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ABSTRACT
Web systems that provide the same functionality usually share a
certain amount of items. This makes it possible to combine data
from different websites to improve recommendation quality, known
as the cross-domain recommendation task. Despite many research
efforts on this task, the main drawback is that they largely assume
the data of different systems can be fully shared. Such an assump-
tion is unrealistic — different systems are typically operated by
different companies, and it may violate business privacy policy to
directly share user behavior data since it is highly sensitive.

In this work, we consider a more practical scenario to perform
cross-domain recommendation. To avoid the leak of user privacy
during the data sharing process, we consider sharing only the infor-
mation of the item side, rather than user behavior data. Specifically,
we transfer the item embeddings across domains, making it easier
for two companies to reach a consensus (e.g., legal policy) on data
sharing since the data to be shared is user-irrelevant and has no
explicit semantics. To distill useful signals from transferred item
embeddings, we rely on the strong representation power of neural
networks and develop a new method named as NATR (short for
Neural Attentive Transfer Recommendation). We perform extensive
experiments on two real-world datasets, demonstrating that NATR
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achieves similar or even better performance than traditional cross-
domain recommendation methods that directly share user-relevant
data. Further insights are provided on the efficacy of NATR in using
the transferred item embeddings to alleviate the data sparsity issue.
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1 INTRODUCTION
In the current Web ecosystem, it is common that some websites
have a certain degree of homogeneity in their functionality and
provided information. For example, there are many overlapped
hotels on Trip.com and Booking.com, overlapped movies on IMDb
and Douban1, and overlapped products on Amazon and eBay. From
the perspective of building recommendation services, it means
1Douban.com is a Chinese website that allows registered users to rate movies, music,
books, etc.

491

https://doi.org/10.1145/3308558.3313538
https://doi.org/10.1145/3308558.3313538


that the models for such two homogeneous domains are dealing
with many items that are the same. This provides opportunities
to improve the recommendation quality by enriching data. For
example, if domain A does not have sufficient data on some items
(i.e., sparse or cold-start items) while the other domain B does have,
e.g., a movie first released in US may have many ratings on IMDb
but not on Douban, then the recommendation for these items on
domain A can be potentially improved by integrating the data of
domain B. The task of leveraging auxiliary data from other domains
to improve recommendation quality of the target domain is known
as the cross-domain recommendation [1, 10, 15, 32, 35, 43].

Existing works on cross-domain recommendation have primar-
ily focused on directly aggregating data from multiple domains [1,
15, 32, 35, 43]. In other words, these methods assume that during
model training of the target domain, user behavior data of other
domains are directly accessible. For example, the representative
Collective Matrix Factorization (CMF) [32] method extends Matrix
Factorization (MF) by jointly learning user embeddings and item
embeddings from the user-item interaction matrix of multiple do-
mains. Despite effectiveness, the assumption that user behavior
data can be fully shared across domains is questionable. Typically,
different domains (websites) are operated by different companies,
and thus it is difficult to let them share user behavior data due to
the constraint of company policy.

In this work, we aim to provide a more realistic solution for
cross-domain recommendation. To avoid any chance of leaking
user privacy, we abandon the sharing of user-relevant data, neither
behavior logs nor demographic attributes. However, this will pose
challenges to transfer the collaborative filtering (CF) signal from
one domain to another, since CF is typically modeled through min-
ing user-item interaction data (e.g., user purchase and click logs).
To address this technical challenge, we propose to share the item
embeddings, which are learned by reconstructing user-item inter-
action matrix. The advantages are two-fold: 1) item embeddings
can still encode certain CF signal by reflecting item similarities
based on user behaviors (e.g., which items are frequently co-rated
by users)2, and 2) item embeddings are latent vectors that have no
explicit semantics; as such, the risk of leaking user privacy can be
kept to a minimum, which makes it easier for two companies to
reach a legal policy for data sharing3.

Our proposed solution, which has three steps, is illustrated in
Figure 1. In the first step, an embedding-based recommender model,
MF for example, is trained on the user-item interaction matrix of
the auxiliary domain to obtain item embeddings. In the second
step, item embeddings of the auxiliary domain are sent to the tar-
get domain; note that only the embeddings of overlapped items
are necessary to be sent, which are subjected to the data-sharing
policy between two companies. Finally, the target domain trains
a recommender model with the consideration of the transferred
item embeddings. The first two steps are straightforward to im-
plement, and the main challenges lie in how to design a model to
effectively incorporate transferred item embeddings in the last step.
We summarize the key challenges as follows.

2A representative example of using the signal in item embeddings for recommendation
is the item-based CF methods [13, 17].
3https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-
partners-users-friends-data.html

Auxiliary Domain Target Domain

Step 1: Obtain 

item embeddings
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item embeddings

users items items users

interactions interactions

Figure 1: Illustration of our solution for cross-domain rec-
ommendation without sharing user-relevant data.

• Unclear predictive signal of transferred item embed-
dings. It is unclear whether and which transferred item
embeddings contain useful signal in estimating a user’s pref-
erence on an item in the target domain. Note that one mo-
tivation of conducting cross-domain recommendation is to
alleviate the data sparsity problem in the target domain.
However, the data sparsity problem may also exist in the
auxiliary domain for some items, or the other way round
the data in the target domain is already sufficient and does
not require extra supplement. As such, it is challenging to
distill useful signal from the transferred item embeddings
and integrate them into the predictive model of the target
domain.
• Varying importance of transferred item embeddings.
As mentioned, the data of the auxiliary domain is not oracle
— it is likely that user behaviors on some items are sparse
and are insufficient to learn good embeddings for them. As
such, it is a common case that the quality of item embeddings
varies, where items of many users behaviors may have good
quality and vice versa. Since it is already difficult to judge the
quality of learned item embeddings for the auxiliary domain,
it becomes even more challenging for the target domain to
utilize such unknown- and varied- quality item embeddings
well.
• Embedding dimensiondiscrepancy in latent space. The
data for training in the two domains may be of different scale
and have different distribution. Therefore, the optimal em-
bedding size for the two domains may be different. As such,
existing cross-domain recommendation solutions that per-
form regularization on embedding matrices will fail [26].
Moreover, even though we restrict their embedding sizes to
be the same, the semantics of their embedding dimensions
are different and cannot be directly aligned.

