2431 45117.3867 0.4089 0.8328

AGCRN 273478.9062 0.5377 0.7109 26782.4121 0.9181 0.1570 22293.4277 0.1938 0.9624

NDCN 406064.2812 0.3987 0.8411 11569.9785 0.3539 0.8747 94850.3906 0.6801 0.5375

CG-ODE 224787.1250 0.2936 0.9138 13370.4551 0.2664 0.9290 89249.2109 0.7564 0.4279

STG-NCDE 226016.1562 0.6683 0.5533 5938.1401 0.2316 0.9463 13173.6650 0.2074 0.9570

PatchTST 96736.0547 0.1632 0.9734 3108.3894 0.0963 0.9907 12399.1855 0.1347 0.9819

CDGON 59767.4805 0.0724 0.9948 2013.2821 0.0475 0.9977 9040.6758 0.0771 0.9941

Table 4: Performance comparison of our model and baselines
on three states for predicting the recovery process of inter-
regional population flows, where bold denotes best results.

Region Metrics CG-ODE STG-NCDE CDGON

FL

NRMSE 1.0051 0.7603 0.4364
𝑅2

-0.0103 0.4218 0.8096

GA

NRMSE 0.0241 0.5031 0.2663

𝑅2 0.9879 0.7468 0.9291

SC

NRMSE -0.5193 0.4718 0.6086

𝑅2
1.2326 0.7773 0.6296

Based on our observation of the human mobility curve during

hurricane Dorian, whose details are presented in the Appendix, we

note that it takes approximately four days for the intra-regional pop-

ulation flow of all counties to return to normal, excluding the day

Dorian arrived. Therefore, we use the first three dynamic graphs

after disaster for training and the fourth dynamic graph for testing.

For example, Dorian arrived in FL on September 2nd, causing a

sharp decrease in population mobility on that day, followed by

recovery over the next four days. CDGON takes the population mo-

bility graph of FL on September 2nd and the normal intra-regional

flows as input. It is trained on the data from September 3rd to 5th,

and is evaluated on the graph from September 6th. For Georgia (GA)

and South Carolina (SC), the testing is conducted on the population

mobility graph from September 8th and 9th, respectively.

The experimental results for predicting the intra-regional popu-

lation flow for all models are presented in Table 3, while the results

for inter-regional population flow are shown in Table 4. Notably,

our CDGON model consistently demonstrates superior predictive

performance in predicting intra-regional population flows among

all scenarios. For the prediction of inter-regional population flows,

although CDGON does not outperform baselines in all situations, it

is still the most stable and partially optimal compared with baseline

models. Furthermore, Fig. 3 vividly illustrates the predictive per-

formance comparison between our model and STG-NCDE on the

fourth day after Dorian’s arrival. This visualization highlights that

our model produces accurate predictions that closely align with the

ground truth, surpassing STG-NCDE.

Figure 3: Intra-regional population flow visualizations in
three states among ground truth and prediction results from
CDGON and STG-NCDE.

Figure 4: Intra-regional population flow prediction in the 8
counties with the largest population in SC state, where the
two predictive curves are generated by the models trained in
FL.
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Table 5: Performance comparison for predicting intra-regional population flow recovery process in each state by the model
trained on other two states, where lower NRMSE and MAE, higher 𝑅2 are better. Bold denotes best results. Models with * can
not be generalized to different states due to their requirement of the same graph structure, thus their prediction performance
results come from training and testing in the target city simultaneously.

Source → Target Metrics LSTM* AGCRN* NDCN CG-ODE* STG-NCDE* PatchTST CDGON

FL→ GA

MAE 30069.4746 27000.6348 24600.7168 24787.2109 7720.2603 4872.3203 5433.7192

NRMSE 0.9254 0.9031 0.5628 0.6689 0.3452 0.1444 0.1301
𝑅2

0.1436 0.1843 0.6832 0.5526 0.8808 0.9791 0.9831

FL→ SC

MAE 46591.9336 23959.2617 57581.6367 124385.3672 15826.1348 38007.8047 13609.5889
NRMSE 0.4129 0.2143 0.4980 0.9807 0.1964 0.4144 0.1508

𝑅2
0.8295 0.9541 0.7520 0.0382 0.9614 0.8283 0.9773

GA→ FL

MAE 314732.8125 110829.3672 89669.6328 308634.5938 205125.8438 70575.5312 48276.1992
NRMSE 0.6675 0.2074 0.1889 0.5605 0.6711 0.1536 0.0997

