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Learning from Hometown and Current City: Cross-city POI
Recommendation via Interest Drift and Transfer Learning
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With more and more frequent population movement between different cities, like users’ travel or business trip, recommending
personalized cross-city Point-of-Interests (POIs) for these users has become an important scenario of POI recommendation
tasks. However, traditional models degrade significantly due to sparsity problem because travelers only have limited visiting
behaviors. Through a detailed analysis of real-world check-data, we observe 1) the phenomenon of travelers’ interest drift
and transfer co-exist between hometown and current city; 2) differences between popular POIs among locals and travelers.
Motivated by this, we propose a POI Recommendation framework with User Interest Drift and Transfer (PR-UIDT), which
jointly considers above two factors when designing user and POI latent vector. In this framework, user vector is divided into
a city-independent part and another city-dependent part, and POI is represented as two independent vectors for locals and
travelers, respectively. To evaluate the proposed framework, we implement it with a square error based matrix factorization
model and a ranking error based matrix factorization model, respectively, and conduct extensive experiments on three
real-world datasets. The experiment results demonstrate the superiority of PR-UIDT framework, with a relative improvement
of 0.4% ∼ 20.5% over several state-of-the-art baselines, as well as the practicality of applying this framework to real-world
applications and multi-city scenarios. Further qualitative analysis confirms both the plausibility and validity of combining
user interest transfer and drift into cross-city POI recommendation.
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Human-centered computing → Ubiquitous and mobile computing systems and tools.
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1 INTRODUCTION
With the widespread popularity of Location-based social networks (LBSNs) such as Yelp and Gowalla, people
are more and more willing to share their visited and interested locations, i.e., point of interests (POIs), to the
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public. This provides a huge opportunity for LBSN service providers to recommend new POIs to users based
on their visiting behaviours, which can not only improve the user engagement, but also bring potential profits
in commercial perspective. As a specific scenario of POI recommendation, cross-city recommendation, that is
to recommend a new POI for users who have limited records in a strange city, is especially difficult but quite
practical. When users are in their familiar city or region, like their hometown or working city, they know this
city so well that they don’t rely on a POI recommender system to guess their interests and help make a choice.
On the contrary, while in unfamiliar cities, for example where users are travelling or on business, they have
visited few places in a strange city and thus can not explore every region to find their favourites. Under this
circumstance, they are in bad need of a smart recommender system that can help find a suitable POI. Therefore,
in this paper, we focus on cross-city POI recommendation that targets for the travelers in unfamiliar cities.
One of the most challenging problems for cross-city POI recommendation is the sparsity of interactions

between travelers and POIs in current unfamiliar city. Our statistics on real-world datasets reveals that user-POI
interactions in an unfamiliar city are about one less order of magnitude than those in home city on average.
Therefore, the sparse user data in the unfamiliar city are far from enough to train a powerful recommender
system. To relieve this sparsity problem, three types of methods have been considered. First, a direct solution is
to transfer knowledge from the howntown into current city, as developed in previous works [9, 35, 38]. However,
for cross-city POI recommendation, it is the knowledge about user interest that should be transferred, while
above works focus on context-based knowledge such as the semantic features of locations. Second, with a close
relation to cold-start problems, the sparsity issue of user-POI interactions in current city can also be alleviated by
introducing the content information of POIs (categories or tags) [30, 34, 43] or borrowing the POI preference
from friends [6, 31]. However, users tend to have different interests when they travel in different cities that have
different urban compositions (i.e. the phenomenon of user interest drift), while these methods assume that user
interest towards POIs will not change between hometown and current city, which is incorrect and thus can
degrade the model performance. Therefore, the third type of methods based on probabilistic generative models
are proposed to consider the user interest drift. Yin et al. [42] assume that a traveler’s decision on visiting which
POI is dependent on the target spatial region, indicating a different interest compared to that in hometown, and
the preference of other travelers in this region is also leveraged to alleviate the data sparsity. Li et al. [16] further
enhance the learning of traveler preference by separating the city-specific topics of each city from the common
topics shared by all cities. Although the user interest drift is common and reasonable, it should also be noted that
users still have some interests that are invariant among different cities. Therefore, cross-city POI recommendation
should also consider this phenomenon of user interest transfer, which requires joint learning of users’ previous
visits in both two cities and has not been captured by above methods.

In this work, we design a novel embedding-based cross-city POI recommendation framework named POI
Recommendation enhanced withUser InterestDrift and Transfer (PR-UIDT) that learns the user preference from
both hometown and current city. Different from previous works, we propose to combine interest drift and interest
transfer together, utilizing users’ visiting behaviors across two cities to help improve POI recommendation in the
current city. Here we define the interest drift as the phenomenon that user preference over POIs varies among
different cities, and, in contrast, interest transfer as the phenomenon that the preference remains unchanged. In
the PR-UIDT framework, each user embedding, i.e., a latent vector, is divided into a city-independent part and
city-dependent part, corresponding to the inherent interest and drifted interest respectively. On the other hand,
the embeddings for each POI are represented by two independent vectors, which are designed for the travelers
and locals in this city, respectively. Moreover, as the visitors from both locals and travelers should contribute
in learning the better POI feature, we further add an incentive that motivates these two POI vectors to become
similar. Finally, above novel designs of embeddings are integrated into matrix factorization (MF) model using
two different loss functions (i.e., the square error based loss [13] and the ranking error based loss [27]). With the
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recent advance of deep learning based interaction models in recommender systems [11, 14, 39], our proposed
PR-UIDT framework can easily integrate them by replacing the basic MF module.
The main contributions of this paper are summarized below:
• To the best of our knowledge, we are the first to solve cross-city POI recommendation problem by combining
user interest drift and transfer together, which enables learning the traverlers’ preference from both
hometown and current city, and thus overcome the sparsity issue of their visit records in current city.

• Our proposed POI recommendation framework jointly leverages interest drift and interest transfer through
the novel designs of user and POI embeddings, where the transferable knowledge, from travelers’ visit
records in hometown and locals’ visit records in current city, are incorporated to complement the insufficient
information about the drifted interest, provided by limited travel visits in current city.

• Experiments on three real-world datasets are conducted to prove the performance superiority of our
proposed framework in POI recommendation for travelers. A further ablation study and qualitative anal-
ysis reveals that the effective combination of interest drift and interest transfer leads to performance
improvements. Time efficiency test and extension version with geographical effect demonstrate the utility
of PR-UIDT for large-scale real-time application. Moreover, the applicability of PR-UIDT in multi-city
scenarios has also been evaluated on real data.

2 DATASET AND OBSERVATION

2.1 Dataset Collection
In this work, we aim to solve the cross-city POI recommendation problem by modeling user interest drift and
transfer. In order to validate the feasibility of this idea, we use three real-world POI check-in datasets which
contain users’ visits in both hometown and non-home city. Now we introduce them in details.
Tencent dataset: Tencent Wechat1 is the biggest online social network service in China. Users can check-in

with Wechat mobile App, which is known as Moment. We collect users’ check-in records in three Chinese cities,
i.e., Beijing, Shanghai and Tianjin, within the time period from Jul. 2017 to Jul. 2018. Each check-in record includes
an anonymous user-ID, a POI-ID, current city, hometown city and timestamp. We further obtain POI category via
querying these POI-IDs through Wechat Map API2. To investigate users’ cross-city POI visiting behaviors, we
select two cross-city pairs, i.e., Beijing-Shanghai and Beijing-Tianjin. As Beijing and Shanghai are the two largest
cities in China, and Tianjin is a secondary city geographically close to Beijing, these two cross-city pairs are the
representatives of typical cross-city scenarios. As for the Shanghai-Tianjin, it is similar to the Beijing-Tianjin case
in terms of city scale. Thus we leave out it due to space limit and plan to investigate more diverse city-pairs in
future work. For each cross-city pair, we first select the users that live in either one of the two cities and also have
once traveled to another one. Each user is a local in the hometown city and a traveler in another city. Then we
extract their visit records in corresponding cross-city pairs from the raw data for further study. Next we merge
records of the same user and POI into a single record with the earliest timestamp, as we aim to recommend a
new POI to the user. Finally we filter out inactive users and POIs with less than 10 interactions. Here we denote
the records from Beijing-Shanghai and Beijing-Tianjin as Tencent-BS and Tencent-BT, respectively.

Yelp dataset (public): The datasets is Yelp’s Challenge Dataset3 that contains users’ POI check-in records in
more than 100 cities within the time period from Jan. 2006 to Jan. 2015. Each check-in record is stored as user-ID,
POI-ID, POI location, POI category, check-in date. Since hometown information is not provided in this dataset,
we choose the city where a user has the highest number of check-ins as his/her hometown. As for the cross-city
pair, as this dataset is much sparser than Tencent dataset, we select the Las Vegas-Phoenix that contains highest
1https://weixin.qq.com
2https://lbs.qq.com
3https://www.yelp.com/dataset
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Table 1. Major statistics of datasets.

