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a b s t r a c t 

Spatial Data Intelligence (SDI) encompasses acquiring, storing, analyzing, mining, and visualizing spatial data 

to gain insights into the physical world and uncover valuable knowledge. These understandings and knowledge 

play a crucial role in connecting physical and virtual realms, such as in developing a City Metaverse (CM) aimed 

at enhancing and optimizing modern urban environments. The advancement of CM holds immense potential to 

benefit urban dwellers, making research on SDI an increasingly prominent area of focus. This paper contributes 

significantly by organizing the relevant research and technologies within a coherent framework. Firstly, we iden- 

tify SDI technologies capable of collecting real-world information to construct a virtual CM. Subsequently, we 

delve into the technologies that can be compositely integrated with SDI to facilitate interaction with and man- 

agement of actual cities from the virtual perspective. Additionally, we emphasize the effectiveness and potential 

of these methods in practical applications. Lastly, we conclude our survey by discussing emerging challenges 

associated with technological progress, the industrial chain, legal and regulatory aspects, and ethical and moral 

considerations. 
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. Introduction 

Spatial data [1] refers to the information that characterizes individu-

ls, objects, and events within natural geographical and human activity

paces. By primarily considering spatial data, the advancement of ar-

ificial intelligence (AI) technology across algorithms, data processing,

nd computing has contributed to spatial data collection and analysis,

ulminating in the emergence of Spatial Data Intelligence (SDI). SDI

nvolves collecting, storing, analyzing, mining, and visualizing spatial

ata to grasp spatial information and reveal essential insights. Conse-

uently, the fundamental technologies of SDI encompass spatial sensing,

ata storage, mining, and computing. The accumulation and digital

torage of the spatial data, ranging from geo-location and terrain data

o meteorological, population, and socioeconomic data, have amplified

he significance of SDI in comprehending the world we inhabit. 
∗ Corresponding author. 
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On the other hand, the City Metaverse (CM) encompasses apply-

ng the Metaverse concept specifically within urban contexts [2] . The

M can be described as a virtual and digital urban space that incor-

orates urban data, models, and algorithms, enabling the simulation

f diverse scenarios and synchronous interaction, also leverages vari-

us technologies including AI, cloud computing, big data, blockchain,

nd virtual reality (VR). CM exhibits distinctive characteristics such as

eing data-driven, facilitating authentic simulations, enabling intelli-

ent decision-making, combining virtual and real elements, supporting

uman-computer interaction, spanning multiple domains, and prioritiz-

ng data security [3] . With such multidimensional capabilities, the CM

emonstrates the vast potential in diverse applications such as urban

lanning, traffic management, cultural tourism, urban management, an-

icipating smart cities, optimizing urban resource utilization, and bol-

tering the sustainability of urban life. 
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Fig. 1. The conceptual connection between SDI and SM . 
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The rapid advancement in AI has sparked a notable collaboration

nd interdependence between SDI and CM, resulting in a synergistic

elationship between the virtual and real domains. On one hand, SDI

atalyzes various technologies, establishing a pipeline to utilize spatio-

emporal data through the “sensing-calculation-mining-construction ”.

n essence, this process can be perceived as a continuous abstraction

rom the “real ” to the “virtual ” domain. On the other hand, the CM

riginates from virtual city simulations and digital properties using tech-

ologies such as VR, augmented reality (AR), and other synchronous

nteractions. These technologies facilitate the connection of physical

pace components through distributed systems and ultimately influ-

nce the physical world through intelligent decision-making support.

his represents a process that moves from the “virtual ” to the “real ”

omain. 

Despite the significant volume of research conducted in SDI, CM,

nd associated technologies, there remains a notable gap in compre-

ensive surveys that effectively bridge the “virtual-real ” connection be-

ween these domains. Consequently, this review aims to fill this void by

stablishing a theoretical framework that elucidates the interaction be-

ween “virtual ” and “real ”. Additionally, this review seeks to summarize

he current status of core technologies in both SDI and CM, providing a

olistic understanding of recent advancements. Moreover, the practical

pplication prospects and future challenges associated will be analyzed,

ffering insights into their potential implementation and identifying ar-

as that require further investigation. This review will provide valuable

uidance for researchers and practitioners to develop SDI and CM tech-

ologies in real-world scenarios. 

This review will be organized as follows: Section 2 will introduce

he framework and the method used in the survey. Section 3 would

ummarize key SDI technologies to fulfill the “real-to-virtual ”, while

ection 4 would review the key technologies to support CM for “virtual-

o-real ” invention. After reviewing the key technologies, Section 5 will

llustrate the current and potential collaboration of SDI and CM, and

ection 6 will look into the future direction and risks. Section 7 will be

 brief conclusion. 

. Framework and method 

.1. Theoretical framework and content 

As previously discussed, SDI is rooted in the physical world, while

M is centered on the digital space. Together, they create a synergis-

ic relationship that merges the virtual and real domains. This synergy

as inspired the development of a theoretical framework, as depicted

n Fig. 1 . Within this framework, SDI plays a crucial role as a key tech-
1170
ology and bridge, empowering the construction of the CM within the

igital space. 

In this review, our focus revolves around the fundamental concept

f integrating the virtual and real realms. Firstly, we will delve into SDI,

xamining its distinct features, advantages, research status, and future

evelopments in four pivotal aspects, following the trajectory of “real-

o-virtual ” integration. These aspects include: 

• Spatial Intelligent Sensing , encompassing spatial sensing, spatio-

temporal database management, and high-precision spatio-temporal

mapping. 
• Data Transmission and Computing , comprising 5G mobile communi-

cation, spatial high-performance computing, edge computing, and

fog computing; 
• Intelligent Data Mining , encompassing spatio-temporal rule mining,

abnormality analysis, correlation analysis, prediction and decision-

making; 
• Metaverse Space Construction , involving metaverse model construc-

tion, multi-source model fusion, and metaverse model verification. 

These technologies are systematically organized within the frame-

ork of “sensing-calculation-mining-construction ”. Such a framework

an be traced back to the early vision of smart cities [4] , integrated

ensors and electronics with databases, tracking, and decision-making

lgorithms. With respect to future trends and the current state [5] , we

urther extend the four-layer framework by Tong et al. [6] which con-

ists of Data collection, Data transmission, Data processing and Applica-

ion, to cover more related technologies that help SDI harness data from

eal cities and effectively applies it within the context of the CM. 

Simultaneously, the technologies encompassing the CM are system-

tically organized in a reverse “virtual-to-real ” order, exploring the key

omponents involved and their respective functionalities. The organiza-

ion is as follows: 

• Smart City Simulation , which encompasses spatio-temporal data visu-

alization, spatio-temporal dynamic simulation, and digital twin city;
• Human-computer Interaction involves various modalities such as vir-

tual reality, augmented reality, mixed reality, and brain-computer

interfaces; 
• Distributed Technology includes blockchain, Internet of Things (IoT),

and Non-fungible tokens (NFTs); 
• Smart City Decision Support incorporates concepts such as City Infor-

mation Modeling (CIM), Virtual Geographical Environment (VGE),

and urban middle platforms. 

All these technologies are arranged in the order of “simulation-

nteraction-control-application, ” emphasizing the progressive process
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f influencing the real world. As a newly developed concept, there lacks

 widely accepted framework of the city metaverse. Therefore, we drew

xtensively on recent reviews. Among them, the inspiration to integrate

igital twins with advanced technologies like IoT and blockchain serves

s the backbone [7] . Valuable surveys in related fields like Human-

omputer Interaction (HCI) [8] and VGE [9,10] are used to fulfill the

ramework, and the very recent survey on the broad idea of meta-

erse [11] also inspired a lot. Ultimately, we believe it is appropriate to

rganize these related technologies in an order of increasing interaction

egrees with the real world. By presenting the related technologies

nder this framework, we highlight capabilities in manipulating

rban environments within the CM to ultimately impact real-world

ities. 

.2. Relationship between spatial data intelligence and city metaverse 

The proposed framework not only establishes a systematic order

 ǣreal-to-virtual ǥ and ǣvirtual-to-real ǥ) for organizing the technolo-

ies, but also introduces a novel perspective for cross-domain compar-

son. For example, the 5G communication technology that facilitates

igh-speed data transmission in “Data Transmission and Computing ”,

lso serves as the technology infrastructure for “Distributed Technol-

gy ” including IoT [12] and blockchains [13] . Here, we adopt the con-

ext of “virtual-real integration ” as the overarching framework, delving

nto the profound relationship between SDI and CM. 

• Smart City Decision Support & Spatial Intelligent Sensing : Both areas are

intricately linked to the physical urban space, representing the most

tangible and “real ” applications. Smart city decision support systems

like urban middle platforms directly build upon the data collected by

spatial sensing technologies [14] , reflecting the direct collaboration

between SDI and CM. 
• Distributed Technology & Data Transmission and Computing : Both areas

focus on the digital representations of physical space but with differ-

ent emphases. “Data Transmission and Computing ” cares about how

data acquired in the real world can flow to the virtual realm, while

“Distributed Technology ” cares about how virtual information and

instructions flow between physical devices [15] . Notably, the tech-

nologies involved in “Data Transmission and Computing ”, such as

5G and cloud computing, provide the foundation of distributed pro-

cessing technologies like IoT [12] . 
• Intelligent Data Mining & Human-Computer Interaction : Both areas are

intimately tied to human behaviors, respectively exhibited in physi-

cal and virtual spaces. Relying on informatization and virtualization,

behavioral patterns observed in the virtual and real domains can mu-

tually inspire and complement one another [16] . 
• Metaverse Space Construction & Smart City Simulation : Both areas are

directly associated with virtual city representations, showcasing the

most distinct “virtual ” characteristics. The digital twin city con-

structed through SDI serves as the foundational platform for CM

simulations [17] , and the outcomes of simulations can be utilized

to calibrate the digital twin model. 

The idea of linking SDI and CM stems from their interdependence

nd mutual promotion. We gain deeper insights into the intricate re-

ationship within the framework by dissecting and comparing these

our focus areas. This analysis provides an orderly framework and of-

ers a novel perspective for cross-domain comparisons. Through this

ens, we can examine the symbiotic relationship between SDI and

M, fostering a deeper understanding of their interplay and potential

ynergies. 

The extensive data derived from SDI proves invaluable to the CM.

irstly, SDI supplies static statistical and dynamic application data of ur-

an life, including population, buildings, traffic, and the environment,

roviding a foundation for constructing CM. Secondly, SDI facilitates in-

elligent management within the CM through analysis and processing.

hirdly, SDI aids in building refined models of CM with precise spatial
1171
ata from real-world structures. Finally, SDI enables intelligent interac-

ion within the CM through spatio-temporal visualization on terminal

evices. Studies have sought to utilize SDI as a catalyst for advancing

M construction [204] . 

Conversely, the CM represents the possibilities offered by the virtual

ealm. Virtual representation of real space demonstrates the “virtual-

eal integration ” and provides a promising approach to timely adopting

rban changes for inclusivity and sustainability. Moreover, the CM fur-

ishes SDI with a new and in-depth data source through refined urban

odels and vast virtual data for human behavior, simulation or genera-

ion. Virtual data facilitates the discovery of spatial data rules and allows

or intuitive simulation and decision support of diverse urban scenarios,

hose outputs can serve as inputs for iteration and evaluation of ur-

an planning, transportation planning, and architectural design [18] .

urthermore, transformative technologies like VR and AR revolutionize

he interaction between individuals and the city. Urban residents can

e immersed in virtual experiences, transcending spatial barriers and

ostering inclusive urban living [19] . 

In conclusion, SDI and the CM complement and reinforce one an-

ther. The construction of CM relies on the data and technical support

rovided by SDI, while the advancement of SDI benefits from the de-

ands generated by the CM. Through their coordinated development,

e can truly achieve the digital transformation and intelligent evolution

f cities, enriching people’s lives with greater convenience and aesthetic

ppeal. 

.3. Method and data source 

Despite significant advancements in relevant technologies, there is a

oticeable dearth of literature and comprehensive reviews linking SDI

ith CM. In the field of spatial data intelligence, there are a lot of re-

ated reviews concerning spatial data. But they are either too early to

over the recent development of AI, such as Kopersk et al.’s survey on

patial data mining in 1994 [20] and Wang’s in 2005 [21] , or not com-

rehensive enough, such as Du et al.’s review that focused only on ma-

hine learning algorithms, or Zhou et al.’s review [22] that targeted

n 3D spatial data. Alsaedi et al. [23] provided a comprehensive re-

iew of the fundamental components and characteristics of big spatial

ata, which inspired our framework but still failed to bridge the SDI

ith the emerging metaverse. On the other hand, the CM field has some

mportant surveys on the whole picture of metaverse technologies like

ing et al. [11] , but have just started to examine their impact to the

ity [24] . Kusuma and Supangkat [25] reviewed the information tech-

ology that CM can use but did not provide a clear classification frame-

ork. Yaqoob et al. [26] reviewed the benefits, technologies and future

pportunities of metaverse in smart cities, but did not include the role of

mart-city-related technologies in promoting CM. It is very noteworthy

hat SE Bibri and Z Allam et al. carried out a series of studies [2,27–

9] that view metaverse as a virtual form of smart cities and analyzed

he possible impact on platformization, governance, ethics and sustain-

bility of cities, which strongly support our idea to bridge SDI and CM

ogether. However, their series of work paid more attention to the in-

uence of the social level and did not introduce the technology deeply

nough. 

