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Abstract
Predicting human mobility is crucial for urban planning, traffic
control, and emergency response. Mobility behaviors can be cat-
egorized into individual and collective, and these behaviors are
recorded by diverse mobility data, such as individual trajectory and
crowd flow. As different modalities of mobility data, individual tra-
jectory and crowd flow have a close coupling relationship. Crowd
flows originate from the bottom-up aggregation of individual tra-
jectories, while the constraints imposed by crowd flows shape these
individual trajectories. Existing mobility prediction methods are
limited to single tasks due to modal gaps between individual tra-
jectory and crowd flow. In this work, we aim to unify mobility
prediction to break through the limitations of task-specific models.
We propose a universal human mobility prediction model (named
UniMob), which can be applied to both individual trajectory and
crowd flow. UniMob leverages a multi-view mobility tokenizer that
transforms both trajectory and flow data into spatiotemporal to-
kens, facilitating unified sequential modeling through a diffusion
transformer architecture. To bridge the gap between the different
characteristics of these two data modalities, we implement a novel
bidirectional individual and collective alignment mechanism. This
mechanism enables learning common spatiotemporal patterns from
different mobility data, facilitating mutual enhancement of both tra-
jectory and flow predictions. Extensive experiments on real-world
datasets validate the superiority of our model over state-of-the-art
baselines in trajectory and flow prediction. Especially in noisy and
scarce data scenarios, our model achieves the highest performance
improvement of more than 14% and 25% in MAPE and Accuracy@5.
The codes are available online: https://github.com/tsinghua-fib-
lab/UniMob.

CCS Concepts
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Simulation types and techniques.
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1 Introduction
Human mobility data records the movement of human beings in
space over time [4, 30, 54]. It supports various activities [53, 56]
and reflects the spatiotemporal dynamics of the city [37, 52]. Con-
sequently, predicting human mobility has significant practical im-
plications, such as urban planning [59, 60], traffic control [35, 57],
and emergency response [54]. Individual trajectory and crowd flow
can be treated as two observations of human mobility that repre-
sent two different modalities of mobility data. Individual trajecto-
ries describe human mobility behavior from a micro perspective,
highlighting personal preferences [61]. Conversely, crowd flows en-
capsulate human movements from a macro perspective, reflecting
collective trends [9]. Crowd flows originate from the bottom-up
aggregation of individual trajectories, while individual trajectories
are influenced by the constraints imposed by crowd flows. This bidi-
rectional influence between individual and collective contributes
to the complexity of human mobility.

Many years ago, various models were proposed to model and
predict human mobility, such as Lévy flight [33], random walk mod-
els [18], radiation model [40], and gravity models [65]. Later, trajec-
tory prediction models have been developed to capture individual
mobility preferences, such as EPR [7], MPRW [48], MobTCast [47]
and DeepMove [15]. At the same time, flow prediction models like
ST-ResNet [58], TODE [62], DeepCrowd [20] and CrowdNet [8]
were created to capture the collective movement trends. Some re-
search has started integrating trajectory and flow data. For example,
GETNext incorporates collective mobility patterns into trajectory
prediction [49], while TrGNN uses individual mobility data to aid
non-recurring flow prediction [22]. Although these works have
made initial attempts and progress in fusing trajectory and flow
data, they remain limited to using other modality data as features.
As a result, only a single modality can be predicted, failing to realize
the unification of different mobility data modalities.

As shown in Figure 1, we are exploring a natural research ques-
tion: can we unify human mobility prediction in one universal
model? The benefits of such unification are evident: The univer-
sal model that learns the common spatiotemporal patterns of two
different mobility data in one model can achieve mutual enhance-
ment in trajectory and flow prediction. However, achieving unified
human mobility prediction faces the following critical challenges:
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Figure 1: The transition from single model to universal
model.

• Diverse data formats of two different mobility data. The
data collection methods for individual trajectories and crowd
flows are different, resulting in distinct forms of representation
for them. For example, trajectory data records the movement
of individuals across different locations over time, while flow
data represents the number of people in a specific location that
changes over time. These diverse data formats of trajectory and
flow make it difficult to represent these data in a unified manner.

• Significant characteristic differences in two modalities of
mobility data. Trajectory data details individual preferences
from a micro perspective, whereas flow data reveals collective
trends from a macro perspective. Thus, incorporating these two
types of data into a unified training framework and extracting
common spatiotemporal patterns from their distinct characteris-
tics is a challenging task.

To address these challenges, we propose a universal mobility pre-
diction model, UniMob, that can be applied to both trajectory and
flow data. Firstly, we design a multi-view mobility tokenizer to uti-
lize multiple perspectives of mobility behavior for unified tokeniza-
tion. Based on sequentially organized trajectory tokens and flow to-
kens, we implement a diffusion transformer architecture to capture
spatiotemporal dynamics inherent in different modalities of mobil-
ity data. Secondly, to address significant characteristic differences
in these two modalities, we introduced an innovative bidirectional
alignment mechanism that facilitates interaction between trajecto-
ries and flows. This mechanism enables the extraction of common
spatiotemporal patterns from individual and collective mobility be-
haviors. Specifically, the alignment from individual to collective is
achieved by aligning aggregated trajectories with flow data, which
aids in modeling collective movement trends. Conversely, the align-
ment from collective to individual employs contrastive learning
to identify semantically similar flows and trajectories, capturing
consistent spatiotemporal patterns at both macro and micro levels.

In this way, UniMob advances towards developing a universal
model. UniMob achieves mutual enhancement in trajectory and
flow prediction by learning common spatiotemporal patterns from
different mobility data. Moreover, UniMob has excellent scalability
and can flexibly derive into multiple variants according to different
requirements, thus adapting to diverse application scenarios. Our
contributions can be summarized as follows:

• To our knowledge, we are the first to unify human mobility pre-
diction, exploring the one-for-all model’s potential in individual
trajectory and crowd flow.

• We propose a universal mobility prediction model. Multi-view
tokenization harmonizes diverse data formats of individual tra-
jectories and crowd flow. Then, the model utilizes bidirectional
alignment mechanisms for individual and collective to address
the characteristic differences caused by data modalities.

• Extensive experiments on real-world datasets have validated that
UniMob achieves superior performance in trajectory and flow
predictions. Further in-depth analysis confirms UniMob’s robust-
ness, particularly in handling noisy and scarce data, achieving
improvements of over 14% inMAPE and over 25% in Accuracy@5.

