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Abstract

Trajectory modeling, which includes research on trajectory data pattern mining
and future prediction, has widespread applications in areas such as life services,
urban transportation, and public administration. Numerous methods have been
proposed to address specific problems within trajectory modeling. However, the
heterogeneity of data and the diversity of trajectory tasks make effective and reliable
trajectory modeling an important yet highly challenging endeavor, even for domain
experts. In this paper, we propose TrajAgent, a agent framework powered by
large language models (LLMs), designed to facilitate robust and efficient trajectory
modeling through automation modeling. This framework leverages and optimizes
diverse specialized models to address various trajectory modeling tasks across
different datasets effectively. In TrajAgent, we first develop UniEnv, an execution
environment with a unified data and model interface, to support the execution
and training of various models. Building on UniEnv, we introduce an agentic
workflow designed for automatic trajectory modeling across various trajectory
tasks and data. Furthermore, we introduce collaborative learning schema between
LLM-based agents and small speciallized models, to enhance the performance
of the whole framework effectively. Extensive experiments on four tasks using
four real-world datasets demonstrate the effectiveness of TrajAgent in automated
trajectory modeling, achieving a performance improvement of 2.38%-69.91% over
baseline methods. The codes and data can be accessed via https://github.
com/tsinghua-fib-lab/TrajAgent.

1 Introduction

With the rapid development of web services and mobile devices [68, 6], large-scale trajectory data,
such as check-in data from social network [58], have been collected, greatly facilitating research
in trajectory modeling. Trajectory modeling involves the processing, mining and prediction of
trajectory data, with widespread applications in urban transportation, location services and public
management. The typical areas of trajectory modeling [6, 22] can be classified into five main
categories: trajectory representation [21], trajectory classification [29], trajectory prediction [60],
trajectory recovery [44], and trajectory generation [51]. Each category encompasses various sub-
tasks; for instance, the trajectory prediction task can be further divided into next location prediction
task [31], final destination prediction task [66], and travel time estimation task [48], among others.
Given the huge value of trajectory modeling in diverse practical applications, various algorithms and
models [22] have been proposed to address these tasks, particularly deep learning-based models in
recent years. This has facilitated significant advancements in the field, with many tasks achieving a
high level of performance.
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Figure 1: The paradigm of LLM based automated trajectory modeling framework TrajAgent.

However, existing methods are designed for specific tasks and datasets, making it difficult to share
them across different tasks and data sources. For example, TrajFormer [29] is tailored for trajectory
classification and cannot be applied in trajectory prediction or trajectory generation. Flash-back [57] is
designed for sparse check-in trajectory prediction and is not suitable for dense GPS trajectory or road
network-based trajectory modeling. In other words, due to the heterogeneity of application scenario
and the diverse nature of trajectory data–varying in resolution, format and geographical regions–
existing methods can only be applied in limited task with specific data for specific regions. While
some early studies have explored effective trajectory modeling via unified framework [30, 71, 53],
they often face several limitations: 1) their performance on individual tasks lags behind that of
specialized models; 2) the range of supported trajectory modeling tasks remains limited; and 3)
their training and inference processes are complex and non-trivial. Thus, despite their significant
contributions, there is still a long way to go, necessitating further exploration of more effective and
reliable trajectory modeling frameworks.

In recent years, the rapid development of large language models (LLMs) [36, 47] with extensive
commonsense and powerful reasoning abilities presents enable the LLM based agent [55, 46] as a
new paradigm for solving complex task, such as automated software development [23, 38, 59] and
automated machine learning tasks [24, 42, 67, 52]. For example, HuggingGPT [42] utilizes LLM as
a core manager to address various machine learning tasks with existing AI models, VisionLLM [52]
investigates unified modeling for vision tasks across different vision domains. Inspired by these, we
explore the potential of leveraging an LLM-based agent framework for automated trajectory modeling,
paving the way toward effective and reliable trajectory modeling solution. Specifically, our approach
seeks to harness the capabilities of LLMs to establish a collaborative framework between LLMs
and various specialized models, enabling the automated and unified trajectory modeling. However,
designing such an LLM-based agent for this purpose presents several significant challenges. Firstly,
how to handle and integrate the diverse trajectory data and specialized models for different trajectory
modeling tasks into a single, unified framework is non-trivial. Secondly, the numerous steps involved
in transforming raw trajectory data into the final model output are lengthy and cumbersome [6],
making full automation of the process difficult and leading to a large action space for both planning
and execution. Finally, while model performance heavily depends on delicate and specialized
data adaptation and model optimization, the ultimate challenge lies in effectively automating the
optimization of these adaptation processes.

In this paper, we propose TrajAgent, a systematic agent framework for automated trajectory modeling
across diverse tasks and data. First, we design a unified environment, UniEnv, to process diverse
trajectory data and provide a cohesive runtime environment for various trajectory modeling tasks
within TrajAgent. In UniEnv, we define unified data and model interfaces to facilitate the seamless
execution of different trajectory modeling methods. Building upon this environment, we develop an
agentic workflow within TrajAgent for the automatic multi-step planning and execution of trajectory
modeling tasks. The diverse trajectory modeling task workflow is decomposed into four unified
steps: task understanding, task planning, task execution, and task summarization. For each step, we
design an expert agent to perform the corresponding operations effectively. Finally, we introduce a
collaborative learning schema that integrates agent learning through reasoning with model learning
through training, enabling the effective optimization of model performance for specific data and
tasks. We further provide in-depth analysis of optimization dynamics and failure modes, along with
practical improvements to enhance robustness. In summary, our contributions are as follows,

• To the best of our knowledge, TrajAgent is the first LLM-based agent framework for automated
and unified trajectory modeling across diverse data and tasks. It decomposes the trajectory
modeling process into several sub-tasks, with expert agents designed to each.
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Figure 2: The whole framework of TrajAgent.

• To support the automated execution of various trajectory modeling tasks, we provide an unified
running environment UniEnv by integrating diverse trajectory data and specialized models.

• Furthermore, we develop a collaborative learning schema between high-level agents and low-
level models to effectively enhance the final performance of TrajAgent on targeted data and
tasks, proposing a closed-loop, feedback-driven optimization system that jointly adapts data
augmentation strategies, model parameters, and agent reasoning based on real-time training
outcomes.

• Extensive experiments on four representative trajectory modeling tasks across four real-world
datasets demonstrate the effectiveness of the proposed framework, with the optimized model
achieving a performance gain of 2.38% to 69.91% over baseline methods.

2 Methods

2.1 Overview of TrajAgent

Figure 1 presents the comparison between our work and existing works. Over the past few decades,
researchers have developed various task-specific models for solving single tasks on limited datasets,
as shown in the left of Figure 1. Recently, some works [71, 30, 53] have explored the potential
of building unified models for multiple trajectory modeling tasks, as shown in the left of Figure 1.
However, limitations in available data and the diversity of tasks have constrained these unified models
to a narrow range of tasks. Additionally, these models are not easy to train and utilize, making
optimization challenging and far from being simple and user-friendly. Thus, following the success of
LLM-based agentic framework in other domains, we propose to build a unify framework to enable
the automated trajectory modeling via the collaboration between LLM-based agents and smaller
specialized models. The framework is presented in the right of Figure 1. In this framework, the
LLM serves as a controller and processor, coordinating with specific smaller models to accomplish
specific trajectory tasks. This approach enables users to effortlessly extend support for various data
and models without delving into the intricate details of individual models. In essence, users can
view the entire framework as a unified modeling platform, achieved through automated trajectory
modeling across a variety of tasks and data. As TrajAgent A is to generate an optimized models M’,
based on a user query q, optional trajectory data D, and the selected raw model M, the task definition
is as follows,

M ′ = argmin
M

L(M,T, q,D,A),

where T = A(q), D = A(q, T ),M = A(T,D).
(1)

Figure 2 presents the whole framework of TrajAgent. It contains three key components: (1) UniEnv, an
environment with a unified data and model interface that supports the execution and training of various
trajectory models; 2) Agentic Workflow, which is designed to automatically decompose and complete
diverse trajectory modelling tasks; 3) Collaborative Learning Schema, an additional automated
optimization module for enhancing the performance of specific model through the collaboration
between LLM-based agents and specialized models with different learning mechanisms. Details of
each component are presented as follows.
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2.2 UniEnv: Environment for Experiments

As shown in the left of Figure 2, UniEnv is a comprehensive and integrated environment that bridges
trajectory data, tasks, and models, providing a foundational platform for trajectory modelling and
analysis. It is designed to support the entire lifecycle of trajectory modelling workflows, from data
preparation to task execution and model optimization. UniEnv comprises four key components: a
rich set of datasets accompanied by processing tools, a comprehensive task collection that defines
and manages various task types, a extensive model library with available source code, and an external
tools pool for extending the capabilities of TrajAgent. Each component is seamlessly connected
through a unified interface, enabling agents to plan and execute trajectory modeling tasks with
minimal complexity.

