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Abstract

Large Vision-Language Models (LVLMs) have shown impressive performance
across multi-modal tasks by encoding images into thousands of tokens. However,
the large number of image tokens results in significant computational overhead, and
the use of dynamic high-resolution inputs further increases this burden. Previous
approaches have attempted to reduce the number of image tokens through token
pruning, typically by selecting tokens based on attention scores or image token
diversity. Through empirical studies, we observe that existing methods often
overlook the joint impact of pruning on both the current layer’s output (local) and
the outputs of subsequent layers (global), leading to suboptimal pruning decisions.
To address this challenge, we propose Balanced Token Pruning (BTP), a plug-
and-play method for pruning vision tokens. Specifically, our method utilizes a
small calibration set to divide the pruning process into multiple stages. In the
early stages, our method emphasizes the impact of pruning on subsequent layers,
whereas in the deeper stages, the focus shifts toward preserving the consistency of
local outputs. Extensive experiments across various LVLMs demonstrate the broad
effectiveness of our approach on multiple benchmarks. Our method achieves a 78%
compression rate while preserving 96.7% of the original models’ performance on
average. Our code is available at https://github.com/EmbodiedCity/NeurIPS2025-
Balanced-Token-Pruning.

1 Introduction

Recent advances in Large Vision-Language Models (LVLMs) [8, 15, 27, 29, 43, 52] have substantially
improved visual understanding. These models typically employ a visual encoder to convert images
into discrete tokens, which are then processed jointly with textual tokens by a large language model
backbone. The incorporation of visual information significantly increases the total number of input
tokens [2, 28, 59], a problem further amplified when handling high-resolution images. In edge
applications such as emergency monitoring [7, 44], logistics [6, 56], and smart homes [51], models
are typically deployed on devices like drones and unmanned vehicles [23, 10], which are constrained
by limited memory and strict latency requirements. The excessive number of image tokens poses a
major bottleneck for deployment, drawing increasing research interest in accelerating edge inference
[38].

Prior studies [1] have demonstrated that visual tokens often exhibit significant redundancy [5, 26].
Consequently, visual token pruning has been proposed as an effective strategy to reduce input
redundancy and enhance computational efficiency [47, 40, 18, 53, 48]. Visual token pruning faces
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two fundamental challenges: identifying the most important visual tokens and determining the
appropriate layers for pruning. Existing token pruning strategies can be broadly classified into two
categories: attention-based methods that leverage text-image interactions [5, 46, 32], and diversity-
based methods that exploit the heterogeneity of visual representations [1]. However, the impact of
their distinct optimization objectives on overall model performance remains underexplored, and a
systematic comparison between them is largely absent. Moreover, when it comes to pruning layer
selection, existing methods rely heavily on validation performance and manually defined settings,
lacking principled guidance based on the model’s intrinsic properties.

Figure 1: Layer-wise visualization of attention in LVLMs.

To address these problems, we first explore the nature of image token pruning from an intuitive
perspective: its impact on the current layer’s (local) output and its influence on the outputs of
subsequent pruning layers (global). We begin by visualizing the spatial distribution of image
tokens that receive higher attention from text tokens across different layers. As shown in Figure 1,
we observe that the image tokens attended by text tokens vary across different layers. This indicates
that pruning solely based on the current layer tends to overlook its impact on subsequent layers. Then
we further investigate the impact of different pruning methods on the model outputs. Specifically,
we compare the hidden states of output tokens at different decoding positions under two pruning
methods with those of the original model.

Figure 2: Impact of different pruning strategies on layer-wise representations.

It can be found in Figure 2 that attention-based methods preserve output similarity well at early
pruning layers, but the error accumulates in deeper layers. In contrast, diversity-based methods do
not maintain output similarity at the initial layers, but achieve better consistency in later pruning
stages. This implies that attention-based pruning methods focus solely on optimizing the current
pruning layer while ignoring their impact on subsequent layers, whereas diversity-based methods
overlook the preservation of output quality at the current layer.

Motivated by the above observation, we aim to tackle a fundamental challenge: how to prune with
joint consideration of the current and subsequent layers to achieve global optimality. To address this
challenge, we propose Balanced Token Pruning (BTP), a visual token pruning method that balances
local objectives (current layer) with global objectives (subsequent layers). We begin by analyzing
and formulating a local-global objective for image token pruning. Based on this objective, BTP first
partitions the pruning process into multiple stages using a small calibration set [35, 20], leveraging
the way LVLMs process images, as illustrated in Figure 4. In early stages, where more image tokens
are retained, BTP emphasizes a diversity-based objective to preserve the quality of downstream
representations. In later stages, where fewer tokens are retained, it prioritizes an attention-based
objective to maintain the consistency of local outputs. With this design, we preserve token diversity
in the early layers while focusing on task-relevant tokens in the later layers.
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Extensive experiments demonstrate the effectiveness of our proposed BTP method. We evaluate BTP
across models of varying sizes and architectures, consistently achieving superior performance under
higher compression ratios. Notably, our approach retains only 22% of the original image tokens
on average while preserving 98% of the model’s original performance. Furthermore, end-to-end
efficiency evaluations confirm that BTP significantly reduces both inference latency and memory
usage in practice.