2 Related Work
Mobility Prediction. Mobility prediction can be divided into

individual and collective categories. Individual prediction focuses
on personal preferences [36]. For example, Qiao et al. [17] and
Wang et al. [44] developed a Markov-based model by considering
the spatiotemporal characteristics of individual mobility. Collective
flow prediction emphasizes modeling collective mobility trends.
For example, DeepSTN+ [14] uses a context-aware spatiotemporal
neural network for flow prediction. CrowdNet utilizes graph con-
volutional networks to achieve flow prediction adapted to various
spatial and temporal granularities [8]. Researchers have integrated
individual and collective mobility data better to understand human
mobility [6, 10, 24]. TrGNN [22] uses vehicle trajectories to infer
short-term traffic flow, predicting unseen and non-recurring traffic
patterns. GETNext [49] constructs a global flow graph to integrate
transition patterns into trajectory prediction. With the emergence
of large language models (LLMs), researchers have begun exploring
their potential in mobility prediction, such as LLM-Mob [45], Agent-
Move [13], TrajAgent [12] and CoPB [38]. However, there is still a
gap in using LLM to understand and reason about human behavior.
Thus, it is necessary to develop foundational models from scratch,
specifically trained on pure mobility data. Table 1 compares the
advantages of our model with existing solutions. In this work, we
build a universal model using different types of mobility data, which
can effectively predict both trajectories and flows, demonstrating
exceptional robustness.

DiffusionModels and FoundationModels. The diffusionmodel
is a probabilistic generativemodel first introduced by Sohl-Dickstein
et al. [41] and further improved by Ho et al. [19] and Song et al.
[42]. As a novel generative model, diffusion models have rapidly
advanced in time series and spatio-temporal modeling. Research
on time series modeling based on diffusion models is widely ap-
plied, such as time series imputation [2, 28], time series genera-
tion [25, 26], and time series forecasting [5, 23]. DiffSTG [46] is
the first attempt to generalize the widespread denoising diffusion
probabilistic models to spatiotemporal graphs (STGs), leading to
a novel non-autoregressive framework. KSTDiff [63] designed a
knowledge-enhanced denoising network to capture the spatiotem-
poral dependencies of urban flows and the influence of the urban
environment in the denoising process. DiffTraj [63] is a spatiotem-
poral diffusion probabilistic model for trajectory generation. This
model effectively combines the generative capabilities of diffusion
models with spatiotemporal features derived from real trajectories.
We focus on human mobility studies based on diffusion models.
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Table 1: Comparison of UniMob with other mobility predic-
tion models regarding important properties.

Model Trajectory
Prediction

Flow
Prediction

Data
Fusion(1) Robustness(2)

DeepMove [15] ✓ × × ×

SNPM [50] ✓ × × ×

TrajGDM [11] ✓ × × ✓

ST-ResNet [58] × ✓ × ×

STID [39] × ✓ × ×

PriSTI [28] × ✓ × ✓

TrGNN [22] × ✓ ✓ ×

GETNext [49] ✓ × ✓ ×

LLM-Mob [45] ✓ × × ✓

UniMob ✓ ✓ ✓ ✓

(1) Use of multi-source data (trajectory and flow).
(2) Keep ability with noisy or scarce data.

DiffTraj [63] and ControlTraj [64] combine the generative capa-
bilities of diffusion models with spatiotemporal features derived
from trajectories. PriSTI [28] uses a conditional diffusion frame-
work for spatiotemporal imputation with enhanced prior modeling.
TrajGDM [11] utilizes diffusion models to capture the universal
mobility pattern in a trajectory dataset. Foundation models have
revolutionized natural language processing [1] and computer vi-
sion [29] through their ability to generalize across different applica-
tions. Building on the success of foundation models in these fields,
extending them to the spatiotemporal domain is a natural next
step. Although models like UniST [51] and GPD [55], have made
some progress in predicting collective dynamics, there remains a
significant gap in universal models capable of adapting to various
types of mobility data. In this work, we present the UniMob model,
marking the first attempt to apply a universal mobility prediction
model based on a diffusion transformer.

3 Preliminaries
3.1 Problem Definition
Human mobility data can be divided into two types: individual and
collective. Trajectories can describe individual mobility, while flow
data can characterize collective mobility.
Definition 1: (Individual Trajectory). An individual trajectory
can be defined as 𝑋 𝑡𝑟𝑎 𝑗 = {(𝑙1, 𝑡1), (𝑙2, 𝑡2), ..., (𝑙𝑛, 𝑡𝑛)}, where each
location 𝑙𝑖 is represented as the form in latitude and longitude
coordinates or a region ID.
Definition 2: (Crowd Flow). Crowd flow includes inflow and
outflow, defined as the number of people entering or leaving a
region within a given time interval. The crowd flow for a region
𝑙 can be represented as 𝑋 𝑓 𝑙𝑜𝑤

𝑙
∈ R𝑁×𝑇 , where 𝑇 is the number of

time intervals, and 𝑁 is the dimension of the flow, such as 𝑁 = 2
for inflow and outflow. The entire city’s flow can be represented as
𝑌 ∈ R𝑁×𝑇×𝐿 , where 𝐿 is the number of regions.
Problem Statement: (Mobility Prediction). Given 𝑝 histori-
cal records of mobility data (which can be trajectory 𝑋

𝑡𝑟𝑎 𝑗

[𝑡−𝑝 :𝑡 ] or

flow 𝑋
𝑓 𝑙𝑜𝑤

[𝑡−𝑝 :𝑡 ] ), our goal is to predict the future 𝑘 steps 𝑋 𝑡𝑟𝑎 𝑗

[𝑡 :𝑡+𝑘 ] or

𝑋
𝑓 𝑙𝑜𝑤

[𝑡 :𝑡+𝑘 ] .