Task Interface: Figure 3 summarizes the trajectory modeling tasks and associated models supported
by UniEnv. The framework covers 5 fundamental trajectory modeling tasks: prediction, recovery,
classification, generation, and representation, utilizing a total of 18 methods. For tasks such
as prediction, recovery, and classification, we further introduce several subtasks. For example,
the prediction task includes subtasks like next location prediction and travel time estimation, the
classification task includes subtasks like trajectory user linking, intention prediction and anomaly
detection. To enhance the clarity and effectiveness of understanding users’ language queries, we
provide a detailed language description for each task. This description helps extract precise task
requirements from user queries and facilitates subsequent data and model selection processes.

Data Interface: UniEnv supports two commonly used trajectory data formats, namely Checkin
trajectory (i.e., sequence of visited POIs) and GPS trajectory (i.e., sequence of gps points). These
datasets, which come from different cities and with distinct forms, are pre-processing through a
standard pipeline that ensures compatibility across the system. Pre-processing steps are done by
generated code scripts from LLMs, include data cleaning, normalization, format transformation,
which are crucial for handling inconsistencies between real-world datasets and task models. After
processing, we will add a description for each dataset to support efficient data selection in the
subsequent stage.
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Figure 3: The TrajAgent framework supports
5 fundamental trajectory modeling tasks, en-
compassing a total of 18 methods. Detailed
introduction of methods can refer to the ap-
pendix A.

Model Interface: As previously mentioned, we
support 18 models across 5 fundamental trajectory
modeling tasks. To support training these models in
TrajAgent, we select at least one well-known model
for each task and adapt them to match the running
environments in UniEnv. Furthermore, we extract
the semantic context from original paper of each
model with the txyz.ai APIs 3 to generate detailed
description of model. In this description, the veri-
fied data information and supported trajectory task
information are recorded which supports the data
and model selection in the subsequent trajectory
planning stage of TrajAgent.

External Tools: To extend the capabilities of TrajA-
gent, we collect several external tools in UniEnv, in-
cluding paper context extraction tool txyz.ai, hyper-
parameter optimization tool optuna, processing and
visualization tool for trajectory data movingpandas,
open street map data processing tool osmnx. Here,
we also regard the LLM APIs utilized in the agen-
tic workflow as one of the interface in the UniEnv,
including the ChatGPT API and DeepInfra for open-
source LLMs.

2.3 Agentic Workflow of TrajAgent

As shown in the middle of Figure 2, the agentic workflow of TrajAgent is organized into four key
modules: task understanding, task planning, task optimization, and task summary, which form an

3https://www.txyz.ai/
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automated processing chain from user query to final result, eliminating the need for human-in-the-
loop. Specifically, the task understanding module first receives user instructions in natural language
form, and analyzes and identifies the type, name, and other key information of the tasks involved.
Then, the task planning module will plan for the identified task, including dataset matching and
model selection. Next, the task execution module executes the planning task and cooperate with
the additional performance optimization module collaborative learning schema to further improve
the task performance from both the agent learning and model learning perspectives. Last, the
task summary module generate an analytical report of the task based on historical interactions and
decisions of TrajAgent. Following the common practice[43], each module in TrajAgent can be
regarded as a small agent, consisting of a function module for executing its core function, a memory
for recording the history interaction, and a reflection module for learning practice from the memory.

Task Understanding Module: As the first module of TrajAgent workflow, task understanding
module is designed to interact with user and extract detailed task information to launch subsequent
stages. Given the user query, understanding module recognize the potential task name from it with
the predefined supported tasks as additional input. If users ask for the out-of-scope tasks which has
not been supported in UniEnv, we will directly recommend user to select task from the supported list.

Task Planning Module: Follow the task understanding module is the planning module which is
designed to generate the subsequent execution plan for efficient experiments of trajectory modelling.
The input of the planning module is the task name and description from the understanding module,
the supported data and model with brief description from UniEnv. With the carefully designed
prompt, the generated execution plan will contain the data name and model name for the given
task, and also the detailed model optimization plan. Due to the characteristics of different tasks and
existing practice, not all the model optimization are necessary for each task. If possible, skipping the
optimization step which is time-consuming and costly can accelerate the whole procedure without
sacrificing performance. After generating the plan, it will start a simple execution step to verify the
feasibility of the plan. Once any error occurs during the execution, e.g., the model name is wrong,
the planning module will obtain the feedback from UniEnv and start to regenerate a new plan with
the last plan as the failed history in its memory.

Task Execution Module: Give execution plan, the task execution module is responsible for invoking
UniEnv to execute the experiment plan. In addition to the previously mentioned basic execution
interface, another interface of this module is to call collaborative learning schema module to complete
the model optimization automatically. For both interface, the task execution module will give the
feedback including error information for failed cases and performance metrics for success cases.

Task Summary Module: After the execution module, we design a task summary module to analyze
the execution records to generate the optimization summary of the task. The summary contains the
optimization path during the experiment and the final optimization result for the given task. User can
also directly utilize the optimized model from the experiments via APIs for further applications.

2.4 Collaborative Learning Schema

Due to the geospatial heterogeneity and the diversity of trajectory data, the trajectory models usually
cannot be directly transferred between data and regions. In other words, for various data in different
region, the model needs to be trained from scratch. Thus, the sufficient optimization of various
models with targeted data becomes emergent. In TrajAgent, we design collaborative learning schema
to complete this automatic optimization and generate optimized specialized models for targeted task
and data. As shown in the right part of Figure 2, the collaborative learning framework involves
two levels of learning: high-level knowledge reasoning for agents and low-level data training for
specialized models. The high-level agent proposes training settings for the low-level models based
on its expert knowledge and experimental records. The low-level models are then trained using
these settings, and their performance metrics are reported back to the high-level agent for further
collaborative learning. This iterative process continues until the performance meets the predefined
requirements or the maximum number of exploration epochs is reached.

2.4.1 Agent Learning via Reasoning

Following Reflexion [43], we design expert optim agent for learning from the experimental records
via reasoning. The standard optim agent utilizes the history operation and related results as the
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feedback to update its action in the next step. Specifically, it works as two stages, including "think"
and "action". To support the "think then action", it builds a long-term memory for recording all
experimental data and a short-term memory for historical actions. In the "think" stage, optim agent
analyzes the long-term memory and meta information of experiment and generating the guidance of
action in the short-term memory. In the "action" stage, optim agent analyze the results in short-term
memory to generate the action. Different optimization mechanism utilize the same optim agent with
different action space and optimization tips. Besides, as shown in Figure 1, our framework can
also utilize LLM-based agent as the specialized model to complete the trajectory modelling tasks.
Thus, we design prompt optimization agent to optimize agent based specialized models. We keep all
experimental records in each experiment, including the raw input trajectories, the LLM’s inference
results, and the reasoning process. We select the two best-performing trajectories along with their
corresponding inference results and reasoning process as high-scoring memory entries, which
are then added to the original prompt for a re-run of the experiment. This process of conducting
experiments and selecting results is referred to as one iteration. In each iteration, the high-scoring
memory entries are updated based on the experiment results.

To validate that agents leverage causal reasoning over memory logs (not pattern matching), we
conduct an ablation where memory entries were stripped of performance scores (i.e., no “good/bad”
labels). As shown in Appendix Table 13, performance stagnated (∆Acc@5 < 0.5%), confirming that
score-guided reflection is essential. This mirrors reinforcement learning’s reward signal, enabling the
agent to infer why certain actions succeed.