2 Related work

2.1 Large Vision-Language Models

Recent progress in large vision language models (LVLMs) has been substantially accelerated by
the open-sourcing of foundation models like LLaMA [41] and Vicuna [60]. Representative models,
including LLaVA [27, 28, 29], Qwen-VL [2, 43], and InternVL [8, 15] leverage vision encoders
[34, 25, 9] to encode images into visual tokens, which are then integrated into the language model
for unified multimodal representation and understanding [14]. For example, LLaVA-1.5 encodes
image into 576 visual tokens using a single-scale encoder. As these models increasingly support
high-resolution visual inputs [2, 28], the number of visual tokens grows. Using a multi-resolution
encoding strategy, LLaVA-NeXT can generate up to 2,880 tokens per image. Multimodal large
models have been widely applied in various scenarios, including embodied agent [17]. The large
number of image tokens limits its applicability in scenarios such as real-time applications [39].

2.2 Visual Token Pruning

Early efforts to reduce visual token redundancy primarily focus on attention-based pruning
[4, 19, 54, 32]. For example, FastV [5] prunes visual tokens with low attention scores after the
filtering layer, with subsequent layers processing only the remaining token. Another approach, VTW
[26], adopts a complete token elimination strategy, removing all visual tokens after a specified layer.
PyramidDrop [46] introduces a more sophisticated approach, performing stage-wise pruning through-
out the transformer, ranking visual tokens by their attention scores to the instruction token at each
stage and progressively discarding the least informative ones. Compared to attention-based methods,
diversity-based methods prioritize retaining a richer variety of semantic information. For instance,
DivPrune [1] formulate token pruning as a Max-Min Diversity Problem [33, 37]. Additionally, some
methods fuse remaining tokens into retained tokens through token fusion such as LLaVA-PruMerge
[40] and VisionZip [47]. Different from prior methods, our method jointly considers the impact of
pruning on both the current layer and subsequent layers.

3 Preliminary

3.1 Visual token processing

In the prefilling stage, images and texts are first encoded into embedding vectors (tokens), which are
then processed by LVLM. We denote the input token sequence as X which consists of the system
prompt XS , the image tokens XI and text tokens XT , X = (XS ,XI ,XT ) . X is then fed into the
LLM backbone composed of N decoder layers. For the l-th decoder layer, we denote the input as
X(l) and the layer output X(l+1) is:

X(l+1) = X(l) +Atten(l)(LN(X(l))) + MLP(l)(LN(attn
(l)
output +X(l))), (1)

where Atten(l) is the attention block, LN is the layer normalization and MLP (l) is the projector
layer. It can be observed that the outputs of the attention block and the MLP block are closely tied to
the attention mechanism [42]. Formally, the attention mechanism can be represent as:

attnl
output = Softmax(

Ql(Kl)
T +M√
Dk

)Vl, (2)

where Ql, Kl, Vl are calculated by Query projector, Key projector and Value projector. Dk is hidden
state dimension. M is the casual mask which imposes a constraint such that each token is permitted
to incorporate information only from tokens at earlier positions. Kl, Vl are stored in the KV cache
for further decoding stage.
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3.2 Visual token pruning formulations

Prior works on image token pruning can be broadly categorized into attention-based methods [5, 46]
and diversity-based methods [1]. Attention based methods utilize text-image attention score to select
important image tokens at specific layers. For input sample with m text tokens, we can denote the
importance score Simg of image tokens at l-th layer as:

S
(l)
img =

1

m

m∑
i=1

Atten(l)(XI ,X
(i)
T ). (3)

After obtaining the importance scores of the image tokens, these methods select a pruned image token
set Patten ⊂ XI with the highest scores. In contrast to attention score-based methods, diversity-based
approaches focus on maximizing the diversity among selected image tokens. These methods are
typically based either on the spatial diversity of the selected image token set or on the semantic
diversity of the selected images. Formally, given a diversity metric F ⊂ {Fspa,Fsem}, our goal is to
identify a pruned set of image tokens Pdiv ⊂ XI that maximizes the objective function Ldiv:

Ldiv = maxF(Pdiv). (4)