It can be seen that the existing literature surveys fail to fully reflect

he synergy between the SDI and CM. To address this gap, this paper

dopts a critical literature review approach to provide a comprehensive

verview of the field and various technological aspects. The primary

ocus of this review is to present an encompassing and informative per-

pective on the overall landscape and key research directions. The data

tilized for this review primarily consists of journal papers and confer-

nce papers about the key technologies discussed in Section 2.1 . Given

he strong connection to industrial applications, grey literature such as

hite papers, technical reports, and government documents are also in-

luded. Notably, considering the emphasis placed on smart city develop-

ent as a national strategy in China and the significant progress made
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Fig. 2. Key technology involved in the review on Spatial intelligent sensing . 
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n this domain, the literature surveyed encompasses publications in both

nglish and Chinese. 

. Spatial data intelligence boosts city metaverse 

.1. Spatial intelligent sensing: data sources for virtual spaces 

Served as the initial step, spatial intelligent sensing encompasses

he acquisition of spatial data using diverse technologies, subsequent

ata processing and storage for initial analysis, and the visualization of

ata on maps. Therefore, the subsequent sections will provide a detailed

xploration of the three fundamental aspects: spatial sensing technol-

gy, spatio-temporal database technology, and high-precision spatio-

emporal mapping (See Fig. 2 ). These technologies provide the basic

ata and storage management methods for subsequent SDI and CM

ork, emphasizing the extensive and efficient update of data sources.

heir applications may be mentioned repeatedly in the other sections,

specially in the space modeling of the metaverse, demonstrating com-

lex synergies between different fields. 

.1.1. Spatial sensing 

The very first step of spatial intelligent sensing is to gather large-

cale spatial data. Spatial sensing technology leverages a range of sen-

ors, including aerospace satellites [30] , aircraft and drones [31] , smart-

hones and mobile terminals [32] , smart wearable devices [33] , indus-

rial and household monitoring equipment [34] , and wireless sensing

evices [35] . Considering its application in urban scenarios, it is also

nown as “urban sensing ”. As spatial sensing is a collection of broad

echnologies, we will mainly focus on several aspects that have made

rogress in recent years: 3D vision-based sensing, spatio-temporal data

rowd-sensing, and remote sensing with intelligent interpretation. 

• 3D Vision (3DV) is a multidisciplinary field encompassing computer

vision, computer graphics, and artificial intelligence. Its primary fo-

cus is utilizing vision sensors to efficiently capture and analyze three-

dimensional information from the real world. In recent years, there

have been significant advancements in 3D sensor technologies such

as Lidar [36] and depth cameras [37] with the help of AI. Recent ex-

plorations in intelligent sensing systems [38,39] have covered theo-

retical frameworks and important techniques, including 3D Simulta-

neous Localization and Mapping (SLAM), point cloud processing, 3D

target detection and tracking, 3D scene reconstruction, and dynamic

scene understanding. 
• Crowd-sensing of Spatio-temporal Data refers to a technology that

leverages distributed smart devices, such as smartphones, wearable

devices, and IoT sensors, within a crowd to collect and share data

about the urban environment and social phenomena. However, no-

table challenges exist from the distinctive characteristics of the data

and sensing methods employed, including data quality, privacy pro-

tection, user incentive mechanisms, energy consumption, and data

fusion paradigms [40] . As a result, current research endeavors in

crowd-sensing are focused on the integration and analysis of the
1172
digital footprints left by large-scale crowds, to establish reliable and

semantic-rich representations of group behavior across spatial do-

mains [41] . The objective is to realize a mutually beneficial scenario

for users, data providers, and application developers within the city

metaverse [42,43] . Addressing these challenges and advancing re-

search in these areas will facilitate the full potential of crowd-sensing

as a valuable source of spatio-temporal data in urban contexts. 
• Intelligent Interpretation of Remote Sensing has gained significant at-

tention due to the continuous advancements in higher temporal and

spatial resolutions of captured imagery through satellites and drones.

As a result, the demand for efficient processing and understanding

of massive volumes of remote sensing data prompts extensive explo-

ration of AI technologies [44] . Researchers have investigated into

the mining of multi-source, multi-resolution, and multi-scale remote

sensing data, trying to establish hierarchical scene analysis mod-

els [45] and interpretation techniques for ground and object infor-

mation [46] . Besides, research on AI processing has been conducted

in various fields including oceanography, land management, and

transportation, to provide technical support for applications such as

land and resources management, environmental protection, climate

change analysis, and national security considerations [47] . These

endeavors underscore the importance of intelligent interpretation

methods and unlock their potential for diverse real-world applica-

tions. 

.1.2. Spatio-temporal database 

In the context of the three sensing methods discussed in

ection 3.1.1 , spatio-temporal databases are needed for storage, query,

nd optimization of collected data, which should effectively support the

equirements of spatial and temporal data processing and analysis. 

The spatio-temporal database is a technology designed to handle

ata with both spatial and temporal characteristics, including geo-

raphic information, meteorological data, traffic data, and more. In re-

ent years, there has been significant progress in developing storage and

uery technologies [48] , particularly in creating new spatio-temporal

ndex structures that enable support for complex queries and fast re-

rieval [49] . Therefore, we will examine the advancement in index,

uery and storage technologies of a comprehensive survey. 

• Index optimization for 3D vision data : Index optimization is crucial in

achieving efficient data storage and querying due to the high spa-

tial dimensions and complex geometric structures inherent in 3DV

datasets. To address these challenges, spatio-temporal databases

combine 3D index structures such as Octree, 4D R-tree, or KD tree

with multi-scale representation and hierarchical storage techniques.

These index structures consider the spatial and temporal attributes

of 3D vision data, enabling the hierarchical description of spatial

relationships [50] , facilitating applications such as 3D point cloud

data processing, spatial collision detection, moving object manage-

ment, and trajectory data analysis. Furthermore, the spatio-temporal

database incorporates specific topological data structures, such as

the Half-Edge Data Structure, to support complex spatial queries
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related to the topological and spatial relations of 3D models [51] .

Recent research has also focused on index optimization techniques

based on deep learning methodologies [52] . By leveraging deep neu-

ral networks, high-level representations can be extracted, enabling

the construction of more compact and efficient index structures. 
• Query optimization and quality management for crowd-sensing : Op-

timization is critical for spatio-temporal databases. The dynamic

nature of crowd-sensing data from many devices necessitates dis-

tributed storage and computing frameworks, such as Hadoop and

Spark. To enhance query performance and reduce computational

complexity, spatio-temporal databases employ techniques like grid

indexing and trajectory clustering to reduce the query scope and

streamline the computational workload. Given the potential for

errors, noise, anomalies, redundancy, and invalid data in crowd-

sensing datasets, data quality management is of paramount impor-

tance. Spatio-temporal databases implement quality inspection to

identify potential issues [53] , error correction to rectify inaccura-

cies [54] , data reconstruction to enhance completeness and consis-

tency [55] , and quality evaluation to assess the overall reliability

and usefulness [56] . 
• Storage optimization for remote sensing images : Storage optimization

is another critical concern. Remote sensing images typically exhibit

high resolution and contain abundant spectral information, necessi-

tating specialized techniques for efficient storage and rapid access.

Spatio-temporal databases employ block storage and pyramid struc-

tures to organize the image data into blocks and utilize hierarchi-

cal structures [57] . Similarly, compression and indexing technolo-

gies, such as band selection or PCA, are employed for spectral data.

These techniques reduce storage space while improving query by se-

lecting relevant spectral bands [58] or transforming the data into a

more compact representation [59] . On this basis, performance evalu-

ation tests encompass storage access, data division, index connection

structures, and query algorithms to identify system bottlenecks and

optimize efficiency. Recent advancements leverage machine learn-

ing to automate the optimization of system parameters [60] . By

extracting data features such as frequency, basic unit count, and

spatio-temporal distribution, a mapping matrix is established to rep-

resent the relationship between features and configuration param-

eters. This facilitates the creation of a trained system performance

model for automatic optimization. 

.1.3. High-precision spatio temporal map 

Considering the particularity of spatio-temporal database, a very nat-

ral idea is to illustrate it on a precise map before further analysis,

amely the High-precision Spatio Temporal map (HST map). 

HST map refers to a digital map that provides an accurate represen-

ation of the earth’s surface environment and its temporal changes [61] .

istinguished from conventional maps, HST maps encompass informa-

ion about the ground, underground, underwater, and air domains, en-

bling precise depiction of spatial alterations across different time in-

ervals. Diverse sensor technologies including GPS, lidar, cameras, and

nertial measurement units are used to capture relevant data, and ad-

anced algorithms such as computer vision and machine learning are

mployed to process the collected information in time. The versatility

f HST maps enables their utilization across various application scenar-

os like autonomous driving, traffic simulation and automatic parking. 

While HST maps offer immense application potential, they also

resent significant challenges [62] . These challenges can be categorized

nto three main areas: 

• Spatial scene modeling : The sheer volume of data makes efficient stor-

age and retrieval challenging, and the processing complexity affects

the performance of matching queries and semantic interpretation.

Ensuring data quality and accuracy while managing the scale of the

data remains a crucial challenge. 
1173
• Map information update : As the environment is constantly evolving,

the ability to capture and reflect real-time changes in the map be-

comes crucial. The delay in updating map information can lead to

discrepancies between the actual environment and the representa-

tion in the HST map. Ensuring timely updates to maintain the cur-

rency of the map information is an ongoing challenge. 
• Data privacy protection : Protecting user privacy while maintaining

data quality and timeliness is a complex task. Striking a balance be-

tween data privacy and the need for accurate and up-to-date maps

requires robust privacy protection mechanisms. 

Fortunately, technological advancements such as crowd-sensing,

patio-temporal data mining, and reinforcement learning have con-

ributed to significant progress in addressing these challenges. 

• Spatial scene modeling : The indoor-outdoor integrated scene mod-

eling [63] focuses on the seamless integration of indoor and out-

door environments, involving techniques such as Multi-laser scan-

ning simultaneous Localization and mapping (SLAM) techniques,

extracting and matching the structures in both indoor and outdoor

scenes [64] . 
• Point cloud extraction : Point cloud extraction aims to extract relevant

information from the point cloud data. Efficient feature description

algorithms can improve the effectiveness of feature extraction [65] ,

while independent object extraction algorithms [66] and feature

screening libraries automatically extract independent objects within

the environment. Contextual feature extraction technology further

enhances the accuracy and efficiency of point cloud processing [67] .
• Multi-platform large-scene fusion modeling : This technology integrates

data from multiple platforms to create a cohesive and detailed scene

representation. Low-cost image sensors address blind spots and as-

sist in scene reconstruction. Urban appearance modeling is then

achieved through large-scale point cloud scene classification theory

and the analysis of spatial topology relationships [68] . 
• Map information update : Begin with data collection using sensors, di-

verse local multi-agents data must be effectively fused to create a

high-precision global map [69] . This requires establishing protocols

and communication methods for data interaction between the data

center and the agents [70] . Additionally, coordination and task as-

signment methods are essential to ensure efficient cooperation be-

tween agents and the timely completion of tasks [71] . 
• Data privacy protection : Data privacy protection involves several key

technologies, namely differential privacy [72] , encrypted comput-

ing [73] , and anonymization processing [74] . Differential privacy

safeguards individual privacy while preserving statistical charac-

teristics by introducing noise during data release and queries. En-

cryption computing, including homogeneous encryption and secure

multi-party computing, ensures secure data processing and transmis-

sion by performing computations on encrypted data. Anonymization

processing protects privacy during data publishing and sharing by

generalizing and suppressing sensitive information. 

Despite the challenges faced by HST maps, ongoing advancements

n technology are leading to the emergence of solutions and methods.

hese developments promise to enhance the quality, timeliness, and pri-

acy of HST maps, thereby enabling the delivery of convenient, safe, and

fficient services. 

.2. Data transmission and computing: operation guarantee of virtual 

paces 

Upon acquiring a large amount of urban data, the rapid transmission

nd computation of such data has arisen as a pivotal concern. Address-

ng data transmission encompasses not only the refinement of conven-

ional communication technologies but also underscores the importance

f 5G communication technology. On the other hand, the advances in

ata computation are characterized by two major efforts: the facilita-

ion of high-performance computations for spatio-temporal data, and
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he architectural optimization through edge computing and fog com-

uting paradigms. Henceforth, we take these three aspects as examples,

onsidering their recent advancement and potential development in the

uture. 