2.4.2 Model Learning via Training

By collaborating with the high-level agent, the low-level specialized models learn specific trajectory
patterns tailored to the target trajectory data and tasks. To enhance performance, we introduce several
optimization techniques, including data augmentation, parameter tuning, and joint optimization.

Data Augmentation. Based on the high-level optim agent, we introduce the specific action space for
low-level trajectory data augmentation. For GPS/map-based trajectories, we adopt a geometry-aware
augmentation pipeline inspired by DeepMM [12]: (1) raw trajectories are first downsampled to
preserve spatial topology; (2) noise is injected only within road network constraints; (3) augmented
samples are validated for temporal consistency before merging with original data. For check-
in trajectories, we follow the practice from existing works [69, 9, 63], defining a fixed set with
ten operators for trajectory data augmentation, e.g., insert, replace, split and so on. During the
optimization, the operator set with simple description is provided to the optim agent, it can select
optimal operator sequence(combination of operators with their simple parameters) and parameter
configuration as the action, guided by training feedback. Then the specialized models are trained with
the augmented trajectory data and report performance metrics. The optim agent obtain the feedback
information, e.g., performance metrics, from UniEnv to continue update its memory and action.

Parameter Optimization. The action space of parameter optimization is defined based on the pa-
rameters of model itself. We define a parameter configuration file for each model, the optim agent
reads the configuration file and generates code as the action to update the parameters in it. To better
understand the meaning of each parameter, we add comments for each parameter in the file. This
kind of action space is flexible to adapt with any models.

Joint Optimization. Furthermore, we introduce the joint optimization mechanisms to further improve
the performance. Due to the different working paradigms, the direct combination of two kinds of
optimizations is unsuccessful. We designate the optimization order to prioritize data augmentation
first, followed by parameter optimization. This means that once the performance of data augmentation
stabilizes, the agent proceeds with parameter optimization. This procedure can be repeated a fixed
number of times until it meets the stop criteria.

3 Experiments

3.1 Settings

Data. We utilize the widely used Foursquare (FSQ) [58] and Brightkite (BGK) [7] in our framework
as the default check-in trajectory data. Porto [27] and Chengdu [8] are integrated in the framework as
the default GPS trajectory data. Besides, we use Tencent [34] as the road network based methods

6



Table 1: Performance of representative methods across five fundamental trajectory modeling tasks.
For the ten subtasks, only one model is presented for each. ‘DA’ represents data augmentation, ‘PO’
denotes parameter optimization, ‘PRO’ denotes prompt optimization, ‘JO’ indicates joint optimization,
δ represents performance improvements.

Task Trajectory Prediction Trajectory Recovery Trajectory Classification Trajectory Trajectory
SubTask Next Loc Pre TTE Recovery Map-matching User Linking Intent Prediction Anomaly Generation Representation
Metric Acc@5 Acc@5 MAE MAE MAE Accm Acc@5 Acci AUC MAE Acc@5
Dataset FSQ FSQ Porto Tencent Porto Tencent FSQ Beijing Porto Earthquake FSQ
Models GETNext LLM-ZS MulT-TTE DutyTTE TrajBERT GraphMM S2TUL LIMP GM-VSAE DSTPP CACSR
Origin 0.3720 0.3110 163.12 190.82 42.71 0.2014 0.5755 0.745 0.9892 0.4611 0.31
+DA 0.3894 – – – – 0.3258 0.6846 – – – 0.3369
+PO 0.3995 0.3302 128.57 179.01 27.78 0.2427 0.757 – 0.9899 0.3584 0.3466

+PRO – 0.3225 – – – – – 0.7627 – – –
+JO 0.4002 0.3350 128.57 179.01 27.78 0.3422 0.7802 0.7627 0.9899 0.3584 0.3472
δ 7.58% 7.72% 21.18% 6.19% 34.96% 69.91% 35.57% 2.38% 0 22.27% 12%

Table 2: Comparison of performance on check-in trajectories for TrajAgent with different configura-
tions, which demonstrate the generalization of TrajAgent across different tasks, models and datasets.

FSQ BGK

Task Next Location Prediction Trajectory User Linking Next Location Prediction Trajectory User Linking

Model RNN DeepMove GETNext MainTUL DPLink S2TUL RNN DeepMove GETNext MainTUL DPLink S2TUL
Metrics Acc@5 Hit@5 Acc@5 Hit@5

Origin 0.1795 0.3422 0.3720 0.4871 0.7551 0.5755 0.4422 0.5570 0.5324 0.5908 0.8993 0.5802
+DA 0.2667 0.4018 0.3894 0.5973 0.7551 0.6846 0.5416 0.5647 0.6026 0.6836 0.9613 0.6903
+PO 0.1795 0.3422 0.3995 0.5691 0.7686 0.7570 0.5022 0.6041 0.6116 0.6683 0.9552 0.7137
+JO 0.2717 0.4018 0.4002 0.6121 0.8010 0.7802 0.5470 0.6100 0.6227 0.7145 0.9622 0.7240
δ 51.36% 17.42% 7.58% 25.66% 6.08% 35.57% 23.70% 9.52% 16.96% 20.94% 6.99% 24.78%

to support road network based tasks and Beijing [28] with human labeled intention to support the
mobility intention prediction task. Finally, to verify the effectiveness of the whole system, we utilize
self-instruct method [50] with 5 seed queries to generate 300 user queries as the experiment input.

Models. As shown in Figure 3, our framework supports 18 models spanning 5 core trajectory model-
ing tasks, which are further categorized into 9 subtasks. The next location prediction task includes
FPMC [39], RNN, DeepMove [13], GETNext [60], LLM-ZS [2]. The travel time estimation task
comprises DeepTTE [48] and MulT-TTE [32]. The trajectory recovery task features TrajBERT [44],
while the map-matching task incorporates DeepMM [14] and GraphMM [34]. The trajectory user
linking task includes DPLink [18], MainTUL [5], and S2TUL [10]. The mobility intention prediction
task is supported by LIMP [28]. The trajectory anomaly detection task employs GM-VSAE [33],
and the trajectory generation task includes ActSTD [65] and DSTPP [64]. Finally, the trajectory
representation method is implemented using CASCR [21].

Metrics. We adopt standard practices for each task to select appropriate metrics for evaluating our
framework. The widely used Acc@k metric is employed for next location prediction, map-matching,
trajectory user linking, mobility intention prediction, and trajectory representation tasks. The MAE
metric is utilized for travel time estimation, trajectory recovery, and trajectory generation tasks. Lastly,
the AUC metric is specifically defined for the trajectory anomaly detection task.

3.2 Overall Performance and Generalization Capability of TrajAgent

In this section, we assess the overall performance of TrajAgent across various fundamental trajectory
modeling tasks, as summarized in Table 1. Furthermore, to demonstrate the generalization capability
of TrajAgent across different datasets and models, we present detailed results on diverse trajectory
data using several representative models in Table 2.

As shown in Table 1, we select at least one representative models for 9 trajectory modelling tasks to
present the effectiveness of proposed framework. As Table 1 shows, TrajAgent supports a variety of
widely-known trajectory models and demonstrates superior performance across multiple trajectory
modeling tasks and trajectory datasets. The output of TrajAgent consistently outperforms the original
methods, achieving performance gains ranging from 2.28% to 69.91%. For instance, in the next-
location prediction task, TrajAgent harnesses its agentic workflow and collaborative learning schema
for automatic modeling and optimization, leading to significant performance improvements of various

7



Table 3: Execution success rates and task performance at each stage of the agentic workflow of
TrajAgent across different LLMs. The Acc@5 is obtained by evaluating the next-location prediction
task, with DeepMove as the default specialized model.