4 Methodology

4.1 Limitations of existing methods

Attention-based methods pursue local optima We analyze the impact of pruning image tokens
on the subsequent text and response tokens. From Equations 1 and 2, we can see that pruning image
tokens at l-th layer mainly affects the layer output X(l+1) by changing the attention output, which is
a weighted sum of the value vectors Vl. If the norms of the Vl are similar, selecting image tokens
with high importance scores defined in 3 effectively reduces the difference between the layer output
before and after pruning. We provide supporting evidence for this assumption in the Appendix 7.1.
Formally, given original l-th layer output X(l+1)

origin and pruned l-th layer output X(l+1)
pruned , distance

metric function D(·, ·), we can define the objective function Latten of attention-based methods [5, 46]
as:

Latten = min
P

D(X
(l+1)
origin,X

(l+1)
pruned). (5)

However, attention-based methods locally optimize the output error at individual layers. For instance,
if pruning is conducted at the l-th layer and (l+k)-th layers, with Pl and Pl+k denoting the respective
optimal sets of selected image tokens. As shown in Figure 1, Pl+k ̸⊂ Pl. So, attention-based selection
results in a globally suboptimal pruning strategy.

Diversity-based methods ignore local constraints The diversity-based approach [1] aims to
maximize the diversity of the selected tokens, thereby partially mitigating the issues encountered by
attention-based methods as we can see in Figure 1. Because diversity-based methods tend to select
tokens with maximally different semantic information. However it can be observed in Figure 2 that
diversity-based approaches are ineffective in maintaining local output consistency, which can lead to
a failure in preserving local output consistency during deep-layer pruning, resulting in degraded
performance.

Layer selection for pruning Current approaches typically rely on manually predefined pruning
layers or utilize a small validation set to select pruning layers based on the observed performance.
However, these methods require extensive trial-and-error and dataset-specific calibration. As de-
scribed in Section 3.1, due to the presence of the causal mask M , the encoding of an image token in
the LLM backbone is independent of the input question. Therefore, we aim to determine the pruning
layers from the perspective of image token encoding.
4.2 Balanced token pruning with joint local and global objectives

Local-global objective Based on the above analysis, we argue that an effective token pruning
strategy should achieve local optimization by preserving the current layer’s output, while also
considering the global impact of pruning on subsequent layers. As shown in Equation 1, the model’s
output depends on both the outputs of previous layers and the attention module of the current
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Figure 3: Overview of BTP: We first use a calibration set to determine the pruning layers. In the
early layers, we emphasize diversity-based pruning to preserve the output of subsequent layers. In
the deeper layers, attention-based pruning is prioritized to maintain the output of the pruning layers.
Due to the pruning strategy, we achieve an overall optimal pruning balance.

layer. Therefore, to ensure that the final output of the pruned model remains similar to that of the
original model, we should maintain the similarity between the output of each pruned layer and its
corresponding original output. Firstly, we formulate a global objective function. Suppose token
pruning is performed at layers l1 < l2 < l3. For each pruned layer l ∈ {l1, l2, l3}, we aim to select a
subset of tokens Pl such that the difference between the pruned outputs X l+1

pruned and original outputs
X l+1

origin is minimized. To quantify hidden vectors’ difference, we use a unified distance function
D(·, ·) to measure the discrepancy between the outputs before and after pruning. Then our objective
is to minimize the total output discrepancy across all pruned layers:

Lglobal =

|l|∑
i=1

D(X l+1
origin, X

l+1
Pli

). (6)

According to Equation 5, we can get optimal pruned token set P∗
l based on attention. However,

since the attention distribution varies across input samples and Pl3 ⊆ Pl2 ⊆ Pl1 , it is difficult to
predict which tokens will be important for deeper layers (e.g., l2, l3) when pruning at layer l1. To
address this issue, we propose to optimize a local-global objective to approximate the optimal token
set P ∗

l . Building upon the local attention-based selection objective, we introduce a diversity term
to approximate the token preferences of later layers. Assume a weight coefficient λ ∈ (0, 1), we
measure diversity by computing the sum of distance Fdis(·) among elements within a set:

Llocal−global = −
|l|∑
i=1

(λi

∑
j∈Pi

Atten(i)(X
(j)
I ,XT ) + (1− λi)Fdis(Pi)). (7)

The first term of Equation 7 ensures that the output of the pruned layer remains close to the original,
while the second term encourages the selected tokens at previous layer l1 to also include those
important for deeper layers such as l2 and l3.

