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ABSTRACT
In the fight against the COVID-19 pandemic, vaccines are the most
critical resource but are still in short supply around the world.
Therefore, efficient vaccine allocation strategies are urgently called
for, especially in large-scale metropolis where uneven health risk
is manifested in nearby neighborhoods. However, there exist sev-
eral key challenges in solving this problem: (1) great complexity
in the large scale scenario adds to the difficulty in experts’ vac-
cine allocation decision making; (2) heterogeneous information
from all aspects in the metropolis’ contact network makes informa-
tion utilization difficult in decision making; (3) when utilizing the
strong decision-making ability of reinforcement learning (RL) to
solve the problem, poor explainability limits the credibility of the
RL strategies. In this paper, we propose a reinforcement learning
enhanced experts method. We deal with the great complexity via
a specially designed algorithm aggregating blocks in the metrop-
olis into communities and we hierarchically integrate RL among
the communities and experts solution within each community. We
design a self-supervised contact network representation algorithm
to fuse the heterogeneous information for efficient vaccine alloca-
tion decision making. We conduct extensive experiments in three
metropolis with real-world data and prove that our method out-
performs the best baseline, reducing 9.01% infections and 12.27%
deaths. We further demonstrate the explainability of the RL model,
adding to its credibility and also enlightening the experts in turn.
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• Computing methodologies → Reinforcement learning; •
Applied computing→ Life and medical sciences.
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1 INTRODUCTION
In the long-lasting fight against the COVID-19 pandemic, the vac-
cines now are and remain to be the most important tools in our
human hands [8]. However, due to the limited supply [3] and in-
equitable distribution around the world [19], COVID-19 vaccines
remain far less than enough to cover most of the people. Therefore,
efficient strategies for allocating the currently available vaccines
and maximizing the benefit are urgently called for. Besides, the
virus tends to spread faster in the crowded metropolis [31] like
metropolitan statistical areas (MSA1s), where there are thousands
of census block groups (CBG2s) and millions of people. This indi-
cates that efficient large-scale vaccine allocation strategies in the
metropolis are especially important and necessary.

The problem of COVID-19 vaccine allocation has long been
studied by public health experts. Strategies based on individual
characteristics such as age [18] or health state [26] are widely pro-
posed. While other guidelines focus on macro goals such as saving
the most lives [23] or guaranteeing equality [24]. But it is difficult to
turn these abstractive high-level guidances into practical strategies
to implement in the real world metropolis. On the other hand, rein-
forcement learning (RL) for pandemic intervention has long been
studied due to its strong ability in decision making, including effi-
cient lockdown strategies [17, 20] and targeted border testing [1],
etc. However, methods on the problem of vaccine allocation, espe-
cially in large-scale metropolis, are almost unexplored.

Despite the importance and necessity of efficient strategies for
large-scale COVID-19 vaccine allocation in the metropolis, there ex-
ist several key challenges. (1) Though expert solutions considering
transmission risk work well in many scenarios [10], the allocation
complexity increases exponentially as the number of CBGs goes up
in large-scale MSAs, making the traditional expert solutions less
and less powerful. (2) Multi-factor contact network, the dynamic

1Geographical regions with a relatively high population density and close economic
ties throughout the area.
2The smallest geographical unit for which the bureau publishes sample data.
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bipartite network combined with census block groups (CBGs) and
points of interest (POI3s), contains abundant information on demo-
graphic features and population mobility patterns about the MSAs,
providing a strong basis for vaccine allocation decision making.
However, the large amount of heterogeneous information also adds
difficulties to efficient information utilization. Therefore, either tra-
ditional expert solutions or AI methods are only able to utilize a
very limited part of the information without an efficient informa-
tion representation method and thus cannot reach good enough
performance. (3) When trying to exert the strong decision-making
ability of RL for the problem, though well-trained RL agent has
the capability to make efficient strategies, the decision-making pro-
cess tends to be like a black box and lacks of explainability. These
black-box decisions are not convincing to the experts as well as
the public, especially on serious matters related to life and health,
which limits their credibility and feasibility in the real world sit-
uation. Meanwhile, the RL methods will not improve the experts’
knowledge at all due to the lack of explainability.