.2.1. 5G mobile communication technology 

Spatial sensing in Section 3.1 will continuously send back a huge

mount of data from all city corners, which need fast, reliable and low-

atency transmission. The emergence of fifth-generation mobile commu-

ication technology (5G) [75] has played a pivotal role in achieving it.

he new architecture and technology of 5G offer higher transmission

ates (with peak rates up to 20 Gbps), lower latency (in the millisecond

ange), improved reliability, increased network capacity, and broader

overage. The high speed and low latency of 5G provide support for

ata transmission, while the stability and reliability of the network en-

ure the seamless execution of data-related tasks. 

• Spatial Data Transmission : Firstly, the high transmission rate of 5G

enables rapid data transfer, facilitating real-time and high-precision

applications within the city [76] . Secondly, the low latency of 5G

is crucial for the timely collection, update, and analysis of real-

time spatial data, particularly for applications like autonomous driv-

ing [77] . Thirdly, the enhanced network capacity of 5G supports a

greater number of device connections, catering to large-scale CM

systems that require continuous data collection from millions of ve-

hicles and individuals in urban areas [78] . Fourthly, 5G incorporates

robust security measures, including authentication, encryption, and

secure communication protocols, ensuring enhanced data transmis-

sion security and privacy protection [79] . 
• Spatial Data Computing : Firstly, the substantial bandwidth offered by

5G technology facilitates the collaborative processing of extensive

spatial data from multiple devices [77] . Secondly, the high comput-

ing performance and low latency of 5G enable real-time spatial data

analysis, facilitating rapid processing within the CM environment.

Thirdly, 5G supports cutting-edge technologies like edge computing

and fog computing [80,81] , allowing spatial data to be processed

and computed at the data source. This approach reduces data trans-

mission costs and delays, alleviates the workload on centralized data

centers, and enhances overall computing efficiency. 

In conclusion, 5G technology significantly contributes to the trans-

ission and computing of spatial data, offering essential capabilities for

he operation of virtual space. Its characteristics provide ample assur-

nce for the CM to deliver intelligent and efficient urban planning and

anagement services. 

.2.2. Spatial high-performance computing 

The efficient computation of spatio-temporal representations is cru-

ial for dealing with large-scale spatial data and its dynamic evolution

ver time. Through deducing the time-space state of people, objects, and

hings of the physical world in the large-scale cross-modal framework

see Fig. 3 ), spatial high-performance computing can accelerate many

pplications in the real world. Here we summarized the most common

omputational needs, including object search that searches nearest ob-

ect in spatial databases [82] , route query that searches shortest paths

or navigation [83] , and trajectory similarity that can be used in com-

utational acceleration and clustering [84] . We selected these aspects

ecause they are common but require computing resources and fast re-

ponse, which motivate the algorithm to progress. There are also syn-

rgies between them since the index structure of objects can accelerate

ubsequent route queries, and the similarity calculation often relies on

revious trajectory partition. 

• Moving Objects Search in Two-Dimensional Space. How to realize

searches for large-scale moving objects like cars and humans is

an important topic of spatial high-performance computing. It can

be roughly divided into moving object queries in Euclidean space
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and based on road networks. For moving object queries in Eu-

clidean space, such as range query, k-nearest neighbor query, and

reverse k-nearest neighbor query, the key issue is determining the

search area containing the target moving object. Scholars have pro-

posed various spatio-temporal index structures based on R-tree [85] ,

Quard-tree [86] , KD-tree [87] , Voronoi, and Grid. On the other

hand, the query of moving objects based on the road network is

more complicated due to the need to calculate distance on the road

network. In recent years, many works have studied the k-nearest

neighbor query problem based on road networks, like SILC [88] ,

ROAD [89] , S-GRID [90] , V-tree [91] , G-tree [92] , TOAIN [93] ,

GLAD [94] , TD-H2H [95] , G∗ -tree [96] , focusing on determining

the target moving object under the premise of traversing as few

road network vertices as possible. Besides, massive mobile objects

and high concurrent queries challenge the storage and computing

resources of a single computing node. Yu et al. [97] proposed a

distributed index structure DSI and a distributed query algorithm

DkNN, which can continuously split and merge according to changes

in moving object density. MPR [98] proposed a concurrent execution

mechanism for porting single-threaded query algorithms to multi-

core servers. Furthermore, some work proposed GPU-based paral-

lel query algorithms [99] , which use GPU to construct the index

and search the target area in parallel to generate a candidate result

set. 
• Route Query in Road Network Space. In real life, road network-

oriented route query technology is an important demand of spatial

data high-performance computing, which is essentially the shortest

route query of the graph. Early typical work employed a heuristic in-

cremental expansion like the Dijkstra algorithm [100] and A∗ [101] ,

which use the greedy strategy to expand and visit the vertex. To

further improve the efficiency, some work calculates and indexes

the shortest distance between some vertices in advance like Con-

traction Hierarchies (CH) [102] which calculates the shortest dis-

tance bottom-up or top-down to form a hierarchical index. Based

on the CH algorithm, relevant scholars have proposed the short-

est route query algorithm based on the hub point label, such as

HL (Hub Labeling) [103] , DHP [104] , PHL(Pruned Highway Label-

ing) [105] , BHP [106] , and SHP (Significant path based Hub Push-

ing) [107] . When facing huge graphs and high concurrent queries,

it is more effective to use a parallel strategy. Pregel [108] is a dis-

tributed graph computing framework that supports graph parallel

computing. Li et al. [109] proposed a distributed multi-modal route

query algorithm on large transportation networks with three dif-

ferent categories and task instructions according to the query start

point or end point. Aridhi et al. [110] used the MapReduce model

to iterative divide the sub-graph for intermediate results. For the

dynamic road network with ever-changing road transit time cor-

responding to edge weights, CANDS [111] created a distributed

stream processing platform, adopted a divide-and-conquer strategy

to divide the dynamic graph into disjoint sub-graphs, and proposed

rules to minimize update operation caused by weight changes. Yu

et al. [112] proposed a dynamic graph-oriented distributed top-k

shortest route query algorithm, using the lower bound for the short-

est distance between the sub-graph, and decomposing the original

queries into local top-k query problems in multiple sub-graphs. Ped-

ersen et al. [113] proposed a Time-dependent and Uncertain Con-

traction Hierarchies (TUCH) to support stochastic routing where the

travel time of roads is not only time-varying but also uncertain. 
• Spatial Trajectory Similarity Calculation. The trajectory data of peo-

ple and vehicles is important for clustering the information from the

physical world. For centralized calculation, directly computing on

any two trajectories will incur a high computational cost. Therefore,

pruning the search space by building an index structure is promis-

ing. Some work uses locally sensitive hashing technology to establish

trajectory index and focus on the nearest k results [114,115] . Grid

index can also speed up the process through clustering grid cells
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Fig. 3. Schematic diagram of high-performance computing framework for spatial data . 
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for representative trajectories [116] , or pruning in the time dimen-

sion with hierarchical grid index [117] . Besides, signature-based in-

dexing like Strain-join [118] by Ta et al., dynamic space divisions

like GeoSAX [119] , global and local indexing scheme [117,120] can

also help to filter pairs of trajectories before distance computation,

thereby reduce global transfer cost and local computation cost. To

further improve the efficiency, distributed computing mode for al-

gorithms is also important. The k-means algorithm can be optimized

by Par3PKM [121] on the Hadoop platform, by Cui et al. [122] on

MapReduce, and under the coarse-grained Dynamic Time Warp-

ing [123] . Similar to k-means, DPDBSCAN [124] proposed a dis-

tributed parallel clustering db-scan based on trajectory density parti-

tioning. For similarity on the road network, DISON [120] was imple-

mented on Spark with a two-level tree-structured global index, while
1175
Shang et al. [125] proposed a Spark-based system with a global in-

dex deployed on multiple computing nodes, which is similar to the

work of Yuan and Li ( Table 1 ). 

.2.3. Edge computing and fog computing 

Besides the algorithms in Section 3.2.2 that accelerate computing,

he optimization of computing frameworks, like edge computing and

og computing, is of special importance to issues such as high latency,

ow throughput due to uneven load distribution, and bandwidth limita-

ions. As decentralized distributed computing technologies, edge com-

uting integrates network, computing, storage, and application capa-

ilities on a platform situated close to the data source, enabling the

rovision of services at the edge segment. On the other hand, fog com-

uting is similar to edge computing but focuses on processing data in
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Table 1 

Spatial high-performance computing algorithm . 

Algorithm Task Year Key features 

R-trees [85] general index 1984 fast nearest neighbours queries 

Quad-tress [86] general index 1984 variable resolution 

KD-tree [87] general index 1975 fast queries and insert 

SILC [88] object query 2005 almost linear precomputing and storing 

ROAD [89] object query 2006 predetermined tree path to avoid costly network expansion 

S-GRID [90] object query 2007 pre-computed data independent of the data points 

V-tree [91] object query 2017 balanced search tree support dynamical update 

G-tree [92] object query 2015 assembly-based method for queries 

TOAIN [93] object query 2018 auto-tune shortcut-based index 

GLAD [94] object query 2019 scheduling algorithms to avoid conflicts and improve throughput 

TD-H2H [95] object query 2022 pre-computed weight functions 

G∗ -Tree [96] object query 2019 shortcuts between selected leaf nodes 

DSI/DkNN [97] object query 2014 distributed processing 

MPR [98] object query 2019 schedule query and update on the cores 

G_grid [99] object query 2018 GPU-accelerated with lazy update 

Dijkstra [100] route query 1956 breadth-first search for shortest path 

A∗ [101] route query 1968 heuristic of cost for shortest path 

CH [102] route query 2008 hierarchy node contraction and bidirectional search 

HB [103] route query 2002 distributed 2-hop covers of the shortest paths 

DHP [104] route query 2013 breadth-first search with pruning 

PHL [105] route query 2014 highway-based labeling with pruned 

BHP [106] route query 2014 ordering and compression of hub label 

SHP [107] route query 2017 heuristic path based ordering 

PREGEL [108] distributed route query 2010 graph parallel computing 

CANDS [111] distributed route query 2014 asynchronous answering and update 

DTLP/KSP-DG [112] distributed route query 2020 distributed for dynamic graph and insensitive virtual path 

Li et al. [109] distributed route query 2020 distributed on multimodal path 

Aridhi et al. [110] distributed route query 2015 parallel solve on subgraph 

TUCH [113] distributed route query 2020 time-varying, uncertain weight modeling and stochastic routing 

LSH [114] trajectory similarity 2004 locality-sensitive hashing 

E2LSH [115] trajectory similarity 2020 Geohash of domain POI and locality-sensitive hashing 

SST [116] trajectory similarity 2020 synchronously matching, grid indexing and query partitioning 

Strain-Join [118] trajectory similarity 2017 bi-directional mapping and signature-based similarity 

MTSAX [119] trajectory similarity 2018 GeoWard dynamic coding and trajectory partition 

DISON [120] trajectory similarity 2019 disjoint partitions by load balance and prune irrelevant 

Tb-TS-Join [117] trajectory similarity 2018 search space pruning and parallel processing 

Par3PKM [121] trajectory clustering 2015 MapReduce-based parallel three-phase k-means 

Cui et al. [122] trajectory clustering 2014 MapReduce-based k-means 

Hu et al. [123] trajectory clustering 2015 MapReduce-based coarse-grained Dynamic Time Warping 

Wang et al. [124] trajectory clustering 2017 distributed parallel clustering on trajectory density partition 

DITA [125] trajectory clustering 2018 global and local index with partition and cost-based balance 
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he fog computing layer closer to the edge devices. Currently, research

n these areas is focused on the need for crowdsourcing and machine

earning. 