Datasets & Metrics Tencent-BS Tencent-BT Yelp-LP
City A-B Beijing - Shanghai Beijing - Tianjin Las Vegas - Phoenix

Time Duration Jul. 2017 - Jul. 2018 Jul. 2017 - Jul. 2018 Jan. 2006 - Jan. 2015
Users of City A 42,113 71,998 2,625
Users of City B 34,483 38,148 2,089
POIs in City A 11,914 19,911 1,661
POIs in City B 10,934 14,396 1,481

A→B∗ 283,855 317,245 7,722
A→A 1,697,256 3,873,549 53,814
B→A 256,386 266,010 8,441
B→B 1,372,865 1,905,657 46,985

∗: Users of City A travel to City B.

number of cross-city visiting records. After the user-selecting and data preprocessing process that are similar to
those in Tencent data, we extract a subset of raw data and denote it as Yelp-LP.

2.2 Basic Observation
The major statistics of above datasets is shown in Table 1. First, for the difference among them, as Tencent Wechat
is more frequently used in daily life, Tencent data is much denser in terms of user number, POI number, record
number in total as well as the average per user/POI, which is more beneficial for experiments. More importantly,
we can observe that the number of travelers’ visits in current city (e.g., “A→B”) is about one magnitude smaller
than both the number of locals’ visits (e.g., “B→B”) and that of their own visits in hometown (e.g., “A→A”). If
these two parts of information, i.e., the travelers’ visiting behaviors in hometown and locals’ visiting behaviors
in current city, can be handled properly, then the recommendation performance of cross-city travelers can be
largely improved. To further demonstrate the differences of above statistics, we take Tencent-BS as an example
and show results in terms of each user or POI in Fig. 1. More specifically, it plots the distribution quantiles (5%,
25%, 50%, 75%, 95%) of both hometwon-to-current record ratio and local-to-traveler record ratio, where results of
Beijing and Shanghai are presented together. Similar to the aggregation results, cross-city travelers visits more
POIs in hometown, as the ratio value between record number in hometown and current city is about six in terms
of the median among them (Fig. 1(a)). As for POIs, visit number of locals is over ten times larger than that of
travelers among over 50% of them (Fig. 1(b)). Above observations further confirm the necessity of considering the
travelers’ visiting behaviors in hometown and locals’ visiting behaviors in current city, which is more abundant
and valuable for learning the user preference.

The popularity skewness exists in many types of human-item interaction behaviors inside a large population
and it impacts the ability of capturing user interest for recommender systems [2, 4]. With higher number of
interactions on those popular items, it becomes much harder for recommender systems to satisfy those users
with niche interests. Here we investigate this effect in the cross-city POI recommendation scenario and show the
results in Fig. 2(a). The y-axis represents the proportion of records for a given proportion of users or POIs on the
x-axis, sorted by decreasing popularity, where the POI popularity is measured by number of visits from users.
Clearly, travelers’ visiting behaviors are more skewed in terms of popularity, where the top-10% of the POIs
accounts for 80% of the visits, much larger than less 60% in locals. This finding is reasonable, as most travelers
tend to visit some popular POIs like attractions, restaurants and so on. Moreover, it also means that there exist a
certain proportion of travelers with niche interests, which are hard to learn with such sparse and skewed data
only. Besides the popularity skewness in terms of POIs, we also investigate the activeness skewness in terms of
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(a) # of visits in hometown
# of visits in current city of each user (b) # of visits by locals

# of visits by travelers of each POI

Fig. 1. Data sparsity of travelers’ visits in Tencent-BS, in terms of quantiles (5%, 25%, 50%, 75%, 95%) of the ratio values.
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Fig. 2. (a) Popularity skewness in Tencent-BS, in terms of the proportions value of records contributed by a certain proportion
of POIs. (b) Activeness skewness in Tencent-BS, in terms of the proportions value of records contributed by a certain
proportion of users.

users in Fig. 2(b), where the user activeness is measure by visit number of each user. Similarly we observe that
user activeness is more skewed among traverlers, indicating a higher difficulty of capturing their interest.

According to above analysis, travelers’ visiting behaviors in current city are not only sparse, but also skewed
in terms of POI popularity and user activeness. Therefore, it is not enough in cross-city POI recommendation
to learn traveler interest solely from these limited information. With Tencent and Yelp datasets that contain
the visiting behaviors in both hometown and current city, we are able to investigate this problem from a new
perspective of combining user interest drift and transfer together.

3 MOTIVATION
In order to solve the major challenge of data sparsity existed in cross-city POI recommendation problems, both the
travelers’ visiting behaviors in hometown and locals’ visiting behaviors in current city should be leveraged, which
are much denser according to our basic statistic analysis. To successfully utilize these two parts of information,
we conduct further analysis so as to guide the design of our proposed framework. On the one hand, for travelers
themselves, we reveal the phenomenon of user interest drift and transfer between hometown and current city.
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(a) toy example
POI Category (TopK in Hometown)

K=1 K=3 K=5

P
ro

p
o
rt

io
n
 o

f 
R

e
c
o
rd

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hometown

Current

(b) mean value among all Shanghai users

Fig. 3. (a) A toy example showing a traveler’s interests in hometown and current city. (b) Proportion values of each user’s
visits to K POI categories in hometown and current city, respectively, where the K categories are those ranked top K by the
number of his/her records in hometown.

On the other hand, for POIs in current city, we analyze the differences between popular POIs among locals and
travelers.

3.1 User Interest Drift and Transfer
Fig. 3(a) illustrates a toy example where a user living in Shanghai travels to Beijing. For both hometown and
current city, the top 3 POI categories ordered by the visit number of this user are provided, as well as the specific
number and proportion of visits corresponding to each category. It can be clearly observed that this user visits
the highest number of theater POIs in both two cities, indicating that this interest is transferred from hometown
to current city. However, the rest two categories change from school and attraction into housing and park, which
demonstrate that this user also has the drifted interest varying among cities.
To verify above findings, we consider each Shanghai user and compare the proportion of his/her visits to K

POI categories in hometown and current city, where the K categories are those ranked top K by the visit number
in hometown. Fig. 3(b) presents this comparison in terms of the average proportion values among all Shanghai
users. By comparing results in current city (yellow) to those in hometown (blue), we observe that, for each user,
the mostly visited POI categories in hometown do not count equally in current city. For example, top 5 categories
in hometown count for near 70% of the visits on average, while the share of these categories reduces to about
30% in current city. Above observation again indicates the co-existence of user interest drift and transfer, which
should be jointly considered when designing our proposed framework.

3.2 Different Characteristics of Popular POIs among Locals and Travelers
To investigate whether locals and travelers have different user interests on POIs, we first compare POI popularity
within these two groups of users in Fig. 4(a). From this figure, we can observe a large number of POIs located at
the top-left or bottom-right corner, indicating these POIs are only popular in one group of users, either locals or
travelers. Then, for better illustration, we set a popularity rank of 2000 as the threshold deciding whether the
POI is popular or not, and divide the POIs into four groups based on the popularity in locals and travelers. By
setting 2000 as the threshold, about 15% of POIs are classified as popular. More detailedly, popular POIs in locals’
account for 70.9% of total check-ins, with an average records of 602 per POI, in sharp contrast to unpopular
POIs (50 on average). Similarly, popular POIs among travelers contribute to 85.4% of total check-ins, with an
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Fig. 4. (a) Popularity ranks of POIs in Shanghai, in terms of locals and travelers, respectively. (b) Empirical distribution of the
difference between rank in locals and rank in travelers. Rank of each POI is illustrated in (a). (c) Proportion of POIs belonging
to different POI categories in each POI group. The group is divided in terms of the popularity ranks of a POI in both locals
and travelers.

even larger gap in terms of average number (112 v.s. 4). Without loss of generality, we adopt this fixed number
of 2000 as the threshold. To further represent the difference between the POI ranks in locals and travelers, we
illustrate the empirical distribution of this relative rank in Fig. 4(b). It can be easily observed that most POIs have
similar ranks in locals and travelers, while the ratio of “unpop-pop” and “pop-unpop” POIs cannot be overlooked
either. The ratios of POIs with large positive value (> 5000) and negative value (< −5000) are about 4.5% and
7.6%, respectively. In Fig. 4(c) we investigate the proportion of POIs belonging to different categories in each
POI group. The differences of proportions among groups indicate different user interests between locals and
travelers, especially for “unpop-pop” group and “pop-unpop” group, i.e., POIs popular in travelers only and POIs
popular in locals only. Compared with “pop-unpop” group, “unpop-pop” group has more food, attraction and
hotel POIs, which is reasonable for travelers. Considering the different composition of popular POIs among locals
and travelers, we are motivated to characterize a POI with different representations for locals and travelers.

4 POI RECOMMENDATION FRAMEWORK WITH USER INTEREST DRIFT AND TRANSFER
In this paper, we build our cross-city POI recommendation framework PR-UIDT by leveraging the widely-used
MF techniques [12, 13, 15, 26, 29], where both user and POI are mapped into latent low-dimensional spaces.
Therefore, the core part of this framework is the user and POI latent vectors that characterises the user interest
towards POIs and the features of POIs, respectively. Motivated by previous analysis, we first propose a novel
design of user and POI latent vectors by considering both user interest drift and transfer. Then we integrate these
design into a square error based MF model and a ranking error based MF model, respectively. Finally, we discuss
the extension of PR-UIDT for locals and multi-city scenarios.
In the following, we represent matrices, vectors, and scalars as bold capital letters (e.g., X), bold lowercase

letters (e.g., x), and normal lowercase letters (e.g., x ), respectively. If not otherwise specified, all vectors are in a
column form. XT denotes the transpose of X. We denote user latent factor matrix as PM×F , and POI matrix as
QN×F , whereM,N is the number of users and POIs, and F is the vector dimension. Preference score of user u on
POI i is denoted as rui . For readability, major notations used throughout this paper are listed in Table 2.