3.2 Denoising Diffusion Probabilistic Model
Diffusion models use latent variable models, denoted as 𝑝𝜃 (𝑥0) :=∫
𝑝𝜃 (𝑥0:𝑇 )𝑑𝑥1:𝑇 . The latent variables 𝑥1, ..., 𝑥𝑇 have the same di-

mension as the data 𝑥0 ∼ 𝑞(𝑥0). The model uses twoMarkov chains:
a forward chain that perturbs data into noise and a reverse chain
that converts noise back into data. The forward diffusion process:

𝑞 (x1:𝑇 | x0) :=
𝑇∏
𝑡=1

𝑞 (x𝑡 | x𝑡−1) , (1)

where 𝑞 (x𝑡 | x𝑡−1) := N
(√︁

1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I
)
. Equivalently, 𝑥𝑡 can

be expressed as 𝑥𝑡 =
√
𝛼𝑡𝑥0 + (1 − 𝛼𝑡 ) 𝜖 for 𝜖 ∼ N(0, I), with

𝛼𝑡 =
∑𝑡
𝑖=1 (1 − 𝛽𝑖 ).

The reverse process denoises 𝑥𝑡 to retrieve 𝑥0, where x𝑇 ∼
N(0, I). Assuming 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) follows a normal distribution:{

𝑝𝜃 (x0:𝑇 ) := 𝑝 (x𝑇 )
∏𝑇

𝑡=1 𝑝𝜃 (x𝑡−1 | x𝑡 ) ,
𝑝𝜃 (x𝑡−1 | x𝑡 ) := N (x𝑡−1; 𝝁𝜃 (x𝑡 , 𝑡) , 𝜎𝜃 (x𝑡 , 𝑡) I)

(2)

Ho et al. [19] introduced denoising diffusion probabilistic models:
𝝁𝜃 (x𝑡 , 𝑡) = 1

𝛼𝑡

(
x𝑡 − 𝛽𝑡√

1−𝛼𝑡
𝝐𝜃 (x𝑡 , 𝑡)

)
,

𝜎𝜃 (x𝑡 , 𝑡) = 𝛽
1/2
𝑡 , 𝛽𝑡 =

{ 1−𝛼𝑡−1
1−𝛼𝑡 𝛽𝑡 𝑡 > 1
𝛽1 𝑡 = 1

(3)

where 𝜖𝜃 is a trainable denoising function. The objective for training
the reverse process is:

min
𝜃

L(𝜃 ) := min
𝜃

Ex0∼𝑞 (x0 ),𝝐∼N(0,I),𝑡 ∥ 𝝐 − 𝝐𝜃 (x𝑡 , 𝑡) ∥22, (4)

where x𝑡 =
√
𝛼𝑡x0 + (1 − 𝛼𝑡 ) 𝝐 . This can be seen as a weighted

variational constraint on the negative log-likelihood, reducing the
significance of terms at low 𝑡 when little noise is present.

4 Method
To unify diverse data formats and varied data characteristics, our
universal solution includes two key designs: 1) The mobility tok-
enizer transforms trajectory and flow into a unified spatiotemporal
token format, facilitating the utilization of the powerful diffusion
transformer architecture. 2) The individual and collective alignment
is designed to jointly train different data types within the same
model framework, effectively aligning the differences in individual
and collective mobility behavior.

4.1 Overall Framework
The framework of UniMob is shown in Figure 2, which consists of
four modules:
• Multi-view Mobility Tokenizer: It first standardizes different
data types through tokenization and then uses two mobility en-
coders to capture the spatiotemporal dynamics of trajectory and
flow from multiple views.

• Bidirectional Individual-Collective Alignment: This mod-
ule consists of two parts: Individual-to-Collective alignment
and Collective-to-Individual alignment. Individual-to-Collective
alignment utilizes the I2C loss function, which captures collec-
tive dynamics by aligning aggregated trajectories with the flow.
Collective-to-Individual alignment uses the C2I loss function,
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Figure 2: The overview architecture of UniMob, which consists of four modules: (1) Multi-view Mobility Tokenizer, (2) Bidirec-
tional Individual-Collective Alignment, (3) Joint Noise Predictor, (4) Mobility Predictor.

which employs contrast learning to align individual trajectory
and crowd flow with the same spatiotemporal pattern.

• Joint Noise Predictor: Learning the spatiotemporal distribution
of mobility behavior can be represented as a denoising diffusion
process, utilizing a joint noise predictor for trajectories and flows
to model individual and collective mobility effectively.

• Mobility Predictor: The goal of the mobility predictor is to
decode high-dimensional spatiotemporal features, capture the
dynamic changes in trajectory or flow, and achieve accurate
prediction results.

Overall, the training of the model is supervised by three types of
losses: I2C loss, C2I loss, and prediction loss. The first two losses
are designed to promote alignment between individuals and col-
lective, while the prediction loss targets the joint noise predictor
of the diffusion model to estimate the noise to be removed and
improve prediction accuracy. The combined effect of these losses
significantly improves the accuracy and robustness of UniMob in
understanding and predicting complex mobility behaviors.

4.2 Multi-view Mobility Tokenizer
To address the challenge of diverse data formats, tokenization is
applied to process different data types into a unified sequential
format. Subsequently, two encoders capture the spatiotemporal
dynamics inherent in the mobility data from multiple views.

4.2.1 Tokenization. Tokenization is applied to mobility data such
as trajectories and flow data, converting it into compact token
sequences to enable more efficient computation and standardized
processing. We divide the trajectory 𝑋 𝑡𝑟𝑎 𝑗 and flow 𝑋 𝑓 𝑙𝑜𝑤 into
several continuous overlapping or non-overlapping tokens, each
with a length of 𝑝 . Therefore, the total number of input tokens is
𝐶 =

(𝑇−𝑝 )
𝑄

, where𝑇 denotes the total number of time intervals and
𝑄 represents the horizontal sliding stride.

4.2.2 Trajectory Encoder. In this module, we model trajectory
from the spatial and temporal perspectives. Firstly, to capture the
geographical continuity of mobility, we construct a spatial graph
𝐺 = (𝑉 , 𝐸). The nodes 𝑉 represent all visited locations, and the
edges 𝐸 define the connections between these locations. Each edge
𝑒 = (𝑢, 𝑣) is an unordered pair with a positive weight 𝑤𝑢𝑣 , repre-
senting the Euclidean distance between locations 𝑢 and 𝑣 . We use a
graph embedding approach F (·) to get the location embedding 𝑆 ,
which is denoted as follows:

𝑆 = F𝜃 (𝐺), (5)

We obtain a spatial embedding matrix 𝑆 ∈ R𝐿×𝑊 , where 𝐿 is the
number of regions, and𝑊 is the dimension of embedding.

