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Spatial Data Intelligence (SDI) encompasses acquiring, storing, analyzing, mining, and visualizing spatial data
to gain insights into the physical world and uncover valuable knowledge. These understandings and knowledge
play a crucial role in connecting physical and virtual realms, such as in developing a City Metaverse (CM) aimed
at enhancing and optimizing modern urban environments. The advancement of CM holds immense potential to
benefit urban dwellers, making research on SDI an increasingly prominent area of focus. This paper contributes
significantly by organizing the relevant research and technologies within a coherent framework. Firstly, we iden-
tify SDI technologies capable of collecting real-world information to construct a virtual CM. Subsequently, we
delve into the technologies that can be compositely integrated with SDI to facilitate interaction with and man-
agement of actual cities from the virtual perspective. Additionally, we emphasize the effectiveness and potential
of these methods in practical applications. Lastly, we conclude our survey by discussing emerging challenges
associated with technological progress, the industrial chain, legal and regulatory aspects, and ethical and moral
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considerations.

1. Introduction

Spatial data [1] refers to the information that characterizes individu-
als, objects, and events within natural geographical and human activity
spaces. By primarily considering spatial data, the advancement of ar-
tificial intelligence (AI) technology across algorithms, data processing,
and computing has contributed to spatial data collection and analysis,
culminating in the emergence of Spatial Data Intelligence (SDI). SDI
involves collecting, storing, analyzing, mining, and visualizing spatial
data to grasp spatial information and reveal essential insights. Conse-
quently, the fundamental technologies of SDI encompass spatial sensing,
data storage, mining, and computing. The accumulation and digital
storage of the spatial data, ranging from geo-location and terrain data
to meteorological, population, and socioeconomic data, have amplified
the significance of SDI in comprehending the world we inhabit.
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On the other hand, the City Metaverse (CM) encompasses apply-
ing the Metaverse concept specifically within urban contexts [2]. The
CM can be described as a virtual and digital urban space that incor-
porates urban data, models, and algorithms, enabling the simulation
of diverse scenarios and synchronous interaction, also leverages vari-
ous technologies including Al, cloud computing, big data, blockchain,
and virtual reality (VR). CM exhibits distinctive characteristics such as
being data-driven, facilitating authentic simulations, enabling intelli-
gent decision-making, combining virtual and real elements, supporting
human-computer interaction, spanning multiple domains, and prioritiz-
ing data security [3]. With such multidimensional capabilities, the CM
demonstrates the vast potential in diverse applications such as urban
planning, traffic management, cultural tourism, urban management, an-
ticipating smart cities, optimizing urban resource utilization, and bol-
stering the sustainability of urban life.
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Fig. 1. The conceptual connection between SDI and SM.

The rapid advancement in AI has sparked a notable collaboration
and interdependence between SDI and CM, resulting in a synergistic
relationship between the virtual and real domains. On one hand, SDI
catalyzes various technologies, establishing a pipeline to utilize spatio-
temporal data through the “sensing-calculation-mining-construction”.
In essence, this process can be perceived as a continuous abstraction
from the “real” to the “virtual” domain. On the other hand, the CM
originates from virtual city simulations and digital properties using tech-
nologies such as VR, augmented reality (AR), and other synchronous
interactions. These technologies facilitate the connection of physical
space components through distributed systems and ultimately influ-
ence the physical world through intelligent decision-making support.
This represents a process that moves from the “virtual” to the “real”
domain.

Despite the significant volume of research conducted in SDI, CM,
and associated technologies, there remains a notable gap in compre-
hensive surveys that effectively bridge the “virtual-real” connection be-
tween these domains. Consequently, this review aims to fill this void by
establishing a theoretical framework that elucidates the interaction be-
tween “virtual” and “real”. Additionally, this review seeks to summarize
the current status of core technologies in both SDI and CM, providing a
holistic understanding of recent advancements. Moreover, the practical
application prospects and future challenges associated will be analyzed,
offering insights into their potential implementation and identifying ar-
eas that require further investigation. This review will provide valuable
guidance for researchers and practitioners to develop SDI and CM tech-
nologies in real-world scenarios.

This review will be organized as follows: Section 2 will introduce
the framework and the method used in the survey. Section 3 would
summarize key SDI technologies to fulfill the “real-to-virtual”, while
Section 4 would review the key technologies to support CM for “virtual-
to-real” invention. After reviewing the key technologies, Section 5 will
illustrate the current and potential collaboration of SDI and CM, and
Section 6 will look into the future direction and risks. Section 7 will be
a brief conclusion.

2. Framework and method
2.1. Theoretical framework and content

As previously discussed, SDI is rooted in the physical world, while
CM is centered on the digital space. Together, they create a synergis-
tic relationship that merges the virtual and real domains. This synergy
has inspired the development of a theoretical framework, as depicted
in Fig. 1. Within this framework, SDI plays a crucial role as a key tech-

nology and bridge, empowering the construction of the CM within the
digital space.

In this review, our focus revolves around the fundamental concept
of integrating the virtual and real realms. Firstly, we will delve into SDI,
examining its distinct features, advantages, research status, and future
developments in four pivotal aspects, following the trajectory of “real-
to-virtual” integration. These aspects include:

o Spatial Intelligent Sensing, encompassing spatial sensing, spatio-
temporal database management, and high-precision spatio-temporal
mapping.

Data Transmission and Computing, comprising 5G mobile communi-
cation, spatial high-performance computing, edge computing, and
fog computing;

Intelligent Data Mining, encompassing spatio-temporal rule mining,
abnormality analysis, correlation analysis, prediction and decision-
making;

Metaverse Space Construction, involving metaverse model construc-
tion, multi-source model fusion, and metaverse model verification.

These technologies are systematically organized within the frame-
work of “sensing-calculation-mining-construction”. Such a framework
can be traced back to the early vision of smart cities [4], integrated
sensors and electronics with databases, tracking, and decision-making
algorithms. With respect to future trends and the current state [5], we
further extend the four-layer framework by Tong et al. [6] which con-
sists of Data collection, Data transmission, Data processing and Applica-
tion, to cover more related technologies that help SDI harness data from
real cities and effectively applies it within the context of the CM.

Simultaneously, the technologies encompassing the CM are system-
atically organized in a reverse “virtual-to-real” order, exploring the key
components involved and their respective functionalities. The organiza-
tion is as follows:

o Smart City Simulation, which encompasses spatio-temporal data visu-
alization, spatio-temporal dynamic simulation, and digital twin city;
Human-computer Interaction involves various modalities such as vir-
tual reality, augmented reality, mixed reality, and brain-computer
interfaces;

Distributed Technology includes blockchain, Internet of Things (IoT),
and Non-fungible tokens (NFTs);

Smart City Decision Support incorporates concepts such as City Infor-
mation Modeling (CIM), Virtual Geographical Environment (VGE),
and urban middle platforms.

All these technologies are arranged in the order of “simulation-
interaction-control-application,” emphasizing the progressive process
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of influencing the real world. As a newly developed concept, there lacks
a widely accepted framework of the city metaverse. Therefore, we drew
extensively on recent reviews. Among them, the inspiration to integrate
digital twins with advanced technologies like IoT and blockchain serves
as the backbone [7]. Valuable surveys in related fields like Human-
Computer Interaction (HCI) [8] and VGE [9,10] are used to fulfill the
framework, and the very recent survey on the broad idea of meta-
verse [11] also inspired a lot. Ultimately, we believe it is appropriate to
organize these related technologies in an order of increasing interaction
degrees with the real world. By presenting the related technologies
under this framework, we highlight capabilities in manipulating
urban environments within the CM to ultimately impact real-world
cities.

2.2. Relationship between spatial data intelligence and city metaverse

The proposed framework not only establishes a systematic order
(&real-to-virtualg and &virtual-to-realg) for organizing the technolo-
gies, but also introduces a novel perspective for cross-domain compar-
ison. For example, the 5G communication technology that facilitates
high-speed data transmission in “Data Transmission and Computing”,
also serves as the technology infrastructure for “Distributed Technol-
ogy” including IoT [12] and blockchains [13]. Here, we adopt the con-
text of “virtual-real integration” as the overarching framework, delving
into the profound relationship between SDI and CM.

e Smart City Decision Support & Spatial Intelligent Sensing: Both areas are
intricately linked to the physical urban space, representing the most
tangible and “real” applications. Smart city decision support systems
like urban middle platforms directly build upon the data collected by
spatial sensing technologies [14], reflecting the direct collaboration
between SDI and CM.

Distributed Technology & Data Transmission and Computing: Both areas
focus on the digital representations of physical space but with differ-
ent emphases. “Data Transmission and Computing” cares about how
data acquired in the real world can flow to the virtual realm, while
“Distributed Technology” cares about how virtual information and
instructions flow between physical devices [15]. Notably, the tech-
nologies involved in “Data Transmission and Computing”, such as
5G and cloud computing, provide the foundation of distributed pro-
cessing technologies like IoT [12].

Intelligent Data Mining & Human-Computer Interaction: Both areas are
intimately tied to human behaviors, respectively exhibited in physi-
cal and virtual spaces. Relying on informatization and virtualization,
behavioral patterns observed in the virtual and real domains can mu-
tually inspire and complement one another [16].

Metaverse Space Construction & Smart City Simulation: Both areas are
directly associated with virtual city representations, showcasing the
most distinct “virtual” characteristics. The digital twin city con-
structed through SDI serves as the foundational platform for CM
simulations [17], and the outcomes of simulations can be utilized
to calibrate the digital twin model.

The idea of linking SDI and CM stems from their interdependence
and mutual promotion. We gain deeper insights into the intricate re-
lationship within the framework by dissecting and comparing these
four focus areas. This analysis provides an orderly framework and of-
fers a novel perspective for cross-domain comparisons. Through this
lens, we can examine the symbiotic relationship between SDI and
CM, fostering a deeper understanding of their interplay and potential
synergies.

The extensive data derived from SDI proves invaluable to the CM.
Firstly, SDI supplies static statistical and dynamic application data of ur-
ban life, including population, buildings, traffic, and the environment,
providing a foundation for constructing CM. Secondly, SDI facilitates in-
telligent management within the CM through analysis and processing.
Thirdly, SDI aids in building refined models of CM with precise spatial
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data from real-world structures. Finally, SDI enables intelligent interac-
tion within the CM through spatio-temporal visualization on terminal
devices. Studies have sought to utilize SDI as a catalyst for advancing
CM construction [204].

Conversely, the CM represents the possibilities offered by the virtual
realm. Virtual representation of real space demonstrates the “virtual-
real integration” and provides a promising approach to timely adopting
urban changes for inclusivity and sustainability. Moreover, the CM fur-
nishes SDI with a new and in-depth data source through refined urban
models and vast virtual data for human behavior, simulation or genera-
tion. Virtual data facilitates the discovery of spatial data rules and allows
for intuitive simulation and decision support of diverse urban scenarios,
whose outputs can serve as inputs for iteration and evaluation of ur-
ban planning, transportation planning, and architectural design [18].
Furthermore, transformative technologies like VR and AR revolutionize
the interaction between individuals and the city. Urban residents can
be immersed in virtual experiences, transcending spatial barriers and
fostering inclusive urban living [19].

In conclusion, SDI and the CM complement and reinforce one an-
other. The construction of CM relies on the data and technical support
provided by SDI, while the advancement of SDI benefits from the de-
mands generated by the CM. Through their coordinated development,
we can truly achieve the digital transformation and intelligent evolution
of cities, enriching people’s lives with greater convenience and aesthetic
appeal.

2.3. Method and data source

Despite significant advancements in relevant technologies, there is a
noticeable dearth of literature and comprehensive reviews linking SDI
with CM. In the field of spatial data intelligence, there are a lot of re-
lated reviews concerning spatial data. But they are either too early to
cover the recent development of Al, such as Kopersk et al.’s survey on
spatial data mining in 1994 [20] and Wang’s in 2005 [21], or not com-
prehensive enough, such as Du et al.’s review that focused only on ma-
chine learning algorithms, or Zhou et al.’s review [22] that targeted
on 3D spatial data. Alsaedi et al. [23] provided a comprehensive re-
view of the fundamental components and characteristics of big spatial
data, which inspired our framework but still failed to bridge the SDI
with the emerging metaverse. On the other hand, the CM field has some
important surveys on the whole picture of metaverse technologies like
Ning et al. [11], but have just started to examine their impact to the
city [24]. Kusuma and Supangkat [25] reviewed the information tech-
nology that CM can use but did not provide a clear classification frame-
work. Yaqoob et al. [26] reviewed the benefits, technologies and future
opportunities of metaverse in smart cities, but did not include the role of
smart-city-related technologies in promoting CM. It is very noteworthy
that SE Bibri and Z Allam et al. carried out a series of studies [2,27—
29] that view metaverse as a virtual form of smart cities and analyzed
the possible impact on platformization, governance, ethics and sustain-
ability of cities, which strongly support our idea to bridge SDI and CM
together. However, their series of work paid more attention to the in-
fluence of the social level and did not introduce the technology deeply
enough.