4.1 Framework Design
4.1.1 Problem Definition. Our proposed POI recommendation framework targets a practical scenario where
the content provider is required to recommend high quality POIs to those cross-city travelers after they visit a
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Table 2. List of commonly used notations.

Notation Description
M,N ,R The number of users, POIs and records
F ,K The number of user vector factors and inherent factors

U,Ut ,Ul The sets of all users, travelers and locals in current city
V,Vc ,Vh The sets of all POIs, POIs in current city and ones in hometown city

P,Q The latent factor matrix for users and POIs
p0u ,p

c
u ,p

h
u User latent vector for inherent, current-city-related and hometown-city-related preference

qti ,q
l
i POI latent vector for traveler and local preference

r̂ui Prediction score of user u over POI i
α , β Hyper parameter
λ Regularization parameter

small number of locations in current city. Different from cold-start recommendation, this problem requires the
consideration of user interest drift among hometown and current city, i.e., the traveler visits data in both two
cities. Here, we briefly define the problem as follows: given user u’s check-in records in both hometown and
current city, i.e., Rhu and Rcu , respectively, the recommender needs to predict which POI in current city will be
visited by u.

4.1.2 User Vectors. As we observed in both single user example and overall data analysis (Fig. 3), both user
interest drift and transfer exists when users travel from hometown to a new city. In traditional MF models, each
user is represented as a latent vector containing all the preference information of this user no matter where the
user is, which is not sufficient in our case considering that the user interests between hometown and current city
should only overlap to some extent. Therefore, we split the user vector pu into a city-independent part, denoted
as p0u , and another city-dependent part, denoted as phu in hometown and pcu in current city, which correspond to
user’s inherent interest and drifted interest, respectively. To learn the inherent interest that is consistent among
different cities, p0u is trained with help of check-in records in both hometown and current city. Since hometown
records are much denser than those in current city, p0u is able to achieve user interest transfer from hometown to
current city. On the contrary, city-dependent user vector, i.e., phu or pcu is only learned from check-in records in
hometown and current city, respectively, which represent the user interest drift between cities. With above two
separated vector representations of user interests, we have

pu = [phu1,p
h
u2, · · ·p

h
uF ]. (1)

for user u in hometown and
pu = [pcu1,p

c
u2, · · ·p

c
uF ] (2)

for u in current city, respectively. The first K dimensions of embedding vectors of travelers should be the same
between current and hometown city as shown in

phuk = p
c
uk = p

0
uk ,∀1 ≤ k ≤ K ,u ∈ Ut , (3)

since they represent inherent preference of users which is irrelevant to cities.

4.1.3 POI Vectors. When investigating the phenomenon of user interest drift in terms of the POIs, we observed
that locals’ visiting behaviors, i.e., the user interest in the hometown, and travelers’ visiting behaviors, i.e., the
user interest in the current city, are different in the same city (Fig. 4). This motivates us to consider the differences
between locals and travelers when designing POI vectors. However, as we already model the user vector with
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Fig. 5. Framework of PR-UIDT.

two separated parts, i.e., p0u and {phu ,p
c
u }, the user-POI interaction function defined by MF technique implicitly

divides POI vector into two corresponding parts similarly, i.e., q0i and q′
i that only interact with p0u and {phu ,p

c
u },

respectively. Therefore, instead of separating POI vectors into two parts, we use two independent vectors so
as to model the different interests among two user groups, i.e., qli for locals and qti for travelers, which further
demonstrates the user interest drift between hometown and current city. At the same time, travelers have limited
check-in records in the current city, making it hard to learn a high quality POI vector. Therefore, besides the
design of two independent vectors for the same POI that corresponds to interest drift, we further propose to
enhance the learning of POI vectors designed for travelers by transferring the information from those designed
for locals. More specifically, a l2-norm constraint on distance between qli and qti is considered, which can be
formulated as

d(qli ,q
t
i ) =

F∑
k=1

(qlik − qtik )
2 (4)

Consistent with user vectors, qli is trained only with locals’ records and qti with travelers’ ones.

4.1.4 Overall Framework. In this paper, we propose a cross-city POI recommendation framework that combines
both user interest drift and interest transfer between hometown and current city. In order to learn from both
two cities, besides travelers’ check-in records in current city, their previous records in hometown as well as the
records of other locals are also leveraged. More specifically, the sum of prediction errors on above three parts of
user-POI interactions are all considered in the loss function. Here we denote the prediction errors on interactions
between travelers and POIs in current city as L1, those between these travelers and POIs in their hometown as L2
and those between other locals and POIs in current city as L3, respectively. For L1 and L2, the set of users is the
same, though they play different roles, i.e., travelers in current city and locals in hometown. According to our
above designs of user vectors, for a user u, the corresponding user vector pu is defined as (2) and (1) when used in
L1 and L2, respectively. As for POI vectors, in L2 and L3 that relate to the same set of POIs {i} in current city, two
independent sets of POI vectors, i.e., qti and qli , are used, respectively. Moreover, a l2-norm constraint on distance
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between qti and qli is integrated into the loss function. Mathematically, the final loss function is formulated as

LPR = min
Pct ,Q

t
c ,P

h
t ,Qh,Pl ,Q

l
c

L1(Pct ,Q
t
c ) + αL2(P

h
t ,Qh) + L3(Pl ,Q

l
c ) + β

(
| |Qt

c − Ql
c | |

2
F
)
, (5)

where α controls the extent to which we transfer hometown records to current city for a single user, and β
represents similarity constraint on the same POI.

The overview of our proposed PR-UIDT framework is illustrated in Fig. 5. The left three matrixes are historical
records, which turn into latent vectors by matrix factorization. User vector is composed of intrinsic and drifted
parts, and POI vector is separate for traveler and local. Then by multiplying traveler vector and current POI
vector, we get predict matrix where all unrecorded user and POI pairs will have a preference score, based on
which a recommender can build. With the abundant user interest knowledge learned from dense records of
traveler check-in in hometown and local check-in in current city, PR-UIDT is able to achieve more accurate
predictions on travelers’ future check-ins in current city. We develop two different types of models which use
different loss functions for {L1,L2,L3}, i.e., the square error based and the ranking error based loss functions, and
will be described in the next two sections, respectively.

4.2 The Square Error based Model
Next, we present the Square error based Matrix Factorization model based on PR-UIDT framework (SMF-UIDT)
and its optimization method.

4.2.1 SMF-UIDT. To learn user/item latent vectors, we introduce a square error based weighted regression
function, which assigns a zero rui value to missing user-POI entries with a confidence variable. Mathematically,
it has a general form as follows:

LSMF (P,Q)=
∑

u ∈U,i ∈V

ωui (r̂ui−rui )
2 + λ

(
| |P| |2F + | |Q| |2F

)
, (6)

where rui is the indicator function of whether useru has visited POI i andωui is the weight function. In accordance
with previous practice, we set rui = 1,ωui = 1 when user u has visited POI i , rui = 0,ωui = ω0 otherwise. r̂ui is
the predicting score, which is defined as r̂ui = pTu · qi . Corresponding to different types of user-POI interactions
in {L1,L2,L3} depending on whether a user is a traveler or a local, r̂ui can be further reformulated as

r̂ui =


[ p0u ; pcu ]T · qti u ∈ Ut , i ∈ Vc
[ p0u ; phu ]T · qi u ∈ Ut , i ∈ Vh
pTu · qli u ∈ Ul , i ∈ Vc

. (7)

After integrating into the PR-UIDT framework, the final opjective In SMF-UIDT model, based on the (6) and (7),
the matrices {Pct ,Qt

c ,P
h
t ,Qh ,Pl ,Q

l
c } are learned by minimizing the following regularized optimization problem:

L = min
Pct ,Q

t
c ,P

h
t ,Qh,Pl ,Q

l
c

L1(Pct ,Q
t
c ) + αL2(P

h
t ,Qh) + L3(Pl ,Q

l
c ) + β

(
| |Qt

c − Ql
c | |

2
F
)
,

where L1(Pct ,Qt
c ) =

∑
u ∈Ut ,i ∈Vc

ωui (r̂ui−rui )
2 + λ

(
| |Pct | |

2
F + | |Q

t
c | |

2
F
)
,

L2(Pht ,Qh) =
∑

u ∈Ut ,i ∈Vh

ωui (r̂ui−rui )
2 + λ

(
| |Pht | |

2
F + | |Qh | |

2
F
)
,

L3(Pl ,Ql
c ) =

∑
u ∈Ul ,i ∈Vc

ωui (r̂ui−rui )
2 + λ

(
| |Pl | |2F + | |Q

l
c | |

2
F
)
.

(8)
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4.2.2 The Parameter Estimation. For SMF-UIDT, we minimize the loss function in (8) by element-wisely updating
user vectors and POI vectors alternatively [5, 12]. In each iteration, the optimized value of puf and qi f is
determined by solving ∂L