𝑅2
0.5544 0.9570 0.9643 0.6858 0.5496 0.9764 0.9901

GA→ SC

MAE 46591.9336 23959.2617 37860.0586 124385.3672 15826.1348 16386.5156 14315.9375
NRMSE 0.4129 0.2143 0.3880 0.9807 0.1964 0.1844 0.1341

𝑅2
0.8295 0.9541 0.8495 0.0382 0.9614 0.9660 0.9820

SC→ FL

MAE 314732.8125 110829.3672 1353806.5000 308634.5938 205125.8438 100522.4141 73204.6719
NRMSE 0.6675 0.2074 1.4442 0.5605 0.6711 0.2294 0.1412

𝑅2
0.5544 0.9570 -1.0858 0.6858 0.5496 0.9474 0.9801

SC→ GA

MAE 30069.4746 27000.6348 334504.1250 24787.2109 7720.2603 5576.4810 8921.1035

NRMSE 0.9254 0.9031 5.1555 0.6689 0.3452 0.2232 0.1770
𝑅2

0.1436 0.1843 -25.5788 0.5526 0.8808 0.9502 0.9687

5.3 Generalization
To verify the model’s generalization ability, we train our model on

each state (source state), and apply the trained model to the other

two states (target states), denoted as "source→ target". Specifically,

we use all the dynamic population mobility graphs during the

recovery process of the source state to train our model. The trained

model is then applied to predict the entire recovery processes of

the other two target states, differing from the training setting in

Table 3.

The performance of generalization is shown in Table 5, where the

predictive performance of our CDGON is consistently optimal. This

outcome demonstrates the generalization capability of CDGON.

Such accurate predictions hold substantial significance for devising

coordinated post-disaster recovery plans spanning multiple states.

From the comparison with PatchTST in Fig. 4, our CDGON can

predict the intra-regional flows with higher accuracy. Although

there is some disparity between our predictions and the real values

from the visualization, achieving such accuracy by only knowing

the initial state and normal state illustrates the potential of our

model.

5.4 Hyper-parameters Setting
The main hyper-parameters used in our CDGON model include

embedding dimension, edge loss weight (𝜆) in Eq. (21), and learning

rate. These parameters were set to 48, 100, and 0.003, respectively.

Notably, we found that setting the embedding dimension to 64,

while keeping the other two parameters unchanged, results in the

best performance in the generalization part but underperforms in

the evaluation part. This indicates the potential of our CDGON’s

generalization ability. However, to achieve balanced performance

between evaluation and generalization, we used 48 as our embed-

ding dimension.

5.5 Ablation Study
To assess the efficacy of different components in the design of our

CDGON, we conducted ablation experiments across three aspects:

• w/o PIDM: CDGON without PIDM, utilizing a linear layer

to learn from the node embeddings directly.

• w/o GCN-𝛼 : CDGON without GCN to compute the 𝛼𝑡
𝑖
, em-

ploying a linear layer to compute it directly from 𝑧𝑡
𝑖
.

• w/o NEIM: CDGON without NEIM, focusing solely on the

PIDM in node ODE function and changing the edge ODE

function to only consider self-evolution.

The results of the ablation study are presented in Table 6. This com-

prehensive assessment includes the evaluation of the predictive

performance both in the nodes and edges. This experiment indi-

cates that the removal of any of the mentioned modules results in a

reduction of our model’s predictive ability on intra-regional popu-

lation flows. Moreover, our models’ performance on inter-regional

population flows significantly deteriorates when any designed mod-

ule is removed. These findings fully illustrate the effectiveness of

our model design.
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Table 6: Ablation study for different components of our model on three states, where lower NRMSE and MAE, higher 𝑅2 are
better. Bold denotes best results. Node and Edge represent two types of evaluation implemented on the recovery process of
intra-regional population flows and inter-regional population flows respectively.

Model

Region FL GA SC

Metrics MAE NRMSE 𝑅2
MAE NRMSE 𝑅2

MAE NRMSE 𝑅2

CDGON

Node 59767.4805 0.0724 0.9948 2013.2821 0.0475 0.9977 9040.6758 0.0771 0.9941
Edge 1934.2816 0.4364 0.8096 48.2338 0.2663 0.9291 714.8368 0.6086 0.6296

w/o PIDM

Node 60685.7891 0.1002 0.9900 9389.4014 0.3432 0.8822 36499.0273 0.4174 0.8258

Edge 1945.6016 0.1002 1.0087 89.7465 1.0087 -0.0176 801.9778 1.0142 -0.0285

w/o GCN-𝛼
Node 73036.6641 0.1185 0.9860 6143.5601 0.1921 0.9631 17583.4277 0.1828 0.9666