Then, to capture the periodicity of time, we use temporal embed-
ding matrices 𝐻 ∈ R𝑇ℎ×𝑊 and 𝐷 ∈ R𝑇𝑑×𝑤 to represent the time
features. 𝑇ℎ is the number of time slots in a day (determined by the
sampling frequency), and 𝑇𝑑 = 7 is the number of days in a week.

Finally, the trajectory embedding 𝑅 is obtained by concatenating
the spatial and temporal embeddings, represented as:

𝑅𝑡 = [𝑆𝑡 ;𝐻𝑡 ;𝐷𝑡 ], (6)

where 𝑅𝑡 is the vector representation of the 𝑡-th trajectory point.

4.2.3 Flow Encoder. The flow can obtain corresponding spatial
and temporal embeddings like the trajectory. Moreover, the flow has
an extra embedding for historical values, achieved by mapping the
raw historical time series 𝑋 𝑓 𝑙𝑜𝑤

[𝑡−𝑝 :𝑡 ] into the latent space 𝑉𝑡 ∈ R𝑊 :

𝑉𝑡 = 𝐹𝐶 (𝑋 𝑓 𝑙𝑜𝑤

[𝑡−𝑝 :𝑡 ] ), (7)

where 𝐹𝐶 (·) is a fully connected layer and𝑊 is the dimension of
embedding.
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Thus, we connect the spatial embedding, the temporal embed-
ding, and historical embedding to obtain the flow embedding 𝐹 :

𝐹𝑡 = [𝑆𝑡 ;𝐻𝑡 ;𝐷𝑡 ;𝑉𝑡 ] . (8)

4.3 Joint Noise Predictor
Formally, suppose we have two types of mobility data sampled from
the distribution 𝑞(𝑅0, 𝐹0). Our goal is to design a diffusion-based
model that can capture some related distributions determined by
𝑞(𝑅0, 𝐹0), specifically the marginal distributions 𝑞(𝑅0) and 𝑞(𝐹0).

According to Bao et al. [3], different forms of distributions can be
unified into the general form of E[𝜖𝑅, 𝜖𝐹 | 𝑅𝑡𝑅 , 𝐹𝑡𝐹 ], where 𝑡𝑅 and
𝑡𝐹 are two different timesteps, and 𝑅𝑡𝑅 and 𝐹𝑡𝐹 are the correspond-
ing perturbed data. Particularly, a maximum timestep 𝑇 means
marginalizing it. By setting 𝑡𝐹 = 𝑇 , we have E[𝜖𝑅 | 𝑅𝑡𝑅 , 𝐹𝑇 ] ≈
E[𝜖𝑅 | 𝑅𝑡𝑅 ], which corresponds to the marginal distribution 𝑞(𝑅0).
Similarly, by setting 𝑡𝑅 = 𝑇 , we have E[𝜖𝐹 | 𝐹𝑡𝐹 , 𝑅𝑇 ] ≈ E[𝜖𝐹 | 𝐹𝑡𝐹 ],
which corresponds to the marginal distribution 𝑞(𝐹0).

Inspired by the unified view, we learn E[𝜖𝑅, 𝜖𝐹 | 𝑅𝑡𝑅 , 𝐹𝑡𝐹 ] for all
0 ≤ 𝑡𝑅, 𝑡𝐹 ≤ 𝑇 to model all relevant distributions determined by
𝑞(𝑅0, 𝐹0).We employ a joint noise prediction network 𝜖𝜃 (𝑅𝑡𝑅 , 𝐹𝑡𝐹 , 𝑡𝑅, 𝑡𝐹 )
to predict the noise injected into 𝑅𝑡𝑅 and 𝐹𝑡𝐹 together:

𝜖𝜃 = 𝜖𝜃 (𝑅𝑡𝑅 , 𝐹𝑡𝐹 , 𝑡𝑅, 𝑡𝐹 ), (9)

We train a joint noise prediction network based on the trajec-
tory and flow embeddings obtained in Section 4.2.2. Naturally, to
capture the spatiotemporal correlations of mobility data, we use
a transformer-based backbone in UniMob to process inputs from
different mobility data types.

4.4 Mobility Predictor
After the denoising process in the latent space is complete, the
target of the predictor is to transform the embeddings back into
the form of the original data.

4.4.1 Trajectory Predictor. For the discrete space domain, we
add an inverse step at the end of the denoising process, which con-
verts the real-valued embedding of 𝑅0 to the probability distribution
of locations 𝑑 = {𝑑1, 𝑑2, ..., 𝑑𝑁 } as follows:

𝑃 (𝐸) = (𝐸𝑇 𝐸)−1𝐸𝑇 , (10)

where 𝐸 denotes Embedded Matrix, 𝐸𝑇 denotes the transpose of
matrix 𝐸, and (·)−1 represents the matrix inverse.

𝑑 = 𝑅0 ∗ 𝑃 (𝐸), (11)
where 𝑑 denotes the probability of visiting each location in the
trajectory.

𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑑), (12)
where 𝑎𝑟𝑔𝑚𝑎𝑥 (·) function is used to find the maximum value index
in a vector, and 𝑖 denotes the next location id.

4.4.2 Flow Predictor. The regression layer makes predictions
based on the following:

𝑌[𝑡 :𝑡+𝑓 ] = 𝐹𝐶 (𝐹0), (13)

where 𝐹𝐶 (·) is a fully connected layer and 𝑌[𝑡 :𝑡+𝑓 ] is future flow.

4.5 Bidirectional Individual-Collective
Alignment

To address significant characteristic differences in two modalities
of mobility data, we design several alignment mechanisms, includ-
ing Individual-to-Collective and Collective-to-Individual alignment.
These methods enable collaborative perception and complemen-
tary expression of multi-source mobility data. After obtaining well-
interacted representations of trajectories and flows, we employ the
prediction loss from a joint noise prediction network.

4.5.1 Individual-to-Collective Alignment. The alignment from
individuals to collective is designed to aggregate individual move-
ments from the bottom up, collaborating with collective mobility
patterns to capture collective dynamics. Thus, we utilize I2C (Indi-
vidual to Collective) loss to align trajectory with flow. Specifically,
we first aggregate multiple trajectory embeddings:

𝑅𝑎𝑙𝑙 = 𝑅𝑢1 + 𝑅𝑢2 + ... + 𝑅𝑢𝑛 , (14)

where 𝑅𝑎𝑙𝑙 is the aggregated trajectory embeddings of multiple
users, while 𝑅𝑢𝑛 represents the trajectory embedding of user 𝑢𝑛 .