∂puf
= 0 or ∂L

∂qi f
= 0. The basic expression of update function can be found in (9), where

r̂
f
ui = r̂ui −puf ·qi f represents the predicting score without dimension f . For a certain puf , the update function is

puf =

∑
i (rui − r̂

f
ui )ωuiqi f∑

i ωuiq
2
i f + λ

. (9)

Depending on whether u is a traveler or a local, and whether f belongs to p0u representing the inherent interest
or {phu ,pcu } representing the drifted interest, a detailed update function is as follows:

p0uf =

∑
i∈Vc (rui−r̂

f
ui )ωuiq

t
i f +α

∑
i∈Vh

(rui−r̂
f
ui )ωuiqi f∑

i∈Vc ωuiq
t2
i f +α

∑
i∈Vh

ωuiq2
i f +λ

1 ≤ f ≤ K ,u ∈ Ut

pcuf =

∑
i∈Vc (rui−r̂

f
ui )ωuiq

t
i f∑

i∈Vc ωuiq
t2
i f +λ

K ≤ f ≤ F ,u ∈ Ut , r̂ui = pcu
T · qti

phuf =
∑
i∈Vh

(rui−r̂
f
ui )ωuiqi f∑

i∈Vh
ωuiq2

i f +λ
K ≤ f ≤ F ,u ∈ Ut , r̂ui = phu

T
· qi

puf =

∑
i∈Vc (rui−r̂

f
ui )ωuiq

l
i f∑

i∈Vc ωuiq
l2
i f +λ

1 ≤ f ≤ F ,u ∈ Ul

. (10)

Similarly, POI vector is updated, according to whether this vector is used for locals or travelers, by (11),

qtif =

∑
u∈Ut (rui−r̂

f
ui )ωuip

c
uf +βq

l
i f∑

u∈Ut ωuip
c2
uf +λ+β

1 ≤ f ≤ F , i ∈ Vc , r̂ui = pcu
T · qli

qli f =

∑
u∈Ul

(rui−r̂
f
ui )ωuipuf +βq

t
i f∑

u∈Ul
ωuip2uf +λ+β

1 ≤ f ≤ F , i ∈ Vc , r̂ui = pTu · qli

qi f =

∑
u∈Ut (rui−r̂

f
ui )ωuip

h
uf∑

u∈Ut ωuip
h2
uf +λ

1 ≤ f ≤ F , i ∈ Vh

. (11)

In each iteration, the f th latent factor ofu’s vector, namely puf , is updated in sequence. After computing all the
user factors, POI factors can be similarly updated. Overall, one iteration takes O((M + N )K2 + RK) time, which
only depends on the number of observed interactions. Due to space limit, we leave out the detailed algorithm.

4.3 The Ranking Error based Model
Besides square error based model, we also propose a Ranking error based Matrix Factorization model based on
PR-UIDT framework (RMF-UIDT).

4.3.1 RMF-UIDT. In POI dataset, we only have a user’s check-in record and an unvisited POI does not necessarily
indicate the user dislikes it. The unobserved data actually is a mixture of negative preference for POIs and missing
values. This motivates us to consider a ranking error based loss function for modeling the ranking order of user’s
preference for observed POIs and unobserved POIs. By assuming that the user prefers an observed POIs over all
other unobserved POIs, we introduce following pairwise loss function:

LRMF (D, P ,Q)= −
∑

(u,i, j)∈D

logσ (x̂ui j ) + λ
(
| |P| |2F + | |Q| |2F

)
, (12)

where σ (x) = 1
1+e−x is the logistic sigmoid function. (u, i, j) is the updating triple and D represents universal set

of all possible triples. x̂ui j = r̂ui − r̂uj should be as large as possible because of the intuition that visited POIs
should be ranked before unvisited ones.
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Applying PR-UIDT framework to (12), RMF-UIDT is to minimize following loss function:

L = min
Pct ,Q

t
c ,P

h
t ,Qh,Pl ,Q

l
c

L1(Pct ,Q
t
c ) + αL2(P

h
t ,Qh) + L3(Pl ,Q

l
c ) + β

(
| |Qt

c − Ql
c | |

2
F
)
,

where L1(Pct ,Qt
c ) + L3(Pl ,Q

l
c ) = −

∑
(u,i, j)∈D∗

logσ (x̂ui j ) + λ
(
| |Pct | |

2
F + | |Q

t
c | |

2
F + | |Pl | |2F + | |Q

l
c | |

2
F
)
,

L2(Pht ,Qh) = −
∑

(u,i, j)∈D∗∗

logσ (x̂ui j ) + λ
(
| |Pht | |

2
F + | |Qh | |

2
F
)
.

(13)

Note that D∗ and D∗∗ are the triple sets corresponding to POI visits in current city and hometown, respectively,
which is defined as:

D∗ = {(u, i, j) | rui = 1 ∩ ruj = 0 ∩ u ∈ U ∩ (i, j) ∈ Vc },

D∗∗ = {(u, i, j) | rui = 1 ∩ ruj = 0 ∩ u ∈ Ut ∩ (i, j) ∈ Vh }.
(14)

4.3.2 The Parameter Estimation. Stochastic gradient descent (SGD) is widely used to update above functions.
The updating formula for user or POI vectors among {Pct ,Q

t
c ,P

h
t ,Qh ,Pl ,Q

l
c } can be derived via computing

their corresponding gradients according to (13). As for the training process, the basic idea is to sample training
instances from D∗ and D∗∗ and then update parameters iteratively, with time complexity of O(RK).

4.4 Extension
4.4.1 POI Recommendation for Locals. Though our proposed PR-UIDT framework focuses on improving rec-
ommendation performance for travelers, it can simultaneously make recommendation for locals without any
additional module. More specifically, for a local user u, the predication score r̂ui for visiting a local POI i is
calculated by multiplying user vector [p0u ;phu ] and POI vector qli together. Note that phu refers to u’s unique
interest in hometown and qli is designed for i’s local visitors. Both [p0u ;phu ] and qli are trained via L3-term in
(5). Since the learning of POI vectors are enhanced by transferring the information between those designed for
travelers, i.e., qti , and those designed for locals, i.e., qli , qli should embed more powerfully information than a
POI vector that is only trained with hometown check-ins, implying that PR-UIDT is likely to perform better
than a recommender designed solely for locals. Therefore, the proposed PR-UIDT framework has the ability to
serve both cross-city travelers and locals, while in this paper we focus on the former and do not evaluate the
recommendation performance for locals.

4.4.2 Cross-city POI Recommendation in Multi-city scenarios. Users may travel among multiple cities instead of
just two cities. Next we will demonstrate how our proposed PR-UIDT framework can be extended into multi-city
scenarios.
As illustrated in Fig. 6, user latent vector is still separated into two parts corresponding to inherent interest

and drifted interest, respectively. The inherent interest is assumed to be invariant among cities, while the drifted
interest is city-dependent. However, assigning an independent vector to user’s drifted interest for each city brings
n times of memory usage, where n is the number of cities, making it impossible for a nationwide location-based
service like Wechat. Therefore, in our design, the drifted interest only depends on the role user played in each city,
i.e., locals or travelers, denoted as Ph and Pt respectively, rather than on the city itself. Corresponding to users’
roles, the same POI has different latent vectors, Qh for locals and Qt for travelers, with a l2-norm constraint as
well. Similar to the objective function we defined in (5) for two-city scenario, here the PR-UIDT is optimized
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Fig. 6. Framework of PR-UIDT in Multi-city Scenarios.

based on follows:

LPR = min
Ph,Qh,Pt ,Qt

Llocal(Ph ,Qh) + αLtraveler(Pt ,Qt ) + β
(
| |Qt − Qh | |

2
F
)
, (15)

where the former {L2,L3} related to the prediction errors on locals’ check-ins are merged into Llocal, while the
former L1 is extended into Ltraveler that considers travelers’ check-ins in multiple cities instead of one fixed current
city. By this means, the extended PR-UIDT is able to recommend future check-ins for both locals and travelers
among multiple cities. Moreover, compared to the preliminary version for hometown-current city setting, it does
not increase the memory usage for storing user and POI vectors as long as the numbers of users and POIs are
fixed. The overall time complexity is still linear to the size of check-in data and independent of the number of
cities.
Based on above framework, the user interest transfer is enabled not only between hometown and current

city, but also among multiple non-home cities. First, the user inherent vector is learned from all check-ins of
a user. Second, as a user plays the same role of traveler in all non-home cities, the user drifted interest part is
jointly learned from check-ins in these cities. To be more practicable, the recommender system can label several
cities as the hometowns of a user if she frequently check-ins these cities. Also, PR-UIDT allows a user to have no
hometown if she never check-ins in the hometown.