• Spatio-temporal Crowdsourcing in Edge Computing. With the rapid de-

velopment of mobile Internet and the IoT, traditional crowdsourc-

ing has developed into a new service called spatiotemporal crowd-

sourcing, also known as mobile crowdsourcing. Spatial crowdsourc-

ing utilizes mobile Internet, online crowdsourcing platforms, and

location services to connect crowdsourcing workers with tempo-

ral and spatial attributes in the real world, enabling crowdsourc-

ing workers to actively or passively complete crowdsourcing tasks

with spatio-temporal attributes, such as online taxi platform Didi

and Uber. Using edge computing and fog computing technology to

improve spatio-temporal crowdsourcing systems has become a re-

search hotspot. Zhang et al. [126] proposed an edge computing-

based Bidirectional K-Nearest Neighbor Crowdsourcing Allocation

Protocol. Wu et al. [127] proposed a Weighted and Multi-Objective

Particle Swarm Combination to optimize multi-objective task assign-

ment. On this basis, Zhang et al. [128] proposed an Online Task

Assignment across Regions based on Prediction algorithm with a

two-stage graph-driven bilateral assignment strategy to solve the

Cross-regional Online Task problem. Furthermore, edge cloud com-

puting [129] unified with cloud computing in architecture and in-

terface capabilities forms a complementary relationship and shows

good performance. 
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• Distributed Spatio-temporal Machine Learning. Spatio-temporal data

are usually provided by multiple service providers, which do not

allow raw data sharing between providers. Therefore, data shar-

ing and collaborative computing on the premise that data does not

leave the local area inspire spatio-temporal federated learning with

the concept of “computing moves rather than data move ”. Spatio-

temporal federated learning conducts model training on multiple

decentralized edge devices and builds a general machine-learning

model without sharing data. Space-time federated learning can be

divided cross-device and cross-silo, with participants being edge de-

vices ( e.g. vehicle-mounted IoT devices and traffic flow monitoring

sensors) and enterprises( e.g. service providers of shared bicycles and

online car-hailing) respectively. Ye et al. [130] proposed a selective

model aggregation method that individually trains local deep neural

networks using local data at the edge devices. Tong et al. [131] dis-

cussed the Federated Range Aggregation (FRA) problems and pro-

posed an efficient range-aggregation approximation model. And

Zhang et al. [132] proposed federated adversarial domain gener-

alization (FedADG) to equip federated learning with domain gener-

alization capability. Furthermore, Hu-Fu [133] is a spatio-temporal

data query processing system based on spatio-temporal data federa-

tion, which decomposes the processing of spatio-temporal query into

plain-text operation and security operation. For online car-hailing

services, Tong et al. [134] designed a federal learning-to-dispatch

(Fed-LTD) framework, which achieves effective cross-dispatch by

sharing the scheduling model and decision-making. 
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Fig. 4. Main research content of intelligent data mining . 
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CM’s infrastructure and services. 
.3. Intelligent data mining: a toolbox for characterizing virtual space 

Based on the capability of spatial sensing, transmission, and compu-

ation, analyzing urban data to obtain valuable information and knowl-

dge is possible. Spatio-temporal data can be classified into event data,

rajectory data, reference point data, and raster data [135] , each repre-

enting a kind of urban data with specific spatial and temporal charac-

eristics. Considering such complexity among attribute features, spatio-

emporal features, and correlation differences, leveraging the power of

I and machine learning, i.e. intelligent data mining, is of great impor-

ance. The core research areas of intelligent data mining, as illustrated

n Fig. 4 , involve the models and algorithms for rule mining, abnormal

nalysis, correlation analysis, and prediction and decision-making tasks.

.3.1. Spatio-temporal rule mining 

Spatio-temporal data exhibits notable characteristics such as spatio-

emporal correlation, multidimensionality, large volume, dynamics, and

ncertainty. These properties pose challenges for data mining and call

or utilizing AI and machine learning techniques to uncover patterns

nd extract valuable insights. The primary approaches for intelligent

patio-temporal rule mining include: 

• Traditional spatio-temporal statistical models , such as the historical av-

erage and time series models [136] like moving average, ARMA, and

ARIMA models, analyze and model temporal and spatial variables

based on statistical principles and assumptions. 
• Domain understanding and physical modeling involves physical pro-

cess like levy flight [137] , point process [138] , or collective mo-

bility model [139] in the modeling or clustering process [140] . By

capturing the inherent causalities within the data, this approach en-

hances the interpretability of the derived insights [141] through

methods including dynamic knowledge-based methods or knowl-

edge graph [142] . 
• Machine learning models offer a range of techniques for various tasks

in spatio-temporal data analysis. Classification methods, such as sup-

port vector machines and random forests [143,144] , are used for cat-

egorizing data into classes. Regression methods, including linear re-

gression prediction and XGBoost [145] , are employed for predicting

numerical values. Clustering methods [146] encompass hierarchy-

based, partition-based, and density-based approaches, identifying

meaningful groups within the data. 
• Deep learning models [147] , particularly Convolutional Neural Net-

works (CNNs) and Recurrent Neural Networks (RNNs), offer ad-

vanced capabilities for spatio-temporal analysis. CNNs are well-

suited for processing spatio-temporal data represented in image for-

mat, allowing for efficient feature extraction and pattern recogni-

tion. On the other hand, RNNs are adept at handling time series data,
1177
such as weather data, by capturing temporal dependencies and mod-

eling sequential patterns. And the recent development of diffusion

model have show great abilities in generate data that resembles the

real world [148] . 
• Data visualization [149] is essential for effectively presenting spatio-

temporal data in a visually intuitive manner, aiding in the under-

standing of their characteristics and dynamic trends. Heat maps are

employed to depict the distribution of population density in cities, al-

lowing for a quick assessment of population concentration. Contour

maps, conversely, offer insights into terrain elevation and tempera-

ture variations, enabling the visualization of topographical features

and thermal distributions. 

.3.2. Spatio-temporal abnormal analysis 

Unlike the mining task in Section 3.3.1 for the rule under normal cir-

umstances, spatio-temporal data anomaly analysis aims to uncover the

auses and assess the impact of anomalies, through identifying and ana-

yzing entities that deviate from the expected distribution. Based on the

ombined space-time relationship, spatio-temporal data anomaly anal-

sis can be categorized as follows: 

• Spatial data anomaly detection : This method uncovers deviations from

the universal spatial patterns in a small portion of the data, revealing

the unique laws of geographic phenomena or processes. Represen-

tative techniques include the distance-based method [150] , cluster-

based method [151] , density-based method [152] , and graph-based

method [152] . Spatial data anomaly detection aids in discovering

abnormal points and patterns in spatial data during the construction

of the CM. 
• Time series anomaly detection : This approach identifies abnormal pat-

terns in time series data by considering periodicity, trend, and ran-

domness. Representative methods encompass statistical techniques

(e.g., hypothesis testing, ARMA model, ARIMA model), similarity-

based methods (e.g., KNN algorithm, LOF algorithm), and deep

learning-based methods [153,154] . 
• Spatio-temporal data anomaly detection : This method combines spa-

tial anomaly detection with time series anomaly detection to iden-

tify spatio-temporal anomalies. Given the complex characteristics,

diverse anomalies, and scarcity of samples, detecting anomalies in

spatio-temporal data is challenging and heavily relies on machine

learning and AI [155] . 

Anomaly detection techniques are valuable for identifying and un-

erstanding irregularities in spatio-temporal data, enabling proactive

easures in the CM construction process. These methods enhance data

uality, anomaly detection accuracy, and the overall reliability of the
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Fig. 5. Key technology involved in the review on Metaverse Space Construction . 
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.3.3. Spatio-temporal correlation analysis 

In addition to addressing normal and abnormal circumstances, spe-

ific associations between entities, such as proximity or causation, are

f great value. Spatio-temporal association analysis explores the depen-

encies and interactions among entities, delving deeper into the tempo-

al changes and spatial interactions between objects, providing valuable

nsights for decision-making [156] . 

Traditional association analysis primarily relies on association rules,

hich first mine spatial association rules and then incorporate tempo-

al association constraints, or vice versa [157] . However, these methods

re conducted independently, neglecting the spatio-temporal coupling

f data. Recently, the powerful feature learning capabilities of deep

earning have been leveraged to automatically extract spatio-temporal

orrelation features from the data [147] . Consequently, recent studies

ave combined recurrent neural networks with convolutional neural

etworks [158] and graph neural networks [159] , enabling simultane-

us convolution operations on the spatio-temporal dimensions of the

ata. 

By conducting spatio-temporal correlation analysis on real-world

ata, we can gain a better understanding of user behavior and activities

n the city [160] . Incorporating spatio-temporal correlation analysis into

he CM construction can create a more realistic, intelligent, and inter-

ctive virtual reality experience. This integration enhances the overall

ser experience and facilitates more applications. 

.3.4. Spatio-temporal prediction and decision-making 

Spatio-temporal prediction involves forecasting the future changes

n geographical events or phenomena in both time and space. Spatio-

emporal decision-making, on the other hand, entails selecting the opti-

al solution based on analysis results [161] . As the complexity of fore-

asting and decision-making continues to rise, traditional methods have

truggled to meet the demands of decision-making processes. The ad-

ent of AI has significantly improved data processing efficiency, en-

anced prediction accuracy, and enabled intelligent decision-making

ptimization [162] . Consequently, AI-based prediction and decision-

aking have become the prevailing approach [161,163] . 

• Domain understanding and physical modeling : By amalgamating inher-

ent domain insights and empirical laws, this approach fortifies the

reliability and interpretability of predictions and decisions. By inject-

ing the inherent comprehension of the domain’s intricacies into the

transformative capabilities of AI, methods like differentiable deci-

sion trees [164] or knowledge graph [165] can yield more informed

and contextually sound outcomes. 
• Data-driven spatio-temporal prediction : Deep learning models like RNN

and GNN possess powerful automatic feature learning capabilities

in the spatio-temporal domain [147] , which can be fine-grained

to achieve accurately driving styles recognition [166] . They enable

real-time dynamic analysis and prediction of massive heterogeneous

spatio-temporal data, facilitating accurate forecasts of medium and

long-term characteristics. 
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• Data-driven spatio-temporal decision-making : The visualization of

spatio-temporal knowledge graphs is pivotal for decision-making

capabilities [156,167] . Using graph mining algorithms, valuable

information is extracted and displayed through graph representa-

tion [168] , such as the logistics decision optimization platform used

by Cainiao [169] . 
• Interpretable spatio-temporal prediction and decision-making : Deep

learning techniques alone lack interpretability. Spatio-temporal

knowledge graphs integrate spatio-temporal data and knowledge to

gain a better understanding of spatio-temporal rules [161,165,170] .

Combining AI with knowledge graph technology greatly enhances

interpretability and provides more insights, and Liu et al. [171] pro-

posed a versatile UrbanKG for prediction and decision-making. 
• Deep reinforcement learning : Deep reinforcement learning provides a

path that has not been fully explored, that is, to directly model and

predict spatio-temporal data through trial-and-error learning with

agents. Using existing spatio-temporal data as expert knowledge,

deep reinforcement learning can learn knowledge from data very

effectively [172] . Other decision-making tasks includes traffic sig-

nal [173] or navigation [174] . 

.4. Metaverse space construction: the entrance to the virtual space 

Completing the series of tasks to obtain information about the real

ity, one can finally construct a digital space in the virtual realm, which

s nowadays called Metaverse. The construction of metaverse spaces

erves as the gateway to the virtual realm, providing the foundation

f immersive experiences, interactions, simulations, and augmented re-

lity overlays. The metaverse space serves as the container of virtual

ontent and the platform of virtual applications, which is expected to

e close to real but easy to adjust. Here we discuss model construction,

odel fusion, and model verification technologies, following a sequen-

ial process to realize the CM model (See Fig. 5 ). 

.4.1. Metaverse model construction 

The first step of a CM is to establish a digital model, which finds ap-

lications in urban planning, simulation, and analysis. In recent years,

he great abundance of data shifted research focus towards multi-source

ata. Souza L [175] provides a comprehensive overview of CM model

onstruction technology, categorizing the current urban model construc-

ion approaches into the following categories according to their data

ource: 

• LiDAR model : This approach involves acquiring 3D point cloud data

of urban scenes using LiDAR technology. The data is then processed

to extract features such as position, size, and direction, which are

used to construct a city model [176] . 
• UAV high-altitude aerial photography : Utilizing UAVs equipped with

visual recognition technology, high-altitude aerial photographs are

taken to capture overlapping image areas. These images can be used
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Fig. 6. Key characteristics of the advanced technologies involved in the review on Smart City Simulation . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

s  

p  

s

3

 

f  

c  

d  

t  

r  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

a  

3

 

B  

o  

o  

V  

l  

T  

w  

f

 

w  

a  

w  

c  

h  

i  

c  

v  

t  

n

 

d  

t  

a  

d

 

c  

c  

o  

r  

t  

o

4

4

 

a  

n  

r  

i  

c  

h

 

c  

t  

i  
for high-precision mapping and reconstruction [177] . For example,

Google has employed this technology to build 3D city models in

Google Maps. 
• Satellite remote sensing : This approach involves capturing high-

resolution remote sensing images through satellites. Advanced deep

learning models [178] are now applied to extract ground object in-

formation, which is used to construct urban models. 
• Measuring instruments and sensors : Various physical information

about urban scenes is obtained using measuring instruments and

sensors. For instance, the city government of Munich uses sensors

to gather air quality data [179] , which is utilized to simulate the

city’s meteorological environment. 
• Social media and crowdsourcing : This approach involves collecting ur-

ban scene information from the public through social media, mobile

Internet, and crowdsourcing platforms.. As an example, researchers

from MIT have developed Treepedia [180] , which constructs mod-

els of green coverage in major cities worldwide using photos and

location information uploaded by the public. 

In summary, the selection of city model construction technology

n the CM should be based on specific application scenarios and data

ources. Each technology has its strengths and suitability for different

urposes. Choosing the appropriate technology for a given application

cenario is crucial in constructing the CM. 