In this paper, we propose a reinforcement learning enhanced
experts method to solve this problem in view of these challenges.
To deal with the complexity in large-scale MSAs, we design a com-
munity division algorithm, aggregating the CBGs with similar mo-
bility patterns and spatial adjacency into communities. Then we
hierarchically allocate the vaccines among the communities via
RL method and within each community via an expert solution,
improving the efficiency of allocation strategies. In order to effi-
ciently utilize the hidden information in the multi-factor contact
network, we designed a self-supervised network representation
method, which learns the required representations automatically,
providing a strong basis for RL decision making. We conduct exten-
sive experiments and targeted ablation studies in three MSAs with
real-world data and the results clearly exhibit the good performance
of our method. We further deeply analyze the trained RL model to
uncover the key factors considered in the RL decision-making pro-
cess and thus we add to the explainability of our method, making
it more credible and feasible in the real world. Furthermore, the
interpretable RL strategies not only enhance but also enlighten the
experts, providing new knowledge on similar problems.

The main contributions of our work include:
• We propose a reinforcement learning enhanced experts method
for solving the important yet difficult problem of large-scale
COVID-19 vaccine allocation. Due to the optimized design, we
propose more efficient strategies comparing pure expert solution,
which enable allocating vaccines efficiently in large-scale MSAs
with thousands of CBGs and millions of people.
• We design a self-supervised representation method for efficiently
utilizing the information in the multi-factor contact network of
MSAs, enhancing the performance. We conduct extensive exper-
iments in various MSAs with real-world data and demonstrate
that our method outperforms the best baseline, reducing 9.01%
infections and 12.27% deaths.
• We analyze the explainability of the RL. Therefore, we uncover
how RL makes efficient strategies, which adds to the credibility
and real-world feasibility of RL strategies and also enlightens the
future experts’ decisions on vaccine allocation.

3Specific locations that someone may find useful or interesting.

2 PRELIMINARIES
2.1 Multi-factor Contact Network Data
In this paper, we mainly study the metropolitan statistical areas
(MSAs), taking census block groups (CBGs) and points of inter-
est (POIs) as the minimum studying units. First, we give a formal
definition of the multi-factor contact network as follows:

Definition 1 (Multi-factor Contact Network). In an MSA
with 𝑀 CBGs and 𝑁 POIs. The multi-factor contact network is a
dynamic bipartite network with𝑀 CBG nodes and 𝑁 POI nodes over
𝑇 time steps, denoted as 𝐺 [𝑡], 𝑡 = 1, 2, ...𝑇 . Each CBG and POI node
has time-invariant static features such as population age structure of
each CBG, the floor space and average dwelling time of each POI, and
time-changing dynamic features such as visiting fluid of each POI at
each time step. The weight of edge between CBG𝑚 and POI 𝑛 at time
𝑡 is denoted as 𝑒𝑚𝑛 [𝑡] ∈ R,𝑚 = 1, 2, ...𝑀, 𝑛 = 1, 2, ...𝑁 , indicating
the number of people in CBG𝑚 who visit POI 𝑛 at time 𝑡 .

We conduct the following studies based on the real-world multi-
factor contact networks data in three MSAs with the temporal
resolution of one hour, which are captured by previous researchers
from the SafeGraph open data and are available online [5]. More de-
tails of the multi-factor contact networks are shown in Section 3.3.

2.2 COVID-19 Pandemic Spreading Modeling
There exists plentiful works onmodeling and simulating the COVID-
19 pandemic spreading, providing convincing foundations for the
downstream tasks [5, 6, 13]. In this paper, we mainly adopt the Be-
havior and Demography informed epidemic model (BD model) [7],
which is an improvement of thewell-knownmeta-populationmodel [5].
We show the overview of this model in Figure 1.

...
...

visit infect

CBGs POIs

S E I R

Contact Network

S E I RS E I R

S E I RS E I R

Local Meta-Population 
SEIR Models

...

Figure 1: Overview of the Behavior and Demography in-
formed epidemic model (BD model).