To solve the above mentioned challenges, we design a novel
model namedNeuralAttentive-TransferRecommendation (NATR).
Briefly, our proposed method relies on the strong representation
power of neural networks and discriminative power of attention
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mechanisms to leverage the transferred item embeddings. Specif-
ically, we design 1) a domain-level attention unit to dynamically
adjust the importance of the predictive signal of the two domains;
2) an item-level attention unit to determine which embeddings of
transferred items are more useful in constructing user represen-
tation for further prediction; and; 3) a domain adaption layer to
bridge the discrepancy between the embedding space of the two
domains. By tailoring our solution for addressing the highlighted
challenges, our NATR method demonstrates its strong performance
in cross-domain recommendation, and meanwhile preserves user
privacy during data sharing.

To summarize, the main contributions of this work are as follows.
• We present a new paradigm for cross-domain recommen-
dation without sharing user-relevant data, in which only
item-side data can be shared across domains. To allow the
transferring of CF signal, we propose to share the item em-
beddings which are learned from user-item interactions of
the auxiliary domain.
• We propose a new solution NATR to resolve the key chal-
lenges in leveraging transferred item embeddings. The two-
level attention design allows NATR to distill useful signal
from transferred item embeddings, and appropriately com-
bine them with the data of the target domain.
• We conduct extensive experiments on two real-world datasets
to demonstrate our proposed method. More ablation studies
verify the efficacy of our designed components, and the util-
ity of transferred item embeddings in addressing the data
sparsity issue.

The remainder of this paper is as follows. We first formulate
the research problem in Section 2. We then elaborate our proposed
method in Section 3. We conduct experiments in Section 4, before
discussing related work in Section 5. Lastly, we conclude this paper
in Section 6.

2 PROBLEM FORMULATION
We first introduce some notations used in the paper. We represent
matrices, vectors, and scalars as bold capital letters (e.g., X), bold
lower letters (e.g., x), and normal lowercase letters (e.g., x ), respec-
tively. If not otherwise specified, all vectors are in a column form;
XT denotes the transpose of X. We use symbols σ , ReLU , and ⊙ to
denote the siдmoid function, rectifier function, and element-wise
production operation, respectively.

2.1 Cross-domain Recommendation
A typical problem setting of cross-domain recommendation is lever-
aging the data from an auxiliary domain to facilitate the recom-
mendation quality in a target domain with overlapped items. In
the target domain, where M and N denote the number of users
and items, respectively, we have a user-item interaction matrix
Yt ∈ RM×N with a binary value at each entry defined as,

ytui =

{ 1, if u has interacted with i;
0, otherwise. (1)

Similarly, in the auxiliary domain, we have another binary user-
item interaction matrix Ya ∈ RK×L , where K and L are the number
of users and items. Note that a portion of L items also occurs in the

target domain, which are named as bridge items. From the interac-
tion matrices Yt and Ya , the goal of cross-domain recommendation
is to learn a predictive function to estimate the likelihood that a
given user u will interact with item i in the target domain.

2.2 Cross-domain Recommendation Without
Sharing User-relevant Data

Distinct from the typical problem settings of cross-domain recom-
mendation, we abandon the direct sharing of user behavior data (the
user-item interaction matrix Ya in the auxiliary domain). This is be-
cause directly sharing user behavior data may violate the business
privacy policy of different companies operating the auxiliary and
target domains. Instead, we propose a solution that only transfers
the embeddings of bridge items which are offline learned in the aux-
iliary domain, as illustrated in Figure 1. We define the transferred
item embedding matrix Qa = [qa1 , · · · , q

a
N ] ∈ RD

′
×N as,

qai =



q̃ai , if item i is a bridge item;
0, otherwise;

(2)

where 0 ∈ RD
′

is an all-zero vector and q̃ai ∈ R
D
′

is the offline
learned embedding of item i in the auxiliary domain. It should be
noted that we organize the transferred item embeddings in Qa in
the same order of item IDs in the target domain to enable looking up
an item embedding with its ID. Here we assume the availability of
q̃ai , i.e., the company operating the auxiliary domain has employed
an embedding-based recommendation system [19]. Note that the
assumption is practical since embedding-based recommendation
solutions are widely applied in the industry [4, 5].

After introducing the transferred item embeddings Qa from
the auxiliary domain, we formulate the problem of cross-domain
recommendation without sharing user-relevant data as follows,
Input: The user-item interaction data in the target domain Yt , and
the transferred item embeddings Qa from the auxiliary domain.
Output: A predictive model to estimate the likelihood that a user
u will interact with an item i in the target domain. Specifically,
taking u, i , and ytu which is the interaction history4 of u in the
target domain, as input, the model has to predict,

ŷtui = f (u, i, ytu ), (3)

where ŷtui ∈ [0, 1] denotes the probability of interaction between
user u and item i .