This aggregated embedding captures and displays the collective
behavioral characteristics and trends. Then, we interact this ag-
gregated result with the flow embedding. We can optimize their
collaborative representation by maximizing the similarity between
these two embeddings:

L𝐼2𝐶 = 1 − 𝑢 · 𝑣
| |𝑢 | | | |𝑣 | | , (15)

Through the I2C loss, we can more accurately capture and describe
the dynamic changes of collective in space and time.

4.5.2 Collective-to-Individual Alignment. The alignment from
the collective to the individual aims to impose constraints on indi-
vidual behavior through collective mobility patterns, better model-
ing individual movement preferences. Through contrastive learning,
we utilize C2I (Collective to Individual) loss to identify common
spatiotemporal patterns in micro-level trajectories and macro-level
flows. We determine positive and negative samples based on the
spatiotemporal consistency between trajectory data and flow data:
• Positive samples 𝑅+: If at a specific time and location, the flow
data shows a peak (for example, a traffic hub during the morning
rush hour), then individual trajectory data that matches this time
and location are considered positive samples. This implies that
these individual trajectories are aligned with the spatiotemporal
patterns of the flow data.

• Negative samples 𝑅− : Trajectories that appear at the same
location when there is no flow peak or at different times and
locations are considered negative samples. These trajectories do
not align with the spatiotemporal patterns of the flow data.
For example, in a commercial area, we observe that the flow of

people peaks between 5 PM and 6 PM every day, mainly because
most office workers leave work during this period. The positive
samples are the trajectories recorded in the commercial area during
this time. These trajectories reflect the common behavior of most
office workers leaving work on time, showing the main flow direc-
tion in the commercial area. On the other hand, negative samples
are the trajectories recorded in other areas (such as suburbs or resi-
dential areas) during the same period. These represent people who
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leave work early or those whose workplaces are not in the com-
mercial area. By comparing these samples, we can align collective
mobility dynamics with individual mobility preferences, ensuring
consistency between micro-level and macro-level mobility patterns.

According to the contrast learning framework, we maximize the
similarity between anchors and augmented positive examples while
minimizing the similarity between anchors and negative examples
lost through InfoNCE [34]:

L𝐶2𝐼 =
𝑁∑︁
𝑖=1

log
𝝋
(
𝑭 , 𝑹+)∑

𝑹−∈𝑆 𝝋 (𝑭 , 𝑹−) , (16)

where 𝝋 (𝑖, 𝑗) = exp(sim(𝑖, 𝑗)/𝜏) measures the correlation between
two representations, where sim(·, ·) denotes the cosine similarity
function, 𝑅+ represents the positive sample. 𝑆 is a set of random
negative samples from the same batch.

4.6 Training
Wemodel the embedding of trajectories and flows using a joint noise
prediction network with the following prediction loss function:

L𝑝𝑟𝑒𝑑 = E𝑹0,𝑭0,𝝐𝑅 ,𝝐𝐹 ,𝑡𝑅 ,𝑡𝐹 | |𝝐𝜽 (𝑹𝑡𝑅 , 𝑭𝑡𝐹 , 𝑡
𝑅, 𝑡𝐹 ) − [𝝐𝑅, 𝝐𝐹 ] | |22,,

(17)
where [, ] denotes concatenation, 𝜖𝑅 and 𝜖𝐹 are sampled from stan-
dard Gaussian distributions, and 𝑡𝑅 and 𝑡𝐹 are uniformly sampled
from {1, 2, ...,𝑇 } independently.

Finally, the total loss is expressed as:

L𝑡𝑜𝑡𝑎𝑙 = 𝛼L𝐼2𝐶 + 𝛽L𝐶2𝐼 + 𝛾L𝑝𝑟𝑒𝑑 , (18)

The weights 𝛼 , 𝛽 , and 𝛾 correspond to the three loss terms, allowing
the total loss function L𝑡𝑜𝑡𝑎𝑙 to simultaneously enable trajectory
and flow interactions and accurately predict mobility.

4.7 Variants
In the real world, universal models have a wide range of application
scenarios and diverse application requirements. For example, in
some cases, there is only one type of mobility data available; in
other cases, to save computational resources, it is desirable to use a
shared set of parameters to perform flow and trajectory predictions
simultaneously. Therefore, we design four model variants to ensure
our model can flexibly adapt to different application scenarios and
possess greater practicality. As shown in Figure 3, these variants are
based on whether parameters are shared and whether both types
of mobility data are used during testing:
• UniMob-v1: This variant is designed for scenarios with limited
data types and constrained computational resources.

• UniMob-v2: This variant is suitable for scenarios with multiple
types of mobility data but needs to save computational resources.

• UniMob-v3: This variant can handle scenarios with rich data
types but limited computational resources.

• UniMob-v4: This variant is designed for users with rich data
types and ample computational resources.

5 Experiments
5.1 Experimental Settings
5.1.1 Dataset. We conduct extensive experiments on three real-
world mobility datasets from Shanghai, Senegal, and Xizang. Each

UniMob
or or

Sharing parameters 

Using two types of 
data during testing

UniMob

or

UniMob

UniMob

UniMob

UniMob

(a) UniMob-v1 (b) UniMob-v2

(c) UniMob-v3 (d) UniMob-v4
Not sharing parameters

Using single types of 
data during testing

Figure 3: Four model variants based on whether parameters
are shared and whether two types of mobility data are used
during testing.

Table 2: Basic statistics of mobility datasets.
City Duration Users Location

Shanghai 7 days 700000 4096
Senegal 14 days 8000 1666
Xizang 28 days 1200000 4096

dataset includes both trajectory and flowdata. The details of datasets
are summarized in Table 2. We preprocess the trajectory data for
three datasets, filtering out users with fewer than five records per
day. For location preprocessing, we map GPS points to predefined
grid IDs of a specific granularity. For temporal preprocessing, we
organize the time data into fixed intervals, such as hourly or half-
hourly segments. Finally, we divide the data into training, validation,
and testing sets in a 7:1:2 ratio in chronological order.

5.1.2 Baselines. We compare the performance of our model with
state-of-the-art baselines. Previous methods could only accomplish
one type of mobility data prediction task, so the baseline methods
are divided into trajectory and flow prediction.