Briefly, the BD model characterizes Intra-CBG transmissions by
maintaining local meta-population SEIR models with 4 states in
each CBG, i.e., 𝑆 for susceptible, 𝐸 for exposed, 𝐼 for infectious, and
𝑅 for removed, where a certain proportion of 𝐼 turn to be reported
cases and are observable according to the testing capability. Be-
sides, a proportion of 𝑅 fall into deaths according to CBG specified
infection-fatality rate (IFR) estimated by the population age struc-
ture of each CBG and age specified death risks, while others in 𝑅
turn to recover. This model characterizes Inter-CBG transmissions
based on the contact network among CBGs and POIs, which hap-
pen when 𝑆 individuals visit POIs and encounter 𝐼 individuals from
other CBGs. The transmission probability in each POI is positively
related to its average dwelling time and is inversely proportional
to its floor space. The effect of COVID-19 vaccines in each CBG in
the BD model is characterized as an equivalent reduction on the
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Figure 2: Overview of the whole system with community division algorithm, reinforcement learning enhanced experts method
and self-supervised network representation.

corresponding infect rate, i.e., the probability for 𝑆 individuals to be
infected and turn into 𝐸 in contact with 𝐼 individuals. The reduction
proportion equals to the percentage of vaccinated individuals in
such CBG. Mentioning that we simplify the settings into obtaining
100% immunity after one dose of vaccine injection in this paper
while real-world situations of two-injection vaccines or < 100%
immunity can be considered by simply changing the parameters.

The accuracy of the BD model has been verified by previous
researchers [7] by comparing the simulation results with the real-
world situations in nine MSAs and resulting in a normalized root
mean square error <0.5 on daily deaths number. Therefore, it can
serve as our experimental platform and support the following study.

2.3 Problem Overview
Now we give a formal definition of our research problem:

Problem 1 (COVID-19 Vaccine Allocation). In an MSA with
𝑀 CBGs, given the corresponding multi-factor contact network over𝑇
time steps and the available number of COVID-19 vaccines 𝑉 [𝑡], 𝑡 =
1, 2, ...𝑇 , at each time step, find out the number of vaccines allocated
to each CBG at each time step 𝑉𝑚 [𝑡],𝑚 = 1, 2, ...𝑀, 𝑡 = 1, 2, ...𝑇 ,
minimizing the pandemic damage and ensuring

∑
𝑚 𝑉𝑚 [𝑡] ≤ 𝑉 [𝑡].

We focus on large-scale vaccine allocation in this paper, where
large-scale means MSAs with large-scale population and CBGs,
typically up to millions of people and thousands of CBGs. The
quantitative metrics for the pandemic caused damage include:

• Total Cases: Total number of people who have ever been infected
(recovered, dead, or still under infection) during the period. In
the real world, only tested cases are counted.
• Total Deaths: Total number of deaths during the period.

It is obvious that to minimize the pandemic damage is to minimize
the above metrics. When quantitatively evaluating the efficiency of
various COVID-19 vaccine allocation strategies, we fix the vaccine
number 𝑉 [𝑡] and compare the decrease on the above two metrics
contrasting the no vaccine scenario with different strategies. In this
way, we can measure the efficiency of different vaccine allocation
strategies in utilizing the same amount of vaccines to reduce the
damage caused by the pandemic.

3 METHODS
3.1 System Overview
To solve the problem of large-scale COVID-19 vaccine allocation,
we propose a reinforcement learning enhanced experts method
with a self-supervised network representation mechanism. The
overview of the system structure is shown in Figure 2.

First, we design a community division algorithm on the multi-
factor contact network and aggregate the CBGs into communities
(Section 3.2). Second, we utilize a self-supervised representation
learning method, which is synergistically trained with the RL agent
to obtain the embedding vectors of the multi-factor contact network
(Section 3.3). Third, we design a two-layers hierarchical structure
where the RL agent takes in the embedding vectors and allocates
the vaccines among the communities, and then an expert solution
is applied to allocate vaccines inside each community (Section 3.4).
By considering CBGs in the same community as a whole in the first
layer, we are able to greatly reduce the computation complexity of
the RL agent. Mentioning that the pipeline from the multi-factor
contact network data to the final vaccine allocation strategies in
our method consists of the above three sections by order. Finally,
we design a quantitative method for explainability analyses on the
trained RL model and thus uncover the key factors in RL decision-
making (Section 3.5). Our method is implemented with PyTorch
and the source codes are available at https://github.com/KYHKL-
H/RL-enhance-expert. All the hyper-parameters used in our imple-
mentation are summarized in Appendix A for reproducibility.