After obtaining the predictive model, we can use it to score all
items for a given user u, and select the top-ranked (i.e., with higher
interaction probability) items as the recommendation results for u.
It should be noted that there indeed exist user and item attributes
in both the auxiliary and target domains. However, to simplify
the scenario of the cross-domain recommendation task, we only
emphasize the user-item interactions, which is a common setting
of existing works [26, 43].

3 PROPOSED METHOD
To solve the problem of cross-domain recommendation without
sharing user-relevant data, we rely on the strong representation
ability of neural networks and devise a new solution, named NATR,

4Note that ytu is the transpose of the u-th row of Qt .

493



 !"

A
tte

n
tio

n
 N

e
tw

o
rk

D
im

e
n

s
io

n
 A

d
a

p
tio

n

A
tte

n
tio

n
 N

e
tw

o
rk

ŷ!# y!#

0

1

0

0

0

0

1

0

1

1

0

0

$"
%

$&
%

$'
%

$"
(

$&
(

$'
(

1)!

$#

*!

$#

0

0

0

…
…

…
…

…
…

)!

+!

Item-level Attention Domain-level Attention PredictionTransfer-enhanced Embedding 

,

-!
.

/

Training

ID/Interaction Input

Attention Input / Output

 !&

 !' 0#)

0#+

Transferred Item Embedding

Local User Embedding Local Item Embedding 

Figure 2: The architecture of our proposed Neural Attentive Transfer Recommendation model. (Here we take the prediction
of user-item pair (4, 2) as an example; user 4 has interacted with item 1, 3, and 5 in the target domain; then we utilize qa1 , qa3 ,
and qa5 transferred from the auxiliary domain to assist predicting y42 in the target domain. Note that qa is the only available
auxiliary data in the target domain.)

exploiting the transferred item embeddings. Figure 2 illustrates the
architecture of our proposed NATR model, which are made up of
the following four layers.

• Transfer-enhanced Embedding Layer. We project sparse
user and item representations into dense vectors. A dimension-
adaption module is adopted to solve the dimension discrep-
ancy problem of transferred item embeddings.
• Item-level Attentive Layer. To enrich user representa-
tions, we fuse the transferred embedding of items a user
interacted with to an additional user embedding with an
item-level attention unit to model the varying importance
of items.
• Domain-level Attentive Layer. With a consideration of
the diversity across domains, we make use of a domain-level
attention unit to control the influence of predictive signals
from two domains.
• Prediction Layer. Finally, we utilize an inner-productmodel
as the predictive function since our work mainly focuses on
devising a framework to exploit the transferred item embed-
dings.

In the following, we elaborate the details of the aforementioned
four layers.

3.1 Transfer-enhanced Embedding Layer
Latent factor model (LFM) is one kind of general framework in
collaborative recommender systems, which associates each user
and item with real-valued vectors . Considering that LFMs have
achieved success in a wide range of recommendation tasks [16, 17,
19, 24, 28], we project sparse user and item representations into
real-valued vectors. Specifically, we first encode user ID (u) and

item ID (i) into one-hot encodings as follows,

vUu = one-hot(u), vIi = one-hot(i ), (4)

where vUu (vIi ) ∈ R
N is a vector with all zero values except the

u-th (i-th) entry with value 1. We then project the sparse one-hot
encodings (vUu and vIi ) and multi-hot interaction history (ytu ) to
local embeddings and transferred embeddings, respectively.

Local embeddings. To project the one-hot user (item) encoding,
we employ an embedding layer, which is defined as a fully connected
layer without bias term as follows,

pu = PT vUu , qi = QT vIi , (5)

where P ∈ RN×D and Q ∈ RM×D are the parameters to be learned.
The obtained embeddings pu and qi ∈ RD are named as local
embeddings since they are learned merely with information from
the target domain.

Transferred embeddings. In our problem, transferred embeddings
of bridge items are the only auxiliary data accessible in the target
domain. From the perspective of representative learning, there are
two manners to leverage these item embeddings in collaborative
filtering: user-based [24, 28] and item-based [13, 17]. Specifically,
when predicting the probability that user u will choose item i in
the target domain, user-based CF means directly combining embed-
dings of i of two domains to match pu while item-based manner
means matching qi with transferred embedding of user’s histori-
cally interacted items. There are two key aspects tomake item-based
manner a more convincing choice. First, when item i is not a bridge
item, user-based CF solution cannot bring any help to prediction.
Second, user-based CF can only distill implicit preferences while
neglecting the explicit preferences of a user (i.e., the historically
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interacted items), while item-based CF can extract explicit prefer-
ences through leveraging transferred embeddings of bridge items
and multi-hot encoding of historical interactions to enrich user
representation.

Therefore, we look up the transferred embedding qaj from Qa

for each item j with ytu j = 1. Note that qaj will be an all-zero
vector if item j is not a bridge item (see Equation 2 for details).
As mentioned above, there may exist the challenge of embedding
dimension discrepancy across two domains, i.e., D , D

′

, since the
training data in two domains may be of different scale and have
different distribution. To solve this problem, we employ a fully-
connected layer to adapt the dimension of transferred embeddings,
which is formulated as follows,

q
′

j =WT
0 qaj + b0, (6)

where W0 ∈ RD
′
×D and b0 ∈ RD are learnable parameters of map-

ping matrix and bias. Note that W0 and b0 are the only parameters
here as the transferred embedding matrix Qa is learned offline in
the auxiliary domain.

With the above neural components, we project the sparse one-
hot and multi-hot encodings into local user and item embeddings,
pu and qi , and transferred item embeddings, {q

′

j |y
t
u j = 1}. We

introduce our item-based CF solution of leveraging transferred
item embeddings detailedly in the following parts.