.4.2. Multi-source model fusion 

Various data sources in Section 3.4.1 can all provide models at dif-

erent scales and resolutions, therefore how to integrate them should be

arefully examined. Multi-source model fusion integrates models from

iverse data sources to create a unified CM model, aiming to leverage

he strengths of different data sources for comprehensiveness and accu-

acy. The major approach includes the integration at the data level, the

odel level, or afterward verification. 

• Fusion technique based on data [181] : This approach utilizes data fu-

sion methods that consider factors such as weight, quality, or trust to

integrate data from different sources. It aims to ensure the integrity

and consistency of urban data by forming multi-level and multi-angle

representations. For example, Jia et al. [182] achieved precise urban

area extraction and model establishment by fusing multi-source re-

mote sensing image data. 
• Fusion technique based on model integration : This technique com-

bines models from different data sources using similarity, associa-

tion, and fusion rules. By leveraging these integration methods, the

strengths of individual models can be combined to enhance the over-

all model accuracy. For instance, [183] employed a random forest-

based model integration algorithm to accurately monitor changes in

urban objects. 
• Fusion technique based on model verification [184] : This approach in-

volves using different verification criteria, such as accuracy or ro-

bustness, to evaluate the urban model. Various verification algo-

rithms, including trust fusion, hierarchical fusion, and Bayesian net-

work, can be utilized to assign weights and optimize multiple objec-
tives. i
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.4.3. Metaverse model verification 

Model verification technology plays a crucial role in assessing the

ccuracy and reliability of the established model from Sections 3.4.1 and

.4.2 . 

One commonly employed method is simulation-based verification.

y constructing a virtual urban environment and simulating its devel-

pment process under different scenarios, the accuracy and reliability

f the model can be assessed [49] . Furthermore, researchers can utilize

irtual Reality (VR) technology to present the virtual city to users, al-

owing them to experience and evaluate its practicality and feasibility.

his approach necessitates a comprehensive simulation platform, along

ith various parameters and rules, serving as fundamental components

or establishing and optimizing the CM. 

During the simulation and verification process, various elements

ithin the city can be simulated to observe their movement, interaction,

nd impact. By comparing and validating these simulations with real-

orld observations, the quality and accuracy of the City Metaverse (CM)

an be further optimized. Simulation-based model verification methods

ave gained popularity in recent years. For instance, a study simulat-

ng traffic congestion in New York demonstrated that the CM could ac-

urately reflect the actual urban traffic situation [185] . Another study

erified the feasibility of shared transportation in reducing environmen-

al impact by simulating factors such as air quality and environmental

oise within the city [186] . 

Additionally, there are other model validation methods based on

ata analysis [187] . These methods rely on historical data to evaluate

he prediction accuracy and applicability of the model. Such approaches

re particularly valuable in traffic or climate models, where historical

ata can be used to validate the model’s effectiveness. 

However, when applying validation methods based on data analysis,

ertain considerations must be considered. Firstly, the data quality is

rucial, emphasizing the need for data cleaning and preprocessing. Sec-

ndly, selecting appropriate evaluation metrics should reflect the accu-

acy and applicability of the model. Finally, the analysis and interpreta-

ion of the results are essential to identify the strengths and weaknesses

f the model, providing valuable feedback for refining the CM. 

. City metaverse empowers spatial data intelligence 

.1. Smart city simulation: a city running in virtual space 

With the technical support of Section 3 , we can extract and construct

 metaverse space from a real city, and apply the power of digital tech-

ology to benefit our real world. The first step is to provide a virtual

epresentation of the city and simulate various components and behav-

ors through smart city simulation. Such virtual representation, often

alled a digital twin, allows urban planners, policymakers, and stake-

olders to analyze and optimize the city in a simulated environment. 

In the following sections, we will delve into the key aspects of smart

ity simulation, focusing on spatial-temporal data visualization, spatial-

emporal dynamic simulation, and the digital twin city in order accord-

ng to the depth of the simulation, which aims to create accurate and

nteractive virtual replicas of cities together (See Fig. 6 ). 
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.1.1. Spatio-temporal data visualization 

Spatio-temporal data visualization, especially interactive explo-

ation and dynamic demonstration, is the simplest form to present com-

lex spatio-temporal data visually [188] . Due to its multi-source, multi-

imensional, interactive, and dynamic nature, it usually serves as the

utput of smart city simulation. 

The main advantages of spatio-temporal data visualization technol-

gy include the following aspects: 

• Intuitiveness : Spatio-temporal data visualization is designed to

present abstract spatio-temporal data in front of users through in-

tuitive visualization. 
• Interactivity : Spatio-temporal data visualization supports indepen-

dent selection of data dimensions, attributes, and granularity, en-

abling quick and accurate obtaining of the required information. 
• Real-time performance : Spatio-temporal data visualization support

displaying the spatio-temporal changes of data through dynamic

demonstration to better meet the needs of real-time data analysis. 
• Globality : Spatio-temporal data visualization can integrate spatio-

temporal data from different sources to obtain more comprehensive

and accurate data. 

Currently, spatio-temporal data visualization finds applications in

iverse fields, including map visualization [189] , traffic visualiza-

ion [190] , and epidemiology visualization [191] . Advancements in sen-

or technology and wireless communication enable the acquisition and

rocessing of large-scale, high-resolution spatial data. Looking ahead,

patio-temporal data visualization technology is expected to progress in

he following directions: 

• Intelligence : Emerging AI-based visualization technologies are ex-

pected to automatically process and analyze large-scale spatio-

temporal data and be able to choose the best visualization form. 
• Interaction : Advancement of HCI will enhance visualization interac-

tion, and allow more free exploration through gesture recognition,

speech recognition, AR/VR, etc. 
• Integration : As the data from the city metaverse would be multi-

source and multi-modal, effective and efficient data integration will

become the key to spatio-temporal data visualization. 

In conclusion, spurred by the demands of constructing and utilizing

he city metaverse, spatio-temporal data visualization is set to undergo

apid development and innovation. 

.1.2. Spatio-temporal dynamic simulation 

Visualizing virtual cities alone does not provide enough insights that

rive virtual cities. Spatio-temporal dynamic simulation [192] involves

imulating various events in urban space, such as dynamic traffic, hu-

an mobility, urban disasters, and urban energy, which is the subse-

uent step for digital twins. 

The key components of spatio-temporal dynamic simulation include

stablishing urban models, formulating simulation strategies, determin-

ng model parameters, conducting simulation experiments, and ana-

yzing results. For detailed information on establishing urban models,

lease refer to Section 3.4 . When formulating simulation strategies, con-

ider factors such as the target of the simulation, spatio-temporal scope,

nd specific goals and requirements [193] . Determining model param-

ters is crucial and should be done based on experience or experimen-

ation. Following simulation experiments, it is important to visualize,

uantify, and analyze the results to draw meaningful conclusions and

rovide decision-making recommendations. 

Thanks to the availability of vast amounts of data and advancements

n AI, spatio-temporal dynamic simulation is experiencing remarkable

mprovements in accuracy and utility. Integrating AI algorithms with

omprehensive datasets has unlocked new possibilities in simulating hu-

an mobilities within urban environments [194] . Deep learning mod-

ls, in particular, have demonstrated exceptional capabilities in captur-

ng and reproducing complex human behaviors [195] . These models
1180
everage large-scale datasets to learn patterns and rules of mobility, en-

bling the simulation of realistic movements and interactions within a

ity [196,197] . 

Moreover, the availability of high-resolution data has significantly

ontributed to our understanding of crowd behaviors in densely popu-

ated areas [198] . Analyzing this high-resolution data allows a compre-

ensive understanding of crowd dynamics [199] . Recent developments

ocused on capturing the daily trajectories and behaviors of individuals,

hich can uncover valuable insights into trajectories [172,200] , activ-

ty patterns [201] , and the correlation between spatial and temporal at-

ribute [148] . Integrating data-driven approaches, AI algorithms, and

igh-resolution datasets has revolutionized spatio-temporal dynamic

imulation, enabling more accurate and detailed representations of ur-

an dynamics. These advancements have far-reaching implications for

rban planning, transportation management, and emergency response. 

The advantages of spatio-temporal dynamic simulation lie in: 

• High simulation accuracy : Based on actual data and physical laws,

complex urban change processes like population migration, traffic

congestion, and climate change can be simulated, which is of value

to high-precision decision support for urban planning and manage-

ment. 
• Better visualization : The process of urban spatio-temporal dynamic

change can be presented in simulation so that decision-makers and

the public can have an intuitive understanding, which is of great

significance in promoting urban democratization and transparency. 
• Strong decision-making support : The urban change under different cir-

cumstances can be simulated to provide a comparison and selection

of various schemes, thereby decision-makers can evaluate the pros

and cons, and formulate more reasonable and effective strategies. 

.1.3. Digital twin city 

With the help of visualization and simulation, the digital twin city

reates digital replicas of real cities for intelligent management, focus-

ng on real-time synchronization with the actual urban conditions. It

rovides decision support for urban planning, design, operation, and

anagement by updating, simulating, and analyzing real-time situa-

ions [202] . This technology is a significant trend in smart city research

nd finds applications in urban planning, traffic management [203] , en-

ironmental protection [204] , and disaster response. 

The development of digital twin city technology has several advan-

ages. 

• Digital twin city can provide high-precision, high-resolution urban data

that comes directly from the real-time collection during the opera-

tion, which are beneficial for decision-making management. And the

simulation in a digital twin city can avoid potential risks such as un-

reasonable systems and models, thereby ensuring the authenticity of

the simulation effect through interconnected urban systems. 
• Digital twin city can realize real-time monitoring and intelligent regu-

lation . With the help of AI models, real-time detection of road traffic

flow can provide control of traffic signals. Similar methods can also

be applied in environmental detection and crime prevention. 
• Digital twin city can increase the participation and awareness of ur-

ban residents , which promotes urban democratization and commu-

nity participancy. Digital twins in virtual spaces solve the problem

of physical isolation of urban areas, enable a deeper understand-

ing across different kinds of borders, and provide powerful tools for

democratic urban governance. 

It is important to acknowledge that the digital twin city technol-

gy still faces several challenges. Firstly, there is a need to enhance

he quality and accuracy of urban data to improve credibility and real-

sm. Secondly, the processing and computation of large-scale data pose

hallenges for real-time updates and evolution. Thirdly, ensuring data

rivacy and security, particularly with sensitive human data, must be

mphasized before advancing the digital twin city. 
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Fig. 7. Schematic diagram of Human-computer interaction for city meta- 

verse . 
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Fig. 8. Differences of VR, AR and MR . 
.2. Human-computer interaction: breaking the barriers between virtual 

nd physical spaces 

As a digital reality, CM can reconstruct and simulate the physical

ity. But without engagement with human interaction, the CM is nei-

her self-completed nor adequate for practical use, highlighting the sig-

ificance of HCI technology ( Fig. 7 ). The HCI process comprises three

ain components: the real world, the virtual world, and the metaverse

ngine [205] . 

The real world component encompasses users who interact with the

etaverse through devices, while the virtual world component consists

f virtual characters and environments that respond to user input and

xhibwit dynamic behavior. The metaverse engine facilitates interac-

ions between the virtual and real worlds using technologies such as the

rain-computer interface, augmented reality (AR), virtual reality (VR),

nd mixed reality (MR). In the following sections, we will delve into the

oncepts of VR, AR, MR, and the brain-computer interface. 

.2.1. Virtual reality 

Virtual reality (VR) is an immersive technology that combines com-

uter graphics systems and interface devices to create interactive 3D

nvironments. Using a VR device, the user’s visual range is expanded

hrough a convex lens, while a gyroscope tracks the user’s head move-

ents. The screen is continuously refreshed in real-time, allowing users

o experience a 360-degree, three-dimensional space, resulting in a

ighly immersive visual environment [206] . 

Virtual reality is characterized by immersion, interaction, and imag-

nation, achieved through its three main components: hardware, soft-

are, and content. 

• Hardware encompasses input and output devices. Input devices can

be hand-based or non-hand-based. Hand-based input includes VR

handles, VR gloves, and gesture input devices, with handles being

simple and easy to use, while gloves offer more advanced motion

capture capabilities. Non-hand-based input includes eye tracking,

motion tracking, and voice input. The primary output device is a

head-mounted display that blocks the user’s sight to enhance the vi-

sual experience. 
• Software creates virtual environments and objects to deliver an im-

mersive experience. It can reflect the real world or create imagi-

nary environments. Real-world reflection replicates existing physical

environments, such as digital twins (see Section 4.1.3 ). Imaginary-

environment creation involves painting, 3D modeling, or deep learn-

ing methods. Sound plays a vital role in setting the atmosphere and

enhancing the sense of presence, complementing the visual scenes

and objects. 
• Content refers to the events, tasks, and experiences within the city

metaverse, created by humans or machines. Deep learning sys-

tems have demonstrated their ability to represent and combine
1181
information hierarchically, which is crucial for generating content

that closely resembles real-life experiences [207] . 