Flow Prediction. The baselines for flow prediction are as follows:

• HA [43]: It considers the inflow and outflow to be seasonal pro-
cesses and employs the average of the previous seasons as the
prediction for a week-long period.

• VAR [31]: This method is vector autoregressive single-step pre-
dictor.

• ST-ResNet [58]: ST-ResNet employs the residual neural network
framework to model the temporal closeness, period, and trend
properties of crowd flow.

• MSDR [27]: Multi-Step Dependency Relationship (MSDR) is a
brand new variant of recurrent neural networks. Instead of only
looking at the hidden state from the latest time step, MSDR
explicitly takes those from multiple historical time steps as the
input of each time unit.

• STID [39]: A simple multi-layer perceptron addresses the indis-
tinguishability of time series samples in spatial and temporal
dimensions.
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• PriSTI [28]: This method extracts coarse but effective spatiotem-
poral dependencies from conditional information using a diffu-
sion model, serving as a global context prior.

Trajectory Prediction. The baselines for trajectory prediction are
as follows:
• Markov Model [16]: The Markov model is a statistical model
used to describe the change of states over time. It uses histor-
ical trajectory data for location prediction by calculating the
transition probabilities between these locations.

• LSTM [21]: The LSTM network is good at handling sequential
data and has the advantage of encoding long-term dependencies,
which can naturally be applied to location prediction.

• DeepMove [15]: The method designs a multimodal embedding
recurrent neural network to capture complex sequential transi-
tions by jointly embedding multiple factors that control human
mobility.

• STAN [32]: This model associates non-contiguous but function-
ally similar visited points that are not adjacent to each other to
predict the next location.

• SNPM [50]: The method constructs a Sequence-based, Dynamic
Neighbor Graph (SDNG) to find the similarity neighborhood and
develop a Multi-Step Dependency Prediction model.

• TrajGDM [11]: The method utilizes diffusion models to capture
the universal mobility pattern in a trajectory dataset for trajectory
prediction.

• GETNext [49]: The method employs a global trajectory flow
map and a novel Graph Enhanced Transformer model to leverage
collaborative signals for more accurate trajectory prediction.

5.1.3 Metrics. For trajectory prediction, we use Accuracy@k to
sort candidate locations by model-predict probabilities and check
if the true position falls within the top k predictions. For flow
prediction, we choose mean absolute errors (MAE), Mean Absolute
Percentage Error (MAPE), and root mean squared errors (RMSE) as
the evaluation metrics. MAE is the mean absolute error between
predicted and ground truth values. MAPE is the mean absolute
percentage error between the predicted and ground truth values.
RMSE is the square root of the mean squared error between the
predicted and ground truth values.

5.2 Overall Performance
This section only presents the results for the Shanghai and Senegal
datasets. Detailed results for the Xizang dataset can be found in
Appendix B. As shown in Tables 3, our method demonstrates sim-
ilar or better performance than the state-of-the-art baselines for
all tasks on Shanghai and Senegal datasets (Please refer to Table 6
in Appendix B.1 for Xingjiang dataset). We conducted multiple
experiments and reported the average performance. In flow and tra-
jectory prediction tasks conducted on multiple real-world datasets,
our UniMob model demonstrated the best performance across all
evaluation metrics. Specifically, it achieved a performance improve-
ment of over 6% in flow prediction and 3.73% increase in trajectory
prediction. Additionally, compared to other baseline methods, only
our model can simultaneously perform flow and trajectory predic-
tions, demonstrating that our model design effectively achieves uni-
fied human mobility prediction. Furthermore, we used four model

variants for each task. Each variant outperformed other baseline
methods, maintaining flexibility to handle different scenarios while
demonstrating excellent performance. The above conclusions fully
demonstrate the feasibility of a unified model in human mobility
prediction. Our UniMob model can handle various types of mobil-
ity data, showcasing exceptional scalability and robustness. As the
first attempt to propose a universal model paradigm for mobility
prediction, we have successfully expanded the boundaries of this
field.

Notably, mobility prediction models based on diffusion models,
such as PriSTI and TrajGDM, demonstrate superior performance
compared to other baselines. This underscores the powerful mod-
eling capability of diffusion models in capturing the spatiotem-
poral correlations of mobility data. Diffusion models effectively
handle dynamics and uncertainties in mobility data through an
iterative denoising process, significantly enhancing prediction per-
formance. Therefore, our UniMob model leverages diffusion models
to accurately capture spatiotemporal dependencies in mobility data
accurately, proving its effectiveness.

5.3 Ablation Study
To evaluate the impact of each module in UniMob, we conducted
ablation experiments, divided into ablations of model design and
data usage. Model Design: (1) w/o I2C loss: This variant keeps
the model structure unchanged but removes the I2C loss. (2) w/o
C2I loss: Similar to the previous one, this variant only removes the
C2I loss. (3) w/o shared transformer: In this variant, the flow and
trajectory losses no longer share a transformer; instead, each has
its independent transformer. Data Usage: (4) w/o flow data: The
model is trained using only trajectory data. (5) w/o trajectory data:
The model is trained using only flow data.

The results of the ablation experiments conducted on the Shang-
hai and Senegal datasets are shown in Tables 4 and 5 (see Table 7
and 8 in Appendix B.2 for the Xizang dataset). For the ablation ex-
periments on model design, it is evident that the shared transformer
offers limited benefits for interacting with different mobility data
types. The most significant performance improvements come from
task-specific loss functions. For instance, the I2C loss enhances
flow prediction by using aggregated trajectory and flow data for
spatiotemporal alignment. Similarly, the C2I loss uses contrastive
learning to construct positive samples of flow and trajectory with
similar spatiotemporal patterns, thereby aligning macro and micro
mobility distribution. These experiments highlight the effectiveness
of our approach in aligning trajectory and flow data.

We removed different data types for the ablation experiments
on data usage and trained the model using only a single type of
mobility data. The results showed a significant performance decline.
This demonstrates the effectiveness and importance of our model
in utilizing different types of mobility data. By combining multiple
data types, UniMob can more comprehensively understand and
predict human mobility behavior, thereby significantly enhancing
the model’s overall performance.

5.4 Noise Perturbation
In real life, mobility data often contains noise. This noise can arise
from various sources, such as errors produced by sensors during
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Table 3: Overall Performance on Shanghai and Senegal datasets.