It can be seen that the existing literature surveys fail to fully reflect
the synergy between the SDI and CM. To address this gap, this paper
adopts a critical literature review approach to provide a comprehensive
overview of the field and various technological aspects. The primary
focus of this review is to present an encompassing and informative per-
spective on the overall landscape and key research directions. The data
utilized for this review primarily consists of journal papers and confer-
ence papers about the key technologies discussed in Section 2.1. Given
the strong connection to industrial applications, grey literature such as
white papers, technical reports, and government documents are also in-
cluded. Notably, considering the emphasis placed on smart city develop-
ment as a national strategy in China and the significant progress made
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Fig. 2. Key technology involved in the review on Spatial intelligent sensing.

in this domain, the literature surveyed encompasses publications in both
English and Chinese.

3. Spatial data intelligence boosts city metaverse
3.1. Spatial intelligent sensing: data sources for virtual spaces

Served as the initial step, spatial intelligent sensing encompasses
the acquisition of spatial data using diverse technologies, subsequent
data processing and storage for initial analysis, and the visualization of
data on maps. Therefore, the subsequent sections will provide a detailed
exploration of the three fundamental aspects: spatial sensing technol-
ogy, spatio-temporal database technology, and high-precision spatio-
temporal mapping (See Fig. 2). These technologies provide the basic
data and storage management methods for subsequent SDI and CM
work, emphasizing the extensive and efficient update of data sources.
Their applications may be mentioned repeatedly in the other sections,
especially in the space modeling of the metaverse, demonstrating com-
plex synergies between different fields.

3.1.1. Spatial sensing

The very first step of spatial intelligent sensing is to gather large-
scale spatial data. Spatial sensing technology leverages a range of sen-
sors, including aerospace satellites [30], aircraft and drones [31], smart-
phones and mobile terminals [32], smart wearable devices [33], indus-
trial and household monitoring equipment [34], and wireless sensing
devices [35]. Considering its application in urban scenarios, it is also
known as “urban sensing”. As spatial sensing is a collection of broad
technologies, we will mainly focus on several aspects that have made
progress in recent years: 3D vision-based sensing, spatio-temporal data
crowd-sensing, and remote sensing with intelligent interpretation.

e 3D Vision (3DV) is a multidisciplinary field encompassing computer
vision, computer graphics, and artificial intelligence. Its primary fo-
cus is utilizing vision sensors to efficiently capture and analyze three-
dimensional information from the real world. In recent years, there
have been significant advancements in 3D sensor technologies such
as Lidar [36] and depth cameras [37] with the help of Al Recent ex-
plorations in intelligent sensing systems [38,39] have covered theo-
retical frameworks and important techniques, including 3D Simulta-
neous Localization and Mapping (SLAM), point cloud processing, 3D
target detection and tracking, 3D scene reconstruction, and dynamic
scene understanding.

Crowd-sensing of Spatio-temporal Data refers to a technology that
leverages distributed smart devices, such as smartphones, wearable
devices, and IoT sensors, within a crowd to collect and share data
about the urban environment and social phenomena. However, no-
table challenges exist from the distinctive characteristics of the data
and sensing methods employed, including data quality, privacy pro-
tection, user incentive mechanisms, energy consumption, and data
fusion paradigms [40]. As a result, current research endeavors in
crowd-sensing are focused on the integration and analysis of the
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digital footprints left by large-scale crowds, to establish reliable and
semantic-rich representations of group behavior across spatial do-
mains [41]. The objective is to realize a mutually beneficial scenario
for users, data providers, and application developers within the city
metaverse [42,43]. Addressing these challenges and advancing re-
search in these areas will facilitate the full potential of crowd-sensing
as a valuable source of spatio-temporal data in urban contexts.
Intelligent Interpretation of Remote Sensing has gained significant at-
tention due to the continuous advancements in higher temporal and
spatial resolutions of captured imagery through satellites and drones.
As a result, the demand for efficient processing and understanding
of massive volumes of remote sensing data prompts extensive explo-
ration of Al technologies [44]. Researchers have investigated into
the mining of multi-source, multi-resolution, and multi-scale remote
sensing data, trying to establish hierarchical scene analysis mod-
els [45] and interpretation techniques for ground and object infor-
mation [46]. Besides, research on Al processing has been conducted
in various fields including oceanography, land management, and
transportation, to provide technical support for applications such as
land and resources management, environmental protection, climate
change analysis, and national security considerations [47]. These
endeavors underscore the importance of intelligent interpretation
methods and unlock their potential for diverse real-world applica-
tions.

3.1.2. Spatio-temporal database

In the context of the three sensing methods discussed in
Section 3.1.1, spatio-temporal databases are needed for storage, query,
and optimization of collected data, which should effectively support the
requirements of spatial and temporal data processing and analysis.

The spatio-temporal database is a technology designed to handle
data with both spatial and temporal characteristics, including geo-
graphic information, meteorological data, traffic data, and more. In re-
cent years, there has been significant progress in developing storage and
query technologies [48], particularly in creating new spatio-temporal
index structures that enable support for complex queries and fast re-
trieval [49]. Therefore, we will examine the advancement in index,
query and storage technologies of a comprehensive survey.

e Index optimization for 3D vision data: Index optimization is crucial in
achieving efficient data storage and querying due to the high spa-
tial dimensions and complex geometric structures inherent in 3DV
datasets. To address these challenges, spatio-temporal databases
combine 3D index structures such as Octree, 4D R-tree, or KD tree
with multi-scale representation and hierarchical storage techniques.
These index structures consider the spatial and temporal attributes
of 3D vision data, enabling the hierarchical description of spatial
relationships [50], facilitating applications such as 3D point cloud
data processing, spatial collision detection, moving object manage-
ment, and trajectory data analysis. Furthermore, the spatio-temporal
database incorporates specific topological data structures, such as
the Half-Edge Data Structure, to support complex spatial queries
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related to the topological and spatial relations of 3D models [51].
Recent research has also focused on index optimization techniques
based on deep learning methodologies [52]. By leveraging deep neu-
ral networks, high-level representations can be extracted, enabling
the construction of more compact and efficient index structures.
Query optimization and quality management for crowd-sensing: Op-
timization is critical for spatio-temporal databases. The dynamic
nature of crowd-sensing data from many devices necessitates dis-
tributed storage and computing frameworks, such as Hadoop and
Spark. To enhance query performance and reduce computational
complexity, spatio-temporal databases employ techniques like grid
indexing and trajectory clustering to reduce the query scope and
streamline the computational workload. Given the potential for
errors, noise, anomalies, redundancy, and invalid data in crowd-
sensing datasets, data quality management is of paramount impor-
tance. Spatio-temporal databases implement quality inspection to
identify potential issues [53], error correction to rectify inaccura-
cies [54], data reconstruction to enhance completeness and consis-
tency [55], and quality evaluation to assess the overall reliability
and usefulness [56].

Storage optimization for remote sensing images: Storage optimization
is another critical concern. Remote sensing images typically exhibit
high resolution and contain abundant spectral information, necessi-
tating specialized techniques for efficient storage and rapid access.
Spatio-temporal databases employ block storage and pyramid struc-
tures to organize the image data into blocks and utilize hierarchi-
cal structures [57]. Similarly, compression and indexing technolo-
gies, such as band selection or PCA, are employed for spectral data.
These techniques reduce storage space while improving query by se-
lecting relevant spectral bands [58] or transforming the data into a
more compact representation [59]. On this basis, performance evalu-
ation tests encompass storage access, data division, index connection
structures, and query algorithms to identify system bottlenecks and
optimize efficiency. Recent advancements leverage machine learn-
ing to automate the optimization of system parameters [60]. By
extracting data features such as frequency, basic unit count, and
spatio-temporal distribution, a mapping matrix is established to rep-
resent the relationship between features and configuration param-
eters. This facilitates the creation of a trained system performance
model for automatic optimization.

3.1.3. High-precision spatio temporal map

Considering the particularity of spatio-temporal database, a very nat-
ural idea is to illustrate it on a precise map before further analysis,
namely the High-precision Spatio Temporal map (HST map).

HST map refers to a digital map that provides an accurate represen-
tation of the earth’s surface environment and its temporal changes [61].
Distinguished from conventional maps, HST maps encompass informa-
tion about the ground, underground, underwater, and air domains, en-
abling precise depiction of spatial alterations across different time in-
tervals. Diverse sensor technologies including GPS, lidar, cameras, and
inertial measurement units are used to capture relevant data, and ad-
vanced algorithms such as computer vision and machine learning are
employed to process the collected information in time. The versatility
of HST maps enables their utilization across various application scenar-
ios like autonomous driving, traffic simulation and automatic parking.

While HST maps offer immense application potential, they also
present significant challenges [62]. These challenges can be categorized
into three main areas:

o Spatial scene modeling: The sheer volume of data makes efficient stor-
age and retrieval challenging, and the processing complexity affects
the performance of matching queries and semantic interpretation.
Ensuring data quality and accuracy while managing the scale of the
data remains a crucial challenge.
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e Map information update: As the environment is constantly evolving,
the ability to capture and reflect real-time changes in the map be-
comes crucial. The delay in updating map information can lead to
discrepancies between the actual environment and the representa-
tion in the HST map. Ensuring timely updates to maintain the cur-
rency of the map information is an ongoing challenge.

Data privacy protection: Protecting user privacy while maintaining
data quality and timeliness is a complex task. Striking a balance be-
tween data privacy and the need for accurate and up-to-date maps
requires robust privacy protection mechanisms.

Fortunately, technological advancements such as crowd-sensing,
spatio-temporal data mining, and reinforcement learning have con-
tributed to significant progress in addressing these challenges.

e Spatial scene modeling: The indoor-outdoor integrated scene mod-

eling [63] focuses on the seamless integration of indoor and out-
door environments, involving techniques such as Multi-laser scan-
ning simultaneous Localization and mapping (SLAM) techniques,
extracting and matching the structures in both indoor and outdoor
scenes [64].

Point cloud extraction: Point cloud extraction aims to extract relevant
information from the point cloud data. Efficient feature description
algorithms can improve the effectiveness of feature extraction [65],
while independent object extraction algorithms [66] and feature
screening libraries automatically extract independent objects within
the environment. Contextual feature extraction technology further
enhances the accuracy and efficiency of point cloud processing [67].
Multi-platform large-scene fusion modeling: This technology integrates
data from multiple platforms to create a cohesive and detailed scene
representation. Low-cost image sensors address blind spots and as-
sist in scene reconstruction. Urban appearance modeling is then
achieved through large-scale point cloud scene classification theory
and the analysis of spatial topology relationships [68].

Map information update: Begin with data collection using sensors, di-
verse local multi-agents data must be effectively fused to create a
high-precision global map [69]. This requires establishing protocols
and communication methods for data interaction between the data
center and the agents [70]. Additionally, coordination and task as-
signment methods are essential to ensure efficient cooperation be-
tween agents and the timely completion of tasks [71].

Data privacy protection: Data privacy protection involves several key
technologies, namely differential privacy [72], encrypted comput-
ing [73], and anonymization processing [74]. Differential privacy
safeguards individual privacy while preserving statistical charac-
teristics by introducing noise during data release and queries. En-
cryption computing, including homogeneous encryption and secure
multi-party computing, ensures secure data processing and transmis-
sion by performing computations on encrypted data. Anonymization
processing protects privacy during data publishing and sharing by
generalizing and suppressing sensitive information.

Despite the challenges faced by HST maps, ongoing advancements
in technology are leading to the emergence of solutions and methods.
These developments promise to enhance the quality, timeliness, and pri-
vacy of HST maps, thereby enabling the delivery of convenient, safe, and
efficient services.