.2.2. Augmented reality 

Unlike the full immersion of virtual environment in VR, Augmented

eality (AR) overlaps virtual objects onto real-world environments, in-

luding computer-generated images, sounds, 3D models, video, graph-

cs, animation sequences, games, and GPS. AR supplements reality

ather than providing an alternate reality, beginning with collecting

eal-world data through cameras and sensors. The user’s spatial posi-

ion is continuously updated in real-time using cameras, gyroscopes,

nd other accessories. This information is used to calculate relative po-

itions and fuse virtual content, resulting in a synthesized video presen-

ation [208] . 

As a crucial technology in the city metaverse, AR blends digital visual

ffects with the real environment and is accessible through smartphones

nd other digital devices. 

To support real-time AR operations, an efficient data transmission

etwork like 5G (as discussed in Section 3.2.1 ) is essential. This network

nables both precise and approximate AR services. Precise AR detects

ll potential objects for an immersive AR experience, while approxi-

ate AR focuses only on visually salient objects to reduce computation

nd communication overhead. Recent research proposes a self-adaptive

R services framework that adjusts to different network conditions and

omputing capabilities. The AR service provider allocates computing re-

ources based on environmental information provided by AR users. 

Object detection [205] is another important aspect of AR, as it re-

uires accurate identification and localization of real-world objects for

irtual object projection. Recent advancements in graph neural net-

orks show promising potential in this area [209] . 

.2.3. Mixed reality 

Combining the advantages of VR and AR, Mixed Reality (MR) merges

eal and virtual, aiming to create a unified space where real and virtual

bjects coexist and interact in real-time. The goal is to seamlessly blend

he physical and digital worlds, allowing users to perceive and interact

ith both simultaneously. 

Virtual Reality, Augmented Reality, and Mixed Reality are related

oncepts with different display approaches (see Fig. 8 ). VR immerses

sers in a fully computer-generated environment, disconnecting them

rom the real world. AR overlays virtual content onto the real world,

nhancing the user’s perception of reality. MR combines elements of

oth VR and AR, merging the real and virtual worlds and allowing for

eamless interaction between them [210] . 

MR poses greater demands on perception and display compared

o VR and AR, resulting in additional challenges such as model cal-

bration [211] . Achieving precise calibration is crucial for MR tech-

ology, including accurate initial calibration of hand-eye coordination

nd effective real-time calibration to ensure long-term accuracy. Re-

ent research [212] has introduced a real-time latent active correction
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Fig. 9. Schematic diagram of IoT and Blockchain distributed technology . 
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duction to sales are crucial. 
lgorithm for optical perspective and hand-eye coordination, which

elps mitigate error accumulation in hand-eye calibration. 

.2.4. Brain-computer interface 

In addition to transmitting information through visual means like

R or VR, the Brain-Computer Interface (BCI) enables direct commu-

ication and information exchange between the brain and external de-

ices. The process can be divided into three steps: detection, analysis,

nd control. Initially, specialized devices detect human brain activity,

uch as brain waves or magnetic fields. Subsequently, these signals are

nalyzed and processed to identify instructions from the brain. Finally,

he extracted instructions serve as input for controlling devices, facili-

ating interaction between humans and computers. 

BCI can be categorized into invasive, semi-invasive, and non-invasive

ethods [213] . Invasive BCIs involve implanting electrodes into the

erebral cortex, while semi-invasive BCIs place electrodes in the cranial

avity but outside the cerebral cortex. Non-invasive BCIs collect EEG

ignals using wearable devices attached to the scalp. Invasive BCIs pro-

ide accurate data but pose surgical and tissue rejection risks, whereas

on-invasive BCIs avoid safety risks but capture weaker signals. 

BCI holds promise as an output technique in the city metaverse. While

onventional devices like speakers, headphones, screens, and VR/AR

evices provide limited immersive experiences for hearing, vision, and

ouch, BCI can directly transmit images and sounds to the brain, enhanc-

ng auditory and visual interactions in real-time. Although currently

sed primarily in the medical field, BCI has the potential to shine in

he metaverse. 

BCI also enhances input flexibility by enabling users to control ex-

ernal objects through encoding and decoding brain waves. In an ideal

cenario, EEG-based BCI allows users to control virtual characters in the

ity metaverse through thoughts and imagination. Existing applications

uch as the P300 speller [214] enable text input using EEG, and further

esearch can enhance accuracy and efficiency. 

BCI research has made significant strides, but it still faces major

hallenges. The primary challenge lies in accurately deciphering human

ntentions from brain signals, which are often characterized by a low

ignal-to-noise ratio. Brain signals are easily influenced by biological

nd environmental factors, and their non-stationary nature makes in-

ormation extraction difficult. Although various preprocessing and fea-

ure engineering techniques in the time and frequency domains have

een developed, they tend to be time-consuming and prone to distortion.

oreover, feature engineering heavily relies on human expertise, lim-

ting generalizability. Although AI-based approaches have shown some

rogress, the dynamic nature of human thinking poses difficulties in pre-

ise classification. The city metaverse encompasses diverse and complex

cenarios compared to medical applications, necessitating the develop-

ent of new AI methods specifically tailored for BCI applications [215] .

.3. Distributed technology: intermediary connection of physical spaces 

After engaging human interaction in CM, the need for physical-

irtual synchronization emerges, aiming to reflect human behavior in

he virtual world to every urban corner. Integrated distributed technolo-

ies, such as IoT and blockchain, provide such possibilities for CM. IoT

nables the distributed collection and reflection of real-world devices,
1182
hile blockchain provides data storage and security. Together, they sup-

ort the operation and control of the real city in the CM. 

The conceptual diagram in Fig. 9 illustrates the integration of

lockchain and IoT, consisting of the physical layer (IoT-enabled phys-

cal objects), the connection layer (digital representation generated

hrough IoT and corresponding NFT), and the blockchain layer (stor-

ge of relevant information using blockchain technology). 

.3.1. Internet of things 

The Internet of Things (IoT) is a network that connects objects

hrough information-sensing devices to enable their identification and

anagement. In the context of the city metaverse, IoT technology plays

 crucial role in collecting diverse data from urban sensors and deliver-

ng operation instructions to devices. Compared to 5G which is mainly

 communication technology in Section 3.2.1 ), IoT focuses more on the

eterogeneous, continuous, multi-dimensional, and multi-sourced con-

ections between devices, which involves embedded devices, network

rchitecture and application development. There is no doubt that 5G

ommunication technology can greatly promote the progress of IoT, and

uch a close connection proves the synergy between SDI and CM. 

The architecture of IoT can be divided into four main components: 

• The perception layer, also known as the physical layer, includes sen-

sors, actuators and other devices to collect various information from

the surrounding environment. These devices then send the collected

information to the network layer. 
• The network layer, also known as the transport layer, forwards col-

lected data from physical objects to information processing systems

through wired or wireless means such as WiFi, Bluetooth, or infrared.
• The platform layer, is linked to a database and responsible for service

management and data processing by technologies such as virtualiza-

tion and cloud computing. 
• The application layer, is the interface between the IoT system and

users that provides intelligent and corresponding management for

logistics, medical care, and urban construction. 

IoT, as a distributed technology and a prerequisite for SDI, faces sig-

ificant challenges in terms of security and privacy. At the perception

ayer, the transmission of multi-sourced information carries the risk of

ake data and malicious tampering in public environments. To address

hese challenges, targeted algorithms and authentication mechanisms

ike Privacy-Preserving Data Publishing (PPDP) [216] are necessary. At

he network layer, the efficient transmission speed exacerbates the prob-

em of fake data, compatibility issues, and cluster security concerns due

o the heterogeneity and complexity of the architecture. Secure routing

rotocols and data protection schemes are essential to mitigate these

hallenges and ensure the integrity and security of the IoT network. 

Blockchain-based IoT provenance mechanisms provide a solution for

nsuring data integrity and verifiability [217] . By recording all actions

n the blockchain using a consensus-driven mechanism and digital sig-

atures, transparency, immutability, and auditability are achieved. This

echnology has made a significant impact in industries such as supply

hain management, where transparent and traceable records from pro-
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.3.2. Blockchain 

The concept of blockchain was introduced by Satoshi Nakamoto in

008, through the article “Bitcoin: A Pemer-to-Peer Electronic Cash

ystem ” [218] . Blockchain is a distributed digital ledger that enables

he recording and sharing of information within peer-to-peer networks,

hich provide authenticity and validity for IoT in Section 4.3.1 through

 sequential chain structure and corresponding cryptographic algo-

ithms. The features of blockchain have led to its widespread adoption in

nance, information security, logistics, and manufacturing, which can

e used as the extension of CM on real-world devices. 

Blockchain technology encompasses different types of chains based

n their degree of decentralization: public chain, private chain, and

lliance chain. The public chain operates in a decentralized manner,

here all network nodes participate and share information freely. How-

ver, it may have limitations in terms of scalability. On the other hand,

he private chain is centralized, providing higher transaction efficiency

nd confidentiality. It operates under the control of a central entity. The

lliance chain falls between the public and private chains, managed by

ultiple organizations working together. 

In the context of Spatial Data Infrastructure (SDI), data plays a cru-

ial role, and blockchain technology can contribute to its storage and

ecurity [1] . Spatial data often contains location information that may

nvolve personal privacy or state secrets. By utilizing cryptography al-

orithms, the private chain or alliance chain can enhance information

ecurity and protect sensitive data. Furthermore, the blockchain’s abil-

ty to store time-series data facilitates auditing and retrospective anal-

sis. It allows for the verification of results and decisions by tracing

ack through the recorded data, enabling the identification of issues in

patio-temporal data applications [219] . 

.3.3. Non-fungible token 

Non-fungible Tokens (NFTs) are unique tokens recorded on a

lockchain ledger, representing certificates of distinct digital assets. In

he CM, publishers convert digital items such as images, videos, and

udio into NFTs, enabling users to freely trade these tokens through

mart contracts on the blockchain (see Fig. 10 ). NFT provides advanced

lockchain applications, goes beyond the original intention of informa-

ion proof of device networks, and provides more possibilities for human

ehavior in CM. 

As a new application of blockchain, Non-Fungible Tokens (NFTs)

nherit and expand upon the characteristics of blockchain, includ-

ng uniqueness, traceability, scarcity, and indivisibility. These features

ake NFTs suitable for use in the city metaverse, where they can serve

s intermediaries for interaction and proof of ownership in the virtual

orld, as well as provide digital property protection. Given the diverse

nd heterogeneous nature of information in the city metaverse, NFTs

an provide a credential basis to validate the contributions of owners. 

However, despite the protection offered by blockchain, NFTs still

ace security and privacy challenges. Incidents such as those reported

y SlowMist Hacked [220] , which documented 56 security incidents in

022 resulting in a loss of 65.43 million USD, highlight the importance
Fig. 10. Schematic diagram of the Non-Fungible Token . 
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f addressing these concerns. Ongoing research focuses on technologies

ike stealth addresses, zero-knowledge proof schemes, and reversible to-

ens such as ERC-721R [214] , aiming to enhance the security and pri-

acy of NFTs. 

.4. Smart city decision support: returning to the exit of physical space 

After realizing smart city simulation, human-computer interac-

ion and distributed control in CM, it will be a matter of course

o integrate these technologies for decision-making support of smart

ities [221,222] . To achieve this goal, it is necessary to develop plat-

orms or systems to carry the various modules from simulation, inter-

ction and control. Here, we will mainly introduce the three kinds of

latforms, namely the city information model, virtual geographic envi-

onment and urban middle platform. The three are closely related but

onceptually distinctive, providing different emphases for different fea-

ures and can be regarded as different solutions for CM. 

.4.1. City information model 

The City Information Model (CIM) is a digital representation used

o describe and model urban spaces, infrastructure, environments, and

ocial and economic systems [223] . It is derived from the Building In-

ormation Model (BIM), which focuses on digitizing the physical and

unctional characteristics of buildings [224] . The CIM, similar to BIM,

ntegrates various data sources to provide comprehensive, accurate, and

eal-time information support for enhancing urban sustainability, liv-

bility, and competitiveness [225] . 

The CIM and the city metaverse are mutually beneficial as they share

ata, integrate technologies, and facilitate convergence. By leveraging

he capabilities of the CIM, the city metaverse can use various models of

rediction and simulation from digital twins to address digital inequal-

ty in planning and data fragmentation [226] . In return, the CM can

nrich the CIM with immersive and interactive experiences, enabling

etter decision-making and urban management. The symbiotic relation-

hip between the CIM and the city metaverse contributes to developing

mart and connected cities. 

• Data sharing: The CIM can provide abundant real-world data for the

city metaverse, while behavior information generated in CM can also

be fed back to CIM to provide new insights for urban management

and planning [227] . 
• Technology complementarity: Both CIM and City Metaverse rely on

advanced digital technologies, such as VR, AR and AI, which can

achieve mutual support and collaborative innovation in different

scenarios [228,229] . 
• Application integration: CIM and City Metaverse can realize interac-

tion and integration in urban planning, design, management and op-

eration, like virtual urban planning experiments, public safety drills,

emergency response training, etc. 