LLM Extraction Processing Data/Model Selection Data Augmentation Parameter Optim. Joint Optim.
Succ. Succ. Succ. Acc@5 Succ. Acc@5 Succ. Acc@5 Succ. Acc@5

Qwen2-7B 85.00% 30% 72% 83.33% 15% 0.2015 25% 0.1833 64% 0.2668
Mistral7B-V3 78.89% 42% 88% 90.91% 94% 0.2940 95% 0.2087 82% 0.2980
LLama3-8B 69.44% 28% 81% 80.25% 18% 0.1790 11% 0.1809 65% 0.2809
Gemma2-9B 83.88% 12% 57% 52.63% 18% 0.1822 15% 0.1848 70% 0.2970
Gemma-2-27B 79.44% 30% 70% 88.57% 78% 0.2507 30% 0.1775 78% 0.3366
GPT3.5-Turbo 88.89% 54% 100% 82.00% 88% 0.2846 90% 0.1809 92% 0.3295
LLama3-70B 83.33% 100% 95% 86.32% 92% 0.2931 83% 0.1848 95% 0.3473
Qwen2-72B 92.22% 95% 100% 95% 96% 0.3925 70% 0.1816 94% 0.4333
GPT-4o-mini 95.56% 92% 100% 98.00% 90% 0.2967 85% 0.1822 96% 0.3724

Table 4: Ablation study of TrajAgent. ‘MS’ stands for Model Selection, ‘DA’ represents Data
Augmentation, ‘PO’ denotes Parameter Optimization, ‘JO’ stands for Joint Optimization. ↓ indicates
a decrease in performance, and ↑ indicates an improvement.

Agent Variants MS DA PO JO
Succ. Acc Succ. Acc Succ. Acc Succ. Acc

TrajAgent 100% 98% 98% 0.3050 89% 0.1895 85% 0.3724
w/o Reflection 100% 95%↓ 98% 0.3028↓ 90%↑ 0.1872↓ 82%↓ 0.3212↓
w/o Memory 99%↓ 80%↓ 85%↓ 0.1707↓ 70%↓ 0.2050↑ 68%↓ 0.1804↓

models. Specifically, it enhances the deep learning-based model GETNext by 7.58% and the LLM-
based model LLM-ZS by 7.72%. Performance gain in other tasks and models are much larger,
for example improvement from 34.96% to 69.91% for trajectory recovery tasks. We observe that
the improvement in the trajectory anomaly detection task is minimal, primarily due to the strong
performance of the original models on the dataset.

As shown in Table 2, we presents a performance comparison for check-in trajectory tasks, including
the next-location prediction task and the trajectory user linking task, across three models and two
datasets. The first key observation is the consistent improvement observed across tasks, models,
and datasets, which highlights the potential generalization of the proposed framework. For different
trajectory tasks, datasets, and models, TrajAgent consistently provides transferable performance
improvements, ranging from 6.08% to 35.57%. Additionally, we observe that the performance gap
between different models (e.g., the top two models for each task) on specific tasks and datasets
significantly narrows from 24.88% to 9.5% following the automatic optimization of TrajAgent,
emphasizing the critical role of effective data augmentation and parameter optimization.

3.3 Ablation Study and Parameter Analysis of the Agentic Workflow

Here, we select the next location prediction task as an example to demonstrate the efficiency of
designs of agentic workflow and the effects of various LLMs in Table 3 and Table 4. During the
experiment,we select DeepMove as the default specialized model for next location prediction task.

Table 3 compares the execution efficiency of TrajAgent implemented by different LLMs, across
each stages in the trajectory modelling workflow. We can observe that Qwen2-72B and GPT-4o-
mini demonstrate the highest success rates (i.e., Succ.) across key stages such as Data Extraction,
Processing, and Data/Model Selection, with over 90% success in each. In contrast, models like
Gemma-2-9B and LLama3-8B struggle with lower processing and data selection success rates,
which results in reduced overall performance. Their weaker performance in key optimization stages,
especially in parameter selection, reflects their limitations in effectively supporting TrajAgent. These
results show that TrajAgent’s efficiency is strongly influenced by the base LLM, with high-performing
models like Qwen-72B and GPT-4o-mini significantly enhancing its capabilities.

We conducted an ablation study by isolating two main designs: the memory unit and the reflection
mechanism, resulting in two variants: 1) w/o Reflection, where the reflection mechanism is removed,
and 2) w/o Memory, where the memory unit is excluded. The experimental results are presented in
Table 4. We can find that: 1) Removing either component leads to average performance declines,
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Figure 4: (a-b) The impact of thought steps and memory size when using DeepMove in next location
prediction tasks. (c) Compared to Optuna and UrbanLLM, TrajAgent achieves better performance in
trajectory user linking tasks with S2TUL as the specialized model.

with the memory unit being especially critical for maintaining execution efficiency. 2) Interestingly,
removing a component occasionally results in slight increases in success or accuracy, suggesting that
some components may introduce overhead or complexity in specific stages. Overall, the combined
use of the memory and reflection mechanisms is crucial for optimizing TrajAgent’s performance.

Due to the importance of reflection and memory in the TrajAgent, we analyze the effects of two
important related parameters: 1) thought step: the number of steps that agent thought before taking
action in reflection, and 2) memory size: the size of memory units in TrajAgent.

As shown in Figure 4(a), performance initially improves with more thought steps, reflecting enhanced
reasoning depth. However, beyond a threshold (e.g., 20 steps), performance declines—likely due
to overfitting to suboptimal action sequences or repetitive exploration without sufficient novelty.
Similarly, in Figure 4(b), increasing memory size beyond 10 leads to performance degradation,
suggesting that excessive historical records may introduce noise or bias the agent toward previously
failed strategies (a phenomenon we term the ‘optimization trap’).

3.4 Analysis of Optimization Failure Modes and Improvements

While TrajAgent demonstrates strong performance across diverse trajectory tasks, we observe that its
optimization efficacy does not monotonically improve with increasing reasoning depth or memory
capacity. To understand this phenomenon and enhance robustness, we conduct an in-depth analysis
of the underlying optimization dynamics.

Optimization Trap in Long Reasoning Chains: As the number of thought steps increases, the
agent may converge prematurely to a local optimum. Once trapped, the agent stops exploring novel
strategies and repeatedly refines the same ineffective combination. This behavior is exacerbated in
weaker LLMs, which lack sufficient reasoning capacity to escape such traps. In contrast, reasoning
models like DeepSeek-v3 exhibit more diverse exploration and are more likely to discover globally
superior configurations within fewer steps (see Table 10 in Appendix).

Memory Saturation and Noise Accumulation: Similarly, increasing memory size improves explo-
ration efficiency up to a point, but larger memories introduce noisy or redundant historical records.
Low-performing action sequences, if retained, can bias future decisions and lead the agent to revisit
failed strategies—especially when memory is not actively curated. This “memory pollution” effect
explains the performance drop in Figure 4(b). Crucially, stronger reasoning models (e.g., DeepSeek-
v3, Gemini-2.0) are less affected, as shown in Table 10 in Appendix: they maintain or even improve
performance with larger memories by better filtering useful experiences, whereas weaker models
degrade significantly. This highlights memory content management and optimization as a key factor
in mitigating memory pollution.

It is also worth noting that although Figure 4(b) shows parameter optimization (PO) is less sensitive
to memory size than data augmentation (DA), excessive memory (>10 entries) still degrades PO due
to noise accumulation. The apparent stability in PO stems from its smaller action space, but memory
pruning is equally critical for both.

Mitigation via Contrastive Reflection and Memory Pruning: To address these issues, we introduce
two practical improvements: (1) Contrastive Reflection: During the reflection phase, the agent
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explicitly compares successful and failed trials, adjusting operator parameters to avoid repeating
ineffective combinations. This encourages diverse yet informed exploration. (2) Dynamic Memory
Pruning: We periodically discard low-scoring memory entries and retain only high-performing
trajectories as high-scoring memory entries to guide future planning. As shown in Tables 12 and 11
in Appendix, these strategies significantly stabilize optimization.Similarly, memory pruning enables
consistent gains across memory lengths, with performance no longer collapsing at large capacities.