Balanced token pruning (BTP) Building upon the proposed local-global objective, we introduce
our method. Figure 3, our approach divides token pruning into multiple stages denoted as S =
{s1, . . . , sn}. Under a predefined pruning ratio α, each stage retains a fixed fraction of image
tokens from the previous stage. As shown in Appendix 7.2, we can observe that retaining only a
small number of image tokens is sufficient to optimize the attention objectives. Since early pruning
stages retain more tokens and influence the pruning decisions of later stages, their objectives need to
emphasize token diversity. In contrast, deeper stages preserve fewer tokens and have less impact on
subsequent stages. Therefore, we set the hyperparameter λi to gradually increase across stages.
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Attention optimization: We optimize the attention objective by selecting the top-k image tokens with
the highest importance scores defined in Equation 3. To efficiently computing the importance scores,
we only use the last token of the input prompt as XT , which reduces the computational complexity to
O(n). We observe that the attention scores are influenced by positional encoding, which leads to a
tendency to favor tokens located toward the end of the sequence. We apply a re-balancing operation
to alleviate the influence of positional encoding. Assume that at l-th layer, we aim to prune the image
tokens by selecting k indices Ik out of N candidates based on the attention scores Al. Instead of
directly selecting the top-k tokens, we first over-select the top-k′ tokens indices Ik′ , where k′ > k.
To mitigate positional bias, we rebalance the selection by first retaining tokens from earlier positions,
followed by selecting additional tokens from later positions:

Ipre = Ik′ [Ik′ <
N

2
], (8)

Ipost = Ik′ [Ik′ ≥ N

2
][: k − |Ipre|], (9)

Ik = Concat(Ipre, Ipost). (10)

Through the rebalancing operation, we are able to preserve the attention objective while selecting
more informative tokens.

Diversity optimization: For optimizing the second objective related to diversity, we follow the
formulation used in DivPrune by modeling it as a Max-Min Diversity Problem (MMDP). However,
solving the MMDP objective requires O(n2) computational complexity and cannot be efficiently
accelerated by GPUs, resulting in significant computational latency. This issue becomes more
pronounced in high-resolution multimodal models with a larger number of image tokens. To address
this challenge, we propose an initialization strategy based on spatial position information. We observe
that image patches with large spatial distances tend to exhibit greater semantic differences, while
spatially adjacent patches are often semantically similar. Based on this intuition, we initialize the set
of selected image tokens by solving an MMDP problem over their spatial positions. Formally, given
N image tokens XI , which are originally obtained by flattening a 2D image, we first formulate a 2D
grid of size

√
N ×

√
N . For any two tokens y and w from the N tokens, their distance is defined as

the Manhattan distance d(·, ·) between their positions in the 2D grid. Based on this distance metric,
we construct the initial token set Einitial:

Einitial = argmax[ min
y,w∈S

(d(y, w) : ∀S ⊂ XI ]. (11)

4.3 Pruning layer selection

We propose that determining which layers to prune is closely related to encoding process of image
tokens. Specifically, pruning should occur either before or after the layers where the meaning of
image tokens changes significantly, since it is difficult to identify truly important tokens in such layers.
We compute the cosine similarity between image token hidden states X l

I , X
l+1
I before and after each

layer. For each layer, we plot the number of tokens with similarity below threshold τ alongside the
total attention allocated to image tokens. As shown in Figure 4, it can be observed that LVLMs tends
to allocate more attention to image tokens in layers following those where the representations of
image tokens undergo significant changes. Based on these insights, we propose a task-independent
layer selection strategy for pruning. Using a fixed set of 64 samples across all datasets, we identify
layers immediately before and after major shifts in image token semantics. As shown in Figure 3, we
perform pruning at selection layers, which enhances the effectiveness of our pruning strategy.

LLaVA-v1.5 Qwen2.5-vl

Image Processing Attention Allocation Image Processing Attention Allocation

Figure 4: Layer-wise image token hidden state dynamics and attention allocation in LVLMs.
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Table 1: Comparison of BTW with VTW, PDrop, FastV, and DivPrune across different models and
datasets. * : For models using dynamic resolution, we report the token retention ratio instead of the
absolute token count.

Method Token TFLOPS GQA MME MMBen POPE SQA MMVET Avg.