On the other hand, the increasing evolution from digitization to in-

elligence gives rise to the concept of the city brain. The city brain is

n AI-based application that leverages SDI and CM technologies to inte-

rate diverse data sources for real-time monitoring, analysis, and deci-

ion support [230,231] , enabling intelligent, efficient, and sustainable

rban development. 

As the practice of large-scale artificial intelligence in the real world,

he city brain can be viewed as an application of CM and CIM. On one

and, the city brain has five major application scenarios: urban traffic

heckup, urban police monitoring, urban traffic micro-control, urban

pecial vehicles, and urban strategic planning [232] , all of which rely on

dvanced information and modeling technologies of CM. On the other

and, The visualization infrastructure of CIM [233,234] provided a good

latform for these applications’ usages of authorities and planners. 

.4.2. Virtual geographical environment 

Virtual Geographical Environment (VGE) is a new generation

f geographic analysis tools for modern smart city systems [9] . It
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Fig. 11. The national land space planning scene supported by virtual sim- 

ulation in city metaverse . 
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ntegrates several essential features, including geospatial analysis, geo-

isualization, and geography-related planning and decision-making, as

ell as training, education, and entertainment. VGE reflects the early

ffort of CM in the field of GIS, focusing on opportunities for data sup-

ort and functional expansion, and now benefiting from the technology

dvancement of CM [235] : 

• Twin VGE: Twin VGE is developed based on the digital twin frame-

work of metaverse, aiming to quantify the real-time and fidelity VGE

with the constraint vectors and the attribute vector, enabling deep

human interaction with the geographic environment [236] . 
• Geographical perspective: Traditionally, VGE provides three appli-

cation levels, namely geo-object-based analysis, geo-process-based

simulation, and multi-participant-based collaborative experiments.

They can enrich the CM through knowledge collaboration, multi-

person collaboration, multiple visualizations, spatiotemporal expres-

sion [237] , which can provide a scientific basis for decision-making

and management. 
• More than one model: With the development of CM, it is now pos-

sible to catalog more than one model for any problem in VGE, with

a human-centrally loop but focusing on different articulations of the

applicability. The virtual infinity of the CM model defined new forms

of VGE, which now forms the cutting edge of geospatial modeling

and analysis [235] . 
• Immersive interaction: VGE can better represent our sense of place

through the application of VR technologies [238] , deepen our geo-

experience from immersion to presence and further to embodi-

ment [239] . Such immersive interaction can also benefit from recent

machine learning methods like knowledge graph [240] . 

VGE has attracted researchers’ attention for more than two

ecades [241] , firstly defined by Lin and Gong [242] as a sub-field of GIS

nd were designed for geographic understanding and problem-solving

asks by virtually augmenting users senses [9] . With the introduction

f contemporary technology packages, including HCIs, distributed tech-

ologies, and simulations, VGE can now be seen as an application be-

ond CM [238] . With the continuous maturity of CM, VGE can enhance

trategic visioning, pre-planning, public consultation, and traditional

lanning practices more [243] , reflecting the vast possibilities in smart

ity decision support. 

.4.3. Urban middle platform 

The Urban Middle Platform (UMP) is an open infrastructure that

ims to unify and coordinate urban management, services, and devel-

pment. It provides efficient and convenient information services for

he government, enterprises, and the public [244] . By establishing the

MP, data sharing, technology integration, service support, and intel-

igent decision-making can be achieved, promoting the digitalization,

ntelligence, and sustainable development of cities. 

Compared to the city brain mentioned in Section 4.4.1 , the UMP pri-

arily focuses on data integration, technology integration, and an open

latform, while the city brain emphasizes intelligent decision-making

nd automated management [230–232] . The UMP focuses more on the

nfrastructure level, providing unified data, technology, and service sup-

ort across various urban fields, which can provide the city brain with

ecessary data and platforms when carrying out higher-level decision-

aking and applications [245] . 

The UMP and the CM can also be effectively combined. At the

ata level, the UMP collects and integrates various urban building

ata [246] to support the construction and operation of the CM, fos-

ering innovation and collaboration. As a comprehensive platform, the

MP is open and scalable, enabling third-party developers and insti-

utions to access it and provide rich applications and services for the

M [247] . The UMP can also facilitate the interconnection of the CM

ith other fields like education, supporting remote education and train-

ng in urban management, planning, and construction, and offering im-

ersive learning experiences for students and professionals [248] . 
1184
. Application 

SDI and CM can be extensively applied in various fields, and here

e provide a concise overview of the eight most relevant application

cenarios to highlight the current technological applications 

.1. National land survey and management 

Using 3D digitization and AI-driven knowledge bases in the CM,

he potential impact of different planning schemes can be deduced

o address various spatial land-use planning and management scenar-

os [249] ( Fig. 11 ). 

Establishing a real scene 3D surveying and mapping system serves as

he foundational framework for Digital China and the development of

he CM. In February 2022, the General Office of the Ministry of Natural

esources issued a notice titled “Notice on Comprehensively Promot-

ng Real-Scene 3D China Construction, ” which laid the policy ground-

ork for the application of the City Metaverse in national land manage-

ent [250] . 

An exemplary application of the CM in national land space planning

s demonstrated in the Xiong’an New Area. This region has pioneered

n innovative approach known as the “integration of planning, construc-

ion, and management. ” Leveraging technologies such as Building Infor-

ation Modeling (BIM), Macro Geospatial Data (GSD), and the IoT, the

iong’an New District’s CIM platform aggregates urban management-

elated data and adopts a micro-service architecture. 

The platform encompasses the entire life cycle of a city, covering

ix stages: planning, construction, management, development, opera-

ion, and maintenance. It represents the first instance in China and the

lobal context where digital city mapping and growth are seamlessly

ntegrated. The implementation of this platform is expected to signifi-

antly enhance the development and refinement of Xiong’an City. 

.2. Low-carbon environmental protection 

During the 14th Five-Year Plan, China aims to accelerate digital

ransformation to achieve “emission peak ” and “carbon neutrality ”

oals, focusing on building a clean, low-carbon, safe, and efficient smart

nergy system. The combination of SDI and CM technology, facilitated

y the digital twin platform, supports and drives the digital transforma-

ion of the energy sector [251] . 

Specifically, CM assists enterprises in low-carbon smart production

n the following scenarios: First, SDI and CM enable efficient collection

nd analysis of production data and energy consumption data, facili-

ating timely adjustments for energy conservation and emission reduc-

ion [252] . Second, the digital twin simulation system allows for the re-

earsal and assessment of different production tasks, leading to shorter
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ecision-making cycles and cost reductions. Additionally, virtual pro-

uction scenarios simulate processes and assess risks, aiding in crisis

anagement and risk response training. Real-time data analysis using

DI provides early warning capabilities. 

At a macro level, SDI and CM contribute to low-carbon smart city

anagement. Utilizing multiple spatio-temporal data, refined energy

emand forecasting optimizes energy demand and adjusts energy sup-

ly systems. By integrating supply and demand data from the energy

ndustry with economic, social, environmental, and policy information,

he virtual model in CM assists managers in optimizing and manag-

ng energy storage and transmission facilities for stable supply and effi-

ient utilization. Virtual environmental simulation scenarios in CM en-

ance public understanding and experience of zero-carbon energy ap-

lications, promoting low-carbon lifestyles and reducing high-carbon

mission activities like business meetings and travel. 

.3. Traffic planning 

The 14th Five-Year Plan prioritizes the acceleration of digital trans-

ormation in the transportation sector, advocating for the application of

echnologies such as big data, cloud computing, Internet of Things, and

rtificial intelligence in transportation. It aims to foster innovation and

evelopment of digital transportation [253] . The integration of SDI and

M creates a platform with diverse scenes, as depicted in Fig. 12 . 

• Real-time prediction and management: By collecting traffic spatio-

temporal data such as urban road conditions [254] , traffic flow, pub-

lic transportation, and parking lots, a virtual model of urban traffic

in CM can help to develop more effective traffic strategies. and pro-

vide an accurate and scientific basis for planning [255] . 
• Autonomous driving: Using SDI to obtain vehicles and environmen-

tal information in real-time can use to realize adaptive cruise control

of vehicles, including adaptive acceleration and braking and steer-

ing. 
• Vehicle-road collaboration: SDI can effectively perceive the infor-

mation and status among urban vehicles, roads, people, weather,

ground-air environment, traffic stations, traffic equipment and traf-

fic events in real-time to realize the coordinated linkage of human-

vehicle-road integration. 
• Traffic planning and design: CM technology can simulate different

traffic and planning schemes in the digital twin model to formulate
ig. 12. Application of Spatial Data Intelligent Metaverse in Urban Trans- 

ortation . 
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more scientific traffic planning solutions [256] , and ensure better

solutions for sustainable traffic development [257] . 
• Public transportation operation management: SDI can use various

sensors to collect and analyze real-time data of urban public

transportation, and reflect these data in CM to provide intelligent

decision support for the design and scheduling of urban public

transportation, so as to improve efficiency and convenience of

urban public transport. 
• Risk management and resilience assessment: Through digital twin in

CM, elements such as urban traffic network, roads, vehicles, passen-

gers and traffic facilities can be accurately simulated for emergency

response and traffic diversion strategies, providing a more compre-

hensive and accurate guarantee for the safe operation. 

.4. Cultural and tourism activities 

The combination of SDI and CM enables the expansion of audience

each by offering virtual access to cultural facilities and tourism re-

ources. By integrating spatial data, CM creates captivating and immer-

ive experiences for tourists, thereby significantly enhancing cultural

nd tourism activities and driving the growth of the digital economy. 

• Spatial data and CM technology enhance tourism by mapping attrac-

tions and creating virtual travel experiences, offering insights into

tourist behavior for improved marketing and service strategies. In

cultural activities, spatial data generates digital representations of

heritage sites and landscapes, while CM enables participation in cul-

tural events through VR and AR, making exhibitions more engaging

and accessible. 
• Urban spatial data includes information about the physical, environ-

mental and cultural characteristics of the urban environment, which

can be used to identify urban areas and map the boundaries of dif-

ferent urban functional areas, such as areas of natural or cultural sig-

nificance. Detailed and accurate city maps can highlight the unique

characteristics of each region thereby providing a decision-making

basis for the tourism and cultural activities. 
• SDI-based Point of Interest (POI) recommendations utilize user pref-

erences, locations, and scenic spots to suggest personalized travel

routes. Multi-source spatial data, including traffic patterns and user

check-ins, predict visitor flows for effective merchant service recom-

mendations. Real-time performance improvement while maintaining

accuracy is a research focus. 

.5. Urban health 

Rapid urbanization has led to health challenges like air pollution,

nhealthy lifestyles, and an aging population. The “Healthy China

030 ” Planning Outline and the New Urbanization Implementation

lan [258] emphasize the need for healthy, livable, and safe cities. The

ew Urbanization Implementation Plan of the 14th Five-Year Plan also

pecifically pointed out to promote the healthy, livable and safe devel-

pment of cities. 

Firstly, SDI aids in identifying urban health issues by analyzing spa-

ial data. The urban built environment, including overcrowded housing,

ack of green spaces, and tobacco and alcohol exposure, affects resi-

ents’ health [259,260] . Intelligent algorithms combined with spatial

ata can calculate health indicators [261] and guide spatial improve-

ents or suitable policies [262,263] . 

Secondly, CM promotes medical equality between urban and rural

reas. Through CM, medical knowledge and technology can be shared

ith remote regions, enabling online consultations and healthcare ac-

ess for rural patients. And patients in rural areas can conduct consul-

ations across spatial distances and receive online medical care. 

Finally, metaverse technology facilitates health education and pro-

otion in an accessible manner. It provides a virtual platform for pub-

ic engagement, showcasing the benefits of healthy lifestyles, proper
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Fig. 13. Urban resilience improvement strategies based on city metaverse . 
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est, nutritious diets, and clean environments, thereby fostering health

wareness and encouraging real-life actions. 

.6. Resilient cities 

Urban resilience encompasses a city’s capacity to withstand and

ecover from internal and external pressures by resisting, recovering,

dapting, and transforming. SDI and CM have significant roles in en-

ancing urban resilience through the detection and assessment of ab-

ormal events, optimizing resource allocation, and enabling intelligent

mergency management ( Fig. 13 ). 