Shanghai Dataset Senegal Dataset

Flow Prediction Trajectory Prediction Flow Prediction Trajectory Prediction

MAE MAPE(%) RMSE Acc@1 Acc@3 Acc@5 MAE MAPE(%) RMSE Acc@1 Acc@3 Acc@5

HA 35.19 29.76 42.72 - - - 20.75 19.32 31.17 - - -
VAR 28.25 25.61 40.14 - - - 17.20 15.95 28.43 - - -
ST-ResNet 21.54 19.02 34.18 - - - 15.95 13.84 26.37 - - -
MSDR 20.01 17.84 32.63 - - - 14.08 13.26 25.04 - - -
STID 18.72 15.17 30.40 - - - 13.52 12.31 23.19 - - -
PriSTI 18.40 14.59 29.71 - - - 13.28 12.15 22.80 - - -
Markov - - - 0.2825 0.3986 0.5012 - - - 0.3894 0.4418 0.5828
LSTM - - - 0.3401 0.4298 0.5737 - - - 0.4573 0.5185 0.6509
DeepMove - - - 0.3813 0.4672 0.6191 - - - 0.4980 0.5764 0.7125
STAN - - - 0.3975 0.4746 0.6303 - - - 0.5105 0.6042 0.7303
SNPM - - - 0.4012 0.4797 0.6378 - - - 0.5236 0.6260 0.7591
GETNext - - - 0.4063 0.4836 0.6415 - - - 0.5251 0.6287 0.7638
TrajGDM - - - 0.4103 0.4875 0.6434 - - - 0.5295 0.6302 0.7674
UniMob-v1 17.93 14.01 28.65 0.4205 0.5024 0.6570 12.70 11.65 21.94 0.5403 0.6412 0.7889
UniMob-v2 17.89 13.98 28.60 0.4228 0.5057 0.6615 12.52 11.50 21.57 0.5439 0.6450 0.7924
UniMob-v3 17.90 13.96 28.63 0.4213 0.5040 0.6593 12.61 11.59 21.73 0.5415 0.6436 0.7907
UniMob-v4 17.76 13.93 28.50 0.4267 0.5091 0.6653 12.08 11.12 21.03 0.5486 0.6515 0.7993

Table 4: Ablation study on Shanghai datasets.

Trajectory Prediction Flow Prediction

Acc@1 Acc@3 Acc@5 MAE MAPE(%) RMSE

Ours 0.4205 0.5024 0.6570 17.93 14.01 28.65
w/o I2C loss 0.4165 (-0.95%) 0.4906 (-2.35%) 0.6487 (-1.26%) 18.48 (-2.98%) 14.76 (-5.35%) 29.91 (-4.21%)
w/o C2I loss 0.4053 (-3.61%) 0.4849 (-3.48%) 0.6442 (-1.95%) 18.27 (-1.86%) 14.41 (-2.78%) 29.25 (-2.05%)
w/o shared transformer 0.4115 (-2.14%) 0.4882 (-2.83%) 0.6461 (-1.66%) 18.40 (-2.55%) 14.60 (-4.21%) 29.67 (-3.44%)
w/o flow data 0.4036(-4.02%) 0.4840(-3.66%) 0.6421(-2.27%) - - -
w/o trajectory data - - - 18.56(-3.51%) 14.86(-6.07%) 30.02(-4.78%)

Table 5: Ablation study on Senegal datasets.

Trajectory Prediction Flow Prediction

Acc@1 Acc@3 Acc@5 MAE MAPE(%) RMSE

Ours 0.5403 0.6412 0.7889 12.70 11.65 21.94
w/o I2C loss 0.5371 (-0.59%) 0.6356 (-0.87%) 0.7620 (-3.41%) 13.32 (-4.88%) 12.12 (-4.03%) 22.91 (-4.42%)
w/o C2I loss 0.5285(-2.18%) 0.6327 (-1.33%) 0.7476 (-5.24%) 12.89 (-1.50%) 11.73 (-0.69%) 22.10 (-0.73%)
w/o shared transformer 0.5314 (-1.65%) 0.6331 (-1.26%) 0.7538 (-4.45%) 13.20 (-3.94%) 11.97 (-2.75%) 22.62 (-3.10%)
w/o flow data 0.5262(-2.61%) 0.6297(-1.80%) 0.7548(-4.32%) - - -
w/o trajectory data - - - 13.40(-5.51%) 12.18(-4.55%) 22.98(-4.74%)

the collection process or intentionally added by data operators to
protect user privacy. To assess our UniMob model’s robustness, we
added noise to the data and evaluated its performance.

For flow data, we introduced varying noise levels to simulate
different degrees of data quality. Figure 4 shows that our model’s
improvement over the best baseline is relatively small without noise.
When the noise level reaches 0.3, our model demonstrates a relative
improvement of more than 10%. This indicates that compared to
other baseline models, UniMob exhibits better robustness in han-
dling noisy data, making it more capable of adapting to flow data
with noise for prediction. Moreover, we experimented with adding
different noise levels to trajectories. Figure 5 shows that as the noise
ratio increases, the improvement of our model relative to the best
baseline also increases, achieving a maximum gain of up to 17.82%.
Because UniMob integrates two types of mobility data, allowing

one type of data to provide the same spatiotemporal dynamics as a
supplement when the other type of data is noisy, thereby enhancing
the model’s robustness. The synergistic effects between different
data types can still provide reliable predictions even in noisy data.

5.5 Few-shot Performance
Similarly, the amount of mobility data may be limited in real-world
scenarios due to privacy concerns, data collection challenges, or
other constraints. To simulate this situation, we reduce the amount
of flow and trajectory data through different operations.