LLaVA-1.5-7B

Original 576 3.82 62.0 1510.7 64.3 85.8 69.4 29.0 100%
VTW (AAAI25) [26] 236 1.67 51.3 1475.0 63.4 82.1 68.8 17.8 89%
PDrop (CVPR25) [46] 192 1.30 57.1 1399.0 61.6 83.6 68.4 25.8 94%
FastV (ECCV24) [5] 172 1.65 57.6 1465.0 61.6 81.0 68.9 29.3 96%

DivPrune (CVPR25) [1] 128 0.83 58.8 1405.4 62.1 85.1 68.4 27.4 96%
BTP(ours) 128 0.85 59.0 1487.0 62.7 85.6 69.1 29.1 98%

LLaVA-1.5-13B

Original 576 7.44 63.2 1521.7 68.8 87.0 72.7 37.4 100%
VTW (AAAI25) [26] 236 2.97 55.6 1517.1 67.7 79.0 72.2 22.6 89%
PDrop (CVPR25) [46] 192 2.46 60.5 1493.0 67.3 85.1 73.7 32.8 96%
FastV (ECCV24) [5] 172 2.25 60.0 1473.0 67.0 83.6 72.9 31.9 95%

DivPrune (CVPR25) [1] 128 1.63 58.8 1461.0 65.8 86.5 72.6 34.0 96%
BTP(ours) 128 1.68 62.2 1519.7 68.0 86.9 72.7 34.5 98%

LLaVA-1.6-7B *

Original 100% 20.82 64.2 1519.3 67.1 86.4 73.6 37.5 100%
VTW (AAAI25) [26] 40% 9.11 53.3 1472.8 65.6 84.1 68.3 16.3 85%
PDrop (CVPR25) [46] 25% 6.77 60.4 1462.6 65.1 86.4 68.3 27.4 92%
FastV (ECCV24) [5] 22% 5.76 60.3 1469.1 64.3 85.5 68.2 32.3 94%

DivPrune (CVPR25) [1] 22% 4.20 61.4 1467.9 65.4 86.2 67.4 26.9 92%
BTP(ours) 22% 4.52 60.6 1490.8 65.8 86.7 68.4 30.3 94%

Qwen2.5-VL-7B *

Original 100% 5.48 60.4 1690.8 82.5 87.4 76.7 16.1 100%
VTW (AAAI25) [26] 40% 2.38 40.2 1129.8 58.7 61.5 69.7 4.5 65%
PDrop (CVPR25) [46] 30% 1.81 49.9 1462.5 70.6 76.8 72.6 9.58 82%
FastV (ECCV24) [5] 30% 1.79 52.6 1595.5 73.4 83.9 74.0 16.2 96%

DivPrune (CVPR25) [1] 25% 1.34 50.1 1639.2 76.9 85.4 73.0 17.5 96%
BTP(ours) 25% 1.67 57.2 1651.5 75.2 86.2 74.1 16.8 97%

5 Experiment

Baselines and models To rigorously assess the generalizability of our proposed image token
compression method, we integrate it into several state-of-the-art multimodal large models and
conduct extensive experiments on diverse benchmark tasks. Specifically, we evaluate our approach on
four representative models: LLaVA-v1.5-7B, LLaVA-v1.5-13B, LLaVA-v1.6-7B and Qwen2.5-VL-
7B-Instruct [2, 27, 28, 29, 43]. We select several plug-and-play compression baselines that support
inference-time token pruning: FastV [5] and PyramidDrop [46], which select informative tokens via
attention mechanisms; DivPrune [1], which filters tokens based on visual diversity and VTW [26],
which discards all image tokens at a specific transformer layer determined by validation performance.

Benchmarks and evaluation We conduct comprehensive experiments on standard visual under-
standing tasks using models of different sizes, model families, and compression ratios. We report the
results on GQA, MMB, MME, POPE, SQA and MM-VeT [13, 21, 22, 30, 49, 50]. All experiments
are carried out using the LMMs-Eval [3, 24] framework. In addition to accuracy on each dataset,
we evaluate all methods in terms of FLOPs, inference latency, and KV cache memory usage. For
inference throughout, we follow the PyramidDrop. Specifically, we calculate the FLOPs of the l-th
layer’s attention and MLP modules through 4nd2 + 2n2d+ 3ndm. n is the number of tokens, d is
the hidden state size, and m is the intermediate size of the FFN.

Implementation details All pruning experiments are conducted on 8 NVIDIA A800 GPUs using
the HuggingFace Transformers library. To determine pruning stages, we randomly sample 64
instances from the LLaVA-655k [27, 28, 29] dataset and use the same set across all models and
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benchmarks, thus avoiding separate calibration for each benchmark. We gradually reduce the number
of image tokens at each stage. In the early layers, we use a larger λ value to focus more on global
information, while in the deeper layers, we use a smaller lambda to emphasize local details. More
implementation details for different models are provided in the see Appendix 7.3. Similar to the
implementation of PyramidDrop, we compute the required attention scores separately within the
FlashAttn module at the specified pruning layers, achieving full compatibility with FlashAttn
[11, 12]. It is worth noting that all our experiments are conducted with FlashAttention acceleration
enabled.