3.2. Data transmission and computing: operation guarantee of virtual
spaces

Upon acquiring a large amount of urban data, the rapid transmission
and computation of such data has arisen as a pivotal concern. Address-
ing data transmission encompasses not only the refinement of conven-
tional communication technologies but also underscores the importance
of 5G communication technology. On the other hand, the advances in
data computation are characterized by two major efforts: the facilita-
tion of high-performance computations for spatio-temporal data, and
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the architectural optimization through edge computing and fog com-
puting paradigms. Henceforth, we take these three aspects as examples,
considering their recent advancement and potential development in the
future.

3.2.1. 5G mobile communication technology

Spatial sensing in Section 3.1 will continuously send back a huge
amount of data from all city corners, which need fast, reliable and low-
latency transmission. The emergence of fifth-generation mobile commu-
nication technology (5G) [75] has played a pivotal role in achieving it.
The new architecture and technology of 5G offer higher transmission
rates (with peak rates up to 20 Gbps), lower latency (in the millisecond
range), improved reliability, increased network capacity, and broader
coverage. The high speed and low latency of 5G provide support for
data transmission, while the stability and reliability of the network en-
sure the seamless execution of data-related tasks.

e Spatial Data Transmission: Firstly, the high transmission rate of 5G
enables rapid data transfer, facilitating real-time and high-precision
applications within the city [76]. Secondly, the low latency of 5G
is crucial for the timely collection, update, and analysis of real-
time spatial data, particularly for applications like autonomous driv-
ing [77]. Thirdly, the enhanced network capacity of 5G supports a
greater number of device connections, catering to large-scale CM
systems that require continuous data collection from millions of ve-
hicles and individuals in urban areas [78]. Fourthly, 5G incorporates
robust security measures, including authentication, encryption, and
secure communication protocols, ensuring enhanced data transmis-
sion security and privacy protection [79].

e Spatial Data Computing: Firstly, the substantial bandwidth offered by
5G technology facilitates the collaborative processing of extensive
spatial data from multiple devices [77]. Secondly, the high comput-
ing performance and low latency of 5G enable real-time spatial data
analysis, facilitating rapid processing within the CM environment.
Thirdly, 5G supports cutting-edge technologies like edge computing
and fog computing [80,81], allowing spatial data to be processed
and computed at the data source. This approach reduces data trans-
mission costs and delays, alleviates the workload on centralized data
centers, and enhances overall computing efficiency.

In conclusion, 5G technology significantly contributes to the trans-
mission and computing of spatial data, offering essential capabilities for
the operation of virtual space. Its characteristics provide ample assur-
ance for the CM to deliver intelligent and efficient urban planning and
management services.

3.2.2. Spatial high-performance computing

The efficient computation of spatio-temporal representations is cru-
cial for dealing with large-scale spatial data and its dynamic evolution
over time. Through deducing the time-space state of people, objects, and
things of the physical world in the large-scale cross-modal framework
(see Fig. 3), spatial high-performance computing can accelerate many
applications in the real world. Here we summarized the most common
computational needs, including object search that searches nearest ob-
ject in spatial databases [82], route query that searches shortest paths
for navigation [83], and trajectory similarity that can be used in com-
putational acceleration and clustering [84]. We selected these aspects
because they are common but require computing resources and fast re-
sponse, which motivate the algorithm to progress. There are also syn-
ergies between them since the index structure of objects can accelerate
subsequent route queries, and the similarity calculation often relies on
previous trajectory partition.

e Moving Objects Search in Two-Dimensional Space. How to realize
searches for large-scale moving objects like cars and humans is
an important topic of spatial high-performance computing. It can
be roughly divided into moving object queries in Euclidean space
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and based on road networks. For moving object queries in Eu-
clidean space, such as range query, k-nearest neighbor query, and
reverse k-nearest neighbor query, the key issue is determining the
search area containing the target moving object. Scholars have pro-
posed various spatio-temporal index structures based on R-tree [85],
Quard-tree [86], KD-tree [87], Voronoi, and Grid. On the other
hand, the query of moving objects based on the road network is
more complicated due to the need to calculate distance on the road
network. In recent years, many works have studied the k-nearest
neighbor query problem based on road networks, like SILC [88],
ROAD [89], S-GRID [90], V-tree [91], G-tree [92], TOAIN [93],
GLAD [94], TD-H2H [95], G*-tree [96], focusing on determining
the target moving object under the premise of traversing as few
road network vertices as possible. Besides, massive mobile objects
and high concurrent queries challenge the storage and computing
resources of a single computing node. Yu et al. [97] proposed a
distributed index structure DSI and a distributed query algorithm
DKNN, which can continuously split and merge according to changes
in moving object density. MPR [98] proposed a concurrent execution
mechanism for porting single-threaded query algorithms to multi-
core servers. Furthermore, some work proposed GPU-based paral-
lel query algorithms [99], which use GPU to construct the index
and search the target area in parallel to generate a candidate result
set.
e Route Query in Road Network Space. In real life, road network-
oriented route query technology is an important demand of spatial
data high-performance computing, which is essentially the shortest
route query of the graph. Early typical work employed a heuristic in-
cremental expansion like the Dijkstra algorithm [100] and A* [101],
which use the greedy strategy to expand and visit the vertex. To
further improve the efficiency, some work calculates and indexes
the shortest distance between some vertices in advance like Con-
traction Hierarchies (CH) [102] which calculates the shortest dis-
tance bottom-up or top-down to form a hierarchical index. Based
on the CH algorithm, relevant scholars have proposed the short-
est route query algorithm based on the hub point label, such as
HL (Hub Labeling) [103], DHP [104], PHL(Pruned Highway Label-
ing) [105], BHP [106], and SHP (Significant path based Hub Push-
ing) [107]. When facing huge graphs and high concurrent queries,
it is more effective to use a parallel strategy. Pregel [108] is a dis-
tributed graph computing framework that supports graph parallel
computing. Li et al. [109] proposed a distributed multi-modal route
query algorithm on large transportation networks with three dif-
ferent categories and task instructions according to the query start
point or end point. Aridhi et al. [110] used the MapReduce model
to iterative divide the sub-graph for intermediate results. For the
dynamic road network with ever-changing road transit time cor-
responding to edge weights, CANDS [111] created a distributed
stream processing platform, adopted a divide-and-conquer strategy
to divide the dynamic graph into disjoint sub-graphs, and proposed
rules to minimize update operation caused by weight changes. Yu
et al. [112] proposed a dynamic graph-oriented distributed top-k
shortest route query algorithm, using the lower bound for the short-
est distance between the sub-graph, and decomposing the original
queries into local top-k query problems in multiple sub-graphs. Ped-
ersen et al. [113] proposed a Time-dependent and Uncertain Con-
traction Hierarchies (TUCH) to support stochastic routing where the
travel time of roads is not only time-varying but also uncertain.
Spatial Trajectory Similarity Calculation. The trajectory data of peo-
ple and vehicles is important for clustering the information from the
physical world. For centralized calculation, directly computing on
any two trajectories will incur a high computational cost. Therefore,
pruning the search space by building an index structure is promis-
ing. Some work uses locally sensitive hashing technology to establish
trajectory index and focus on the nearest k results [114,115]. Grid
index can also speed up the process through clustering grid cells
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for representative trajectories [116], or pruning in the time dimen-
sion with hierarchical grid index [117]. Besides, signature-based in-
dexing like Strain-join [118] by Ta et al., dynamic space divisions
like GeoSAX [119], global and local indexing scheme [117,120] can
also help to filter pairs of trajectories before distance computation,
thereby reduce global transfer cost and local computation cost. To
further improve the efficiency, distributed computing mode for al-
gorithms is also important. The k-means algorithm can be optimized
by Par3PKM [121] on the Hadoop platform, by Cui et al. [122] on
MapReduce, and under the coarse-grained Dynamic Time Warp-
ing [123]. Similar to k-means, DPDBSCAN [124] proposed a dis-
tributed parallel clustering db-scan based on trajectory density parti-
tioning. For similarity on the road network, DISON [120] was imple-
mented on Spark with a two-level tree-structured global index, while
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Shang et al. [125] proposed a Spark-based system with a global in-
dex deployed on multiple computing nodes, which is similar to the
work of Yuan and Li (Table 1).

3.2.3. Edge computing and fog computing

Besides the algorithms in Section 3.2.2 that accelerate computing,
the optimization of computing frameworks, like edge computing and
fog computing, is of special importance to issues such as high latency,
low throughput due to uneven load distribution, and bandwidth limita-
tions. As decentralized distributed computing technologies, edge com-
puting integrates network, computing, storage, and application capa-
bilities on a platform situated close to the data source, enabling the
provision of services at the edge segment. On the other hand, fog com-
puting is similar to edge computing but focuses on processing data in
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Algorithm Task Year Key features

R-trees [85] general index 1984 fast nearest neighbours queries

Quad-tress [86] general index 1984 variable resolution

KD-tree [87] general index 1975 fast queries and insert

SILC [88] object query 2005 almost linear precomputing and storing

ROAD [89] object query 2006 predetermined tree path to avoid costly network expansion
S-GRID [90] object query 2007 pre-computed data independent of the data points

V-tree [91] object query 2017 balanced search tree support dynamical update

G-tree [92] object query 2015 assembly-based method for queries

TOAIN [93] object query 2018 auto-tune shortcut-based index

GLAD [94] object query 2019 scheduling algorithms to avoid conflicts and improve throughput
TD-H2H [95] object query 2022 pre-computed weight functions

G*-Tree [96] object query 2019 shortcuts between selected leaf nodes

DSI/DKNN [97] object query 2014 distributed processing

MPR [98] object query 2019 schedule query and update on the cores

G_grid [99] object query 2018 GPU-accelerated with lazy update

Dijkstra [100] route query 1956 breadth-first search for shortest path

A* [101] route query 1968 heuristic of cost for shortest path

CH [102] route query 2008 hierarchy node contraction and bidirectional search

HB [103] route query 2002 distributed 2-hop covers of the shortest paths

DHP [104] route query 2013 breadth-first search with pruning

PHL [105] route query 2014 highway-based labeling with pruned

BHP [106] route query 2014 ordering and compression of hub label

SHP [107] route query 2017 heuristic path based ordering

PREGEL [108] distributed route query 2010 graph parallel computing

CANDS [111] distributed route query 2014 asynchronous answering and update

DTLP/KSP-DG [112] distributed route query 2020 distributed for dynamic graph and insensitive virtual path
Lietal. [109] distributed route query 2020 distributed on multimodal path

Aridhi et al. [110] distributed route query 2015 parallel solve on subgraph

TUCH [113] distributed route query 2020 time-varying, uncertain weight modeling and stochastic routing
LSH [114] trajectory similarity 2004 locality-sensitive hashing

E2LSH [115] trajectory similarity 2020 Geohash of domain POI and locality-sensitive hashing

SST [116] trajectory similarity 2020 synchronously matching, grid indexing and query partitioning
Strain-Join [118] trajectory similarity 2017 bi-directional mapping and signature-based similarity
MTSAX [119] trajectory similarity 2018 GeoWard dynamic coding and trajectory partition

DISON [120] trajectory similarity 2019 disjoint partitions by load balance and prune irrelevant
Tb-TS-Join [117] trajectory similarity 2018 search space pruning and parallel processing

Par3PKM [121] trajectory clustering 2015 MapReduce-based parallel three-phase k-means