4.4.3 Discussion. Our proposed PR-UIDT framework considers user interest drift and transfer among different
cities, i.e., in spatial domain. As users’ check-in behaviors are generally affected by both spatial and temporal
effects that cannot be decoupled, the PR-UIDT can also be extended so as to consider these two simultaneously.
More specifically, some time-specific interest can be transferred from one city to another, while the others may
drift in different cities. For example, a user may go to restaurant at dinnertime regardless of the visited city.
However, the other parts of her daily routine may change a lot if she is on vacation. To distinguish this, a direct
solution can follow the similar idea of MF and model the context of users’ check-ins with the latent factors.
Based on these learnable factors, user interest related to a specific context can transfer or drift among different
cities. In above example, such context is the pair of POI type and check-in time. Mathematically, we denote the
context vector as sc , then the overall prediction score r̂uic for user u visiting POI i in context c is calculated as
r̂uic = pTu · qi + p

T
u · sc . A more advanced solution is to combine with factorization machine based models [28].
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Furthermore, in order to model user interest more precisely, we can consider separate users in more fine-grained
groups based on ages or gender. In general, these fine-grained user groups can be helpful in POI recommendation,
since extra information and detailed user profiles contribute to uncovering similarity and dissimilarity of user
groups. However, for cross-city POI recommendation, these information have fewer impact compared with
the role of users (local or traveler) and they are not easily accessible. Thus we do not consider it in PR-UIDT
framework.

5 EXPERIMENTS
To evaluate the performance of our proposed cross-city POI recommendation framework, i.e., PR-UIDT including
two models SMF-UIDT and RMF-UIDT, we conduct a series of experiments on three real-world datasets to answer
the following five key research questions:

• RQ1: How do SMF-UIDT and RMF-UIDT perform compared with other state-of-the-art models?
• RQ2: What are the effects of characterizing user interest drift and transfer in PR-UIDT?
• RQ3: How do hyper-parameters (i.e., α , β) impact the performance of proposed models?
• RQ4: Is the PR-UIDT framework practical enough for real-world POI recommendation applications?
• RQ5: Is this proposed PR-UIDT framework general enough for multi-city POI recommendation scenarios?

5.1 Experiment Settings
Since each dataset contains a pair of two cities, we canmake recommendation for travelers in each city respectively,
thus two-way experiments (six recommendation tasks) are conducted as shown below.
- Tencent-BS (SB): Recommend POIs in Shanghai (Beijing) to travelers from Beijing (Shanghai).
- Tencent-BT (TB): Recommend POIs in Tianjin (Beijing) to travelers from Beijing (Tianjin).
- Yelp-LP (PL): Recommend POIs in Phoenix (Las Vegas) to travelers from Las Vegas (Phoenix).
Evaluation methodology. For evaluation, we divide the cross-city travelers’ records in current city based on

80/20 principle to generate training and testing sets. Note that the travelers’ records in hometown and locals’
records in current city are considered as training data. To avoid information leaking, we also remove a part of
each traveler’s records in hometown from the training data if these records are temporally after the earliest record
in the testing data of this user. For evaluation measures, we predict the top-k ranking among all non-visited
POIs for each user and employ two metrics including Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG). Mathematically, with testing set T , the HR@k is defined as:

HRu@k =

∑
(u,i)∈T HRu,i@k

|T |
, where HRu,i@K =

{
1 , hit in top-k recommendation
0 , else . (16)

As for NDCG@k , considering each user u with her own testing set Tu , it is defined as the average of NDCGu@k ,
which is calculated as:

NDCGu@k =

∑k
p=1

2R(u,p)−1
log(p+1)∑ |Tu |

p=1
1

log(p+1)

, (17)

where R(u,p) is the rating assigned by u to the POI at the pth position on the ranked list produced for u. Here
R(u,p) equals 1 if hit and 0 otherwise. Among these two metrics, HR is more relevant to the prediction recall,
i.e., measuring how many groundtruth POIs are recalled into the top-k list, while NDCG is very sensitive to the
ratings of the highest ranked POIs. Therefore, it is a common practice to evaluating both two metrics in top-k
recommendation tasks [11, 12, 33]
Baselines. We compare our proposed SMF-UIDT and RMF-UIDT models with five baselines, which can be

divided into three groups based on whether the user interest drift or transfer is considered or not.
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For the first group, we consider two state-of-the-art MF approaches that only leverage the check-in data in
current city (named as vanilla).
- WRMF [12]. WRMF minimizes the square error loss by assigning both observed and unobserved check-ins

with different confidential values based on MF. We use the implementation released by the authors4.
- BPR [27]. BPR optimizes the MF model with a pairwise ranking loss and learns model parameters with

Stochastic Gradient Descent (SGD) method. It is a highly competitive approach for item recommendation and we
use the implementation released in [12].
Since the sequence characteristics among users’ visiting behaviors may also benefit the prediction of future

visits, we also investigate this temporal effect without considering interest drift.
- SASRec [14]. SASRec uses a Transformer language model to capture users’ sequential behaviors, and achieves

state-of-the-art performance on sequential recommendation.
Then we consider to transfer users’ interest from hometown to current city so as to improve the cross-city POI

recommendation performance.
- LCE [30]. LCE is a MF model that exploits the POI property (category) and user preference to solve cold-start

problems. When leveraging the travelers’ visiting behaviors in hometown, recommending POIs in current city
becomes a cold-start POI problem. Thus in our cross-city POI recommendation problem we adapt the LCE model
by learning user interest in hometown and transfer this information to help predicting their check-ins in current
city. We use the implementation released by the authors5.

Finally, we compare with a cross-city POI recommendation method that characterizing the user interest drift
among different cities.
- STLDA [42]. STLDA is a state-of-the-art probabilistic generative model that learns region-dependent user

preference based on the POI content, social relationship, temporal and spatial correlation information 6. Since
our proposed PR-UIDT framework does not take social relation and temporal effect into consideration, we
implemented two versions, i.e., a degenerative one that removes these latent variables (denotted as STLDAd )
and a complete one (denotted as STLDAc ), for fair comparisons. Note that social relationship is unavailable in
Tencent data, thus we infer this information via an open-sourced algorithm7 based on co-located check-ins [1].

Parameter setting. For above baselines, we explore hyper-parameters similarly as the original paper. More
specifically, for WRMF, we tune the weight parameters of negative instances ω in [0.001, 0.005, 0.01, 0.05, 0.1, 0.5].
For SASRec, following the original paper, we set the historical sequence length as the average length of users’
POI sequence in the dataset. The numbers of layers and attention heads are also carefully tuned. For LCE, the
parameter that controls the relative weight of user-content (POI) matrix and user-POI matrix is tuned in [0.1,
0.2, ..., 0.8, 0.9]. For STLDA, the number of topics is tuned in [30, 40, ..., 70, 80], and region number in [10, 20,
..., 90, 100]. Other hyper-parameters of STLDA, prior hyper-parameters α , β ,γ ,η are set to the fixed value as
proposed in [42]. For PR-UIDT framework that is implemented based on corresponding SMF and RMF models,
the weight parameters of negative instances ω in RMF are set to the same value as WRMF. As for α and β that
decide the tradeoff of interest transfer and drift, we conduct grid search over these two parameters to find the
peak performance, that is α in [0 0.1, 0.2, ..., 0.9, 1.0] and β in [0.01, 0.1, 1, 10, 100, 1000]. Finally for learning rate
and regularization term λ, we tuned them in range of [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]. Since the findings are
consistent across the number of latent factors F , we report the results of F = 32 only.
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Table 3. Performance comparison.

Task Metric@100 Vanilla Sequence Transfer Drift Proposed Gain∗
WRMF BPR SASRec LCE STLDAd STLDAc SMF-UIDT RMF-UIDT

Tencent-BS NDCG 0.2770 0.2831 0.3049 0.1799 0.2402 0.2436 0.3136 0.3139 +3.0%
HR 0.5060 0.5360 0.5679 0.3994 0.3563 0.3612 0.6027 0.5589 +6.1%

Tencent-SB NDCG 0.2264 0.1817 0.2348 0.1923 0.2245 0.1983 0.2715 0.2774 +18.1%
HR 0.4094 0.2015 0.4458 0.3429 0.4952 0.4317 0.5127 0.4547 +3.5%

Tencent-BT NDCG 0.1941 0.1673 0.1665 0.1357 0.1828 0.1869 0.2161 0.2153 +11.3%
HR 0.3125 0.2193 0.3679 0.1964 0.4236 0.4396 0.3908 0.3539 -11.1%

Tencent-TB NDCG 0.1722 0.1445 0.1277 0.0939 0.1793 0.1808 0.1815 0.1635 +0.4%
HR 0.2555 0.2107 0.3087 0.1448 0.3095 0.3226 0.3316 0.2615 +2.8%

Yelp-LP NDCG 0.1742 0.1601 0.1834 0.1439 0.1678 0.1695 0.1966 0.1984 +8.2%
HR 0.2881 0.2450 0.3238 0.1948 0.3531 0.3902 0.3891 0.3780 -0.3%

Yelp-PL NDCG 0.1572 0.1504 0.1510 0.1417 0.1661 0.1688 0.1860 0.1793 +10.2%
HR 0.2433 0.2386 0.3045 0.1858 0.3134 0.3333 0.4017 0.3546 +20.5%

∗: The performance gain is by the best one among SMF-UIDT and RMF-UIDT, compared with the best one among other
baselines (underlined). The best results among all methods are bolded.