3.2 Item-level Attentive Layer
The key objective of embedding-based recommendation model is to
capture relation between of user and item in the latent space [41],
therefore it is critical to explicitly build the relation between trans-
ferred item embeddings and local user embedding in our problem.
As mentioned above, motivated by item-based CF [13, 17], which
encodes the historical interaction behaviors of a user to enrich
the user representation, we fuse the transferred item embeddings
{q
′

j |y
t
u j = 1} into an additional user embedding su . Besides histori-

cal interactions, su also contains CF signals transferred from the
target domain, which can further enhance user representation. Our
first inspiration to calculate su is average pooling, a widely used
modeling component in neural networks, formulated as follows,

su =

∑
{j |ytu j=1}

q
′

j

|ytu |
, (7)

where |ytu | is the l1-norm of vector ytu , which equals to the number
of items user u has interacted with.

However, as mentioned above, there exists another key challenge
of varying importance of embeddings. Considering that different
interacted items have embeddings with varying quality and vary-
ing importance to represent the preference of a given user, such
naive operation may not work well in real scenario. Therefore, we
apply a non-uniform coefficient when fusing the transferred item
embeddings:

su =

∑
{j |ytu j=1}

αujq
′

j

|ytu |
. (8)

To model the various item importance in a user-sensitive fashion,
here we introduce attention mechanism, which has achieved great
success in recommendation tasks [3, 13, 40] and natural language

processing [20, 37]. Specifically, the item-level attention unit learns
a specific weight αuj for every transferred item embedding q

′

j
according to the following formulation,

αuj =
eauj∑

{k |ytuk=1}
eauk

,

auj = wT
1 ReLU (pu ⊙ q

′

j ) + b1,

(9)

where w1 ∈ RD and b1 denote the weight matrix and bias of a
fully connected layer. The input of the item-level attention unit is
the interaction between the user and target item, which makes the
learned attention score sensitive to the given user.

3.3 Domain-level Attentive Layer
After obtaining the local and additional user embeddings, our task
become learning a prediction function based on these three embed-
dings. Different from traditional recommendation models, here we
have an extra user embedding. To exploit two user embeddings,
we fuse them into an unified embedding. This is inspired by some
cross-domain recommendation models [33, 43], which have demon-
strated that fusing embedding vector learned from multi-modal
data is a simple but yet effective way to combine signals. Another
option is to separately estimate the interaction probability with
the two embeddings and fuse the predictions (late fusion). Here
we employ early fusion that merges embeddings, allowing us to
explicitly capture the interaction between two embeddings.

The unified embedding via fusion can be denoted as,

zu = βsi su + βpipu , s .t ., βs + βp = 1, (10)

where βsi and βpi are learnable weights for su and pu , respectively.
The aim of βsi and βpi is to balance the information from auxiliary
and target domain regarding the target item i . In other words, these
twoweights are item-sensitive.We devise such design to address the
key challenge of unclear predictive signal which has beenmentioned
before. That is, in real scenario evaluating different items needs
varying amount of auxiliary information. Although we can directly
learn βsi and βpi by optimizing a final objective function, we rely
on the promising representation ability of attention network to
model them. Formally, a domain-level attention module is designed
as,

βsi =
ebsi

ebsi + ebpi
, βpi =

ebpi

ebsi + ebpi
,

bsi = w2ReLU (su ⊙ qi ) + b2,

bpi = w2ReLU (pu ⊙ qi ) + b2,

(11)

where w2 ∈ RD and b2 are the parameters of the attention network.
Note that the input of the attention network is the interaction
between user (su /pu ) and item embeddings, which enables the
learned attention scores to be sensitive to item i .

3.4 Prediction Layer
After the operation in aforementioned layer, our problem further
turns to predict user interaction with two embeddings: unified
user embedding vector zu and item embedding vector qi . Here we
adopt a predictive function to estimate ytui which is the interaction
probability between a given pair of user and item (u, i). Since our
work mainly focuses on a general framework for cross-domain
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recommendation without sharing user-relevant data, we adopt a
simple but widely-used inner product model, to estimate the value
of ytui , which is formulated as

ŷtui = σ (zuT qi ), (12)

where σ is the sigmoid function. Note that this predictive function
can be easily extended to more complicated ones, such as the multi-
layer perceptron in [14].

To conclude, with three specially devised layers and a prediction
layer, aforementioned three key challenges of our problem are
addressed one by one.

3.5 Training
Objective Function. Following the probabilistic optimization frame-
work [14, 28], we first define the likelihood function for an implicit
interaction as follows,

Pr =
∏

(u,i )∈Yt
+

ŷtui

∏
(u,i )∈Yt

−

(1 − ŷtui ), (13)

where Y+t denotes the set of observed interactions in interaction
matrix of the target domain Yt (entries with value of 1), and Yt

−

denotes negative instances sampled from the unobserved interac-
tions in Yt (entries with value of 0). We further take the negative
logarithm of the joint probability, and obtain the loss function (a.k.a,
logloss [29]), which is widely used to optimize recommendation
systems with implicit feedbacks [14, 17, 24], to be minimized as
follows,

L = −(
∑

(u,i )∈Yt
+

log ŷtui +
∑

(u,i )∈Yt
−

log(1 − ŷtui )). (14)

To prevent over-fitting, we adopt l2 regularization on the parame-
ters in the proposed neural model and obtain the overall objective
function,

Γ = L + λ
∑

Θ∈{P,Q,W0,b0,w1,b1,w2,b2 }

∥Θ∥2F . (15)

Mini-batch Training. We adopt stochastic gradient descent (SGD)
[34], a widely generic solver for neural models, to optimize our
proposed NATR model in the mini-batch mode. To construct a
mini-batch, we first sample a batch of historical user-item interac-
tion pairs (u, i ). For each (u, i ), we then adopt a negative sampling
technique [24], which is widely used to handle implicit feedbacks
in existing researches [14, 28, 43], to randomly select unobserved
items {i

′

1, · · · i
′

n } for useru with a sampling ratio of n. After the sam-
pling, we obtain n triplets {(u, i, i

′

1), · · · , (u, i, i
′

n )} for each instance
in the batch. With the constructed mini-batch, we take a gradient
step to minimize the objective function.