Cui et al. [122] trajectory clustering 2014 MapReduce-based k-means

Hu et al. [123] trajectory clustering 2015 MapReduce-based coarse-grained Dynamic Time Warping
Wang et al. [124] trajectory clustering 2017 distributed parallel clustering on trajectory density partition
DITA [125] trajectory clustering 2018 global and local index with partition and cost-based balance

the fog computing layer closer to the edge devices. Currently, research e Distributed Spatio-temporal Machine Learning. Spatio-temporal data
in these areas is focused on the need for crowdsourcing and machine are usually provided by multiple service providers, which do not
learning. allow raw data sharing between providers. Therefore, data shar-

ing and collaborative computing on the premise that data does not

e Spatio-temporal Crowdsourcing in Edge Computing. With the rapid de- leave the local area inspire spatio-temporal federated learning with

velopment of mobile Internet and the IoT, traditional crowdsourc-
ing has developed into a new service called spatiotemporal crowd-
sourcing, also known as mobile crowdsourcing. Spatial crowdsourc-
ing utilizes mobile Internet, online crowdsourcing platforms, and
location services to connect crowdsourcing workers with tempo-
ral and spatial attributes in the real world, enabling crowdsourc-
ing workers to actively or passively complete crowdsourcing tasks
with spatio-temporal attributes, such as online taxi platform Didi
and Uber. Using edge computing and fog computing technology to
improve spatio-temporal crowdsourcing systems has become a re-
search hotspot. Zhang et al. [126] proposed an edge computing-
based Bidirectional K-Nearest Neighbor Crowdsourcing Allocation
Protocol. Wu et al. [127] proposed a Weighted and Multi-Objective
Particle Swarm Combination to optimize multi-objective task assign-
ment. On this basis, Zhang et al. [128] proposed an Online Task
Assignment across Regions based on Prediction algorithm with a
two-stage graph-driven bilateral assignment strategy to solve the
Cross-regional Online Task problem. Furthermore, edge cloud com-
puting [129] unified with cloud computing in architecture and in-
terface capabilities forms a complementary relationship and shows
good performance.
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the concept of “computing moves rather than data move”. Spatio-
temporal federated learning conducts model training on multiple
decentralized edge devices and builds a general machine-learning
model without sharing data. Space-time federated learning can be
divided cross-device and cross-silo, with participants being edge de-
vices (e.g. vehicle-mounted IoT devices and traffic flow monitoring
sensors) and enterprises(e.g. service providers of shared bicycles and
online car-hailing) respectively. Ye et al. [130] proposed a selective
model aggregation method that individually trains local deep neural
networks using local data at the edge devices. Tong et al. [131] dis-
cussed the Federated Range Aggregation (FRA) problems and pro-
posed an efficient range-aggregation approximation model. And
Zhang et al. [132] proposed federated adversarial domain gener-
alization (FedADG) to equip federated learning with domain gener-
alization capability. Furthermore, Hu-Fu [133] is a spatio-temporal
data query processing system based on spatio-temporal data federa-
tion, which decomposes the processing of spatio-temporal query into
plain-text operation and security operation. For online car-hailing
services, Tong et al. [134] designed a federal learning-to-dispatch
(Fed-LTD) framework, which achieves effective cross-dispatch by
sharing the scheduling model and decision-making.
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3.3. Intelligent data mining: a toolbox for characterizing virtual space

Based on the capability of spatial sensing, transmission, and compu-
tation, analyzing urban data to obtain valuable information and knowl-
edge is possible. Spatio-temporal data can be classified into event data,
trajectory data, reference point data, and raster data [135], each repre-
senting a kind of urban data with specific spatial and temporal charac-
teristics. Considering such complexity among attribute features, spatio-
temporal features, and correlation differences, leveraging the power of
Al and machine learning, i.e. intelligent data mining, is of great impor-
tance. The core research areas of intelligent data mining, as illustrated
in Fig. 4, involve the models and algorithms for rule mining, abnormal
analysis, correlation analysis, and prediction and decision-making tasks.

3.3.1. Spatio-temporal rule mining

Spatio-temporal data exhibits notable characteristics such as spatio-
temporal correlation, multidimensionality, large volume, dynamics, and
uncertainty. These properties pose challenges for data mining and call
for utilizing AI and machine learning techniques to uncover patterns
and extract valuable insights. The primary approaches for intelligent
spatio-temporal rule mining include:

o Traditional spatio-temporal statistical models, such as the historical av-
erage and time series models [136] like moving average, ARMA, and
ARIMA models, analyze and model temporal and spatial variables
based on statistical principles and assumptions.

e Domain understanding and physical modeling involves physical pro-
cess like levy flight [137], point process [138], or collective mo-
bility model [139] in the modeling or clustering process [140]. By
capturing the inherent causalities within the data, this approach en-
hances the interpretability of the derived insights [141] through
methods including dynamic knowledge-based methods or knowl-
edge graph [142].

e Machine learning models offer a range of techniques for various tasks
in spatio-temporal data analysis. Classification methods, such as sup-
port vector machines and random forests [143,144], are used for cat-
egorizing data into classes. Regression methods, including linear re-
gression prediction and XGBoost [145], are employed for predicting
numerical values. Clustering methods [146] encompass hierarchy-
based, partition-based, and density-based approaches, identifying
meaningful groups within the data.

e Deep learning models [147], particularly Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs), offer ad-
vanced capabilities for spatio-temporal analysis. CNNs are well-
suited for processing spatio-temporal data represented in image for-
mat, allowing for efficient feature extraction and pattern recogni-
tion. On the other hand, RNNs are adept at handling time series data,
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Learning
such as weather data, by capturing temporal dependencies and mod-
eling sequential patterns. And the recent development of diffusion
model have show great abilities in generate data that resembles the
real world [148].

e Data visualization [149] is essential for effectively presenting spatio-
temporal data in a visually intuitive manner, aiding in the under-
standing of their characteristics and dynamic trends. Heat maps are
employed to depict the distribution of population density in cities, al-
lowing for a quick assessment of population concentration. Contour
maps, conversely, offer insights into terrain elevation and tempera-
ture variations, enabling the visualization of topographical features
and thermal distributions.

3.3.2. Spatio-temporal abnormal analysis

Unlike the mining task in Section 3.3.1 for the rule under normal cir-
cumstances, spatio-temporal data anomaly analysis aims to uncover the
causes and assess the impact of anomalies, through identifying and ana-
lyzing entities that deviate from the expected distribution. Based on the
combined space-time relationship, spatio-temporal data anomaly anal-
ysis can be categorized as follows:

o Spatial data anomaly detection: This method uncovers deviations from
the universal spatial patterns in a small portion of the data, revealing
the unique laws of geographic phenomena or processes. Represen-
tative techniques include the distance-based method [150], cluster-
based method [151], density-based method [152], and graph-based
method [152]. Spatial data anomaly detection aids in discovering
abnormal points and patterns in spatial data during the construction
of the CM.

Time series anomaly detection: This approach identifies abnormal pat-
terns in time series data by considering periodicity, trend, and ran-
domness. Representative methods encompass statistical techniques
(e.g., hypothesis testing, ARMA model, ARIMA model), similarity-
based methods (e.g., KNN algorithm, LOF algorithm), and deep
learning-based methods [153,154].

Spatio-temporal data anomaly detection: This method combines spa-
tial anomaly detection with time series anomaly detection to iden-
tify spatio-temporal anomalies. Given the complex characteristics,
diverse anomalies, and scarcity of samples, detecting anomalies in
spatio-temporal data is challenging and heavily relies on machine
learning and AI [155].

Anomaly detection techniques are valuable for identifying and un-
derstanding irregularities in spatio-temporal data, enabling proactive
measures in the CM construction process. These methods enhance data
quality, anomaly detection accuracy, and the overall reliability of the
CM’s infrastructure and services.
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3.3.3. Spatio-temporal correlation analysis

In addition to addressing normal and abnormal circumstances, spe-
cific associations between entities, such as proximity or causation, are
of great value. Spatio-temporal association analysis explores the depen-
dencies and interactions among entities, delving deeper into the tempo-
ral changes and spatial interactions between objects, providing valuable
insights for decision-making [156].

Traditional association analysis primarily relies on association rules,
which first mine spatial association rules and then incorporate tempo-
ral association constraints, or vice versa [157]. However, these methods
are conducted independently, neglecting the spatio-temporal coupling
of data. Recently, the powerful feature learning capabilities of deep
learning have been leveraged to automatically extract spatio-temporal
correlation features from the data [147]. Consequently, recent studies
have combined recurrent neural networks with convolutional neural
networks [158] and graph neural networks [159], enabling simultane-
ous convolution operations on the spatio-temporal dimensions of the
data.

By conducting spatio-temporal correlation analysis on real-world
data, we can gain a better understanding of user behavior and activities
in the city [160]. Incorporating spatio-temporal correlation analysis into
the CM construction can create a more realistic, intelligent, and inter-
active virtual reality experience. This integration enhances the overall
user experience and facilitates more applications.

3.3.4. Spatio-temporal prediction and decision-making

Spatio-temporal prediction involves forecasting the future changes
in geographical events or phenomena in both time and space. Spatio-
temporal decision-making, on the other hand, entails selecting the opti-
mal solution based on analysis results [161]. As the complexity of fore-
casting and decision-making continues to rise, traditional methods have
struggled to meet the demands of decision-making processes. The ad-
vent of Al has significantly improved data processing efficiency, en-
hanced prediction accuracy, and enabled intelligent decision-making
optimization [162]. Consequently, Al-based prediction and decision-
making have become the prevailing approach [161,163].

¢ Domain understanding and physical modeling: By amalgamating inher-
ent domain insights and empirical laws, this approach fortifies the
reliability and interpretability of predictions and decisions. By inject-
ing the inherent comprehension of the domain’s intricacies into the
transformative capabilities of Al, methods like differentiable deci-
sion trees [164] or knowledge graph [165] can yield more informed
and contextually sound outcomes.

e Data-driven spatio-temporal prediction: Deep learning models like RNN
and GNN possess powerful automatic feature learning capabilities
in the spatio-temporal domain [147], which can be fine-grained
to achieve accurately driving styles recognition [166]. They enable
real-time dynamic analysis and prediction of massive heterogeneous
spatio-temporal data, facilitating accurate forecasts of medium and
long-term characteristics.

e Data-driven spatio-temporal decision-making: The visualization of
spatio-temporal knowledge graphs is pivotal for decision-making
capabilities [156,167]. Using graph mining algorithms, valuable
information is extracted and displayed through graph representa-
tion [168], such as the logistics decision optimization platform used
by Cainiao [169].

Interpretable spatio-temporal prediction and decision-making: Deep
learning techniques alone lack interpretability. Spatio-temporal
knowledge graphs integrate spatio-temporal data and knowledge to
gain a better understanding of spatio-temporal rules [161,165,170].
Combining AI with knowledge graph technology greatly enhances
interpretability and provides more insights, and Liu et al. [171] pro-
posed a versatile UrbanKG for prediction and decision-making.
Deep reinforcement learning: Deep reinforcement learning provides a
path that has not been fully explored, that is, to directly model and
predict spatio-temporal data through trial-and-error learning with
agents. Using existing spatio-temporal data as expert knowledge,
deep reinforcement learning can learn knowledge from data very
effectively [172]. Other decision-making tasks includes traffic sig-
nal [173] or navigation [174].

3.4. Metaverse space construction: the entrance to the virtual space

Completing the series of tasks to obtain information about the real
city, one can finally construct a digital space in the virtual realm, which
is nowadays called Metaverse. The construction of metaverse spaces
serves as the gateway to the virtual realm, providing the foundation
of immersive experiences, interactions, simulations, and augmented re-
ality overlays. The metaverse space serves as the container of virtual
content and the platform of virtual applications, which is expected to
be close to real but easy to adjust. Here we discuss model construction,
model fusion, and model verification technologies, following a sequen-
tial process to realize the CM model (See Fig. 5).

3.4.1. Metaverse model construction

The first step of a CM is to establish a digital model, which finds ap-
plications in urban planning, simulation, and analysis. In recent years,
the great abundance of data shifted research focus towards multi-source
data. Souza L [175] provides a comprehensive overview of CM model
construction technology, categorizing the current urban model construc-
tion approaches into the following categories according to their data
source:

e LiDAR model: This approach involves acquiring 3D point cloud data
of urban scenes using LiDAR technology. The data is then processed
to extract features such as position, size, and direction, which are
used to construct a city model [176].

o UAV high-altitude aerial photography: Utilizing UAVs equipped with
visual recognition technology, high-altitude aerial photographs are
taken to capture overlapping image areas. These images can be used
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for high-precision mapping and reconstruction [177]. For example,
Google has employed this technology to build 3D city models in
Google Maps.

Satellite remote sensing: This approach involves capturing high-
resolution remote sensing images through satellites. Advanced deep
learning models [178] are now applied to extract ground object in-
formation, which is used to construct urban models.

Measuring instruments and sensors: Various physical information
about urban scenes is obtained using measuring instruments and
sensors. For instance, the city government of Munich uses sensors
to gather air quality data [179], which is utilized to simulate the
city’s meteorological environment.

Social media and crowdsourcing: This approach involves collecting ur-
ban scene information from the public through social media, mobile
Internet, and crowdsourcing platforms.. As an example, researchers
from MIT have developed Treepedia [180], which constructs mod-
els of green coverage in major cities worldwide using photos and
location information uploaded by the public.

In summary, the selection of city model construction technology
in the CM should be based on specific application scenarios and data
sources. Each technology has its strengths and suitability for different
purposes. Choosing the appropriate technology for a given application
scenario is crucial in constructing the CM.