3.2 Community Division on Contact Network
To aggregate CBGs with similar POI visiting patterns into com-
munities and reduce the computation complexity of the RL agent,
we design a community division algorithm working on the multi-
factor contact network. We first eliminate the POI nodes in the
multi-factor contact network over all the time steps and get a new
static network with only CBG nodes. The edge between two CBG
nodes in the new network reflects how close the relation between
these two CBGs is and the major principle is that the more peo-
ple from these two CBGs encounter in the raw CBG-POI contact
network, the closer the relation is. Then we perform the Fluid Com-
munities algorithm [22] on the obtained new static network to
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obtain the final community division result. We select this algorithm
considering its performance and low computational cost. We show
the detailed steps in Algorithm 1.

Algorithm 1 Community Division

Input: Multi factor CBG-POI contact network 𝐺 [𝑡] with𝑀 CBGs,
𝑁 POIs and edge weights 𝑒𝑚𝑛 [𝑡], encounter threshold 𝜉 , aver-
age community size 𝑆

Output: Community division result
1: Initialize new static network 𝐺 ’ with𝑀 nodes and no edge
2: for 𝑡 = 1, 2, ...𝑇 ;𝑚1,𝑚2 = 1, 2, ...𝑀,𝑚1 ≠𝑚2;𝑛 = 1, 2, ...𝑁 do
3: if 𝑒𝑚1𝑛 [𝑡] × 𝑒𝑚2𝑛 [𝑡] > 𝜉 then
4: Add unweighted edge between nodes𝑚1 and𝑚2 into 𝐺 ’

if the edge does not exists before
5: end if
6: end for
7: Apply Fluid Communities algorithm on 𝐺 ’ with community

number 𝐾 = ⌈𝑀/𝑆⌉ and obtain the community division result
8: return Community division result

The community division results are evaluated in Section 4.2. We
verify that via our community division algorithm, CBGs in the same
community not only have similar POIs visiting patterns but are
also spatially adjacent, which ensures the feasibility of regarding
them as a whole and applying union vaccine allocation strategies
on the community level. In other words, spatial adjacency makes
the real-world vaccine allocation, transportation, and distribution
to CBGs within the same community greatly convenient.

3.3 Self-supervised Representation for
Multi-factor Contact Network

3.3.1 Details of the Multi-factor Contact Network. The CBG and
POI nodes in the multi-factor contact network have various static
and dynamic features, aggregating information from multiple as-
pects. Also, the time-varying weighted edges describe the frequent
encounters of people from different CBGs in the POIs. Therefore,
the multi-factor contact network contains detailed descriptions of
the hidden patterns of population dynamics and the COVID-19
pandemic spreading situation in the MSAs, providing a strong basis
for the vaccine allocation decision making.

We adopt the following CBG and POI node features in the raw
data into our multi-factor contact network:
• CBG Age: Static feature describing the population age structure
of each CBG, which is represented as a vector consists of per-
centages of 23 age groups, denoted as 𝐶𝐴𝑚 ∈ [0, 1]23 for CBG𝑚
and

∑23
𝑑𝑖𝑚

𝐶𝐴𝑚 = 1,∀𝑚.
• POI Visit: Dynamic feature for the total number of people visit-
ing each POI at each time step, where that of POI 𝑛 at time step 𝑡
is 𝑃𝑉𝑛 [𝑡] =

∑
𝑚 𝑒𝑚𝑛 [𝑡].

• POI Area: Static feature describing the floor space of each POI,
denoted as 𝑃𝐴𝑛 for POI 𝑛. The smaller it is, the more crowded the
POI tends to be and therefore the higher the COVID-19 transmis-
sion probability in such POI is.
• POI Time: Static feature describing the average visitors’ dwelling
time in each POI, denoted as 𝑃𝑇𝑛 for POI 𝑛. The longer it is, the
higher the COVID-19 transmission probability in such POI is.