Edge 1945.6016 0.1002 1.0087 89.7465 1.0087 -0.0176 801.9778 1.0142 -0.0285

w/o NEIM

Node 30396.2402 0.0570 0.9968 6783.2905 0.9630 0.1925 25347.1289 0.2261 0.9489

Edge 1945.6016 0.1002 1.0087 89.7465 1.0087 -0.0176 801.9778 1.0142 -0.0285

6 RELATEDWORK
Urban Mobility Recovery Dynamic Modeling. Traditional stud-
ies on modeling and analyzing the recovery dynamics of urban

population mobility often adopt mathematical approaches to under-

stand and unveil patterns in population movement after disasters.

For example, the more socially connected a community is to other

communities, the faster it will recover after a disaster [47]. Addi-

tionally, socioeconomic and racial disparities affect the resilience

capacity [17], and the perturbed population mobility post-disaster

is highly correlated with steady mobility state [38]. Modeling meth-

ods vary for different mobility metrics [23, 37, 38, 43, 45], but the

basic recovery trend can be identified [20, 46]. These studies on

the recovery dynamics of urban mobility is also part of resilience

research in complex networks [11, 13].

Physic-informed Neural ODE. Incorporating physic-based

knowledge into the data-driven method can significantly improve

method performance in various scenarios, such as sensor calibra-

tion [35], field reconstruction [26, 33], air pollution estimation [7–9]

and crowd simulation [2]. Neural ODE can also be applied in var-

ious fields by integrating domain knowledge, such as structural

health monitoring [22], trajectory forecasting for multi-object phys-

ical systems [24, 40, 41], turbulent fluid dynamic [32] and complex

climate systems [19, 27]. Incorporating physics-based knowledge

will lead to a high physical interpretability. Liu et al. [24] present

the Physics-informed Neural Graph ODE (PINGO) model, utilizing

Newton’s second law to simulate long-term dynamics of multi-

object physical systems. Roehrl et al. [31] integrate the equations

of motion in Lagrange mechanics to Neural ODE to simulate the

movement of a cart pole.

Post-disaster Emergency Management. In recent years, tech-

nological advancements have significantly enhanced the efficiency

and effectiveness of post-disaster emergency management. Accu-

rate prediction of post-disaster urban mobility recovery is crucial

for various emergency management activities. For example, Ren

et al. [30] propose a reinforcement learning method for sched-

uling UAV swarms for data communication, which can assist in

the restoration of damaged communication networks effectively

based on the accurate mobility recovery prediction. Furthermore,

in severely affected areas with slow population mobility recovery,

existing routes may be destroyed. Thus, opening new transporta-

tion routes to these detected areas is vital. To address this issue, Jian

et al. [21] utilize wheeled robots for path generation on vegetated

terrain, andWang et al. [36] also achieve navigation in the harsh en-

vironment using UAVs. Accurate predictions also prove invaluable

in emergency resource allocation. In complex environments, drones

can efficiently deliver essential resources [4, 5]. For example, after

a forest fire, residual fires in remote areas can be effectively sup-

pressed through the collaborative scheduling of multiple UAVs [6].

By combining our CDGON with these algorithms, the post-disaster

reconstruction work can be better carried out.

7 CONCLUSION
In this paper, we investigate the dynamic urban population mobility

prediction problem in post-disaster scenarios by proposing a novel

Neural ODE model. Informed by physics-based knowledge from

the ST Decay Model, our proposed model CDGON can capture the

co-evolving process of intra-regional and inter-regional population

flows, enhancing the prediction of urban population mobility after

extreme events. Extensive experiments on three real-world mobility

datasets demonstrate the superiority of our model in forecasting

the recovery trajectory of urban population mobility. Our code and

data are available at: https://github.com/tsinghua-fib-lab/CDGON-

KDD24.

In future work, we will explore incorporating the normal inter-

regional flows to further improve prediction performance. Further-

more, we aim to extend the predictions to other types of disasters

(e.g., epidemics, winter storms, etc.). With the rise of the large

language model, more researchers focus on using the generative

pre-trained models to solve the spatio-temporal prediction prob-

lem [48, 49], which can combine with CDGON to enhance its gen-

eralization capability to predict post-disaster population mobility.
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A PROOFS OF THE THEOREMS
Theorem 1. Denote 𝑟𝑖 (𝑡) as the abnormal intra-regional population
flow of region 𝑖 after a disaster, which is described in the ST Decay
Model shown in Eq. (1). The derivative of 𝑟𝑖 (𝑡) satisfies the following
differential equation:

d𝑟𝑖 (𝑡)
d𝑡

= 𝛼
𝑟𝑖 (𝑡)
𝑟𝑖

[𝑟𝑖 − 𝑟𝑖 (𝑡)], (23)

where 𝛼 indicates the decay coefficientand this implies that 𝑟𝑖 (𝑡) will
approach to the normal intra-regional population flow 𝑟𝑖 over time
governed by 𝛼 .