5.2 Performance Comparison (RQ1)
Detailed experiment results of all methods on NDCG@100 and HR@100 are presented in Table 3, where the
reported metric value is obtained by calculating the average of results from 5 repeated experiments.
From above results, we have the following observations:
• Overall, our proposed SMF-UIDT and RMF-UIDT reach the best performance among all 6 tasks in terms
of NDCG and 4 out of 6 tasks in terms of HR. More specifically, they achieve a significant improvement
of 0.4%∼20.5% compared with best performance of other state-of-the-art models, except for HR@100 in
Tencent-BT and Yelp-LP tasks. Compared with first two vanilla MF methods that do not consider users’
previous visiting behaviors in their hometown, i.e., WRMF and BPR, SMF-UIDT has an improvement of
5.4%∼65.1% and BPR-UIDT gets 4.3%∼125.7% better. Such significant performance gain comes from both
data augmentation and our proposed PR-UIDT framework that consider both user interest drift and transfer,
which we will investigate detailedly in RQ2.

• With fine-grained modeling of region-dependent user interest and other auxiliary information like users’
social relationship, STLDAc performs fairly good in terms of HR, being the best among all baselines.
Moreover, in Tencent-BT task, STLDAc is 11.1% higher in HR than our proposed SMF-UIDT while 11.3%
lower in NDCG.With the number of spatial region set to 100, compared to SMF-UIDT that only distinguishes
between hometown and current city, STLDAd and STLDAc utilize more precise information of users’ drifted
interest, resulting in high performance in terms of HR. However,they do not achieve good performance in
terms of NDCG that focuses more on the specific order among POIs, which is caused by following two
reasons. First, they do not leverage latent vector to modeling user preference order among different POIs.
Second, they do not consider the user interest transfer from hometown to current city. As the correct
ranking order of recommended POIs is more valuable in practical applications, the better performance in

4https://github.com/hexiangnan/sigir16-eals
5https://github.com/msaveski/LCE
6We use the implementation released by the authors https://sites.google.com/site/dbhongzhi/.
7https://github.com/yangzhangalmo/walk2friends
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NDCG proves the superiority of our proposed PR-UIDT, and also the insufficiency of leveraging interest
drift only. Moreover, by comparing STLDAc with STLDAd , we observe a performance improvement among
5 out of 6 tasks, indicating the value of leveraging social relations and validity of the social inference
algorithm that we apply on Tencent data as well. This insightful knowledge will motivate our future
extension on incorporating social relation for better recommendation quality.

• Surprisingly, LCE performs poor in almost every task. Although LCE model utilizes user interest transfer to
solve clod-start POI problem, no drifted interest is specifically modelled. This finding implies that without
sufficient utilization of travelers’ visiting behavior in current city, recommender fails to predict users’ future
check-ins even with the transferred interest from hometown.

• Last but not least, we observe that the sequencial recommender, i.e., SASRec, performs fairly competitive
on Tencent-BS/SB and Yelp-LP. This demonstrate the positive effect brought by modeling sequential nature
existed in users’ POI visiting behaviors, which can be further integrated into our proposed PR-UIDT
framework.

Practical recommender systems typically have two stages [37]: 1) candidate selection that selects hundreds of
items that might be of interest to a user, and 2) ranking that re-ranks the candidates to show top a few results. If
we want to apply the PR-UIDT in candidate selection stage that requires a high recall, evaluation with a large K
of hundreds is suitable. As for the ranking stage, we should evaluate the performance with a small K (10∼20).
Therefore, we further compare the performance w.r.t. HR@K (K ∈ {1, 2, 5, 10, 20, 50, 100}) in Fig. 7. Similar to
the previous result, our proposed PR-UIDT outperforms other state-of-the-art baselines in most cases. STLDAc
performs better in large K cases on Tencent-BT, while it does not provide more accurate predictions in small
K cases, i.e., not suitable for ranking stage. SASRec shows fairly competitive performance on Tecent-TB, and
outperforms the PR-UIDT in small K cases.
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Fig. 7. Performance comparison in terms of HR evaluated by different values of K .
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In a word, from above comparison, the PR-UIDT framework does outperform other state-of-the-art models,
implying that both user interest drift and interest transfer need to be considered in cross-city POI recommendation.
In the mean time, we observe the competitive performance of baselines after considering social relations or
sequential behaviors, which motivates us to enhance PR-UIDT with social regularization [40] and transformer
structure [14].

5.3 Studies of User Interest Drift and Transfer (RQ2)
We first conduct an ablation study to investigate whether user interest drift and transfer are necessary for cross-
city POI recommendation. Then our qualitative analysis further reveal how PR-UIDT helps us to comprehend
user check-in behaviors between different cities and generate more convincing recommendation.

5.3.1 Ablation Study. The performance comparison between PR-UIDT and its degenerative versions in terms of
NDCG@100 is presented in Fig. 8, where “+User” and “+POI”, these refer to leveraging the travelers’ check-ins in
hometown and locals’ check-ins in current city, respectively, and “Without UIDT” refers to not using our design
of user and POI vectors proposed in Sec. 4.1.
First we focus on the performance of SMF and RMF without UIDT when leveraging different user check-in

data. It is an intuition that SMF and RMF should perform better after adding either travelers’ check-in records in
hometown or locals’ check-in records in current city, and best when adding both. However, SMF degrades in
Tencent-BT and Tencent-TB with “+User” (-9.8%, -3.6%) or “+POI” (-11.3%, -6.1%) separately, and only gets slight
improvement after adding both information (+3.3%, +1.5%). This abnormal phenomenon, that more information
about users and POIs leads to worse recommendation results, shows an inconsistence between users’ visiting

Vanilla+User +POI +Both Vanilla+User +POI +Both

N
D

C
G

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SMF RMF

Tencent-BS

Without UIDT

With UIDT

Vanilla+User +POI +Both Vanilla+User +POI +Both

N
D

C
G

0

0.05

0.1

0.15

0.2

0.25

0.3

SMF RMF

Tencent-BT

Without UIDT

With UIDT

Vanilla+User +POI +Both Vanilla+User +POI +Both

N
D

C
G

0

0.05

0.1

0.15

0.2

0.25

SMF RMF

Yelp-LP

Without UIDT

With UIDT

Vanilla+User +POI +Both Vanilla+User +POI +Both

N
D

C
G

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SMF RMF

Tencent-SB

Without UIDT

With UIDT

Vanilla+User +POI +Both Vanilla+User +POI +Both

N
D

C
G

0

0.05

0.1

0.15

0.2

0.25

SMF RMF

Tencent-TB

Without UIDT

With UIDT

Vanilla+User +POI +Both Vanilla+User +POI +Both

N
D

C
G

0

0.05

0.1

0.15

0.2

0.25

SMF RMF

Yelp-PL

Without UIDT

With UIDT

Fig. 8. Performance comparison between PR-UIDT and its degenerative versions, in terms of NDCG@100.
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behaviors in current city and hometown, and also between those of travelers and locals, confirming our observation
about the necessity of considering user interest drift in cross-city POI recommendation problem.
Then we compare the performance improvements on NDCG before and after applying PR-UIDT framework

with the same training data. SMF-UIDT outperforms its degenerative version in every tasks, with average
improvements of 5.8% with “+User”, 6.1% with “+POI” and 4.5% with “+Both”. Except for Yelp-LP, RMF-UIDT
reaches average improvements of 3.4% with “+User”, 13.1% with “+POI” and 5.9% with “+Both” in the other five
tasks. But in Yelp-LP task, it degrades with “+User” (-0.9%) and “+User” (-6.5%) separately, but outperforms with
“+Both” (+3.4%). It is interesting that at the same time RMF-UIDT is able to achieve performance improvements in
terms of HR@100 in all three cases (ex., +6.8% with “+User” and +4.5% with “+POI”). Compared with those without
UIDT, SMF-UIDT and RMF-UIDT perform better after adding either travelers’ check-in records in hometown or
locals’ check-in records in current city, and best when adding both, implying that user interest drift can effectively
solve the data augmentation problem, and our proposed PR-UIDT framework is capable of handling this complex
challenge.
Above ablation study makes it clear that the performance improvements of SMF-UIDT and RMF-UIDT not

only come from the data augmentation, but also the result of combining both user interest drift and transfer in
model design.

5.3.2 Qualitative Analysis. To further reveal the plausibility of PR-UIDT in modeling user interest drift and
transfer between different cities, our following analysis is divided into two parts, focusing on two designs of user
and POI vectors, respectively.
Individual user case study. In PR-UIDT framework we represent each user vector with a city-independent

part, representing the inherent user interest that is invariant from hometown to current city, and another city-
dependent part, representing the drifted user interest drift in different cities. Therefore, we can recommend two
lists of POI candidates, denoted as li and ld , to each user based on above two types of user interests, i.e., two
parts of user vectors, respectively. Here we choose the recommendation results of SMF-UIDT on Tencent-SB task,
where POIs in Beijing are recommended to travelers from Shanghai. In order to investigate how SMF-UIDT make
recommendation, we randomly sample a user #76474 that has groundtruth POIs hit in li and ld , respectively.
Table 4 lists two of the testing POIs and the top 5 similar POIs in the training data, evaluated by cosine similarity
of POI vectors, where the informations of POI name, POI-ID, category, located city (“B” for Beijing and “S” for
Shanghai) and similarity value are all presented. As shown in this table, user #76474 has a complexed preference

Table 4. User case study.