Using the community division algorithm in Section 3.2, we obtain
the community division result and here we aggregate the CBG
nodes into community nodes and obtain the community-POI multi-
factor contact network𝐺 [𝑡], 𝑡 = 1, 2, ...𝑇 from the original CBG-POI
one 𝐺 [𝑡]. We denote the population size of each CBG as 𝐶𝑃𝑚 and
denote the index of the community each CBG belonging to as 𝐶𝐼𝑚 .
The community nodes feature Community Age for community
𝑘, 𝑘 = 1, 2, ...𝐾 is calculated as weighted average of 𝐶𝐴𝑚 :

𝐶𝐴
𝑘
=

1∑
𝑚 1[𝐶𝐼𝑚 = 𝑘]𝐶𝑃𝑚

∑︁
𝑚

1[𝐶𝐼𝑚 = 𝑘]𝐶𝑃𝑚𝐶𝐴𝑚, (1)

where 1[𝑥 = 𝑦] is assigned to 1 if 𝑥 equals to 𝑦, otherwise it is
assigned to 0. The edge weight between community 𝑘 and POI 𝑛 is:

𝑒𝑘𝑛 [𝑡] =
∑︁
𝑚

1[𝐶𝐼𝑚 = 𝑘]𝑒𝑚𝑛 [𝑡], (2)

and thus the POI nodes feature POI Visit is:

𝑃𝑉𝑛 [𝑡] =
∑︁
𝑚

𝑒𝑚𝑛 [𝑡] =
∑︁
𝑘

𝑒𝑘𝑛 [𝑡] . (3)

We set the changing frequency of our vaccine allocation strategies
to one day. Therefore we temporally aggregate every 24 steps of
the hourly community-POI multi-factor contact network 𝐺 into
one step in the daily network �̃� , where the Edge Weights are:

𝑒𝑘𝑛 [𝜏] =
24𝜏∑︁

𝑡=24𝜏−23
𝑒𝑘𝑛 [𝑡], (4)

and the POI node feature POI Visit is:

𝑃𝑉𝑛 [𝜏] =
24𝜏∑︁

𝑡=24𝜏−23

∑︁
𝑚

𝑒𝑚𝑛 [𝑡] =
24𝜏∑︁

𝑡=24𝜏−23

∑︁
𝑘

𝑒𝑘𝑛 [𝑡] . (5)

We denote the cumulative number of reported cases, the cumula-
tive number of deaths and remaining number of susceptible people
in each community at time step 𝑡 as 𝐼𝑘 [𝑡], 𝐷𝑘 [𝑡] and 𝑆𝑘 [𝑡] and
newly add the following two CBG dynamic features related to the
COVID-19 pandemic spreading situation into �̃� :
• Community States: Pandemic spreading situations in each
community over the last 24 time steps, which includes three
sub-features, i.e., S-State {𝑆𝑘 [𝑡 − 23], ...𝑆𝑘 [𝑡 − 1], 𝑆𝑘 [𝑡]}, I-State
{𝐼𝑘 [𝑡 − 23], ...𝐼𝑘 [𝑡 − 1], 𝐼𝑘 [𝑡]} and D-State {𝐷𝑘 [𝑡 − 23], ...𝐷𝑘 [𝑡 −
1], 𝐷𝑘 [𝑡]} for community 𝑘 at time 𝜏 = 𝑡/24.
• Community Diffs: The difference between the current pan-
demic spreading situation and the situation one day before, which
also includes three sub-features, i.e., S-Diff 𝑆𝑘 [𝑡] − 𝑆𝑘 [𝑡 − 24], I-
Diff 𝐼𝑘 [𝑡]−𝐼𝑘 [𝑡−24] and D-Diff𝐷𝑘 [𝑡]−𝐷𝑘 [𝑡−24] for community
𝑘 at time 𝜏 = 𝑡/24.

These two dynamic features contain information about the pan-
demic spreading situation and thus are critical in our specific prob-
lem of vaccine allocation. The obtained multi-factor contact net-
work �̃� contains abundant information about the corresponding
MSA and serves as the environment state in the following steps.