5.1 Main results

BTP outperforms SOTA methods across LVLMs As shown in Table 1, we conduct extensive
experiments across different model families and parameter scales. Empirical results demonstrate that
our approach consistently surpasses state-of-the-art methods on most benchmark tasks. Our method
achieves 98% of the original average performance under a 22% compression rate across LLaVA
models of different sizes. Moreover, our method consistently outperforms all models, achieving
better results than both attention-based and diversity-based approaches. We also visualize the impact
of different methods on layer outputs in Figure 5, our method preserves consistency with the original
outputs at both local and global levels. The Appendix 7.5 further provides visualizations of the spatial
distribution of image tokens selected by various methods. Our method yields more effective token
selection in deeper layers.

Figure 5: Effect of various pruned meth-
ods on the output of decoder layers.

BTP maintains stable performance across different
compression ratios We assess the performance of our
method across a range of compression ratios to verify its
effectiveness. We find that FLOPs account only for the
computational cost of the attention and MLP modules,
while ignoring the overhead introduced by additional com-
ponents. As a result, FLOPs alone fail to accurately reflect
the actual inference latency. Therefore, as shown in Ta-
ble 2, we compare the performance and average inference
time of different methods under varying compression ra-
tios. In can be observed that although DivPrune achieves
lower theoretical FLOPs, its end to end latency even ex-
ceeds that of the original uncompressed model. In contrast, our method leverages spatial division for
initialization, significantly reducing the actual inference time. Across various compression ratios, our
method consistently achieves better performance than state-of-the-art approaches on most datasets,
without incurring additional computational overhead.

Table 2: Performance comparison with FastV and DivPrune across varying compression ratios. We
report the results on LLaVa-v1.5-7B.

Method Average Token TFLOPS Latency GQA MME MMB SQA

LLaVA-1.5-7B 576 3.82 0.145s 62.0 1510.7 64.3 69.4

FastV 128 0.86 0.122s(15% ↓) 49.6 1388.6 56.1 60.2
DivPrune 128 0.83 0.224s(54% ↑) 58.8 1405.4 62.1 68.4

BTP(ours) 128 0.85 0.134s(7% ↓) 59.0 1487.0 62.7 69.1

FastV 64 0.42 0.118s (18% ↓) 46.1 801.3 48.0 51.1
DivPrune 64 0.41 0.150s(0.5%↑) 57.5 1350.0 58.5 67.6

BTP(ours) 64 0.42 0.120s(17% ↓) 55.0 1364.1 58.6 68.3

5.2 Efficiency analysis

The additional overhead introduced by our method primarily arises from the attention computation
and the selection of the diversity set. Since we compute attention only between the final token and
the image tokens, the added attention complexity is O(n). For the selection of the diversity set, our
proposed spatial initialization strategy and progressive weight decay allow us to select only a small
number of additional tokens. In this section, we compare the efficiency of our method with other
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approaches, evaluating from multiple perspectives including theoretical FLOPs, inference latency,
KV cache size, and corresponding benchmark performance. For inference latency, we report the
average inference time per sample. For KV cache memory usage, we report the average GPU memory
consumption after compression. We conduct experiments using LLaVA-v1.5 and LLaVA-v1.6.
Notably, LLaVA-v1.6 processes images at a higher resolution, resulting in a larger number of image
tokens.

Table 3: Evaluation of compression efficiency on different models
Method Averge token Cache Size TFLOPS Latency LLaVA-COCO

LLaVA-1.5-7B 576 0.34GB (100%) 3.82 2.24s 90.8

FastV 172 0.15GB (55.8% ↓) 1.65 2.11s (5% ↓) 80.6
DivPrune 128 0.11GB (67.6% ↓) 0.83 2.33s (4% ↑) 80.3

BTP(ours) 128 0.11GB (67.6% ↓) 0.85 2.13s (4% ↓) 80.9

LLaVA-1.6-7B 2880 1.11GB(100%) 20.82 4.24s 106.6

FastV 860 0.37GB (66.6% ↓) 6.45 3.77s (11%↓) 92.6
DivPrune 633 0.28GB (74.7% ↓) 4.20 5.00s (17%↑) 99.1

BTP(ours) 633 0.28GB (74.7% ↓) 4.52 3.91s(7%↓) 98.9

As shown in Table 3, our method achieves the best performance while maintaining practical efficiency.