Proof. First, the original spatiotemporal decay model can be

differentiated into:

d𝑟𝑖 (𝑡)
d𝑡

= −𝑟𝑖
(𝑘 (𝑡)∑𝐿

𝑗=1
𝑤𝑖 𝑗𝑁 𝑗 (𝑡))

′

(1 + 𝑘 (𝑡)∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡))2

, (24)

which cannot be solved at this time for unknown functions 𝑘 (𝑡)
and 𝑁 𝑗 (𝑡). However, an interesting observation can be found as

follows:

The spatial decay

∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡) in Eq. (1), which represents

the total severity of a disaster to the neighbors of the region 𝑖 ,

actually will weaken over time after a disaster. Therefore, it is rea-

sonable to assume the whole 𝑘 (𝑡)∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡) decays over time.

Consequently, the negative exponential function 𝑘0𝑒
−𝛼𝑡

, which

is observed [23] as the most accurate function to describe the

spatiotemporal decay process, is used in this paper to replace

𝑘 (𝑡)∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡):

𝑘 (𝑡)∑𝐿
𝑗=1

𝑤𝑖 𝑗𝑁 𝑗 (𝑡) = 𝑘0𝑒
−𝛼𝑡 , (25)

where 𝛼 is the decay control parameters and 𝑘0 is the initial rate of

change in mobility behavior.

Accordingly, a new decay model is generated:

𝑟𝑖 (𝑡) =
𝑟𝑖

1 + 𝑘0𝑒
−𝛼𝑡 , (26)

Figure 5: County filtering result, where a star represents a
county and the constructed convex hull is the black trans-
parent

which can be differentiated over time 𝑡 to:

d𝑟𝑖 (𝑡)
d𝑡

= −𝑟𝑖
(𝑘0𝑒

−𝛼𝑡 )′

(1 + 𝑘0𝑒
−𝛼𝑡 )2

= −𝑟𝑖
−𝛼𝑘0𝑒

−𝛼𝑡(
𝑟𝑖

𝑟𝑖 (𝑡 )

)
2

= 𝛼𝑟𝑖

𝑟𝑖
𝑟𝑖 (𝑡 ) − 1(

𝑟𝑖
𝑟𝑖 (𝑡 )

)
2

= 𝛼
𝑟𝑖 (𝑡)
𝑟𝑖

[𝑟𝑖 − 𝑟𝑖 (𝑡)], (27)

which proves the theorem.

□

B COUNTY FILTERING
We utilize daily wind speed and precipitation data recorded by

weather stations in FL, GA, and SC. We allocate weather stations

to each county based on the longitude and latitude bounds of each

county, and average the wind speed and precipitation recorded

by these stations to obtain the values for each county. We retain

counties where the wind speed and precipitation exceed a certain

threshold, indicating a significant impact on normal life. However,

we found that some states are relatively small and do not have

weather stations nearby allocatable. Expanding their longitude and

latitude bounds does not resolve this issue. As a result, the selected

counties cannot well represent the real population mobility of this

area. To address this issue, we constructed a convex hull based on
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Figure 8: Human mobility within each county time in South
Carolina, where a line is the within-county population flow
curve of a county, and different colors represent different
counties

Figure 6: Human mobility within each county over time in
Florida, where a line is the within-county population flow
curve of a county, and different colors represent different
counties.

Figure 7: Human mobility within each county over time in
Georgia, where a line is the within-county population flow
curve of a county, and different colors represent different
counties

the existing counties and retained the counties within this range.

The filtering results for FL, GA, and SC are shown in Fig. 5.

C POPULATION MOBILITY CURVES IN
DIFFERENT COUNTIES BEFORE AND
AFTER DORIAN

To better illustrate the complexity of the population mobility recov-

ery process and provide a better understanding of the population

mobility recovery process, the human mobility curves ranging from

August 21st to September 9th of FL, GA, and SC are provided in

Fig. 6, Fig. 7, and Fig. 8, respectively, which differs from Fig. 1.
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