3.4.2. Multi-source model fusion

Various data sources in Section 3.4.1 can all provide models at dif-
ferent scales and resolutions, therefore how to integrate them should be
carefully examined. Multi-source model fusion integrates models from
diverse data sources to create a unified CM model, aiming to leverage
the strengths of different data sources for comprehensiveness and accu-
racy. The major approach includes the integration at the data level, the
model level, or afterward verification.

o Fusion technique based on data [181]: This approach utilizes data fu-
sion methods that consider factors such as weight, quality, or trust to
integrate data from different sources. It aims to ensure the integrity
and consistency of urban data by forming multi-level and multi-angle
representations. For example, Jia et al. [182] achieved precise urban
area extraction and model establishment by fusing multi-source re-
mote sensing image data.

e Fusion technique based on model integration: This technique com-
bines models from different data sources using similarity, associa-
tion, and fusion rules. By leveraging these integration methods, the
strengths of individual models can be combined to enhance the over-
all model accuracy. For instance, [183] employed a random forest-
based model integration algorithm to accurately monitor changes in
urban objects.

o Fusion technique based on model verification [184]: This approach in-
volves using different verification criteria, such as accuracy or ro-
bustness, to evaluate the urban model. Various verification algo-
rithms, including trust fusion, hierarchical fusion, and Bayesian net-
work, can be utilized to assign weights and optimize multiple objec-
tives.
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3.4.3. Metaverse model verification

Model verification technology plays a crucial role in assessing the
accuracy and reliability of the established model from Sections 3.4.1 and
3.4.2.

One commonly employed method is simulation-based verification.
By constructing a virtual urban environment and simulating its devel-
opment process under different scenarios, the accuracy and reliability
of the model can be assessed [49]. Furthermore, researchers can utilize
Virtual Reality (VR) technology to present the virtual city to users, al-
lowing them to experience and evaluate its practicality and feasibility.
This approach necessitates a comprehensive simulation platform, along
with various parameters and rules, serving as fundamental components
for establishing and optimizing the CM.

During the simulation and verification process, various elements
within the city can be simulated to observe their movement, interaction,
and impact. By comparing and validating these simulations with real-
world observations, the quality and accuracy of the City Metaverse (CM)
can be further optimized. Simulation-based model verification methods
have gained popularity in recent years. For instance, a study simulat-
ing traffic congestion in New York demonstrated that the CM could ac-
curately reflect the actual urban traffic situation [185]. Another study
verified the feasibility of shared transportation in reducing environmen-
tal impact by simulating factors such as air quality and environmental
noise within the city [186].

Additionally, there are other model validation methods based on
data analysis [187]. These methods rely on historical data to evaluate
the prediction accuracy and applicability of the model. Such approaches
are particularly valuable in traffic or climate models, where historical
data can be used to validate the model’s effectiveness.

However, when applying validation methods based on data analysis,
certain considerations must be considered. Firstly, the data quality is
crucial, emphasizing the need for data cleaning and preprocessing. Sec-
ondly, selecting appropriate evaluation metrics should reflect the accu-
racy and applicability of the model. Finally, the analysis and interpreta-
tion of the results are essential to identify the strengths and weaknesses
of the model, providing valuable feedback for refining the CM.

4. City metaverse empowers spatial data intelligence
4.1. Smart city simulation: a city running in virtual space

With the technical support of Section 3, we can extract and construct
a metaverse space from a real city, and apply the power of digital tech-
nology to benefit our real world. The first step is to provide a virtual
representation of the city and simulate various components and behav-
iors through smart city simulation. Such virtual representation, often
called a digital twin, allows urban planners, policymakers, and stake-
holders to analyze and optimize the city in a simulated environment.

In the following sections, we will delve into the key aspects of smart
city simulation, focusing on spatial-temporal data visualization, spatial-
temporal dynamic simulation, and the digital twin city in order accord-
ing to the depth of the simulation, which aims to create accurate and
interactive virtual replicas of cities together (See Fig. 6).
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4.1.1. Spatio-temporal data visualization

Spatio-temporal data visualization, especially interactive explo-
ration and dynamic demonstration, is the simplest form to present com-
plex spatio-temporal data visually [188]. Due to its multi-source, multi-
dimensional, interactive, and dynamic nature, it usually serves as the
output of smart city simulation.

The main advantages of spatio-temporal data visualization technol-
ogy include the following aspects:

o Intuitiveness: Spatio-temporal data visualization is designed to
present abstract spatio-temporal data in front of users through in-
tuitive visualization.

Interactivity: Spatio-temporal data visualization supports indepen-
dent selection of data dimensions, attributes, and granularity, en-
abling quick and accurate obtaining of the required information.
Real-time performance: Spatio-temporal data visualization support
displaying the spatio-temporal changes of data through dynamic
demonstration to better meet the needs of real-time data analysis.
Globality: Spatio-temporal data visualization can integrate spatio-
temporal data from different sources to obtain more comprehensive
and accurate data.

Currently, spatio-temporal data visualization finds applications in
diverse fields, including map visualization [189], traffic visualiza-
tion [190], and epidemiology visualization [191]. Advancements in sen-
sor technology and wireless communication enable the acquisition and
processing of large-scale, high-resolution spatial data. Looking ahead,
spatio-temporal data visualization technology is expected to progress in
the following directions:

o Intelligence: Emerging Al-based visualization technologies are ex-
pected to automatically process and analyze large-scale spatio-
temporal data and be able to choose the best visualization form.
Interaction: Advancement of HCI will enhance visualization interac-
tion, and allow more free exploration through gesture recognition,
speech recognition, AR/VR, etc.

Integration: As the data from the city metaverse would be multi-
source and multi-modal, effective and efficient data integration will
become the key to spatio-temporal data visualization.

In conclusion, spurred by the demands of constructing and utilizing
the city metaverse, spatio-temporal data visualization is set to undergo
rapid development and innovation.

4.1.2. Spatio-temporal dynamic simulation

Visualizing virtual cities alone does not provide enough insights that
drive virtual cities. Spatio-temporal dynamic simulation [192] involves
simulating various events in urban space, such as dynamic traffic, hu-
man mobility, urban disasters, and urban energy, which is the subse-
quent step for digital twins.

The key components of spatio-temporal dynamic simulation include
establishing urban models, formulating simulation strategies, determin-
ing model parameters, conducting simulation experiments, and ana-
lyzing results. For detailed information on establishing urban models,
please refer to Section 3.4. When formulating simulation strategies, con-
sider factors such as the target of the simulation, spatio-temporal scope,
and specific goals and requirements [193]. Determining model param-
eters is crucial and should be done based on experience or experimen-
tation. Following simulation experiments, it is important to visualize,
quantify, and analyze the results to draw meaningful conclusions and
provide decision-making recommendations.

Thanks to the availability of vast amounts of data and advancements
in Al, spatio-temporal dynamic simulation is experiencing remarkable
improvements in accuracy and utility. Integrating Al algorithms with
comprehensive datasets has unlocked new possibilities in simulating hu-
man mobilities within urban environments [194]. Deep learning mod-
els, in particular, have demonstrated exceptional capabilities in captur-
ing and reproducing complex human behaviors [195]. These models
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leverage large-scale datasets to learn patterns and rules of mobility, en-
abling the simulation of realistic movements and interactions within a
city [196,197].

Moreover, the availability of high-resolution data has significantly
contributed to our understanding of crowd behaviors in densely popu-
lated areas [198]. Analyzing this high-resolution data allows a compre-
hensive understanding of crowd dynamics [199]. Recent developments
focused on capturing the daily trajectories and behaviors of individuals,
which can uncover valuable insights into trajectories [172,200], activ-
ity patterns [201], and the correlation between spatial and temporal at-
tribute [148]. Integrating data-driven approaches, Al algorithms, and
high-resolution datasets has revolutionized spatio-temporal dynamic
simulation, enabling more accurate and detailed representations of ur-
ban dynamics. These advancements have far-reaching implications for
urban planning, transportation management, and emergency response.

The advantages of spatio-temporal dynamic simulation lie in:

High simulation accuracy: Based on actual data and physical laws,
complex urban change processes like population migration, traffic
congestion, and climate change can be simulated, which is of value
to high-precision decision support for urban planning and manage-
ment.

Better visualization: The process of urban spatio-temporal dynamic
change can be presented in simulation so that decision-makers and
the public can have an intuitive understanding, which is of great
significance in promoting urban democratization and transparency.
Strong decision-making support: The urban change under different cir-
cumstances can be simulated to provide a comparison and selection
of various schemes, thereby decision-makers can evaluate the pros
and cons, and formulate more reasonable and effective strategies.

4.1.3. Digital twin city

With the help of visualization and simulation, the digital twin city
creates digital replicas of real cities for intelligent management, focus-
ing on real-time synchronization with the actual urban conditions. It
provides decision support for urban planning, design, operation, and
management by updating, simulating, and analyzing real-time situa-
tions [202]. This technology is a significant trend in smart city research
and finds applications in urban planning, traffic management [203], en-
vironmental protection [204], and disaster response.

The development of digital twin city technology has several advan-
tages.

e Digital twin city can provide high-precision, high-resolution urban data
that comes directly from the real-time collection during the opera-
tion, which are beneficial for decision-making management. And the
simulation in a digital twin city can avoid potential risks such as un-
reasonable systems and models, thereby ensuring the authenticity of
the simulation effect through interconnected urban systems.

Digital twin city can realize real-time monitoring and intelligent regu-
lation. With the help of Al models, real-time detection of road traffic
flow can provide control of traffic signals. Similar methods can also
be applied in environmental detection and crime prevention.
Digital twin city can increase the participation and awareness of ur-
ban residents, which promotes urban democratization and commu-
nity participancy. Digital twins in virtual spaces solve the problem
of physical isolation of urban areas, enable a deeper understand-
ing across different kinds of borders, and provide powerful tools for
democratic urban governance.

It is important to acknowledge that the digital twin city technol-
ogy still faces several challenges. Firstly, there is a need to enhance
the quality and accuracy of urban data to improve credibility and real-
ism. Secondly, the processing and computation of large-scale data pose
challenges for real-time updates and evolution. Thirdly, ensuring data
privacy and security, particularly with sensitive human data, must be
emphasized before advancing the digital twin city.
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4.2. Human-computer interaction: breaking the barriers between virtual
and physical spaces

As a digital reality, CM can reconstruct and simulate the physical
city. But without engagement with human interaction, the CM is nei-
ther self-completed nor adequate for practical use, highlighting the sig-
nificance of HCI technology (Fig. 7). The HCI process comprises three
main components: the real world, the virtual world, and the metaverse
engine [205].

The real world component encompasses users who interact with the
metaverse through devices, while the virtual world component consists
of virtual characters and environments that respond to user input and
exhibwit dynamic behavior. The metaverse engine facilitates interac-
tions between the virtual and real worlds using technologies such as the
brain-computer interface, augmented reality (AR), virtual reality (VR),
and mixed reality (MR). In the following sections, we will delve into the
concepts of VR, AR, MR, and the brain-computer interface.

4.2.1. Virtual reality

Virtual reality (VR) is an immersive technology that combines com-
puter graphics systems and interface devices to create interactive 3D
environments. Using a VR device, the user’s visual range is expanded
through a convex lens, while a gyroscope tracks the user’s head move-
ments. The screen is continuously refreshed in real-time, allowing users
to experience a 360-degree, three-dimensional space, resulting in a
highly immersive visual environment [206].

Virtual reality is characterized by immersion, interaction, and imag-
ination, achieved through its three main components: hardware, soft-
ware, and content.

e Hardware encompasses input and output devices. Input devices can
be hand-based or non-hand-based. Hand-based input includes VR
handles, VR gloves, and gesture input devices, with handles being
simple and easy to use, while gloves offer more advanced motion
capture capabilities. Non-hand-based input includes eye tracking,
motion tracking, and voice input. The primary output device is a
head-mounted display that blocks the user’s sight to enhance the vi-
sual experience.

Software creates virtual environments and objects to deliver an im-
mersive experience. It can reflect the real world or create imagi-
nary environments. Real-world reflection replicates existing physical
environments, such as digital twins (see Section 4.1.3). Imaginary-
environment creation involves painting, 3D modeling, or deep learn-
ing methods. Sound plays a vital role in setting the atmosphere and
enhancing the sense of presence, complementing the visual scenes
and objects.

Content refers to the events, tasks, and experiences within the city
metaverse, created by humans or machines. Deep learning sys-
tems have demonstrated their ability to represent and combine
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information hierarchically, which is crucial for generating content
that closely resembles real-life experiences [207].