4 EXPERIMENTS
In this section, we conduct extensive experiments on two real-world
datasets to answer the following research questions:
• RQ1: How does our proposed NATR model perform com-
pared with the state-of-the-art methods for cross-domain
recommendation tasks?
• RQ2: Can the proposed NATR alleviate the data sparsity
problem in the target domain?

Table 1: Statistics of our evaluation datasets.

Dataset Item# Auxiliary Domain Target Domain
User# Rec# User# Rec#

ML-NF 5,568 31,038 2,269,179 14,630 152,206
TC-IQI 4,851 35,398 314,621 19,999 78,429

• RQ3:What are the effects of the item-level and domain-level
attention models in our proposed NATR?

In what follows, we first describe the experimental settings, and
then answer the above three research questions.

4.1 Experimental Settings
4.1.1 Datasets. We experiment with two real-world datasets that
both contain implicit interactions from two domains.
• ML-NF Dataset. MovieLens and Netflix are two popular
platforms with movie recommendation services, in which
there are a large portion of overlapped movies. Here we take
MovieLens (ML) and Netflix (NF) as the auxiliary and target
domains (i.e., our target is to improve the recommendation
performance in NF), respectively. We obtain user-movie in-
teractions in ML and NF from two widely used public movie
rating datasets56. Note that we identifymovies with the same
name in the two datasets as bridge items. Here we conduct
whole-string matches to avoid wrong matches as possible.
By filtering bridge items and their associated ratings7, we
reserve 5,568 movies, 14,630 ML users and 31,038 NF users
in this dataset. Finally, we intentionally transform the rating
data into binary (1/0 indicate whether a user has interacted
with an item or not) to fit the problem setting of implicit
feedback [16].
• TC-IQI Dataset. This dataset is collected by [43] to eval-
uate cross-domain recommendation performance of online
video contents. In this dataset, there are historical interac-
tions between users and videos from two mainstream video
websites, iQiyi8 (IQI) and Tencent Video9 (TC) in China. To
investigate the performance of facilitating recommendation
performance in target domain via leveraging information
from auxiliary domain, we regard IQI (TC) as the target (aux-
iliary) domain since interactions in IQI are sparser. Similarly,
we filter bridge items via exact name matching across videos
from these two domains, and only reserve bridge items and
interactions associated with them. Note that videos in this
dataset are professional production content (PGC) widely
available on multiple websites.

After the above pre-processing steps, we obtain two final datasets
for performance evaluation, the statistics of which are summarized
in Table 1.

5https://grouplens.org/datasets/movielens/
6https://www.kaggle.com/laowingkin/netflix-movie-recommendation/data
7To better evaluate the performance, we follow the setting of previous works [27, 32]
and only reserve the bridge items (i.e., neglect items occurring only in one domain).
However, our model is also suitable to perform recommendation for those items not
overlapped, which has been introduced in detail in Section 3.1
8https://www.iqiyi.com
9https://v.qq.com
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4.1.2 Evaluation Protocols. Following existing works [12, 31], we
employ the widely used leave-one-out evaluation protocol in the
evaluation stage. Similar with [14, 18], given a user in the target
domain, we randomly sample 99 items that are not interacted with
the user, each method ranks one test item among the 99 sampled
items. We then adopt two metrics, HR and NDCG, which are widely
used in the literature of recommendation [6, 14, 39], to report the
ranking performance of each method:

• HR@K: Hit Ratio (HR) measures whether the test item is
contained by the top-K item ranking list (1 for yes and 0 for
no).
• NDCG@K:Normalized Discounted Cumulative Gain (NDCG)
extends HR by assigning higher scores to the hits at higher
positions in the ranking list.

It should be noted that we calculate HR@K and NDCG@K for each
test user, and report the average ones over the whole user set.

4.2 Performance Comparison (RQ1)
4.2.1 Baselines. We compare the performance of our proposed
NATR with five baselines, which can be divided into two groups:
single-domain and cross-domain. Here single-domain methods refer
to those which are merely trained with data from the target domain,
while cross-domainmethods jointly consider the data from both the
target and auxiliary domains.

The compared single-domain methods are introduced as follows:

• PMF [24]. Probabilistic Matrix Factorization (PMF) is a MF
based model which exploits negative sampling to handle
implicit interaction data. It adopts logloss as the loss func-
tion and samples several negative items with a ratio when a
positive item is fed for training. We tune the learning rate
and regularizer and report the best testing performance.
• GMF. Generalized Matrix Factorization (GMF) is one of the
variants of NCF (Neural Collaborative Filtering) [14], which
is the state-of-the-art solution for recommendation tasks
with implicit feedbacks. This method assign various weights
for different dimensions in the dot-product prediction func-
tion, which can be regarded as a generalization of vanilla
MF. We optimize this model and tune its associated hyper-
parameters similarly with the paper.
• NATR-local. As mentioned in Section 3.1, our NATR model
utilize an item-based CF to leverage transferred item embed-
dings. Therefore, it is still questionable whether the item-
based CF is the only component to improve performance
while transferred item embeddings do not help? To demon-
strate the effectiveness of transferred embeddings, we degen-
erate the NATR via adopting local item embeddings rather
than transferred item embeddings in the item-level atten-
tion unit. Therefore, it is a kind of single-domain method.
We name it NATR-local and tune it similarly with NATR to
report the best performance.