3.5 Comparison with Automated Methods

We compare TrajAgent with the deep learning-based AutoML method Optuna [1] and the LLM-based
automated urban task-solving framework UrbanLLM [26]. Using the trajectory user linking task with
S2TUL model as an example, the results are presented in Figure 4(c). UrbanLLM (represented by the
blue line) is designed to directly automate the use of existing models without further optimization,
resulting in the lowest performance in Figure 4(c). Meanwhile, compared to the widely used
AutoML method Optuna (represented by the red line), which focuses on parameter optimization,
TrajAgent (depicted by the yellow line) achieves superior results with fewer trial-and-error iterations.
Furthermore, its performance can be further enhanced through joint optimization combined with
automated data augmentation, resulting in a significant performance improvement of over 11.1%. For
computational overhead please of TrajAgent, please refer to Table 8 in Appendix.

4 Related Work

Trajectory Modelling and Analytics: In recent year, trajectory modelling [68, 6, 22] makes great
progress on its core research questions, including prediction [31, 13, 57, 41, 60], classification [25, 20,
18, 29, 45, 5], recovery [54, 56] and generation [37, 65, 51]. While these specific methods accelerate
the development of trajectory modelling from different aspects, they can only handle one type of task.
In other words, the automated and unified model for all the trajectory modelling task is still missing
due to the heterogeneity of tasks and trajectory data. In this paper, we propose to utilize the power of
LLM and agent to build a unified model framework for diverse trajectory modelling tasks, which can
automatically handle various data and modelling tasks without human intervention.

Large Language Models: LLMs with extensive commonsense and outstanding reasoning abilities
have been widely explored in many domains, such as mathematics [62], question answering [72], and
human-machine interaction [47]. Following this direction and motivated by the exploration of LLMs’
usability in urban studies [17], researchers have begun developing diverse domain-specific LLMs
tailored for urban applications, for example, CityGPT [15], UrbanLLM [26], and UrbanLLaVA [16].
In contrast to these approaches, which rely on fine-tuning LLMs with domain-specific knowledge,
our work focuses on a training-free paradigm by constructing an agentic framework.

LLM based Agents: In the general domain, agentic framework [49, 46, 55] are proposed to
enhance the robustness and task solving abilities of LLMs for real-world complex tasks, such as
web-navigation [61, 35, 70] and software development [23, 38, 59]. Besides, researchers also explore
the potential of applying LLM based agent for automatic research experiments [3, 40, 4] especially
machine learning experiments [24, 42, 67, 52]. Recently, LLM-based agent also be applied in specific
trajectory modeling tasks, e.g., trajectory prediction [12] and trajectory simulation [11]. In this paper,
our proposed agentic framework is designed for unified trajectory modelling which can provide
automatically model training and optimization for various trajectory data and tasks.

5 Conclusion

In this paper, we propose TrajAgent, an LLM-based agentic framework for automated trajectory
modeling. Supported by UniEnv, which provides a unified data and model interface, and collaborative
learning schema for joint performance optimization, TrajAgent can automatically identify and train
the appropriate model, delivering competitive performance across a range of trajectory modeling
tasks. TrajAgent establishes a new paradigm for unified trajectory modeling across diverse tasks and
datasets.
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A Appendix

A.1 Datasets

• Foursquare (FSQ): This dataset consists of 227,428 check-ins collected in New York City from
04/12/2012 to 02/16/2013, Each check-in is associated with a timestamp, GPS coordinates and
corresponding venue-category.

• Brightkite (BGK): This dataset contains 4,491,143 check-ins of 58,228 users collected from
BrightKite website.

• Porto: This dataset contains 1.7 million taxi trajectories of 442 taxis running in Porto, Portugal
from 01/07/2013 to 30/06/2014. Each trajectory corresponds to one completed trip record, with
fields such as taxiID, timestamp and the sequence of GPS coordinates.

• Chengdu: This dataset contains GPS trajectory records of Chengdu from 01/11/2016 to
30/11/2016. Each record includes taxiID, timestamp, longitude and latitude, collected and
released by Didi Chuxing.

• Tencent [34]: This dataset includes both a road network and a set of vehicle trajectories collected
in northeastern Beijing. The road network consists of 8.5K road segments and 15K edges, and
the trajectory dataset contains 64K vehicle trajectories, each sampled at 15-second intervals.
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• Beijing [28]: This dataset contains check-in records collected from a popular social networking
platform. It spans a period from late September 2019 to late November 2019.It also contains
intent labels annotated by human for a small dataset.

• UserQueries: To verify the effectiveness of the whole system, we utilize self-instruct method [50]
with 5 seed queries to generate 300 user queries as the experiment input.

More detailed information for the Check-in and GPS trajectory datasets are summarized in Table 5
and Table 6, respectively. Note that the raw datasets are typically city-scale and data-intensive.
Loading them all into the TrajAgent framework is costly. In this work, we are selecting a part of data
for task model training and testing during experiments.

Table 5: Statistics of the Check-in trajectory datasets.
Datasets Foursquare (FSQ) Brightkite(BGK) Beijing

Num. Users 463 272 1566
Num. POIs 19870 50061 5919
Num. Trajectories 10632 22208 744813

Table 6: Statistics of the GPS trajectory datasets.
Datasets Porto Chengdu Tencent

Sampling Rate 15s 3s 15s
Num. Traj. 1,710,670 5,819,383 10,000
Avg. Traj. Length (m) 3522.64 2857.81 2492.01
Avg. Travel Time (s) 724.20 436.12 13903.78
Latitude Range [41.1401, 41.1859] [30.6529, 30.7277] [40.0224, 40.0930]
Longitude Range [-8.6902, -8.5491] [104.042, 104.129] [116.265, 116.349]

A.2 Models

As introduced in Figure 3, we adopt various deep learning based and LLM based models and
incorporate them into TrajAgent for solving trajectory-related tasks. According to the type of tasks
they deal with, these models can be framed in the following categories:

• Next Location Prediction: RNN [31], attention-based method like DeepMove [13], well-
performed graph-based method like GETNext [60] and two recent proposed LLM-based methods
LLM-ZS [2] and LLMMove [19].

• Travel Time Estimation: DeepTTE [48] and MulT-TTE [32] to estimate the travel time for a given
GPS trajectory.

• Trajectory User Linkage: widely-used DPLink [18], MainTUL [5] and S2TUL [10] are considered.
We modified DPLink’s training approach by using publicly available sparse trajectory datasets
instead of heterogeneous mobility datasets for training.

• Travel Intent Prediction: LIMP [28], which leverages the commonsense reasoning capabilities of
LLMs for mobility intention inference.

• Trajectory Anomaly Detection: we consider the well-performing method GMVSAE [33], which
represent different types of normal trajectories in a continuous latent space.

• Trajectory Generation: ActSTD [65], which capture the spatiotemporal dynamics underlying
trajectories by leveraging neural differential equations and DSTPP [64], which defines spatial
temporal point process for trajectory generation.

• Trajectory Recovery: TrajBERT [44], which encode trajectory as sentence and train a BERT
model to get representations of trajectories.

• Trajectory Map Matching: DeepMM [14], which proposes a data augmentation approach for
map-based trajectory data, and GraphMM [34], which leverages a graph-based framework to extract
features from map-based trajectory data, are considered.

• Trajectory Representation: CASCSR [21], which use contrastive learning method to learn
trajectory representations for downstream tasks.
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A.3 Metrics

To evaluate the performance of all models on multiple trajectory tasks, we employ the following
different metrics:

• Acc@5 and Hit@5: Acc@5 refers to the percentage of the first five results predicted correctly.
Hit@5 measures whether at least one of the top-5 predictive results is correct.

• Accm: Accm is the evaluation metric which computes the average matching degree of all trajecto-
ries.For each trajectory, its matching degree is the ratio of the number of matching road segments
to the number of all road segments.

• Acci: Acci is used to measure the accuracy of trajectory intention inference. It is the ratio of the
number of matching predicted intention of each check-in to the total number of check-ins.

• MAE and AUC: Mean Absolute Error (MAE) indicates the amount of deviation from the actual
values. Area Under ROC Curve (AUC) measures how well the model correctly distinguishes the
type of the sample.

• JSD: Jensen–Shannon divergence (JSD) measures the discrepancy of distributions between the gen-
erated data and real-world data. Lower JSD denotes a closer match to the statistical characteristics
and thus indicates a better generation result.