4.2.2. Augmented reality

Unlike the full immersion of virtual environment in VR, Augmented
Reality (AR) overlaps virtual objects onto real-world environments, in-
cluding computer-generated images, sounds, 3D models, video, graph-
ics, animation sequences, games, and GPS. AR supplements reality
rather than providing an alternate reality, beginning with collecting
real-world data through cameras and sensors. The user’s spatial posi-
tion is continuously updated in real-time using cameras, gyroscopes,
and other accessories. This information is used to calculate relative po-
sitions and fuse virtual content, resulting in a synthesized video presen-
tation [208].

As a crucial technology in the city metaverse, AR blends digital visual
effects with the real environment and is accessible through smartphones
and other digital devices.

To support real-time AR operations, an efficient data transmission
network like 5G (as discussed in Section 3.2.1) is essential. This network
enables both precise and approximate AR services. Precise AR detects
all potential objects for an immersive AR experience, while approxi-
mate AR focuses only on visually salient objects to reduce computation
and communication overhead. Recent research proposes a self-adaptive
AR services framework that adjusts to different network conditions and
computing capabilities. The AR service provider allocates computing re-
sources based on environmental information provided by AR users.

Object detection [205] is another important aspect of AR, as it re-
quires accurate identification and localization of real-world objects for
virtual object projection. Recent advancements in graph neural net-
works show promising potential in this area [209].

4.2.3. Mixed reality

Combining the advantages of VR and AR, Mixed Reality (MR) merges
real and virtual, aiming to create a unified space where real and virtual
objects coexist and interact in real-time. The goal is to seamlessly blend
the physical and digital worlds, allowing users to perceive and interact
with both simultaneously.

Virtual Reality, Augmented Reality, and Mixed Reality are related
concepts with different display approaches (see Fig. 8). VR immerses
users in a fully computer-generated environment, disconnecting them
from the real world. AR overlays virtual content onto the real world,
enhancing the user’s perception of reality. MR combines elements of
both VR and AR, merging the real and virtual worlds and allowing for
seamless interaction between them [210].

MR poses greater demands on perception and display compared
to VR and AR, resulting in additional challenges such as model cal-
ibration [211]. Achieving precise calibration is crucial for MR tech-
nology, including accurate initial calibration of hand-eye coordination
and effective real-time calibration to ensure long-term accuracy. Re-
cent research [212] has introduced a real-time latent active correction

Virtual Reality Augmented Reality Mixed Reality
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Fig. 8. Differences of VR, AR and MR.
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algorithm for optical perspective and hand-eye coordination, which
helps mitigate error accumulation in hand-eye calibration.

4.2.4. Brain-computer interface

In addition to transmitting information through visual means like
AR or VR, the Brain-Computer Interface (BCI) enables direct commu-
nication and information exchange between the brain and external de-
vices. The process can be divided into three steps: detection, analysis,
and control. Initially, specialized devices detect human brain activity,
such as brain waves or magnetic fields. Subsequently, these signals are
analyzed and processed to identify instructions from the brain. Finally,
the extracted instructions serve as input for controlling devices, facili-
tating interaction between humans and computers.

BCI can be categorized into invasive, semi-invasive, and non-invasive
methods [213]. Invasive BCIs involve implanting electrodes into the
cerebral cortex, while semi-invasive BCIs place electrodes in the cranial
cavity but outside the cerebral cortex. Non-invasive BCIs collect EEG
signals using wearable devices attached to the scalp. Invasive BCIs pro-
vide accurate data but pose surgical and tissue rejection risks, whereas
non-invasive BCIs avoid safety risks but capture weaker signals.

BCI holds promise as an output technique in the city metaverse. While
conventional devices like speakers, headphones, screens, and VR/AR
devices provide limited immersive experiences for hearing, vision, and
touch, BCI can directly transmit images and sounds to the brain, enhanc-
ing auditory and visual interactions in real-time. Although currently
used primarily in the medical field, BCI has the potential to shine in
the metaverse.

BCI also enhances input flexibility by enabling users to control ex-
ternal objects through encoding and decoding brain waves. In an ideal
scenario, EEG-based BCI allows users to control virtual characters in the
city metaverse through thoughts and imagination. Existing applications
such as the P300 speller [214] enable text input using EEG, and further
research can enhance accuracy and efficiency.

BCI research has made significant strides, but it still faces major
challenges. The primary challenge lies in accurately deciphering human
intentions from brain signals, which are often characterized by a low
signal-to-noise ratio. Brain signals are easily influenced by biological
and environmental factors, and their non-stationary nature makes in-
formation extraction difficult. Although various preprocessing and fea-
ture engineering techniques in the time and frequency domains have
been developed, they tend to be time-consuming and prone to distortion.
Moreover, feature engineering heavily relies on human expertise, lim-
iting generalizability. Although Al-based approaches have shown some
progress, the dynamic nature of human thinking poses difficulties in pre-
cise classification. The city metaverse encompasses diverse and complex
scenarios compared to medical applications, necessitating the develop-
ment of new Al methods specifically tailored for BCI applications [215].

4.3. Distributed technology: intermediary connection of physical spaces

After engaging human interaction in CM, the need for physical-
virtual synchronization emerges, aiming to reflect human behavior in
the virtual world to every urban corner. Integrated distributed technolo-
gies, such as IoT and blockchain, provide such possibilities for CM. IoT
enables the distributed collection and reflection of real-world devices,
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while blockchain provides data storage and security. Together, they sup-
port the operation and control of the real city in the CM.

The conceptual diagram in Fig. 9 illustrates the integration of
blockchain and IoT, consisting of the physical layer (IoT-enabled phys-
ical objects), the connection layer (digital representation generated
through IoT and corresponding NFT), and the blockchain layer (stor-
age of relevant information using blockchain technology).

4.3.1. Internet of things

The Internet of Things (IoT) is a network that connects objects
through information-sensing devices to enable their identification and
management. In the context of the city metaverse, [oT technology plays
a crucial role in collecting diverse data from urban sensors and deliver-
ing operation instructions to devices. Compared to 5G which is mainly
a communication technology in Section 3.2.1), IoT focuses more on the
heterogeneous, continuous, multi-dimensional, and multi-sourced con-
nections between devices, which involves embedded devices, network
architecture and application development. There is no doubt that 5G
communication technology can greatly promote the progress of IoT, and
such a close connection proves the synergy between SDI and CM.

The architecture of IoT can be divided into four main components:

The perception layer, also known as the physical layer, includes sen-
sors, actuators and other devices to collect various information from
the surrounding environment. These devices then send the collected
information to the network layer.

The network layer, also known as the transport layer, forwards col-
lected data from physical objects to information processing systems
through wired or wireless means such as WiFi, Bluetooth, or infrared.
The platform layer, is linked to a database and responsible for service
management and data processing by technologies such as virtualiza-
tion and cloud computing.

The application layer, is the interface between the IoT system and
users that provides intelligent and corresponding management for
logistics, medical care, and urban construction.

IoT, as a distributed technology and a prerequisite for SDI, faces sig-
nificant challenges in terms of security and privacy. At the perception
layer, the transmission of multi-sourced information carries the risk of
fake data and malicious tampering in public environments. To address
these challenges, targeted algorithms and authentication mechanisms
like Privacy-Preserving Data Publishing (PPDP) [216] are necessary. At
the network layer, the efficient transmission speed exacerbates the prob-
lem of fake data, compatibility issues, and cluster security concerns due
to the heterogeneity and complexity of the architecture. Secure routing
protocols and data protection schemes are essential to mitigate these
challenges and ensure the integrity and security of the IoT network.

Blockchain-based IoT provenance mechanisms provide a solution for
ensuring data integrity and verifiability [217]. By recording all actions
in the blockchain using a consensus-driven mechanism and digital sig-
natures, transparency, immutability, and auditability are achieved. This
technology has made a significant impact in industries such as supply
chain management, where transparent and traceable records from pro-
duction to sales are crucial.
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4.3.2. Blockchain

The concept of blockchain was introduced by Satoshi Nakamoto in
2008, through the article “Bitcoin: A Pemer-to-Peer Electronic Cash
System” [218]. Blockchain is a distributed digital ledger that enables
the recording and sharing of information within peer-to-peer networks,
which provide authenticity and validity for IoT in Section 4.3.1 through
a sequential chain structure and corresponding cryptographic algo-
rithms. The features of blockchain have led to its widespread adoption in
finance, information security, logistics, and manufacturing, which can
be used as the extension of CM on real-world devices.

Blockchain technology encompasses different types of chains based
on their degree of decentralization: public chain, private chain, and
alliance chain. The public chain operates in a decentralized manner,
where all network nodes participate and share information freely. How-
ever, it may have limitations in terms of scalability. On the other hand,
the private chain is centralized, providing higher transaction efficiency
and confidentiality. It operates under the control of a central entity. The
alliance chain falls between the public and private chains, managed by
multiple organizations working together.

In the context of Spatial Data Infrastructure (SDI), data plays a cru-
cial role, and blockchain technology can contribute to its storage and
security [1]. Spatial data often contains location information that may
involve personal privacy or state secrets. By utilizing cryptography al-
gorithms, the private chain or alliance chain can enhance information
security and protect sensitive data. Furthermore, the blockchain’s abil-
ity to store time-series data facilitates auditing and retrospective anal-
ysis. It allows for the verification of results and decisions by tracing
back through the recorded data, enabling the identification of issues in
spatio-temporal data applications [219].

4.3.3. Non-fungible token

Non-fungible Tokens (NFTs) are unique tokens recorded on a
blockchain ledger, representing certificates of distinct digital assets. In
the CM, publishers convert digital items such as images, videos, and
audio into NFTs, enabling users to freely trade these tokens through
smart contracts on the blockchain (see Fig. 10). NFT provides advanced
blockchain applications, goes beyond the original intention of informa-
tion proof of device networks, and provides more possibilities for human
behavior in CM.

As a new application of blockchain, Non-Fungible Tokens (NFTs)
inherit and expand upon the characteristics of blockchain, includ-
ing uniqueness, traceability, scarcity, and indivisibility. These features
make NFTs suitable for use in the city metaverse, where they can serve
as intermediaries for interaction and proof of ownership in the virtual
world, as well as provide digital property protection. Given the diverse
and heterogeneous nature of information in the city metaverse, NFTs
can provide a credential basis to validate the contributions of owners.

However, despite the protection offered by blockchain, NFTs still
face security and privacy challenges. Incidents such as those reported
by SlowMist Hacked [220], which documented 56 security incidents in
2022 resulting in a loss of 65.43 million USD, highlight the importance
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of addressing these concerns. Ongoing research focuses on technologies
like stealth addresses, zero-knowledge proof schemes, and reversible to-
kens such as ERC-721R [214], aiming to enhance the security and pri-
vacy of NFTs.

4.4. Smart city decision support: returning to the exit of physical space

After realizing smart city simulation, human-computer interac-
tion and distributed control in CM, it will be a matter of course
to integrate these technologies for decision-making support of smart
cities [221,222]. To achieve this goal, it is necessary to develop plat-
forms or systems to carry the various modules from simulation, inter-
action and control. Here, we will mainly introduce the three kinds of
platforms, namely the city information model, virtual geographic envi-
ronment and urban middle platform. The three are closely related but
conceptually distinctive, providing different emphases for different fea-
tures and can be regarded as different solutions for CM.

4.4.1. City information model

The City Information Model (CIM) is a digital representation used
to describe and model urban spaces, infrastructure, environments, and
social and economic systems [223]. It is derived from the Building In-
formation Model (BIM), which focuses on digitizing the physical and
functional characteristics of buildings [224]. The CIM, similar to BIM,
integrates various data sources to provide comprehensive, accurate, and
real-time information support for enhancing urban sustainability, liv-
ability, and competitiveness [225].

The CIM and the city metaverse are mutually beneficial as they share
data, integrate technologies, and facilitate convergence. By leveraging
the capabilities of the CIM, the city metaverse can use various models of
prediction and simulation from digital twins to address digital inequal-
ity in planning and data fragmentation [226]. In return, the CM can
enrich the CIM with immersive and interactive experiences, enabling
better decision-making and urban management. The symbiotic relation-
ship between the CIM and the city metaverse contributes to developing
smart and connected cities.

e Data sharing: The CIM can provide abundant real-world data for the
city metaverse, while behavior information generated in CM can also
be fed back to CIM to provide new insights for urban management
and planning [227].

Technology complementarity: Both CIM and City Metaverse rely on
advanced digital technologies, such as VR, AR and Al, which can
achieve mutual support and collaborative innovation in different
scenarios [228,229].