User-ID #76474 POI POI Similarity City POI-ID Category
Test POI Hit in li Renaissance Beijing Capital Hotel - B #772 Hotel: Star Hotel

Top 5
Similar
POIs in

Train Data

Clove International Business Center 0.762 S #5388 Entertainment: General Shopping Mall
TLScontact Centre 0.721 S #3501 Else: Living Services

Chong Hing Financial Center 0.690 S #18817 Housing: commercial buildings
Shanghai Longemont Hotel 0.683 S #1472 Hotel: Star Hotel

Shangri-La Hotel 0.635 B #726 Hotel: Star Hotel
Test POI Hit in ld National Aquatics Center - B #1280 Entertainment: Swimming Hall

Top 5
Similar
POIs in

Train Data

Capital International Airport 0.958 B #55 Transportation Facilities: Airport
Olympic Park 0.977 B #62 Tourist attractions: national attractions

Beijing South Railway Station 0.965 B #561 Transportation Facilities: Railway Station
Wangfujing 0.960 B #79 Else: Hot spot area: business circle

National Library 0.741 B #577 School&Culture: Library
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(a) POIs grouped by popularity
POI Group

1 2 3 4 5 6 7 8 9 10

P
ro

p
o
rt

io
n
 o

f 
P

O
Is

0

0.2

0.4

0.6

0.8

1

most similar most dissimilar

pop-pop

unpop-pop

pop-unpop

else

(b) POIs grouped by vector distance

Fig. 9. The relationship between POI Popularity and POI vector distance | |qti − qli | |2.

for Beijing POIs. In testing records, he visits a star hotel and National Aquatics Center. The former one is hit in li ,
indicating the user interest transferred from hometown, as this user has visited two star hotels in Shanghai. As
for the later one, indeed National Aquatics Center looks more like a tourist attraction for travelers in Beijing, thus
PR-UIDT make this recommendation based on the fact that this user has visited similar hot spots, like Olympic
Park, Capital International Airport and Beijing South Railway Station, indicating the drifted user interest that
largely depends on the city of Beijing. Above user case study shows how user interest drift and transfer work in
cross-city POI recommendation.
POIs as a whole. In PR-UIDT framework, POI vectors are set different for locals and travelers, following the

intuition that two user groups should have different interest. Meanwhile, l2-norm for two vectors of the same POI
is integrated to transfer POI features from that designed for locals to that designed for travelers. To demonstrate
the effectiveness of above design, Fig. 9(a) shows the distance between two vectors, i.e., | |qti −qli | |2, in terms of the
distribution quantiles (5%, 25%, 50%, 75%, 95%), where POIs are divided into four groups based on the popularity in
locals and travelers (the same as we did in Sec. 3.2). From this figure, we observe the difference of | |qti −qli | |2 among
these four POI groups. When a POI is popular among travelers, i.e., “pop-pop” and “unpop-pop ”groups, the POI
vector distance tend to be larger, implying that less transferred information and more independent information
are considered in learning this POI feature. Vice versa, when learning an unpopular POI among travelers, much
information are transferred from locals’ visiting behaviors to solve the sparsity issue. Moreover, we show the
relationship between the POI popularity and POI vector distance by plotting the POI popularity distribution of
different POI groups in Fig. 9(b), where POIs are equally divided into ten groups based on | |qti − qli | |2, i.e., the
similarity between POI vector designed for locals and the other designed for tourists. It can be clearly observed
that those with larger values of | |qti − qli | |2 tend to be popular POIs. POI that is popular among either locals or
travelers tend to have less similar vectors, revealing that PR-UIDT framework successfully capture user interest
drift in different cities. The vectors of unpopular POIs are similar, which can effectively relieve sparsity problem
for unpopular POIs by interest transfer between locals and travelers.

5.4 Hyperparameter Investigation (RQ3)
Figure 10 shows the impact of α and β on SMF-UIDT and RMF-UIDT in Tencent-BS task, evaluated by NDCG. α
controls the relative weight of hometown records on current city records, in other words, α measures to what
extent we can rely on interest transfer for users in different cities, thus it should be a positive number no greater
than 1, considering that our goal is to recommend POIs in current city. α = 0 means hometown records are not
used at all, while α = 1 implies hometown records are utilized with the same importance as current city records.
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Fig. 10. Impact of hyper-parameters α and β on SMF-UIDT and RMF-UIDT performance, in Tencent-BS task.

The peak performance of SMF-UIDT lies at α = 0.1 or 0.2, shown in Fig. 10(a), which approximately equals the
ratio value between current city records and hometown records. The same pattern holds true for RMF-UIDT as
in Fig. 10(b), since α has the same implication on both loss function. Such a relative low value of α indicates the
limited impact of hometown records in cross-city POI recommendation problem, which make it necessary to
distinguish interactions in different cities.
The other parameter β constrains the relative difference of POI vectors for locals and travelers, and with

the higher β , the difference between locals’ visiting behaviors and travelers’ visiting behaviors becomes the
smaller. A middle value of β reaches the peak of performances indicating the need to deliberately characterize
constraints (Fig. 10(c) and (d)). Either strong or loose constraints lead to the degradation of performance. But
for SMF and RMF that have a different loss function, the absolute value of β at peak performance changes
significantly, that is, 100 for SMF -UIDT and 1∼10 for RMF-UIDT, while the variation trend remains the same.
From the comparison of different baselines, we find hometown records do provide valuable inference for

user preference in target city. But through further grid search of the impact of hyper parameters α and β , these
hometown records should be treated unequally with current city records, considering the limited impact and
potential misleading inference. In such a cross-city situation, it is worthwhile to distinguish travelers and locals
as different user groups, thus both STLDA and PR-UIDT, which follow such principle, achieve relative higher
performance. However, PR-UIDT can still learn useful information from locals while STLDA cannot, so the fact
PR-UIDT outperforms STLDA highlights the importance of considering different user group behaviors on the
same POI.

5.5 Practical Analysis (RQ4)
5.5.1 Efficiency. First we evaluate the efficiency of we proposed PR-UIDT framework. SMF-UIDT has time
complexity of O((M + N )K2 + RK), and RMF-UIDT has time complexity of O(RK). We compare their efficiency
on the same machine (Intel Xeon 2.10 GHz CPU), as shown in Fig. 11, in terms of record data size (Ratio) and
the number of latent vectors (K). All results of single iteration time are measured in terms of both mean and
standard deviation over 5 repeated experiments. In each experiment, we completely run the algorithm and divide
the whole time spent on training with number of iterations to calculate the iteration time.

In Fig. 11(a) and (b), as data size increases, RMF-UIDT running time increase linearly, which is consistent with
O(RK) complexity. The change of SMF-UIDT time consumption is also almost the same, like in Tencent-BT, the
model consumes 2.88, 4.00, 2.40 (sec) for every 25% records added, proving a linear related time complexity to R.
In Fig. 11(c) and (d), while factor number K is increasing exponentially, running time of SMF-UIDT multiplies as
well. The original time complexity of SMF-UIDT is O((M + N )K2 + RK), but in our datasetM + N is far less than
R, so in experiments it can be seen as O(RK) complexity which matches our experiment results. For RMF-UIDT, if
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Fig. 11. Training time (sec) per iteration of different model with varying data seize (Ratio) or number of factors (K ).
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Fig. 12. The performance comparison between STLDA and SMF-UIDT that considers geographical effect (gSMF-UIDT).

we look into the difference time as K increases, for example, in Tencent-BT task, it consumes 4.70, 6.95, 8.26 (sec)
when K increase to 16, 32, 64, the linear complexity still holds true.

Therefore, we demonstrate that both SMF-UIDT and RMF-UIDT integrate the additional information in an
efficient way, making these two methods scalable and practicable for large-scale real-world data.

5.5.2 Geographical effect. As users tend to visit POIs close to their current location, this geographical effect is an
important factor in real-world POI recommendation applications. To incorporate this effect into our PR-UIDT
framework, we borrow the idea from STLDA, which considers geographical effect by multiplying the predicting
score by a coefficient decided by user location and POI region. The geographical coefficient imposed by STLDA is
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calculated by assuming a Gaussian distribution of each region, and shown below as

p(lu |µr , Σr ) =
1

2π
√
|Σr |

exp(
−(lu − µr )

T Σ−1r (lu − µr )

2 ), (18)

where lu is user’s current location, which we use the location of her test POI, and µr , Σr is the gaussian
distribution parameters of region r . We denote the SMF-UIDT that multiplies its predicting scores with the
coefficient p(lu |µr , Σr ) as gSMF-UIDT. Fig. 12 compares the performance of gSMF-UIDT and STLDA in Yelp
dataset. Hit Ratio at top 1/5/20 are used to evaluate model performances under different region scales. gSMF-UIDT
has obvious advantage compared with STLDA, especially when region number is smaller than 30. With region
number set to 100, gSMF-UIDT is able to achieve the HR@20 approaching 0.80, which indicates a high practical
value in real-world POI recommendation applications. STLDA model benefits a lot form region split, as its
performance increases significantly with region number increasing. However, this region information in training
of STLDA cannot ensure that testing POIs are ranked in the top of recommendation list. In PR-UIDT model, we
extract the valuable information of user preference by learning from both hometown and current city, thus we
can not only recommend interesting POIs which would not appear in recommendation list before, but also make
the right POI ranked higher than geographically closer POI, even if geographical effect is included in this model.
PR-UIDT are flexible to integrate geographical effect to make more precise recommendation. By following

the same means, we believe our proposed PR-UIDT framework is capable of integrating more information, like
temporal regularity, but since the main goal of this framework is to balance user interest transfer and drift in
cross-city scenario, we ignore these regularities and present the most essential part as in PR-UIDT model.