The compared cross-domain baselines are as follows.

• CMF [32].CollectiveMatrix Factorization (CMF) decomposes
the data matrices of multiple interactions simultaneously
while sharing embedding vectors of users or items. Here we

factorize two interaction matrices from two domains, shar-
ing embedding vectors of those bridge items. We carefully
tune the weight of two domains, learning rate and regular-
izer to report the best performance. It is worth mentioning
that a recent study on cross-domain recommendation [43]
proposed a method named MPF, which adapted vanilla CMF
to a special case where all users and items are all overlapped
across domains. Apparently this special setting does not fit
our problem where only item can be overlapped and regret-
fully MPF cannot be adapted to our task.
• ItemCST [26]. Coordinate System Transfer (CST) also as-
sumes that both users and items are overlapped and adds
two regularization terms in objective functions. Specifically,
the two terms set constraints to the embedding distance in
two domains for those overlapped users or items. Thus, CST
can be adapted to our problem by only reserving item-side
regularization term in our task, and we name it as ItemCST.
We tune the learning rate and coefficient of regularization
term to report the best performance.
To conclude, CMF is the state-of-art cross-domain recom-
mendation method while facing with high risk of leaking
user privacy since it assumes that all interaction data are
fully shared. ItemCST is an adapted method from CST and
as it only needs the transferred item embeddings to compute
the regularization term of item, it preserves user-relevant
data.

We implement the baseline methods and our NATR model in Ten-
sorFlow10 It should be noted that we set the embedding size of all
compared methods to be 64, which is a typical setting in literature
[14, 17]. Our primary experiments also demonstrate that 64 is an
embedding size with enough ability to represent the user and item.

4.2.2 Parameter Settings. To determine the optimal hyper-parameters
of the method, we construct a validation set via randomly selecting
an interacted item for each test user, which has not been selected as
the test item. For our NATR, we initialize parameters with a widely
used initialization method proposed in [11]. During the training
phase, we intentionally set the negative sampling ratio as 4 to con-
struct mini-batches with size of 256 as described in Section 3.5. To
optimize the NATR model, we employ the Adagrad [7] optimizer
and search its learning rate within {0.001, 0.002, 0.005, 0.01}. In ad-
dition, we tune the λ in Equation 15, which balances the loss and
regularization terms, in {1e-2, 1e-3, 1e-4,1e-5,1e-6}. As mentioned
before, ItemCST and our NATR only rely on the transferred item
embeddings as auxiliary data, and in this paper, without loss of
generality, we adopt PMF in the auxiliary domain and carefully
tune its learning rate and regularizer to obtain item embeddings.

We first compare the top-K recommendation performance with
baseline methods. We investigate the top-K performance with K
setting to {1, 2, 5, 10}11. As described in the evaluation protocols,
we test the performance of a ranking list with 100 items. As such, it
is reasonable to choose relatively small K [14]. For every method,

10https://www.tensorflow.org
11Note that HR@K equals to NDCG@K when setting K = 1.

497



Table 2: Top-K recommendation performance comparison on the ML-NF and TC-IQI datasets (K is set to 1, 2, 5, 10)

ML-NF Dataset
Group Method User-relevant Data HR(NDCG)@1 HR@2 NDCG@2 HR@5 NDCG@5 HR@10 NDCG@10

Cross Domain
NATR Preserved 0.1315 0.1976 0.1403 0.3776 0.2110 0.5781 0.2726
ItemCST Preserved 0.0795 0.1475 0.1005 0.3068 0.1670 0.4846 0.2228
CMF Shared 0.1023 0.1903 0.1283 0.3675 0.2025 0.5483 0.2593

Single Domain
NATR-local Preserved 0.0947 0.1769 0.1253 0.3402 0.1894 0.5183 0.2440

PMF Preserved 0.0668 0.1162 0.0796 0.2721 0.1375 0.4494 0.1956
GMF Preserved 0.0706 0.1174 0.0816 0.2681 0.1410 0.4284 0.1918

TC-IQI Dataset
Group Method User-relevant Data HR(NDCG)@1 HR@2 NDCG@2 HR@5 NDCG@5 HR@10 NDCG@10

Cross Domain
NATR Preserved 0.2010 0.2660 0.2104 0.4513 0.2881 0.6035 0.3365
ItemCST Preserved 0.1161 0.2129 0.1445 0.4194 0.2309 0.6079 0.2904
CMF Shared 0.1649 0.3101 0.2101 0.4499 0.2668 0.6595 0.3326

Single Domain
NATR-local Preserved 0.1677 0.2552 0.1776 0.4214 0.2412 0.5864 0.2948

PMF Preserved 0.0848 0.1238 0.0945 0.2291 0.1326 0.3309 0.1694
GMF Preserved 0.1584 0.2445 0.1729 0.4101 0.2425 0.6021 0.3029
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Figure 3: Training loss and testing performance of NATR, ItemCST and CMF in each iteration on ML-NF Dataset.
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Figure 4: Training loss and testing performance of NATR, ItemCST and CMF in each iteration on TC-IQI Dataset.

we carefully tune the hyper-parameters to report the best perfor-
mance. In Table 2, we report the top-K recommendation perfor-
mance for the two utilized real-world datasets. We compare our
proposed NATR method with three single-domain baselines and
two cross-domain ones. From these results, we have the following
observations:

• NATRsignificantly improves recommendationperfor-
mance in the target domain. 1) For those single domain
methods that are trained with only interaction data from
the target domain, the recommendation performance is rel-
atively poor. PMF achieves the worst performance, which
can be explained as the limited representation ability of

MF model. 2) NATR-local, a degenerative model of the pro-
posed NATR, outperforms PMF and GMF w.r.t. all metrics on
the ML-NF dataset and most metrics on the TC-IQI dataset,
which justifies the effectiveness of explicitly encoding users’
historical interactions. 3) Compared with PMF, GMF, and
NATR-local, the proposed NATR outperforms the best of
them by 28.26% and 39.11% in HR@10 and NDCG@10 for
ML-NF dataset and by 0.23% and 11.09% in HR@10 and
NDCG@10 for TC-IQI dataset. It demonstrates that leverag-
ing the item embeddings from the auxiliary domain enhances
the recommendation quality in the target domain, which
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Figure 5: Performance of allmethods on itemswith different
number of interaction records on ML-NF dataset.

further indicates that the proposed NATR is a promising
solution for the cross-domain recommendation task.
• NATR performs even better than those cross-domain
methods with the risk of leaking user privacy. We can
observe that our proposed NATR model achieves the best
performance compared to CMF and ItemCST regarding ev-
ery evaluation metrics in the NF-ML dataset. For HR@10 and
NDCG@10, NATR outperforms the best of them by 18.94%
and 4.94%, respectively. We guess the reason of such results
is that a joint training with data from two domains (CMF
and ItemCST) might distract the loss during the optimization
and converge at a status which balances the two domains
rather than the optimal status of the target domain. We leave
further investigations at the future work. To further study
how these methods perform, we present the training loss
and testing performance in each interaction in Figure 3 (for
ML-NF dataset) and Figure 4 (for TC-IQI dataset). For every
method in the two figures, we report the best parameter
settings. For both datasets, all methods achieve stable perfor-
mance after about 50 iterations. With fine hyper-parameter
tuning to solve over-fitting, our proposed NATR can effec-
tively outperform ItemCST and achieve similar or even better
performance than CMF.
• NATReffectively distills theCF signal encoded in trans-
ferred itemembeddings.NATR-local, a degenerativemodel
of our proposed NATR, only utilizes interaction data from
the target domain without exploiting transferred item embd-
dings. Specifically, it replace the transferred item embedding
in NATR to local item embeddings. On one hand, the exper-
imental results in Table 2 show that NATR-local achieves
better performance than GMF, a competitive method for
single domain, demonstrating that taking the explicit pref-
erences of users into consideration can improve recommen-
dation performance. On the other hand, NATR outperforms
NATR-local on two datasets which means the combining
transferred embeddings are better than only a local CF so-
lution on the target domain. This confirms the utility of
transferred item embeddings in encoding CF signal from the
auxiliary domain.

To summarize, these comparisons on two real-world datasets
verify that our proposed NATRmodel can effectively leverage trans-
ferred item embeddings to improve the recommendation perfor-
mance in the target domain.

4.3 Data Sparsity Problem (RQ2)
As mentioned in the introduction, one of the primary purposes
for cross-domain recommendation is to alleviate item data spar-
sity problem (i.e., items’ records are too few) in the target domain.
In particular, for those items with few interactions, of which the
embeddings cannot be learned well in the target domain itself,
transferred embeddings from the auxiliary domain play a bigger
role. To study extensively how our proposed NATR model effec-
tively helps to alleviate the item data sparsity issue, we compare
the recommendation performance for items with different level of
sparsity.

Specifically, we divide the items to several groups according to
number of interaction records in the training set. Note that each
group have similar number of items, which make the experimental
results more reasonable. Then we apply the evaluation protocol,
leave-one-out, which is the same with above experiments. For each
item, its performance is defined as the average of HR@10 and
NDCG@10 when it is in the test set. We compare the proposed
NATR model with all five baseline methods in Figure 5. From the
results, we can observe that when the interaction records of an
item become sparser, the recommendation performance will go
worse. For example, in the first group, of which each item has
been interacted by only 1-10 users, the best performance of those
single-domain methods is about only 0.220 for HR@10 and 0.098
for NDCG@10. Fortunately, with the help of the auxiliary domain,
cross-domain methods can achieve better performance for those
sparse items. Out of these methods, our proposed NATR model can
achieve similar performance compared with CMF and better than
ItemCST, which verifies that NATR can serve as a competitive cross-
domain recommendation method without sharing user-relevant
data.

In summary, our NATR model can improve recommendation
performance effectively, nomatter the historical records of items are
sparse or dense. For items with sparser records, the improvement
is more evident and meaningful.

4.4 Impact of Attention Mechanism (RQ3)
In NATR, we utilize the attention mechanism to solve two primary
challenges. First, a domain-level attention unit is applied to dis-
till useful signals from transferred item embeddings adn integrate
them into the target domain. Second, an item-level attention unit
is adopted to handle varying importance of transferred item em-
beddings. An intuitive question is whether the designed attention
unit can really help in our model?

To answer it, we conduct experiments on two degenerative meth-
ods of NATR, in which two utilized attention network components
are replaced by the simple operation of pooling (i.e., average sum-
mation), respectively. We adopt the same evaluation methods with
above experiments, and the performance comparison is shown in
Table 3. We can observe that when removing item-level attention
unit, the top-10 recommendation performance become poor, which
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Table 3: Impact of Attention Mechanism.