3.3.2 Neural Network Structure. We show the detailed neural net-
work structure for multi-factor contact network representation in
Figure 3, which is corresponding to the Online and Target Repre-
sentation Network in Figure 2. We set all non-linear activation func-
tions between layers to be Leaky-ReLU function [33], i.e., 𝐹 (𝑥) =
𝑚𝑎𝑥 (𝑥, 𝛼𝑥). The parameters in the fully connected layers are shared

4687



Reinforcement Learning Enhances the Experts KDD ’22, August 14–18, 2022, Washington, DC, USA

among the communities and POIs respectively and we apply the
normalization over each community and POI in each mini-batch,
respectively. Also, we use the normalized edge weights to weigh
the passing messages in the graph convolutional network (GCN)
because of the intuition that a larger edge weight reflects a closer
relation and thus requires a larger weight on the corresponding
passing messages. We design three different vector normalization
methods in the neural network for different types of data, i.e., dy-
namic norm, static norm, and edge weights norm, and the detailed
mathematical formulations are shown in Appendix B.
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Figure 3: Neural network structure for multi-factor contact
network representation. For instance, FC [4, 8] means two
fully connected layers with 4 and 8 output units respectively.

3.3.3 Self-supervised Training Algorithm. To improve information
utilization efficiency in decision making, we apply Self-Predictive
Representations (SPR) [29] for self-supervised multi-factor contact
network representation, which is designed for the fact that state
representations to be predictive of future states given future actions
are good representations. The detailed structure of the representa-
tion network is shown in Figure 3 and those of the auxiliary neural
networks, i.e., state transition model, projection, and prediction are
shown in Appendix C. During the training process, the parameters
of the target neural networks 𝜃𝑚 are obtained from corresponding
online neural networks 𝜃𝑜 via delayed synchronization method
exponential moving average (EMA) as follows:

𝜃𝑚 ← 𝜅𝜃𝑚 + (1 − 𝜅)𝜃𝑜 . (6)

We implement one-step SPR and the outline of our self-supervised
representation learning training algorithm is shown in Algorithm 2.
The tuple (𝑠, 𝑎, 𝑟, 𝑠 ′) refers to the elements of state, action, reward,
and next state in the Markov Decision Process (MDP) framework.

As we show in the algorithm, the contact network representation
is synergistically trained with the RL agent, managing to learn good
representations, especially of the space explored by the RL agent.
Besides, the representations also contain the environment state
transition patterns and thus can enhance the performance of RL.

Algorithm 2 Self-supervised Representation Learning Training
Input: Bath size 𝑁0, training epoch 𝐸, EMA ratio 𝜅 and replay

buffer size 𝑁𝐵
Output: Trained representation and RL neural network
1: Initialize online representation network 𝑓𝑜 and projection 𝑔𝑜

with 𝜃𝑜 , initialize target representation network 𝑓𝑚 and projec-
tion 𝑔𝑚 with 𝜃𝑚 ← 𝜃𝑜

2: Initialize transition model ℎ, predictor 𝑞 and RL network 𝜙
3: Initialize replay buffer 𝐵 with size 𝑁𝐵
4: while Model Training do
5: Collect (𝑠, 𝑎, 𝑟, 𝑠 ′) with 𝜃𝑜 and 𝜙 to fill 𝐵, 𝑠 = �̃�𝑡 , 𝑠 ′ = �̃�𝑡+1
6: for 𝑏𝑎𝑡𝑐ℎ 𝑐𝑜𝑢𝑛𝑡 = 1, 2, ...⌊𝐸 × 𝑁𝐵/𝑁0⌋ do
7: Sample {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖 ) | 𝑖 = 1, 2, ...𝑁0} ∼ 𝐵
8: 𝑧𝑡 ← 𝑓𝑜 ({𝑠𝑖 }), 𝑧𝑡+1 ← 𝑓𝑚 ({𝑠 ′𝑖 })
9: 𝑧𝑡+1 ← ℎ(𝑧𝑡 , {𝑎𝑖 })
10: 𝑦 ← 𝑞(𝑔𝑜 (𝑧𝑡+1)), 𝑦 ← 𝑔𝑚 (𝑧𝑡+1)
11: Loss 𝑙 ← −𝜆 1