5.6 Applicability in multi-city scenarios. (RQ5)
To evaluate PR-UIDT framework performance in multi-city scenario, we extract two subsets from Yelp datasets,
named as Yelp-3city and Yelp-4city. Yelp-3city dataset contains all records in Las Vegas, Phoenix and Toronto,
and Yelp-4city additionally contains Charlotte. Users or POIs with less than 10 interactions are filtered out to
reduce data sparseness. The basic statistics of Yelp-3city (Yelp-4city) are 5,879 (6,834) users, 4,058 (4,824) POIs,
124,196 (147,490) hometown records and 20,768 (24,402) non-hometown records, respectively.

In multi-city datasets, the hometown of a user is defined as the city where he has most interactions, and
all other cities are defined as non-hometown. Similar to what we did in 2-city scenario, the 80/20 principle is
applied to non-hometown records to generate training and testing sets. When recommending POI for a user,
only unvisited non-hometown POIs are considered as potential choices. We report the final performance of
PR-UIDT and other baselines in Table 5, where the baselines are selected based on their competitive performance
in 2-city scenario (Table 3). Note that the SASRec is not included because we focus on the user interest drift and
transfer. Compared with these baselines, PR-UIDT framework brings 6.3%∼10.7% of performance improvement
in multi-city POI recommendation. Even RMF-UIDT does not perform as well as SMF-UIDT, it still gets 11.0%
improvements compared with vanilla BPR algorithm in terms of NDCG@100 in Yelp-3city, and 19.3% in Yelp-4city.

Table 5. Performance comparison in multi-city scenarios.

Algorithm Vanilla Interest Drift Proposed Gain
WRMF BPR STLDAc WMF-UIDT BPR-UIDT

3city NDCG@100 0.1085 0.0866 0.0707 0.1153 0.0961 +6.3%
HR@100 0.3344 0.3100 0.2570 0.3577 0.3203 +7.0%

4city NDCG@100 0.1031 0.0742 0.0648 0.1127 0.0885 +9.3%
HR@100 0.3158 0.2380 0.2487 0.3496 0.2935 +10.7%
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Overall, these improvements prove that PR-UIDT framework is capable of accurately modeling user interest drift
and transfer when users travel among multiple cities, which shows the generality of the proposed method.

6 RELATED WORK AND DISCUSSION

6.1 Related Work
We first review some related works on improving POI recommendation in a general case. Then, we detail the
cross-region POI recommendation methods that is our main focus. Since this problem is related to transfer
learning and cold-start problem to some extent, we further discuss related works on these two fields.
POI Recommendation. Themost frequently utilized side information in POI recommendation is the geo-social
influence [3, 41]. In terms of geographical information, [20] incorporated users’ preference over spatial regions
into a weighted MF framework. [23] exploited neighborhood characteristics to learn the better embedding of
users and POIs. As for social context, many works took advantage of social relations to learn user preference
on those POIs visited by their potential friends [17, 32]. Others also considered to combine above two parts of
information together to improve POI recommendation [25, 47].
The second type of side informationi s temporal effect on user check-in behaviors [45]. [22] separated the

motivation of visiting POI into a static interest and a time-relevant interest. [48] fused the sequential influence
with geo-social influence into a unified recommendation framework. Recently, a deep recurrent collaborative
filtering method was proposed to further model this effect by using recurrent neural network (RNN) unit [24].
The various type of content information on LBSNs can also help characterizing users’ preference and thus

improve POI recommendation. [8] modeled user-interest content and poi-property content by two overlapping
word latent topics. User sentiment information embedded in review texts was also considered as an important
complement [34, 50].

The above methods worked well in general cases. However, an important scenario in POI recommendation is
for cross-region users who go to an unfamiliar region and thus the visit history is extremely sparse. In this paper,
we propose a PR-UIDT framework that tackles this problem through modeling user interest drift and transfer
between hometown and current city.
Cross-region Recommendation. The most challenging problem for cross-region recommendation is the
data sparsity. Most existing works utilized POI content information [21, 46] or social relationship [6]. However,
these works ignored a basic fact that users’ visiting behaviors should be impacted by the locality, which requires
fine-grained modeling [36, 43]. In addition, [52] grouped both users in the home city and those in the target city
into communities by inferring their interests from contents, and seek for an optimal match between communities
in order to support the cross-city POI recommendations. Recently, a state-of-the-art model [42] assumed that
the personal interests are region-dependent and users’ decisions are impacted by other users of the same role.
Similarly, [16] proposed to separate the city topics into the city-specific topics and the common ones, and users
from a source city will match with POIs in a target city if they are distributed in the same common topics.

Different from above existing works, we do not consider user interests to be fully region-dependent as in [42],
instead we consider both region-dependent interests and region-independent interests at the same time, which is
more accurate and reasonable. Moreover, we choose to model each user’s interest drift and transfer between
cities, instead of an aggregated view of the city topics as in [16], which is more fine-grained and effective.
Transfer Learning in Recommendation. Previous works of leveraging transfer learning for personalized
recommendation mainly focused on transferring the aggregation level knowledge, for example, like the se-
mantic features of locations for chain store site recommendation [9, 18], tag-inferred correlation for item
recommendation [10] and perturbation-added POI check-in history for privacy preserving cross-domain location
recommendation [7]. However, in the case of POI recommendation for cross-city travelers, it is more important
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to transfer personalized interests from hometown to current city, which is more challenging and not contained in
these works.
Cold-start Recommendation. In terms of auxiliary information, [51] addressed cold-start product recom-
mendation by using microblogging information. [44] used POI visiting information to improve smartphone app
usage prediction. [33] solved cold-start location recommendation by learning user interest from app usage data. In
terms of the methodology, [49] proposed a semi-supervised co-training algorithm. [19] proposed a content-aware
collaborative filtering for location recommendation. [30] learned a matrix factorization that exploits items’ prop-
erties and past user preferences while enforcing the manifold structure exhibited by the collective embeddings.
However, all above methods are not suitable for cross-city POI recommendation because users’ preference over
POIs in hometown can not be directly utilized to help predicting their preference over those POIs in current
city (which can be considered as cold-start POIs in this circumstance), which is due to the interest drift and also
known as negative transfer in transfer learning domain. Instead, our proposed PR-UIDT only leverages the partial
information corresponding to city-independent user interests.

6.2 Discussion
POI recommendation performance degrades significantly due to sparse interactions, especially for travelers in
cross-city scenarios. In sharp contrast to previous work on leveraging cross-domain auxiliary information, we
propose to solve the sparsity problem by additionally incorporating travelers’ check-in records in hometown
and locals’ check-in records in current city at the same time. This data augmentation brings a tenfold increase
in data volume, but such large amounts of extra records contain both instructive and misleading information.
Therefore, it is necessary to take into account both user interest drift and transfer between hometown and
current city. Motivated by this, we propose the PR-UIDT framework that leverages such information through the
novel designs of user and POI latent vectors. With superiority on recommendation performance, our PR-UIDT
also has a large practical value in real applications considering its high efficiency and ability of integrating
geographical effect. In terms of limitation, we do not consider other auxiliary information like POI category,
temporal effect and so on. Besides, the two models of SMF-UIDT and RMF-UIDT is basic MF models, which seem
not powerful enough considering the recent development in neural recommender systems [11, 14, 39]. However,
as we demonstrated in experiments, the PR-UIDT can easily integrate other auxiliary information to boost the
recommendation performance. As for the neural network (NN) models, the PR-UIDT is a general framework that
only put constraints on the latent vectors and loss functions, thus it can also replace the existed MF module with
another NN module.

7 CONCLUSION
In this work we study the problem of cross-city POI recommendation for the travelers. To accurately characterize
user interest, we propose a PR-UIDT framework that enable learning from users’ visiting behaviors in both
hometown and current city. Through the novel design of user and POI vectors, both user interest drift and transfer
among different cities are effectively modelled in PR-UIDT. Experiments on real-world datasets show significant
improvements, about 0.4% ∼ 20.5% increase compared with other state-of-the-art models, proving the superiority
of PR-UIDT framework, and further studies demonstrate the importance of combining both interest transfer and
drift in cross-city POI recommendation problems. Moreover, we also evaluate the efficiency of PR-UIDT and
the recommendation performance after integrating geographical effect. The results show great adaptability and
applicability of PR-UIDT in real-word applications, with high efficiency and ability of integrating various types
of auxiliary information.

For further study, we aim to explore whether it’s possible to include cross-domain information like POI category
into our PR-UIDT framework to reach better performance. Another possible improvement may lie in differentiated
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values of hyper-parameters instead of stable for users and POIs to more accurately tradeoff between interest drift
and transfer. We believe it is possible to build a smart and pragmatic POI recommender no matter how sparse the
data is or how hidden user preference is, by utilizing all possible information for designing recommender models.
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