Dataset ML-NF
Methods HR@10 NDCG@10
NATR 0.5781 0.2726

Without Item-level Attention 0.5624 0.2655
Without Domain-level Attention 0.5669 0.2722

demonstrate the challenge of varying importance and our attention
solution can address it. Besides, removing domain-level attention
unit also make the recommendation performance worse. That is, the
auxiliary domain cannot be considered as the same with the target
domain simply. To conclude, the experimental results demonstrate
the necessity of our two specially designed attention units.

In conclusion, extensive experiments on two real-world datasets
verify the efficacy of our proposed model, and further studies
demonstrate that our model can alleviate data sparsity problem.
Moreover, the utility of our specially designed attention networks
components is verified.

5 RELATEDWORK
In this paper, we propose a solution for cross-domain recommenda-
tion without sharing user-relevant data based on neural networks.
The closed related work can be divided into cross-domain recom-
mendation and neural network based recommendation.

Cross-domainRecommendation To alleviate cold start and data
sparsity issue, cross-domain recommendation is a typical solution
which takes data from multiple domains into consideration. With
the help of the auxiliary domain, cross-domain recommendation
methods can achieve better performance (i.e. recommendation accu-
racy) than single-domain ones. Approaches of cross-domain recom-
mendation can be broadly classified into two types: collaborative
and content-based.

Collaborative cross-domain recommendation refers to those ap-
proaches utilizing interaction data (rating history, for example)
from two domains. Ajit et al. [32] proposed a MF based model, CMF
(Collective Matrix Factorization), which assumes a common global
user factor matrix for all domains, and it factorizes matrices from
multiple domains simultaneously. Li et al. [22] proposed a model
named CBT (Code Book Transfer) which builds a matrix named
codebook to represent cluster-level rating pattern and this code-
book is shared by two domains. A recent study [43] considered
a special task in which both users and items are overlapped, and
they proposed a MF based model which assumes part of the user
embeddings and whole item embeddings are shared across domains.
With a similar setting, Man et al. [23] proposed a neural method
which employs multi-layer perceptron to adapt user and item em-
beddings between two domains. Pan et al. [26] utilize auxiliary
interaction data with a regularization term concerned with over-
lapped user and item in objective function in MF model. Another
category of cross-domain recommendation models is content-based
ones, which sharing attributes of user or items from auxiliary do-
main [1, 8, 45]. Agarwal et al. [1] proposed a MF based model in
cross-domain recommendation when multi-modal user profiles are

available. Elkahky et al. [8] transformed user profile and item at-
tributes to dense vectors through deep neural network and matched
them in latent space. Zhang et al. [45] utilize textual, structure and
visual knowledge of items as auxiliary domain to aid building item
embedding.

In this paper, we focus on collaborative cross-domain recom-
mendation with auxiliary interaction data, a widely used setting in
literature. Specifically, our problem is a typical system-level cross-
domain recommendation task, where same items are shared across
domains, according to the definition in two surveys [2, 21]. There
is a common assumption in existing methods that the whole in-
teraction data can be fully shared across domains, which has the
risk of leaking user privacy since various domains may be operated
by different companies. In this work, we advocate a more realistic
settings that only item-side data can be shared.

Neural Network Based Recommendation. Salakhutdinov et
al. [30] proposed RBM (Restricted Boltzmann Machines) to predict
explicit ratings, which was the first work to apply neural networks
to recommender systems. Recently, similar as the research field
of CV and NLP, neural networks have achieved great success in
recommender systems. Some works [14, 36, 42, 44, 46] relied on
neural networks to learn to match function between users and
items directly, which can be regarded as the extension of traditional
collaborative filtering approaches. He et al. [14] proposed a gen-
eral neural architecture for collaborative filtering, which learns the
user-item interaction function via generalized matrix factorization
and multi-layer perceptrons. Zhang et al. [46] mapped user and
item to Hamming space and obtained matching score via neural
networks. Tay et al. [36] proposed a relational-translation based
match function to learn from interactions. Yang et al. [42] utilized
neural networks to match user-item interaction and user-user re-
lation simultaneously to perform a social recommendation task.
Ying et al. [44] relied on graph conventional network for collab-
orative filtering to match huge mount of users and items in real
recommender systems. Gao et al. [9] introduce multi-task learning
to nueral networks to solve the task of recommendation with users’
multiple types of behaviors. Besides, some works utilized neural
networks to extract the auxiliary information and features in rec-
ommender systems, such as textual [25, 47], visual [3, 38], video [5],
and hybrid [48].

In this paper, we propose a novel neural model to solve the
challenges of extracting useful knowledge from item embedding
of the auxiliary domain with the power of neural networks in
representative learning.

6 CONCLUSION
In this work, we present a new cross-domain recommendation so-
lution, which can avoid user privacy leakage by transferring only
item embeddings from the auxiliary domain. To better exploit the
transferred item embeddings, we propose a neural network method
named NATR, combining item-level and domain-level attention
mechanisms to address the challenges in cross-domain learning. We
conduct extensive experiments on two real-world datasets, demon-
strating that our NATR method can improve the recommendation
performance of the target domain by 18.94%. To the best of our
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knowledge, this is the first work that concerns user privacy in
cross-domain recommendation, and presents a sound solution to
exploit the predictive signal without sharing any user-relevant
information.

There are three points about this work that we plan to address
in future. First, although our method has taken the dimensional-
ity discrepancy into consideration via a dimension-adaption fully-
connected layer, we only empirically verify its effectiveness when
two domains have the same embedding size. As such, we will study
how different sizes of transferred embeddings would affect the rec-
ommendation performance. Second, we will study scalability of our
method in industrial scenario where amount of users and items
are very huge. Last, since this work only focuses on collaborative
cross-domain recommendation, we will study the similar task in
content-based scenario.
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