5.3 Ablation study

Choice of balance factor value: We first analyze the effect of λ in the local-global objective
functions. This factor determines the trade-off at each layer between preserving local outputs and
contributing to the global output. To thoroughly analyze the contribution of each pruning layer,
we perform comprehensive ablation experiments on the LLaVA model. Our method includes three
pruning layers, and we evaluate three configurations by fixing the λ parameters of two layers while
varying the remaining one: (1) tuning the shallow layer while fixing the middle and deep layers, (2)
tuning the middle layer while fixing the shallow and deep layers, and (3) tuning the deep layer while
fixing the shallow and middle layers. We define the ratio between the performance of the pruned
model and that of the base model on the target task as the performance gain. The computation of
performace performance gain is detailed in the Appendix 7.4.

(a) Ablation at Shallow Layer (b) Ablation at Middle Layer (c) Ablation at Deep Layer

Figure 6: Ablation study on balance factor.

As shown in Figure 6, we can observe an early preference for the diversity objective in the shallow
layers results in performance degradation. The middle layers should still retain a moderate degree of
diversity, whereas the deeper layers, due to the limited number of remaining tokens, should prioritize
the attention objective. This highlights the importance of our method in effectively balancing the two
objectives.

Effectiveness of rebalanced attention and spatial diversity initialization: We then per-
form ablation studies on the attention rebalance module and the spatial initialization module.

Table 4: Ablation study on attention re-
balance module and spatial initialization
module.

RA SI Latency MME GQA POPE

✓ ✓ 0.134s 1487.0 59.0 85.6
✓ 0.232s 1486.5 57.9 86.4

✓ 0.140s 1464.6 57.4 85.1
0.231s 1478.1 57.3 84.4

We experimented with various combinations of the two
modules. The results are presented in Table 4. It can be
observed that removing the attention rebalance module
results in a significant degradation in model performance.
This degradation arises from the inherent bias in attention
mechanisms, where positional encodings tend to shift at-
tention disproportionately toward later tokens, leading to
suboptimal token selection. On the other hand, omitting
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the spatial initialization module causes a marked increase in inference latency, in some cases even
surpassing that of the original unpruned model. This suggests that while pruning reduces token count,
naive initialization can introduce computational overhead that negates the benefits of pruning, thereby
limiting the method’s applicability in latency-sensitive real-world scenarios [55]. This demonstrates
the effectiveness of the proposed module in improving both model performance and inference speed.
We also conducted an ablation study on the distance definitions used in the spatial diversity initial-
ization module. As shown in the Appendix 7.7, we found that the Euclidean distance models the
diversity of image tokens more effectively than the Manhattan distance.

Effectiveness of calibration-based pruning stage selection: To evaluate the effectiveness
of our proposed calibration-based pruning stage selection, we compare it with a base-
line that uniformly divides the pruning stages according to the total number of decoder
layers, under the same compression rate. Experimental results are shown in Table 5.

Table 5: Ablation study on layer selec-
tion strategy.

Method Stage Selection MME MMB

LLaVa-v1.5 Averaged 1483.2 62.3
Ours 1487.0 62.7

LLaVa-v1.6 Averaged 1480.1 64.7
Ours 1490.8 65.8

Qwen2.5-vl Averaged 1551.6 73.8
Ours 1641.5 75.2

We observe that our pruning layer selection method out-
performs uniform selection. This is especially evident on
Qwen2.5-VL, where uniform selection leads to a signif-
icant performance drop. We attribute this to differences
in how Qwen2.5-VL processes image tokens as shown
in Figure 4. We also conduct an ablation study on the
size and composition of the calibration set. Specifically,
we expanded the calibration set by incorporating images
from multiple datasets, including GQA, V ∗Bench [45],
and SQA and UrbanVideo-Bench [58]. We then repeated
the experiment shown in Figure 4 using calibration set
sizes of 64, 128, and 256. The results are presented in Appendix 7.6, we can see that the varia-
tion patterns of image tokens remain consistent across different calibration set sizes and content,
demonstrating the robustness of our pruning layer selection method.

Ablation on the Computation of Attention-Based Importance Scores: In our method, the im-
portance score of each image token is obtained by using the attention assigned to it by the last text
token in the prefilling stage. To verify the robustness of this design, we conduct an ablation study
comparing different ways of computing the importance score: 1. Averaging attention weights from
all text tokens to each image token. 2. Following the approach in [57], where image–text similarity is
first computed and the most similar text tokens are then selected to calculate the importance score.

Table 6: Ablation study on importance score calculation method.
Method MME MMB POPE GQA SQA

last-token(ours) 1497 63.4 85.6 59.1 69.1
averaged-tokens 1490 62.8 84.7 57.3 69.4
similarity-based 1485 63.1 84.7 57.9 69.7

The results are shown in Table 6. We can see that last token efficiently modeling the importance score.
We believe that the last token in the input prompt is a suitable choice for computing the importance
score because it is typically decoded as the first output token during the decoding stage. This allows
it to effectively capture the model’s focus.