In our experiments, Acc@5 is used to measure the accuracy of trajectory prediction and agent
execution, it is also used to measure the downstream applications of trajectory representation.Accm
is designed for measuring the performance of map matching task.Acci is designed for measuring the
performance of travel intention prediction task. Hit@5 is adopted for evaluating the performance of
trajectory user linkage task; MAE is employed to compute the error of travel time estimation and
trajectory recovery, while the metric AUC is used to assess the performance of trajectory anomaly
detection.JSD and RMSE are used to measure the prediction error of the spatiotemporal domain in
trajectory generation task.

All experiments are conducted on a Ubuntu server equipped with 8 NVIDIA GeForce RTX 3090
GPUs. Each small model is trained using a single RTX 3090 GPU, while each large language model
(LLM) is accessed through its corresponding API provider.

A.4 Additional results on GPS trajectory data

Table 7: Comparison of task performance on GPS trajectories for TrajAgent with different configura-
tions.

Task TTE Anomaly Recovery

Model DeepTTE MultTTE GMVSAE TrajBERT
Metrics MAE AUC MAE

Porto
origin 8.48 129.35 0.9892 13.6667
+JO 5.85 109.85 0.9899 8.0290
δ 31.01% 15.08% minor 41.25%

Chendu
Origin 7.23 166.29 0.978 54.8060
+JO 5.95 128.57 0.984 29.8134
δ 17.70% 22.68% 0.61% 54.39%

Table 7 presents the performance comparison on GPS trajectory tasks, specifically focusing on TTE
and TAD tasks. The models evaluated are DeepTTE for TTE and GMVSAE for TAD, with results
shown for the original configuration (Origin) and after Joint Optimization (+JO). For the Proto dataset,
the original model has an MAE of 8.48, which significantly improves to 5.85 after joint optimization,
resulting in a 31% reduction in prediction error. On the Chengdu dataset, the MAE decreases from
7.23 to 5.95. As for TAD task, we find that the AUC scores were already high, the small but consistent
improvements in both datasets suggest that TrajAgent’s joint optimization can further refine model
performance, even for tasks where models initially perform well.
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A.5 Limitations and Failure Mode Analysis

In this section, we analyze some cases where the TrajAgent’s optimization performance is suboptimal.
The overall process is illustrated in Figure 5. The optimization module is a key component affecting
overall performance.

The first issue is optimization trap present in data augmentation module of TrajAgent. Specifically,
it refers to the situation where agent sometimes ignores the contents of the memory during the
thought process. Even when the chosen parameter combination yields poor training results, the model
overlooks the error feedback (i.e., the "Not good enough..." in the memory). The "optimization trap"
occurs even in the best-performing GPT-4o-mini. As the length of the Memory increases, the impact
of the optimization trap on overall accuracy grows. Once an optimization trap occurs, all memories
within the same step tend to favor the same ineffective combination. We believe the causes of the
optimization trap could be: (1) excessively long prompts leading to truncated inputs; (2) insufficient
proportion of memory in the total input.

The second issue is the sub-optimality appears in parameter optimization module of TrajAgent. This
phenomenon exists across various datasets and model sizes. We believe the reasons for the poor
performance might be: (1) the TrajAgent parameter optimization module is overly sensitive to the
format of model outputs, treating all responses that do not meet the format requirements as invalid;
(2) adjustments to certain parameters result in increased training time, reducing the total number of
iterations.

To address these issues, we propose two enhancements: (1) a contrastive reflection mechanism that
learns from both successful and failed trials to avoid redundant exploration; and (2) a dynamic
memory management strategy that prunes low-performing historical actions. Experimental results
(Tables 12 and 11) confirm that these strategies effectively mitigate performance degradation at large
step/memory sizes.

A.6 Additional Experimental Analysis

The optimization effect diminishes as the step increases: While selecting combinations of operators,
the model further optimizes the configuration of each operator (e.g., the original configuration file for
"inserter" is insert_nums: 1, insert_ratio: 0, insert_time_sort: maximum, percent_no_augment: 0,
ti_insert_n_times: 1). In a zero-shot scenario, the model explores optimization strategies based on
dataset characteristics and the meaning of the operators, with a probability of converging to a local
optimum—i.e., finding a suboptimal combination and deeming the result sufficient, thus stopping
the exploration of new combinations and selecting the best operator configuration based on this
combination. We compared the llama3-70b used in the paper with other reasoning models, and the
results are shown in Table 11 (S2TUL, FSK-London, memory-length=1). We found that models with
stronger reasoning capabilities attempt more operator combinations and have a higher probability of
finding better combinations in fewer steps. For instance, DeepSeek-v3 outperforms LLaMA-3-70B
in step 4. Under the same operator combination and the same number of steps, models with stronger
reasoning capabilities yield better optimization results. For instance, DeepSeek-v3 outperforms
LLaMA-3-70B in steps 3, 5, 6, 7, 9, 10, 11, and 13.

Improvement solution: Implement reflection similar to contrastive learning between steps, such as
further adjusting the parameters of each operator based on effective combinations, to avoid exploring
ineffective combinations as much as possible. The improved results are shown in Table 12 (S2TUL,
FSK-London, memory-length=1).

The optimization effect diminishes as the memory length increases: memory length refers to the
number of action proposals generated in each reasoning step. Increasing it can improve exploration
efficiency but also raises the probability of falling into a local optimum. We compared the performance
of llama3-70b with that of reasoning models, and the results are shown in Table 9 (S2TUL, FSK-
London, step=5). Both models achieved relatively good results at memory_length=2, but as the length
increased, they faced the issue of converging to suboptimal solutions. However, models with stronger
reasoning capabilities exhibited a stronger tendency to explore other combinations, thus having a
higher probability of finding better combinations and escaping the "optimization trap" .
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Answer:
DeepMove foursquare

Question: 
Next Location Prediction
Please choose proper model and dataset to do the task.You should 
solve the task with interleaving Thought, Action and 
Observation steps. 
<CHARACTERISTICS OF MODELS>
<RELATED DATASETS>

Question: 
Please get the characteristics of the model, the dataset it use from the 
the paper of each model.
<CANDIDATE PAPER SET>

Answer:
{DeepMove:{description:DeepMove is an attentional recurrent 
network for mobility prediction from lengthy and sparse 
trajectories.
Dataset:foursquare, geolife…},
DPLink:{}……}

Model Selection

Question:
You are a Data Transforming Agent. Your job is to transform source 
data, to the same format as the target data. Following are the detailed 
instructions:
…
End your response with a plan and a python code.
Source data: foursquare
<TRANSFORMATION OPERATORS>
<1-SHOT>
<TRANSFORMATION TASK>
Answer:

Data Transformation

Answer:
<TRANSFORMATION PLAN>
1. Read the source data file source1.txt
2. Select the first five columns in the source data: User ID, ……
<TRANSFORMATION CODE>
```python
import pandas as pd
import os
# Step 1: Read the source data
source_data = pd.read_csv(os.path.join(‘./source', 'source1.txt')

Question:
<SCRATCHPAD>
1. Set the initial batch size to 32 and the learning rate to 0.001.
……
In Action step, you should consider the Thought step in 
SCRATCHPAD, and return a list and a dictionary.
<CONFIG HYPERPARAMETERS>

Answer:
{loc_emb_size: 600,tim_emb_size: 20,….}

Question: 
Please select proper augmentation methods and use them in proper 
order to jointly augment the input temporal data and user 
data.Following are the detailed instructions:
……
<CONFIG HYPERPARAMETERS>
<CHARACTERISTICS OF INPUT DATA>
<MEANING OF OPERATORS>
<MEMORY>:[step num: 1, hyperparameters combination: 
{loc_emb_size: 600,….. }, score:0.2306, experience:this 
hyperparameters combination seems work well]
In Thought step,you should reason how to choose the combination 
of operators and proper combination of hyperparameters of each 
augmentation.

Task Execution

Answer:
Firstly, I will analyze the current hyperparameters in the CONFIG 
HYPERPARAMETERS….
Next, I will consider the characteristics of the input data…..
Now, I will proceed with the action step based on this plan.
 Action:
1. Set the initial batch size to 32 and the learning rate to 0.001.
2. Train the model with the current hyperparameters and monitor 
the performance.
3. ……

Question:
<SCRATCHPAD>
**Thought:**\n\nFirstly, I will analyze the characteristics of the 
input data…..
In Action step, you should consider the Thought step in 
SCRATCHPAD, and return a list and a dictionary.
<CONFIG HYPERPARAMETERS>

Answer:
[1,3,5,2]
{1:{crop_nums:3,…},3:{….},5:{….},2:{……}}

Question: 
Please select proper augmentation methods and use them in proper 
order to jointly augment the input temporal data and user 
data.Following are the detailed instructions:
……
You should solve the task with interleaving Thought, Action 
and Observation steps. 
<CONFIG HYPERPARAMETERS>
<CHARACTERISTICS OF INPUT DATA>
<MEANING OF OPERATORS>
<MEMORY>:[['step num:', 1, 'operator index list:', [1, 3, 5, 2], 
'hypermeters of each operator:'….., 'score:', 
0.04221190375685943, 'experience:Not good enough.Need to try 
other operators combinations.Do not use bad operators 
combination more than twice.']]
In Thought step,you should reason how to choose the combination 
of operators and proper combination of hyperparameters of each 
augmentation.

Data Augmentation

Answer：
**Thought:**
Firstly, I will analyze the characteristics of the input data,  ….
Then, I will consider the meaning of each operator and their 
potential impact on the score. …
**Step** 
1. Apply `Ti-crop` to segment the data.
2. **Hyperparameter Configuration:**….
**Observation:**

Question: 
Next Location Prediction
Following record includes model selection and the combination of augmentation methods of each attempt for 
trajectory data mining task.Your task is selecting the attempt with the best result among the attempts.
 <RECORD>

Question: 
You are an agent for summarizing the result of trajectory data mining task <TRAJECTORY ANALYSIS TASK>, 
use dataset <DATASET NAME>.The following record includes model selection, data  augmentation.Please 
summarize the record ,and give suggestions on:
1.How to select model? 2.Which strategy of data augmentation seems work well?
<RECORD>

Suggestion

Answer: 
<SUMMARY>…
<SUGGESTION>
DATA SELECTION:For global user mobility prediction with checkin data,you can use dataset 
foursquare.MODEL SELECTION: Attentional recurrent network based model seems work well for mobility 
prediction .DeepMove may be a good choice considering your need.AUGMENTATION METHODS:For sparse checkin 
data, using  insert method seems work well….

Answer: 
MODEL NAME: DeepMove,BEST AUGMENT METHODS:[crop, insert-memoybased, mask]

Question: 
Please parse out the task names each sentence aims to address in RAW_INSTRUCTS. 
<TASK_DESCRIPTION>
USER INPUT
I'm looking to figure out which points of interest users are likely to visit next. I've gathered mobility data from users all around the globe, and I could 
really use some guidance on how to set up an experiment to test this.

Answer: 
Next Location Prediction

Task Understanding

CANDIDATES DESCRIPTION GENERATION

CANDIDATES DESCRIPTION GENERATION

THINK

ACTION

THINK

THINK

ACTION

THINK

Analysis

1

3

Optimization Trap

Suboptimal

Task Summary

Task Planning2

4

Parameter Optimization

Figure 5: A representative example case of TrajAgent.

Table 8: Token consumption and time cost for trajectory processing with different models (traj = 200).
Input and output token counts are reported for two inference settings: step=1 and step=5 (with
memory_length=1).

Model token(step=1) token(step=5) time cost
input output input output

LLM-ZS 37,327 90,180 194,358 282,270 3h27min
DutyTTE 1,108 284 7,718 1,823 1h17min

Improvement solution: Periodically optimize and update the memory organization, discard poor
combinations, retain good ones, and guide the model to explore new combinations during the
reflection phase. The improved results are shown in Table 11 (S2TUL, FSK-London, step=5).
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Table 9: Step-wise ACC@5 performance and Operator Combination Order(OCO) traces for multiple
large reasoning models.

step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Llama3-70b
ACC@5 56.28 56.28 59.10 68.18 68.18 68.39 68.18 69.04 69.04 68.39 69.04 69.04 87.01 69.05 68.40 68.19 83.12 88.96
OCO [] [] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [2,9,10] [1,3,9] [1,3,9] [1,3,9] [2,9,10] [2,9,10]

DeepSeek-v3
ACC@5 56.28 79.22 59.52 61.26 81.17 68.83 69.26 69.05 83.98 70.35 69.05 69.26 71.00 61.90 60.82 68.83 71.00 66.88
OCO [] [2,9,10] [1,3,9] [1,3,9] [2,9,10] [1,3,9] [1,3,9] [1,3,9] [2,9,10] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,4,9] [1,3,9] [1,3,9] [1,3,5,9]

Gemini-2.0-flash-001
ACC@5 56.28 73.16 61.69 70.35 68.83 82.25 69.05 68.40 87.01 65.58 79.87 83.12 71.65 84.63 82.47 71.43 69.05 69.05
OCO [] [2,9,10] [1,3,9] [1,3,9] [1,3,9] [3,9,10] [1,3,9] [1,3,9] [2,9,10] [1,3,9] [2,9,10] [2,9,10] [1,3,9] [2,9,10] [2,9,10] [1,3,9] [1,3,9] [1,3,9]

Table 10: Performance (ACC@5) and Operator Combination Order(OCO) traces under different
memory lengths for Llama3-70b and DeepSeek-v3.

memory-length 0 1 2 3 4 5 6 7

Llama3-70b
ACC@5 56.28 68.39 80.95 79.00 55.19 83.33 57.79 62.55
OCO [] [1,3,9] [2,9,10] [2,9,10] [1,2,9] [2,9,10] [1,4,9] [2,6,10]

DeepSeek-v3
ACC@5 56.28 79.22 59.09 79.65 61.47 80.74 59.52 81.60
OCO [] [2,9,10] [1,3,9] [3,6,9] [2,5,9] [2,9,10] [1,4,9] [2,9,10]

Table 11: Raw step-wise performance and Operator Combination Order(OCO) traces for llama3-70b
before and after improvement.

step 0 1 2 3 4 5 6 7 8 9 10 11

Pre-improvement
ACC@5 56.28 56.28 59.10 68.18 68.18 68.39 68.18 69.04 69.04 68.39 69.04 69.04
OCO [] [] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9]

Post-improvement
ACC@5 56.28 59.09 61.03 68.18 69.04 69.04 60.38 69.04 82.90 80.08 87.01 83.12
OCO [] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [2,9,10] [2,9,10] [2,9,10] [2,9,10]

Table 12: Performance and tool invocation Operator Combination Order(OCO) traces under different
memory lengths before and after improvement.

memory-length 0 1 2 3 4 5 6 7

Pre-improvement
ACC@5 56.28 68.39 80.95 79.00 55.19 83.33 57.79 62.55
OCO [] [1,3,9] [2,9,10] [2,9,10] [1,2,9] [2,9,10] [1,4,9] [2,6,10]

Post-improvement
ACC@5 56.28 68.39 69.05 80.95 81.60 84.63 80.52 85.73
OCO [] [1,3,9] [1,3,9] [2,9,10] [2,9,10] [2,9,10] [2,9,10] [3,6,9]

Table 13: Performance comparison of TrajAgent with and without utilizing score feedback in memory
across optimization steps.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12

With score in memory
ACC@5 (%) 56.28 56.28 59.10 68.18 68.18 68.39 68.18 69.04 69.04 68.39 69.04 69.04 87.01
Operators [] [] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [1,3,9] [2,9,10]

Without score in memory
ACC@5 (%) 56.28 45.23 78.14 47.40 48.05 57.36 47.61 58.22 58.23 58.87 58.87 46.32 63.85
Operators [] [1,4,9] [2,9,10] [1,4,9] [1,4,9] [1,4,9] [1,4,9] [1,4,9] [1,4,9] [1,4,9] [1,4,9] [1,4,9] [2,6,10]
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A.7 Prompt Examples

Parameter Optimization

User

Please select proper combination of hyperparameters of model in CONFIG HYPERPARAME-
TERS.Adjust the selection, the combination of hyperparameters based on the main function of
hyperparameters, the characteristics of the input data, the tuning principles, and memory to get a
high score. You should solve the task with interleaving Thought, Action and Observation steps.