SDI plays a crucial role in detecting and evaluating urban abnor-

al events by monitoring and analyzing diverse data sources, enabling

imely countermeasures and enhancing urban resilience. For instance,

u Cong et al. achieved over 70% prediction accuracy in detecting ur-

an traffic abnormal events using SDI [264] . Motta M et al. utilized SDI

o monitor and predict urban floods, providing accurate flood warn-

ng information [265] . Wang Q et al. employed an advanced temporal

raph convolutional neural network to accurately capture crime dynam-

cs, optimizing police resource allocation [266] . Vancouver City utilized

DI and satellite images to monitor and analyze green spaces, identify-

ng and utilizing underutilized resources to enhance the urban ecolog-

cal environment [267] . Furthermore, the analysis of complex system

mpowered by deep learning can help to identified the dominate vari-

bles [268] and critical nodes [269] in urban systems. 

CM enables the visualization, analysis, and optimization of poten-

ially vulnerable areas and risks within a city. For example, Z Al-

am et al. developed a CM to dynamically simulate and predict ur-

an transportation, energy, and the environment [2] . Y Han et al. pro-

osed a hybrid evolutionary dynamics framework to provide consis-

ent services in CM [270] . China Southern Power Grid utilized CM for

ulti-modal monitoring and early warning of the power grid, enhanc-

ng urban resilience through systematic transformation and dispatching

chemes [271] . 

As urban resilience continues to develop, the scientific guidance of

daptation and transformation of various risks becomes increasingly

mportant [29] . SDI and CM undoubtedly play pivotal roles in lead-

ng research, driving industrial development, and fostering practical
nnovation.  

1186
.7. Urban supply chain 

The urban supply chain, which encompasses the distribution of var-

ous materials and goods to urban areas, undergoes reorganization to

ccommodate mass customized consumption, digital retail, and instant

esponse. To enhance user experience, the integration of the city meta-

erse offers visibility into the entire supply chain process and enables

recise decision-making at a “second-level ” (shown in Fig. 14 ). This pro-

otes improved efficiency and adaptability in time allocation and spa-

ial adjustments within the urban supply chain. 

There are four major advantages involved: 

• System simulation: By utilizing the digital twin model of infras-

tructure, equipment, users, and operations within the CM, it be-

comes possible to predict and intervene in events such as conges-

tion, failures, and resource idleness in the supply chain. This en-

ables proactive measures to address inaccurate planning, unreason-

able plans, and uncontrollable processes, enhancing trust and effec-

tiveness within the supply chain. CM applications like autonomous

driving computing and intelligent warehouse systems have been suc-

cessfully implemented in port logistics. 
• Capacity prediction: Distributed computing can be employed to pre-

dict the total demand and transport capacity of urban logistics. Real-

time capture of decentralized performance and order information

allows for the integration of multi-modal data such as production

planning, transportation monitoring, weather sensing, and IoT data.

This significantly improves the prediction accuracy of the entire lo-

gistics link and enhances the timeliness of goods delivery. 
• Matching of supply and demand: By simulating the behavior of

the supply chain and considering the varying demand types and

strengths of facilities in the city, it becomes possible to accelerate

the adoption of multi-modal transport modes and establish suitable

cargo loading and transport route selection. Real-time perception

of external changes and immediate response ensure the provision

of more matching facilities and resources, enabling intelligent op-

timization of logistics contract fulfillment paths and enhancing the

responsiveness and flexibility of the transportation network. 
• Synchronization of virtuality and reality: The CM’s perception,

decision-making, and interaction capabilities are crucial for op-

timizing supply chain operations. The integration of distributed
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Fig. 14. The urban supply chain stack based on city metaverse . 
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technology and spatial intelligence forms a real-time feedback sys-

tem that helps improve efficiency, reduce operating costs, and con-

tinuously meet the demands of urban economic and social develop-

ment within the urban supply chain. 

. Future direction 

.1. Cutting-edge technology 

In the coming five to ten years, as related technical fields continue to

dvance and mature, the prospects for the technological development of

DI and CM will be extensive and boundless. In this discussion, we will

xplore the drivers of technological progress and prospects, focusing on

he cutting-edge technologies that may play more important roles. 

In terms of computational analysis methods, advanced deep learn-

ng will expedite the processing and analysis of spatial data, enhanc-

ng the accuracy and efficiency of intelligent management in CM [147] .

e have witnessed the large generative model, such as GPT [272] ,

LaMA [273] , Stable Diffusion [274] , perform surprisingly well on tasks

f text and images generation. These models leverage diverse urban data

o generate images, voices, texts, or other outputs that resemble human

erformance, bridging the gap between the city metaverse and real-life

cenarios. Recent work [148,172,275] has proved that generative mod-

ls can be quickly migrated to spatio-temporal data for generating hu-

an trajectory, which is vital in SDI. 

Meanwhile, the advancement in reinforcement learning which

an learn from simulation environment [276] or expert knowl-

dge [277] can accelerate the simulation in CM and delve into the

imulation of human need [201] . Such a model can be utilized with

arge-scale decision-making models that effectively employ urban infor-

ation in dynamic environments, supporting various real-life decision-

aking processes like traffic signal [278] , power grid [276] or base sta-

ion [252] . 

In terms of hardware architecture and technical support, high-

erformance computing technologies like edge computing and fog com-

uting are progressively maturing. These technologies offer enhanced

omputational efficiency [279] , greater storage capabilities [280] , and

mproved support for the functioning of the city metaverse [281] . Those

utting-edge advance in computation offloading [282] , energy con-

umption [283] or metaverse application [284] drive the progress of

onstructing a CM and promoting virtual-real interaction. 

From the perspective of user access and experience improvement,

irtual reality and augmented reality technologies will deliver a more
1187
mmersive user experience in the city metaverse [285,286] , rendering

rban planning and management more intuitive and interactive. With

he recent development in hand tracking [287] , eye tracking [288] and

ther intelligent technologies [7] , commercial applications of VR/AR

echnology have already commenced addressing practical challenges

uch as user engagement, interface interaction, and experience enhance-

ent. 

In terms of security and privacy, blockchain technology will enhance

ata protection in the CM [289] and foster trust and reliability in digital

ities [290] . As an accompanying security system for the city metaverse,

lockchain advancement like decentralized mixing services [291] , ring

ignature [292] , non-interactive zero-knowledge proof [293] , or homo-

orphic cryptosystem [294] stimulating new avenues for technological

evelopment and innovative applications. 

Besides those technologies advances, soft power such as data sharing

nd open cooperation will serve as crucial driving forces for advanc-

ng the CM [295,296] . Collaboration among government, enterprises,

nd academia in building and utilizing digital city infrastructure and

esources will be pivotal, which should be carefully examined on the

spect of policy [297] . Technological progress in differential privacy

s indispensable for promoting the openness [298] , contributing to the

uture intelligence of spatial data and the overall growth of the CM. 

.2. Future of industrial chain 

SDI and the associated industrial chain of the city metaverse act as

atalysts for the coordinated development of various disciplines and in-

ustries across different sectors. The construction of SDI relies on sub-

tantial infrastructure support from upstream industries such as comput-

rs, network communications, sensors, the IoT, and cloud computing.

urthermore, it extends to the manufacturing and operation of space

ata acquisition equipment like drones and satellites, as well as SAAS

roviders offering data processing and analysis services. Similarly, the

evelopment of the CM involves upstream industries related to infor-

ation technologies, including professional city modeling, virtual real-

ty, and data visualization. Additionally, it extends to emerging sectors

ike artificial intelligence and autonomous driving. The downstream ap-

lications of SDI and the city metaverse are extensive and have been

iscussed in Section 5 . 

Moreover, the application of SDI and CM collaborative development

mong different industries and fields. For instance, employing SDI for

ogistics trajectory monitoring and optimization enhances the efficiency

nd service quality of urban logistics, thereby fostering the development
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f related industries such as e-commerce and manufacturing. By extend-

ng the industrial chain of urban informatization based on CM [299] ,

he formation of industrial clusters interconnected becomes a signifi-

ant transformation for future urban development. 

Over the next five to ten years, the technological development of

DI will be closely intertwined with the construction of the CM. This

ynergy will facilitate the digital transformation of cities and the es-

ablishment of smart cities, encompassing infrastructure, software and

ardware equipment, services, and other aspects of technological devel-

pment. The ultimate goal is to create smarter, sustainable, and livable

rban environments for the benefit of all. 

.3. Legal, regulatory and ethics 

The technological progress and development of SDI and the CM hold

mmense potential, but they are also accompanied by legal and regula-

ory challenges. It is crucial for the government to enhance supervision

ver the city metaverse, establish clear legal frameworks, identify re-

ponsible entities, and define industry standards. This can be achieved

hrough the implementation of laws, regulations, and guidelines. Fur-

hermore, regulatory authorities should improve their enforcement ca-

abilities and technical expertise to effectively oversee the city meta-

erse. 

In addition to government supervision, CM service providers have a

esponsibility to self-regulate their operations. They should take proac-

ive measures to ensure the safe and stable functioning of the city meta-

erse. This involves implementing robust security protocols, adhering to

rivacy regulations, and adopting best practices in data management.

y prioritizing self-regulation, CM service providers contribute to the

verall safety and reliability of the city metaverse ecosystem. 

Addressing legal and regulatory challenges is vital to foster a trust-

orthy and responsible environment for the development and operation

f SDI and the city metaverse. Collaboration between the government,

egulatory authorities, and CM service providers is essential in estab-

ishing a framework that promotes innovation while safeguarding the

nterests of individuals and society as a whole. 

• The legal status of the city metaverse remains ambiguous, posing

challenges in terms of management and regulation. As the city meta-

verse encompasses various economic activities, there is a need to es-

tablish clear legal frameworks that address virtual property rights,

privacy protection, and network security. It is essential to develop

comprehensive laws that define the legal nature, transactions, and

taxation of virtual property, while also addressing concerns such as

money laundering within the virtual space. 
• Effective management and security of data within the city metaverse

present significant challenges. It is necessary to develop appropri-

ate technical solutions and regulations to mitigate the risks of data

breaches. Regulatory authorities should focus on ensuring that ser-

vice providers inform users about the scope of data usage, establish

robust consent mechanisms, and implement stringent self-regulatory

procedures to safeguard data privacy. 
• Governance of the city metaverse requires coordination among vari-

ous sectors and international cooperation. The governance of the city

metaverse mirrors that of a physical city, involving multiple depart-

ments and agencies. Lessons from governing real cities can inform

the governance of the city metaverse, but adjustments tailored to its

unique nature are necessary. Additionally, given the transnational

nature of the virtual space, it is essential to foster cooperation and

coordination among different countries and regions to address reg-

ulatory challenges that extend beyond national boundaries. 

Besides, in the ideal future created by the symbiosis of the real world

nd the digital world, there are significant security risks and ethical

ssues that need to be addressed in the city metaverse: 

• Technical reliability: While advancements in information technolo-

gies have improved security measures, the city metaverse is still
1188
susceptible to natural disasters, human errors, and cyber threats.

Failures of smart devices, system vulnerabilities, and attacks on soft-

ware systems can disrupt operations and compromise the integrity

of the entire city metaverse. 
• Data privacy: The use of spatial data intelligence technologies in the

city metaverse can lead to privacy breaches. Existing privacy protec-

tion measures are limited in dealing with complex relationships in

urban spatio-temporal data. More efficient and comprehensive ap-

proaches are needed to address data privacy concerns. 
• Ethics and morals: The city metaverse reflects and extends the real

world, introducing complex ethical and moral challenges. Virtual

avatars and interactions in the metaverse can lead to behavior

changes and raise questions about morality and legality. Ensuring

ethical standards and preventing harmful behaviors within the meta-

verse is crucial. 

To effectively address these security and ethical issues, collabora-

ion among governments, enterprises, and the public is necessary. The

overnment should provide oversight and regulation while remaining

pen and cautious. Enterprises should proactively assess and mitigate

isks through scene examination, algorithm design, privacy protection

echanisms, and compliance reviews. 

. Conclusion 

In summary, we have organized the research and technologies re-

ated to the CM into a coherent framework. Firstly, we explore SDI tech-

ologies that enable the collection of real-world information for con-

tructing a virtual CM. Next, we discuss the integration of these tech-

ologies with SDI to enable interaction and management of real cities

rom the virtual perspective. We also highlight the practical applications

nd potential of these methods in real-world scenarios. Finally, we ad-

ress the new challenges in technological progress, the industrial chain,

egal and regulatory aspects, as well as ethics and morality. 

The CM relies on comprehensive and accurate data provided by SDI

o create urban models and support urban planning, construction, and

anagement. Only with sufficient, diverse, and reliable data can the

M achieve a more realistic, refined, and immersive experience. Addi-

ionally, the development of the CM can drive advancements in SDI.

echnologies such as virtual reality, augmented reality, and artificial

ntelligence that are utilized in the CM present new opportunities and

pplication scenarios for SDI, enhancing our understanding of spatial

ata intelligence. For instance, AI applications within the CM can foster

nnovations in areas like smart transportation and environmental pro-

ection. SDI requires an open, inclusive, and rapidly evolving platform

ike the CM, which transforms our perception of urban spaces into ac-

ionable intelligence that impacts urban operations. We believe that the

ntegration of SDI and the CM represents the main direction for future

evelopment in this field. 
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