Application integration: CIM and City Metaverse can realize interac-
tion and integration in urban planning, design, management and op-
eration, like virtual urban planning experiments, public safety drills,
emergency response training, etc.

On the other hand, the increasing evolution from digitization to in-
telligence gives rise to the concept of the city brain. The city brain is
an Al-based application that leverages SDI and CM technologies to inte-
grate diverse data sources for real-time monitoring, analysis, and deci-
sion support [230,231], enabling intelligent, efficient, and sustainable
urban development.

As the practice of large-scale artificial intelligence in the real world,
the city brain can be viewed as an application of CM and CIM. On one
hand, the city brain has five major application scenarios: urban traffic
checkup, urban police monitoring, urban traffic micro-control, urban
special vehicles, and urban strategic planning [232], all of which rely on
advanced information and modeling technologies of CM. On the other
hand, The visualization infrastructure of CIM [233,234] provided a good
platform for these applications’ usages of authorities and planners.

4.4.2. Virtual geographical environment
Virtual Geographical Environment (VGE) is a new generation
of geographic analysis tools for modern smart city systems [9]. It
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integrates several essential features, including geospatial analysis, geo-
visualization, and geography-related planning and decision-making, as
well as training, education, and entertainment. VGE reflects the early
effort of CM in the field of GIS, focusing on opportunities for data sup-
port and functional expansion, and now benefiting from the technology
advancement of CM [235]:

¢ Twin VGE: Twin VGE is developed based on the digital twin frame-
work of metaverse, aiming to quantify the real-time and fidelity VGE
with the constraint vectors and the attribute vector, enabling deep
human interaction with the geographic environment [236].
Geographical perspective: Traditionally, VGE provides three appli-
cation levels, namely geo-object-based analysis, geo-process-based
simulation, and multi-participant-based collaborative experiments.
They can enrich the CM through knowledge collaboration, multi-
person collaboration, multiple visualizations, spatiotemporal expres-
sion [237], which can provide a scientific basis for decision-making
and management.

More than one model: With the development of CM, it is now pos-
sible to catalog more than one model for any problem in VGE, with
a human-centrally loop but focusing on different articulations of the
applicability. The virtual infinity of the CM model defined new forms
of VGE, which now forms the cutting edge of geospatial modeling
and analysis [235].

Immersive interaction: VGE can better represent our sense of place
through the application of VR technologies [238], deepen our geo-
experience from immersion to presence and further to embodi-
ment [239]. Such immersive interaction can also benefit from recent
machine learning methods like knowledge graph [240].

VGE has attracted researchers’ attention for more than two
decades [241], firstly defined by Lin and Gong [242] as a sub-field of GIS
and were designed for geographic understanding and problem-solving
tasks by virtually augmenting users senses [9]. With the introduction
of contemporary technology packages, including HCIs, distributed tech-
nologies, and simulations, VGE can now be seen as an application be-
yond CM [238]. With the continuous maturity of CM, VGE can enhance
strategic visioning, pre-planning, public consultation, and traditional
planning practices more [243], reflecting the vast possibilities in smart
city decision support.

4.4.3. Urban middle platform

The Urban Middle Platform (UMP) is an open infrastructure that
aims to unify and coordinate urban management, services, and devel-
opment. It provides efficient and convenient information services for
the government, enterprises, and the public [244]. By establishing the
UMP, data sharing, technology integration, service support, and intel-
ligent decision-making can be achieved, promoting the digitalization,
intelligence, and sustainable development of cities.

Compared to the city brain mentioned in Section 4.4.1, the UMP pri-
marily focuses on data integration, technology integration, and an open
platform, while the city brain emphasizes intelligent decision-making
and automated management [230-232]. The UMP focuses more on the
infrastructure level, providing unified data, technology, and service sup-
port across various urban fields, which can provide the city brain with
necessary data and platforms when carrying out higher-level decision-
making and applications [245].

The UMP and the CM can also be effectively combined. At the
data level, the UMP collects and integrates various urban building
data [246] to support the construction and operation of the CM, fos-
tering innovation and collaboration. As a comprehensive platform, the
UMP is open and scalable, enabling third-party developers and insti-
tutions to access it and provide rich applications and services for the
CM [247]. The UMP can also facilitate the interconnection of the CM
with other fields like education, supporting remote education and train-
ing in urban management, planning, and construction, and offering im-
mersive learning experiences for students and professionals [248].
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Fig. 11. The national land space planning scene supported by virtual sim-
ulation in city metaverse.

5. Application

SDI and CM can be extensively applied in various fields, and here
we provide a concise overview of the eight most relevant application
scenarios to highlight the current technological applications

5.1. National land survey and management

Using 3D digitization and Al-driven knowledge bases in the CM,
the potential impact of different planning schemes can be deduced
to address various spatial land-use planning and management scenar-
ios [249] (Fig. 11).

Establishing a real scene 3D surveying and mapping system serves as
the foundational framework for Digital China and the development of
the CM. In February 2022, the General Office of the Ministry of Natural
Resources issued a notice titled “Notice on Comprehensively Promot-
ing Real-Scene 3D China Construction,” which laid the policy ground-
work for the application of the City Metaverse in national land manage-
ment [250].

An exemplary application of the CM in national land space planning
is demonstrated in the Xiong’an New Area. This region has pioneered
an innovative approach known as the “integration of planning, construc-
tion, and management.” Leveraging technologies such as Building Infor-
mation Modeling (BIM), Macro Geospatial Data (GSD), and the IoT, the
Xiong’an New District’s CIM platform aggregates urban management-
related data and adopts a micro-service architecture.

The platform encompasses the entire life cycle of a city, covering
six stages: planning, construction, management, development, opera-
tion, and maintenance. It represents the first instance in China and the
global context where digital city mapping and growth are seamlessly
integrated. The implementation of this platform is expected to signifi-
cantly enhance the development and refinement of Xiong’an City.

5.2. Low-carbon environmental protection

During the 14th Five-Year Plan, China aims to accelerate digital
transformation to achieve “emission peak” and “carbon neutrality”
goals, focusing on building a clean, low-carbon, safe, and efficient smart
energy system. The combination of SDI and CM technology, facilitated
by the digital twin platform, supports and drives the digital transforma-
tion of the energy sector [251].

Specifically, CM assists enterprises in low-carbon smart production
in the following scenarios: First, SDI and CM enable efficient collection
and analysis of production data and energy consumption data, facili-
tating timely adjustments for energy conservation and emission reduc-
tion [252]. Second, the digital twin simulation system allows for the re-
hearsal and assessment of different production tasks, leading to shorter
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decision-making cycles and cost reductions. Additionally, virtual pro-
duction scenarios simulate processes and assess risks, aiding in crisis
management and risk response training. Real-time data analysis using
SDI provides early warning capabilities.

At a macro level, SDI and CM contribute to low-carbon smart city
management. Utilizing multiple spatio-temporal data, refined energy
demand forecasting optimizes energy demand and adjusts energy sup-
ply systems. By integrating supply and demand data from the energy
industry with economic, social, environmental, and policy information,
the virtual model in CM assists managers in optimizing and manag-
ing energy storage and transmission facilities for stable supply and effi-
cient utilization. Virtual environmental simulation scenarios in CM en-
hance public understanding and experience of zero-carbon energy ap-
plications, promoting low-carbon lifestyles and reducing high-carbon
emission activities like business meetings and travel.

5.3. Traffic planning

The 14th Five-Year Plan prioritizes the acceleration of digital trans-
formation in the transportation sector, advocating for the application of
technologies such as big data, cloud computing, Internet of Things, and
artificial intelligence in transportation. It aims to foster innovation and
development of digital transportation [253]. The integration of SDI and
CM creates a platform with diverse scenes, as depicted in Fig. 12.

¢ Real-time prediction and management: By collecting traffic spatio-
temporal data such as urban road conditions [254], traffic flow, pub-
lic transportation, and parking lots, a virtual model of urban traffic
in CM can help to develop more effective traffic strategies. and pro-
vide an accurate and scientific basis for planning [255].
Autonomous driving: Using SDI to obtain vehicles and environmen-
tal information in real-time can use to realize adaptive cruise control
of vehicles, including adaptive acceleration and braking and steer-
ing.

Vehicle-road collaboration: SDI can effectively perceive the infor-
mation and status among urban vehicles, roads, people, weather,
ground-air environment, traffic stations, traffic equipment and traf-
fic events in real-time to realize the coordinated linkage of human-
vehicle-road integration.

Traffic planning and design: CM technology can simulate different
traffic and planning schemes in the digital twin model to formulate
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more scientific traffic planning solutions [256], and ensure better
solutions for sustainable traffic development [257].

Public transportation operation management: SDI can use various
sensors to collect and analyze real-time data of urban public
transportation, and reflect these data in CM to provide intelligent
decision support for the design and scheduling of urban public
transportation, so as to improve efficiency and convenience of
urban public transport.

Risk management and resilience assessment: Through digital twin in
CM, elements such as urban traffic network, roads, vehicles, passen-
gers and traffic facilities can be accurately simulated for emergency
response and traffic diversion strategies, providing a more compre-
hensive and accurate guarantee for the safe operation.

5.4. Cultural and tourism activities

The combination of SDI and CM enables the expansion of audience
reach by offering virtual access to cultural facilities and tourism re-
sources. By integrating spatial data, CM creates captivating and immer-
sive experiences for tourists, thereby significantly enhancing cultural
and tourism activities and driving the growth of the digital economy.

o Spatial data and CM technology enhance tourism by mapping attrac-
tions and creating virtual travel experiences, offering insights into
tourist behavior for improved marketing and service strategies. In
cultural activities, spatial data generates digital representations of
heritage sites and landscapes, while CM enables participation in cul-
tural events through VR and AR, making exhibitions more engaging
and accessible.

Urban spatial data includes information about the physical, environ-
mental and cultural characteristics of the urban environment, which
can be used to identify urban areas and map the boundaries of dif-
ferent urban functional areas, such as areas of natural or cultural sig-
nificance. Detailed and accurate city maps can highlight the unique
characteristics of each region thereby providing a decision-making
basis for the tourism and cultural activities.

SDI-based Point of Interest (POI) recommendations utilize user pref-
erences, locations, and scenic spots to suggest personalized travel
routes. Multi-source spatial data, including traffic patterns and user
check-ins, predict visitor flows for effective merchant service recom-
mendations. Real-time performance improvement while maintaining
accuracy is a research focus.

5.5. Urban health

Rapid urbanization has led to health challenges like air pollution,
unhealthy lifestyles, and an aging population. The “Healthy China
2030” Planning Outline and the New Urbanization Implementation
Plan [258] emphasize the need for healthy, livable, and safe cities. The
New Urbanization Implementation Plan of the 14th Five-Year Plan also
specifically pointed out to promote the healthy, livable and safe devel-
opment of cities.

Firstly, SDI aids in identifying urban health issues by analyzing spa-
tial data. The urban built environment, including overcrowded housing,
lack of green spaces, and tobacco and alcohol exposure, affects resi-
dents’ health [259,260]. Intelligent algorithms combined with spatial
data can calculate health indicators [261] and guide spatial improve-
ments or suitable policies [262,263].

Secondly, CM promotes medical equality between urban and rural
areas. Through CM, medical knowledge and technology can be shared
with remote regions, enabling online consultations and healthcare ac-
cess for rural patients. And patients in rural areas can conduct consul-
tations across spatial distances and receive online medical care.

Finally, metaverse technology facilitates health education and pro-
motion in an accessible manner. It provides a virtual platform for pub-
lic engagement, showcasing the benefits of healthy lifestyles, proper
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rest, nutritious diets, and clean environments, thereby fostering health
awareness and encouraging real-life actions.

5.6. Resilient cities

Urban resilience encompasses a city’s capacity to withstand and
recover from internal and external pressures by resisting, recovering,
adapting, and transforming. SDI and CM have significant roles in en-
hancing urban resilience through the detection and assessment of ab-
normal events, optimizing resource allocation, and enabling intelligent
emergency management (Fig. 13).

SDI plays a crucial role in detecting and evaluating urban abnor-
mal events by monitoring and analyzing diverse data sources, enabling
timely countermeasures and enhancing urban resilience. For instance,
Lu Cong et al. achieved over 70% prediction accuracy in detecting ur-
ban traffic abnormal events using SDI [264]. Motta M et al. utilized SDI
to monitor and predict urban floods, providing accurate flood warn-
ing information [265]. Wang Q et al. employed an advanced temporal
graph convolutional neural network to accurately capture crime dynam-
ics, optimizing police resource allocation [266]. Vancouver City utilized
SDI and satellite images to monitor and analyze green spaces, identify-
ing and utilizing underutilized resources to enhance the urban ecolog-
ical environment [267]. Furthermore, the analysis of complex system
empowered by deep learning can help to identified the dominate vari-
ables [268] and critical nodes [269] in urban systems.