6 Conclusion

In this work, we conduct initial studies to investigate and verify the limitations of existing image token
pruning methods. We further analyze the impact of two pruning strategies on model performance
from the perspective of the objective function, and formulate a local-global pruning optimization
objective. To reduce information loss during pruning, we propose Balanced Token Pruning (BTP),
a multi-stage pruning method. We first determine the pruning stages using a calibration set. In the
early layers, we focus on a diversity-oriented objective to account for the influence of pruning on
deeper layers, while in the later layers, we adopt an attention-based objective to better preserve
local information. In future work, we will further investigate the lightweight deployment on real
devices [38, 61] and explore its potential applications in multi-agent collaboration [36, 16].
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7 Appendix

7.1 Key and Value of LVLMs

Following previous works on token quantization KIVI [31], we visualize the Kl and Vl of different
LVLMs, the results are shown below:
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Figure 7: Visualization of key and value of LLaVA-v1.5
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Figure 8: Visualization of key and value of LLaVA-v1.6
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Figure 9: Visualization of key and value of Qwen2.5-vl
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7.2 Top-k Importance Image Token Received Attention Ratio

We calculate the ratio between the attention scores received by the top-k most text-attended image
tokens and the total attention scores received by all image tokens:
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Figure 10: Visualization Top-k Importance Image Token Received Attention Ratio
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Figure 11: Visualization Top-k Importance Image Token Received Attention Ratio

7.3 Experiment Settings

For LLaVA-v1.5-7B, LLaVA-v1.5-13B, and LLaVA-v1.6-7B, we divide the pruning process into
five stages based on the image token handling pipeline described in the Appendix. In each stage,
except for the last one, we retain 50% of the tokens from the previous stage. In the final stage, all
tokens are discarded to maximize inference speed. For Qwen2.5-VL, since its image token processing
can be clearly divided into two stages, we retain 25% of the tokens in the fourth stage and 12.5% in
the final stage to preserve model performance. The λ used for different models are shown below:

Table 7: λ settings in different models
Model λ

llava-v1.5-7b (0.6,0.8,1.0)
llava-v1.5-13b (0.6,0.8,1.0)
llava-v1.6-13b (0.4,0.7,1.0)
qwen-2.5-vl-7b (0.2,0.5,0.8,1.0)

7.4 Calculation of model gain

Since evaluation metrics vary across tasks and the difficulty levels differ significantly, it is not
reasonable to present all task results directly in a unified format. For example, the original LLaVA-
v1.5 model scores 1510 on the MME benchmark but only 62 on GQA. To address this, we define a
model gain metric as:

Gain = Normalize(
Prunedscore
Originalscore

). (12)
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7.5 Visualization of token selection under different pruning strategies

Figure 12: Visualization of Image Token Selection Across Different Methods

7.6 Ablation Study on Calibration Set

According to Equation 2 in the paper, in multimodal large language models, M denotes the causal
mask, which constrains each token to attend only to preceding tokens. In our input format, image
tokens always precede the text prompts (i.e., the input follows the structure: prefix + image + question).
As a result, the model processes the image tokens before it receives the specific question which is
unrelated to the input question. To validate our hypothesis, we posed different types of questions on
the same image. We then conducted the experiment presented in Figure 4 using LLaVA-v1.5. We
computed the number of image tokens whose cosine similarity between adjacent layers falls below
0.93. The resulting trends are shown as follows:

Table 8: Ablation on Calibration Set Size.
Set Size layer1 layer5 layer9 layer13 layer17 layer21 layer25

64 0 0 325 141 155 45 1
128 0 0 325 141 155 45 1
256 0 0 325 141 155 45 1

We observe that varying the question type for the same image does not lead to significant differences in
the results. In the following analysis, we investigate how image content and the size of the calibration
set affect our method. We then repeated the experiment shown in Figure 4 using calibration set sizes
of 64, 128, and 256. Specifically, we computed the number of image tokens whose cosine similarity
between adjacent layers falls below 0.93 using LLaVA-v1.5. The results are presented below:

Table 9: Ablation on Calibration Set Size.
Set Size layer1 layer5 layer9 layer13 layer17 layer21 layer25

64 0 0 325 141 155 45 1
128 0 0 350 166 127 36 5
256 0 0 332 174 145 32 3

7.7 Ablation Study on Distance

To evaluate the impact of this choice, we conducted an ablation study comparing two different
distance metrics using llava-v1.5. The results are summarized in the table below:
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Table 10: Ablation Study on Distance
Method MME MMB POPE GQA SQA

Manhattan 1497.0 63.4 85.6 59.1 69.1
Euclidean 1506.0 64.0 85.6 58.9 69.3
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