As shown in Figure 6, we constructed scenarios with varying
proportions of locations having missing flow records. As the pro-
portion of regions with missing flow data increased, our model still
demonstrated a significant performance improvement compared
to the best baseline. For instance, in the Shanghai dataset, UniMob



A Universal Model for Human Mobility Prediction KDD ’25, August 3–7, 2025, Toronto, ON, Canada

0.0 0.1 0.2 0.3
Noise Level

2

4

6

8

10

12

Im
pr

ov
em

en
t (

%
)

MAE
MAPE
RMSE

(a) Shanghai

0.0 0.1 0.2 0.3
Noise Level

2

4

6

8

10

12

Im
pr

ov
em

en
t (

%
)

MAE
MAPE
RMSE

(b) Senegal

Figure 4: Flow prediction with noisy data on Shanghai and
Senegal datasets.
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Figure 5: Trajectory prediction with noisy data on Shanghai
and Senegal datasets.

achieves an improvement of up to 14% when 75% of the region is
missing. UniMob’s robustness is evident in its ability to maintain
high performance despite the absence of a substantial amount of
flow data. This is due to its ability to leverage the available trajec-
tory data, compensating for the missing flow information through
its joint modeling approach. As shown in Figure 7, we used datasets
of different sizes for trajectory data to explore the performance of
trajectory prediction with limited data. When the amount of trajec-
tory data is very limited (e.g., only 25% of the dataset), our model
shows a 25% improvement in the Shanghai dataset compared to
the best baseline. This indicates that when trajectory data is scarce,
the flow data provides more diverse mobility patterns, effectively
compensating for the lack of trajectory data.

By effectively utilizing the spatiotemporal correlations between
different types of mobility data, UniMob can provide accurate pre-
dictions even in data-scarce environments. UniMob’s ability to de-
liver reliable predictions with limited data highlights its robustness
and practical applicability in various scenarios, ensuring depend-
able performance regardless of data constraints.

6 Conclusion
In this paper, we address an important problem of unified human
mobility prediction. We propose a universal human mobility predic-
tion model named UniMob, achieving broad adaptability to various
data formats and characteristics. UniMob successfully captures
the spatiotemporal dynamics inherent in different modalities of
mobility data by unified tokenization and bidirectional alignment
between them, enabling unified modeling. Extensive experiments
on real-world datasets demonstrate that UniMob outperforms in
trajectory and flow prediction. Moreover, UniMob can flexibly adapt
to noisy and scarce data scenarios, showcasing its robustness. In the
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Figure 6: Flow prediction with scarce data on Shanghai and
Senegal datasets.
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Figure 7: Trajectory prediction with scarce data on Shanghai
and Senegal datasets.

future, we will explore integrating additional urban data modalities,
such as weather data, social network data, and GIS data. These
factors influence human mobility, we can better predict human
mobility patterns by combining them with mobility data.
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Table 7: Ablation study on Xizang datasets for trajectory
prediction.

Acc@1 Acc@3 Acc@5

Ours 0.4768 0.5795 0.7217
w/o I2C loss 0.4736 (-0.67%) 0.5730 (-1.12%) 0.7125 (-1.28%)
w/o C2I loss 0.4689 (-1.66%) 0.5671 (-2.14%) 0.7064 (-2.12%)
w/o shared transformer 0.4702 (-1.39%) 0.5693 (-1.76%) 0.7091 (-1.75%)
w/o flow data 0.4639 (-2.71%) 0.5620 (-3.02%) 0.6998 (-3.03%)

Table 8: Ablation study on Xizang datasets for flow predic-
tion.

MAE MAPE(%) RMSE

Ours 16.31 14.91 25.98
w/o I2C loss 16.78 (-2.88%) 15.43 (-3.49%) 27.02 (-4.00%)
w/o C2I loss 16.46 (-0.92%) 15.08 (-1.14%) 26.90 (-3.54%)
w/o shared transformer 16.67 (-2.21%) 15.29 (-2.55%) 26.97 (-3.81%)
w/o trajectory data 16.87 (-3.43%) 15.56 (-4.36%) 27.20 (-4.70%)
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Figure 8: Flow and trajectory prediction with noisy data on
Xizang dataset.
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Figure 9: Flow and trajectory prediction with scarce data on
Xizang dataset.

A Appendix
B Experimental Performance
B.1 Overall Performance
Table 6 shows the performance of our universal mobility predic-
tion model on the Xizang dataset. UniMob not only accomplishes
both trajectory and flow predictions simultaneously but also sur-
passes current advanced baseline models in all evaluation metrics.

Specifically, it achieves 5.34% performance improvement in flow
prediction and more than 4% enhancement in trajectory prediction.
These results fully demonstrate the generality and reliability of our
model.

Table 6: Overall Performance on Xizang datasets.

Flow Prediction Trajectory Prediction

MAE MAPE(%) RMSE Acc@1 Acc@3 Acc@5

HA 33.16 30.54 44.28 - - -
VAR 23.90 22.15 36.63 - - -
ST-ResNet 19.72 17.36 31.56 - - -
MSDR 17.95 16.53 29.60 - - -
STID 17.01 15.70 27.36 - - -
PriSTI 16.80 15.37 26.47 - - -
Markov - - - 0.3156 0.3924 0.4571
LSTM - - - 0.3847 0.4519 0.5450
DeepMove - - - 0.4261 0.5143 0.6318
STAN - - - 0.4432 0.5307 0.6609
SNPM - - - 0.4618 0.5574 0.6926
GETNext - - - 0.4650 0.5598 0.6975
TrajGDM - - - 0.4673 0.5632 0.7054
UniMob-v1 16.31 14.91 25.98 0.4768 0.5795 0.7217
UniMob-v2 15.96 14.72 25.54 0.4815 0.5853 0.7286
UniMob-v3 16.12 14.84 25.70 0.4791 0.5830 0.7253
UniMob-v4 15.87 14.50 25.19 0.4841 0.5897 0.7336

B.2 Ablation study
As shown in Figure 7 and 8, we conducted ablation experiments on
two aspects: model design and data utilization. By sequentially re-
moving components of the model design, we identified three design
elements that align with different data formats and distributions,
each impacting performance, thus validating their effectiveness.
Regarding data utilization, by replacing multi-type data with single-
type data, we visually demonstrated the performance enhancement
brought by using multi-type mobility data in human mobility pre-
diction through our universal model.

B.3 Noise Perturbation
Due to biases from sensor collection and artificial noise added
for privacy protection, the data used for mobility prediction of-
ten contains noise. To verify whether our model can still maintain
good predictive capabilities in noisy conditions, we added noise
to both the flow and trajectory data. Figure 8 shows that as noise
levels increase, our model continues to outperform the best base-
line model, and our performance advantage becomes even more
pronounced relative to the baseline with increasing noise. This
effectively demonstrates the high robustness of our UniMob model.

B.4 Few-shot Performance
Similarly, due to data collection and privacy protection limitations,
the amount of mobility data we acquire is often limited. Therefore,
we tested the few-shot learning capabilities of our UniMob model.
As shown in Figure 9, our model still performs excellently even in
a data-constrained environment.
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