<CHARACTERISTICS OF INPUT DATA>

The input temporal data contains a time dictionary(key is the user ID,the value is a list containing
all time points when the user is active in chronological order) , the input user data contains a
user dictionary(key is the user ID,the value is a list containing all items that the user interacts
with in chronological order).

<CONFIG HYPERPARAMETERS>

{loc_emb_size: 500, tim_emb_size: 10, ...}

<TUNING PRINCIPLES>

1.Start with a small batch size (32-64) and a small learning rate (0.001-0.01): This will help
prevent overshooting and overfitting.

2.Increase batch size and learning rate: If the model is not overfitting, increasing the batch size
and learning rate can help improve convergence.

3.Add dropout (0.2-0.5) to prevent overfitting: If the model is overfitting, adding dropout can
help regularize the model.

4.Increase embedding size: If the model is not capturing enough information, increasing the
embedding size can help improve representational power.

5.Decrease learning rate and increase batch size: If the model is not converging, decreasing the
learning rate and increasing the batch size can help improve stability.

<MEMORY>:

<SCRATCHPAD>:

In Thought step,you should reason how to choose the combination of hyperparameters to get a
higher score.Please consider following aspects:

1.Observe the hyperparameters with high scores in MEMORY, to determine the optimal hyper-
parameters.

2.Use a grid search: Perform a grid search over a range of hyperparameters with high scores to
find the optimal combination with higher scores.

3.Increase batch size and learning rate, and use dropout to avoid overfitting.

4. Stop or reverse the adjusting trend if the score is decreasing. According to above aspects,please
first learn experiences from MEMORY, then make plan for the action step.Please use the sentence
structure ’Firstly... Then... Lastly’.Let’s think step by step.

Thought:

Assistant

Firstly, I will analyze the current hyperparameters in the CONFIG HYPERPARAMETERS. ...

Then, I will consider the hidden size, which is currently set at 500. ...

Next, the learning rate is currently at 0.001, which is a good starting point. ...

Lastly, I will monitor the model’s performance closely....

Now, I will proceed with the action step to adjust the hyperparameters based on this reasoning.
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Action:

1. Increase the tim_emb_size from 10 to 20 to capture more temporal information.

2. Keep the loc_size at 500 for now, as it seems adequate.

3. Increase the hidden_size from 500 to 600 to enhance the model’s capacity.

4. Increase the dropout_p from 0.3 to 0.4 to further prevent overfitting.

5. Set the learning_rate to 0.005 to improve convergence speed.

6. Start with a batch size of 32 and monitor the performance closely.

Observation:

After implementing these changes, I will evaluate the model’s performance on a validation set.
...

User

In Action step, you should consider the Thought step in SCRATCHPAD, and give a
dict:{hypermeter name:hypermeter value}.The hypermeter name should be the same with
the raw config hypermeter names in CONFIG HYPERPARAMETERS,and hypermeter values
should be the same type as the hypermeter values in CONFIG HYPERPARAMETERS.Please
do not add any comments to each value.

Action:

Assistant

{’loc_emb_size’: 500,...}

Task Understanding

User

The description of each task is in TASK_DESCRIPTION.

Please parse out the task name the sentence aims to address in RAW_INSTRUCTS.

1. The task name should match the key in the DESCRIPTION.

2. Please only output the task name.Do not output other contents.

<TASK_DESCRIPTION>

{Next_Location_Prediction: ...,Trajectory_User_Linkage:...}

<RAW_INSTRUCT>

I want to identify the trajectory...

Assistant

Trajectory_Completion

Data Augmentation

User

<TASK>

Please:

1.select proper augmentation methods and use them in proper order to jointly augment the
input temporal data and user data.Please adjust the selection and combination sequence of
operators based on MEANING OF OPERATORS, CHARACTERISTICS OF INPUT DATA,
and MEMORY to get a high score.

2.select proper combination of hyperparameters of each augmentation method in CONFIG
HYPERPARAMETERS.Adjust the selection, the combination of hyperparameters based on the
main function of hyperparameters, the characteristics of the input data, and memory to get a
high score.
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You should solve the task with interleaving Thought, Action and Observation steps.

<CONFIG HYPERPARAMETERS>

1.Ti-crop: crop_nums:(int) the size of cropping. default is 2.

crop_ratio:(float) the ratio of cropping. default is 0.

crop_n_times:(int) the number of cropping for each sequence for default setting. default is 2.

crop_time_sort:(str, choice in [maximum, minimum]) choose the candidate subsequence in a
descending/ascending order according to its time interval variance. default is ’minimum’. ...

2.Ti-insert_unvisited: ...

<MEANING OF OPERATORS>

1.Ti-crop: For each user, filter out sessions with fewer trajectory points than ti_threshold +
ti_crop_n_times. In each session, randomly extract several segments (ti_crop_n_times) of equal
length (ti_threshold). Sample data segments according to the rules.

2.Ti-insert_unvisited:...

...

<MEMORY>:

<SCRATCHPAD>:

In Thought step,you should reason how to choose the combination of operators and proper
combination of hyperparameters of each augmentation method to get a higher score.Please
consider following aspects:

1.The meaning of each operator,and the impact of adding or removing operators at a specific
location on the score.

2.Common characteristics of operator index lists with higher scores in MEMORY.Avoid using
the same index list as MEMORY with scores lower than 0.1811.

3.The meaning of hyperparameters of each operator you select, and how to adjust the hyper-
parameters based on the characteristics of input data and hyperparameters with high scores in
MEMORY.

4.Use a grid search: Perform a grid search over a range of hyperparameters with high scores to
find the optimal combination with higher scores.

7. Stop or reverse the adjusting trend if the score is decreasing.

According to above aspects,please first learn experiences from MEMORY, then make plan for
the action step.Please use the sentence structure ’Firstly... Then... Lastly’.Let’s think step by
step.

Thought:

assistant

**Thought:**

Firstly, I will analyze the characteristics of the input data, which consists of user activity
timestamps and the corresponding items they interacted with. This suggests that temporal
relationships and user preferences are crucial for effective augmentation. The augmentation
methods should enhance these aspects without distorting the underlying patterns.

Then, I will consider the meaning of each operator and their potential impact on the score. For
instance, using ‘Ti-crop‘ can help in segmenting the data, which is essential for understanding
user behavior over time. ...

Lastly, I will select hyperparameters for each operator based on their functions and the charac-
teristics of the input data.
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**Action:**

1. **Select Augmentation Methods:** - **Ti-crop**:

- ‘crop_nums‘: 3

- ‘crop_ratio‘: 0.1 (to allow for a small portion of the data to be cropped)

- ‘crop_n_times‘: 3

...

2. **Hyperparameter Configuration:**

- For ‘Ti-crop‘, I will keep ‘crop_n_times‘ at 3 to ensure multiple segments are created....

3. **Evaluate and Adjust:**

- After implementing the above configurations, I will evaluate the score...

**Observation:**

I will monitor the score after each adjustment to ensure that the changes lead to an improvement.
If the score decreases, I will revert to the previous settings.

User

<SCRATCHPAD>

**Action:**

1. **Select Augmentation Methods:**

- **Ti-crop**: ...

In Action step, you should consider the Thought step in SCRATCHPAD, and return a list and a
dictionary.

The list should contain the indices of augmentation methods in {1: ’Ti-crop’, 2: ’Ti-
insert_unvisited...}.For example, if you want to first use Ti-crop, secondly use Ti-insert_random,
thirdly use Ti-mask, then the list should be ’[1,4,8]’.

The dict:....The hypermeter name should be the same with the corresponding operator hypermeter
names in CONFIG HYPERPARAMETERS,and hypermeter values should be the same type as
the corresponding operator hypermeter values in CONFIG HYPERPARAMETERS.

Please directly output the list and dictionary.For example:...

Action:

Assistant

[1, 3, 5]

{{crop_nums:3,crop_ratio:0,....},3:{...},5:{...}}
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