CM enables the visualization, analysis, and optimization of poten-
tially vulnerable areas and risks within a city. For example, Z Al-
lam et al. developed a CM to dynamically simulate and predict ur-
ban transportation, energy, and the environment [2]. Y Han et al. pro-
posed a hybrid evolutionary dynamics framework to provide consis-
tent services in CM [270]. China Southern Power Grid utilized CM for
multi-modal monitoring and early warning of the power grid, enhanc-
ing urban resilience through systematic transformation and dispatching
schemes [271].

As urban resilience continues to develop, the scientific guidance of
adaptation and transformation of various risks becomes increasingly
important [29]. SDI and CM undoubtedly play pivotal roles in lead-
ing research, driving industrial development, and fostering practical
innovation.
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5.7. Urban supply chain

The urban supply chain, which encompasses the distribution of var-
ious materials and goods to urban areas, undergoes reorganization to
accommodate mass customized consumption, digital retail, and instant
response. To enhance user experience, the integration of the city meta-
verse offers visibility into the entire supply chain process and enables
precise decision-making at a “second-level” (shown in Fig. 14). This pro-
motes improved efficiency and adaptability in time allocation and spa-
tial adjustments within the urban supply chain.

There are four major advantages involved:

System simulation: By utilizing the digital twin model of infras-
tructure, equipment, users, and operations within the CM, it be-
comes possible to predict and intervene in events such as conges-
tion, failures, and resource idleness in the supply chain. This en-
ables proactive measures to address inaccurate planning, unreason-
able plans, and uncontrollable processes, enhancing trust and effec-
tiveness within the supply chain. CM applications like autonomous
driving computing and intelligent warehouse systems have been suc-
cessfully implemented in port logistics.

Capacity prediction: Distributed computing can be employed to pre-
dict the total demand and transport capacity of urban logistics. Real-
time capture of decentralized performance and order information
allows for the integration of multi-modal data such as production
planning, transportation monitoring, weather sensing, and [oT data.
This significantly improves the prediction accuracy of the entire lo-
gistics link and enhances the timeliness of goods delivery.
Matching of supply and demand: By simulating the behavior of
the supply chain and considering the varying demand types and
strengths of facilities in the city, it becomes possible to accelerate
the adoption of multi-modal transport modes and establish suitable
cargo loading and transport route selection. Real-time perception
of external changes and immediate response ensure the provision
of more matching facilities and resources, enabling intelligent op-
timization of logistics contract fulfillment paths and enhancing the
responsiveness and flexibility of the transportation network.
Synchronization of virtuality and reality: The CM’s perception,
decision-making, and interaction capabilities are crucial for op-
timizing supply chain operations. The integration of distributed
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technology and spatial intelligence forms a real-time feedback sys-
tem that helps improve efficiency, reduce operating costs, and con-
tinuously meet the demands of urban economic and social develop-
ment within the urban supply chain.

6. Future direction
6.1. Cutting-edge technology

In the coming five to ten years, as related technical fields continue to
advance and mature, the prospects for the technological development of
SDI and CM will be extensive and boundless. In this discussion, we will
explore the drivers of technological progress and prospects, focusing on
the cutting-edge technologies that may play more important roles.

In terms of computational analysis methods, advanced deep learn-
ing will expedite the processing and analysis of spatial data, enhanc-
ing the accuracy and efficiency of intelligent management in CM [147].
We have witnessed the large generative model, such as GPT [272],
LLaMA [273], Stable Diffusion [274], perform surprisingly well on tasks
of text and images generation. These models leverage diverse urban data
to generate images, voices, texts, or other outputs that resemble human
performance, bridging the gap between the city metaverse and real-life
scenarios. Recent work [148,172,275] has proved that generative mod-
els can be quickly migrated to spatio-temporal data for generating hu-
man trajectory, which is vital in SDI.

Meanwhile, the advancement in reinforcement learning which
can learn from simulation environment [276] or expert knowl-
edge [277] can accelerate the simulation in CM and delve into the
simulation of human need [201]. Such a model can be utilized with
large-scale decision-making models that effectively employ urban infor-
mation in dynamic environments, supporting various real-life decision-
making processes like traffic signal [278], power grid [276] or base sta-
tion [252].

In terms of hardware architecture and technical support, high-
performance computing technologies like edge computing and fog com-
puting are progressively maturing. These technologies offer enhanced
computational efficiency [279], greater storage capabilities [280], and
improved support for the functioning of the city metaverse [281]. Those
cutting-edge advance in computation offloading [282], energy con-
sumption [283] or metaverse application [284] drive the progress of
constructing a CM and promoting virtual-real interaction.

From the perspective of user access and experience improvement,
virtual reality and augmented reality technologies will deliver a more
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immersive user experience in the city metaverse [285,286], rendering
urban planning and management more intuitive and interactive. With
the recent development in hand tracking [287], eye tracking [288] and
other intelligent technologies [7], commercial applications of VR/AR
technology have already commenced addressing practical challenges
such as user engagement, interface interaction, and experience enhance-
ment.

In terms of security and privacy, blockchain technology will enhance
data protection in the CM [289] and foster trust and reliability in digital
cities [290]. As an accompanying security system for the city metaverse,
blockchain advancement like decentralized mixing services [291], ring
signature [292], non-interactive zero-knowledge proof [293], or homo-
morphic cryptosystem [294] stimulating new avenues for technological
development and innovative applications.

Besides those technologies advances, soft power such as data sharing
and open cooperation will serve as crucial driving forces for advanc-
ing the CM [295,296]. Collaboration among government, enterprises,
and academia in building and utilizing digital city infrastructure and
resources will be pivotal, which should be carefully examined on the
aspect of policy [297]. Technological progress in differential privacy
is indispensable for promoting the openness [298], contributing to the
future intelligence of spatial data and the overall growth of the CM.

6.2. Future of industrial chain

SDI and the associated industrial chain of the city metaverse act as
catalysts for the coordinated development of various disciplines and in-
dustries across different sectors. The construction of SDI relies on sub-
stantial infrastructure support from upstream industries such as comput-
ers, network communications, sensors, the IoT, and cloud computing.
Furthermore, it extends to the manufacturing and operation of space
data acquisition equipment like drones and satellites, as well as SAAS
providers offering data processing and analysis services. Similarly, the
development of the CM involves upstream industries related to infor-
mation technologies, including professional city modeling, virtual real-
ity, and data visualization. Additionally, it extends to emerging sectors
like artificial intelligence and autonomous driving. The downstream ap-
plications of SDI and the city metaverse are extensive and have been
discussed in Section 5.

Moreover, the application of SDI and CM collaborative development
among different industries and fields. For instance, employing SDI for
logistics trajectory monitoring and optimization enhances the efficiency
and service quality of urban logistics, thereby fostering the development
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of related industries such as e-commerce and manufacturing. By extend-
ing the industrial chain of urban informatization based on CM [299],
the formation of industrial clusters interconnected becomes a signifi-
cant transformation for future urban development.

Over the next five to ten years, the technological development of
SDI will be closely intertwined with the construction of the CM. This
synergy will facilitate the digital transformation of cities and the es-
tablishment of smart cities, encompassing infrastructure, software and
hardware equipment, services, and other aspects of technological devel-
opment. The ultimate goal is to create smarter, sustainable, and livable
urban environments for the benefit of all.

6.3. Legal, regulatory and ethics

The technological progress and development of SDI and the CM hold
immense potential, but they are also accompanied by legal and regula-
tory challenges. It is crucial for the government to enhance supervision
over the city metaverse, establish clear legal frameworks, identify re-
sponsible entities, and define industry standards. This can be achieved
through the implementation of laws, regulations, and guidelines. Fur-
thermore, regulatory authorities should improve their enforcement ca-
pabilities and technical expertise to effectively oversee the city meta-
verse.

In addition to government supervision, CM service providers have a
responsibility to self-regulate their operations. They should take proac-
tive measures to ensure the safe and stable functioning of the city meta-
verse. This involves implementing robust security protocols, adhering to
privacy regulations, and adopting best practices in data management.
By prioritizing self-regulation, CM service providers contribute to the
overall safety and reliability of the city metaverse ecosystem.

Addressing legal and regulatory challenges is vital to foster a trust-
worthy and responsible environment for the development and operation
of SDI and the city metaverse. Collaboration between the government,
regulatory authorities, and CM service providers is essential in estab-
lishing a framework that promotes innovation while safeguarding the
interests of individuals and society as a whole.

e The legal status of the city metaverse remains ambiguous, posing
challenges in terms of management and regulation. As the city meta-
verse encompasses various economic activities, there is a need to es-
tablish clear legal frameworks that address virtual property rights,
privacy protection, and network security. It is essential to develop
comprehensive laws that define the legal nature, transactions, and
taxation of virtual property, while also addressing concerns such as
money laundering within the virtual space.

Effective management and security of data within the city metaverse
present significant challenges. It is necessary to develop appropri-
ate technical solutions and regulations to mitigate the risks of data
breaches. Regulatory authorities should focus on ensuring that ser-
vice providers inform users about the scope of data usage, establish
robust consent mechanisms, and implement stringent self-regulatory
procedures to safeguard data privacy.

Governance of the city metaverse requires coordination among vari-
ous sectors and international cooperation. The governance of the city
metaverse mirrors that of a physical city, involving multiple depart-
ments and agencies. Lessons from governing real cities can inform
the governance of the city metaverse, but adjustments tailored to its
unique nature are necessary. Additionally, given the transnational
nature of the virtual space, it is essential to foster cooperation and
coordination among different countries and regions to address reg-
ulatory challenges that extend beyond national boundaries.

Besides, in the ideal future created by the symbiosis of the real world
and the digital world, there are significant security risks and ethical
issues that need to be addressed in the city metaverse:

e Technical reliability: While advancements in information technolo-
gies have improved security measures, the city metaverse is still
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susceptible to natural disasters, human errors, and cyber threats.
Failures of smart devices, system vulnerabilities, and attacks on soft-
ware systems can disrupt operations and compromise the integrity
of the entire city metaverse.

Data privacy: The use of spatial data intelligence technologies in the
city metaverse can lead to privacy breaches. Existing privacy protec-
tion measures are limited in dealing with complex relationships in
urban spatio-temporal data. More efficient and comprehensive ap-
proaches are needed to address data privacy concerns.

Ethics and morals: The city metaverse reflects and extends the real
world, introducing complex ethical and moral challenges. Virtual
avatars and interactions in the metaverse can lead to behavior
changes and raise questions about morality and legality. Ensuring
ethical standards and preventing harmful behaviors within the meta-
verse is crucial.

To effectively address these security and ethical issues, collabora-
tion among governments, enterprises, and the public is necessary. The
government should provide oversight and regulation while remaining
open and cautious. Enterprises should proactively assess and mitigate
risks through scene examination, algorithm design, privacy protection
mechanisms, and compliance reviews.

7. Conclusion

In summary, we have organized the research and technologies re-
lated to the CM into a coherent framework. Firstly, we explore SDI tech-
nologies that enable the collection of real-world information for con-
structing a virtual CM. Next, we discuss the integration of these tech-
nologies with SDI to enable interaction and management of real cities
from the virtual perspective. We also highlight the practical applications
and potential of these methods in real-world scenarios. Finally, we ad-
dress the new challenges in technological progress, the industrial chain,
legal and regulatory aspects, as well as ethics and morality.

The CM relies on comprehensive and accurate data provided by SDI
to create urban models and support urban planning, construction, and
management. Only with sufficient, diverse, and reliable data can the
CM achieve a more realistic, refined, and immersive experience. Addi-
tionally, the development of the CM can drive advancements in SDI.
Technologies such as virtual reality, augmented reality, and artificial
intelligence that are utilized in the CM present new opportunities and
application scenarios for SDI, enhancing our understanding of spatial
data intelligence. For instance, AI applications within the CM can foster
innovations in areas like smart transportation and environmental pro-
tection. SDI requires an open, inclusive, and rapidly evolving platform
like the CM, which transforms our perception of urban spaces into ac-
tionable intelligence that impacts urban operations. We believe that the
integration of SDI and the CM represents the main direction for future
development in this field.
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