𝑁0
( �̂�

∥�̂� ∥2 )
𝑇 ( �̃�

∥�̃� ∥2 )+RL Loss({(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖 )})
12: Update 𝜃𝑜 and 𝜙 minimizing 𝑙
13: 𝜃𝑚 ← 𝜅𝜃𝑚 + (1 − 𝜅)𝜃𝑜
14: end for
15: Empty 𝐵
16: end while
17: return 𝜃𝑜 and 𝜙

3.4 Reinforcement Learning Enhanced Experts
To solve the difficult problem of COVID-19 vaccine allocation in
large-scale scenario, where the great complexity limits the perfor-
mance of pure expert solutions, we design a two-layer hierarchical
structure, namely the RL enhanced experts method. We utilize the
strong ability of RL in serial decision-making to allocate the limited
number of vaccines among the divided communities and then set
an expert solution among the CBGs within each community, where
the scale and complexity are already largely reduced.

For the RL layer, we implement the widely used proximal pol-
icy optimization (PPO) algorithm [28], which consists of an actor-
critic structure. The actor takes in the obtained community em-
beddings and outputs two 𝐾-dimensional vectors denoted as 𝜇 =

[𝜇1, 𝜇2, ...𝜇𝐾 ]𝑇 and 𝜎 = [𝜎1, 𝜎2, ...𝜎𝐾 ]𝑇 , corresponding to the 𝐾
communities. Then we build a 𝐾-dimensional multivariate normal
distribution based on 𝜇, 𝜎 and then sample a 𝐾-dimensional action
vector 𝑥 from the distribution 𝑥 = [𝑥1, 𝑥2, ...𝑥𝐾 ]𝑇 ∼ 𝑁 (𝜇, Σ), where
the covariance matrix Σ = 𝑑𝑖𝑎𝑔(𝜎21 , 𝜎

2
2 , ...𝜎

2
𝐾
) is non-negative def-

inite. Then we calculate the proportion of vaccines allocated to
community 𝑘 , denoted as 𝑝𝑘 via the softmax function 𝑝𝑘 = 𝑒𝑥𝑘

Σ𝑖𝑒𝑥𝑖
.

During the training process, we set the reward function to be
the opposite number of the increasing ratio of cases and deaths in
the last 24 hours:

𝑟𝑡 = −
Σ𝑘 (𝐶𝑘 [𝑡] −𝐶𝑘 [𝑡 − 24])

Σ𝑘𝐶𝑘 [𝑡 − 24] + 𝜖𝑟
− Σ𝑘 (𝐷𝑘 [𝑡] − 𝐷𝑘 [𝑡 − 24])

Σ𝑘𝐷𝑘 [𝑡 − 24] + 𝜖𝑟
, (7)

i.e., the more new cases and deaths, the lower reward. The critic
network, denoted as 𝑉 , serves as the state value function, and we
calculate the loss of it using SmoothL1 loss function as follows:

𝑙𝑐 (𝜃𝑐 ) = E𝑡 [SmoothL1(𝛾𝑉𝜃𝑐 (𝑠𝑡+1) + 𝑟𝑡 ,𝑉𝜃𝑐 (𝑠𝑡 ))], (8)
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where 𝛾 is the decay rate of long term reward. Mentioning that we
minimize 𝑙𝑐 (𝜃𝑐 ) only with gradient from 𝑉𝜃𝑐 (𝑠𝑡 ). And we calculate
the loss of actor network 𝜋 through the typical PPO loss:

𝑙𝑎 (𝜃𝑎) = −E𝑡 [𝑀𝑖𝑛[𝑅𝑡 (𝜃𝑎)𝐴𝑡 ,𝐶𝑙𝑖𝑝 (𝑟𝑡 (𝜃𝑎), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 ]], (9)

where 𝐶𝑙𝑖𝑝 (𝑥, 𝑎, 𝑏) = 𝑀𝑖𝑛[𝑀𝑎𝑥 [𝑥, 𝑎], 𝑏], 𝑅𝑡 (𝜃𝑎) =
𝜋𝜃𝑎 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃𝑎,𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )
,

and the advantage function 𝐴𝑡 is estimated via generalized advan-
tage estimation (GAE) [27] as follows:

𝐴𝑡 = 𝛾𝑉𝜃𝑐 (𝑠𝑡+1) + 𝑟𝑡 −𝑉𝜃𝑐 (𝑠𝑡 ). (10)

Therefore, the RL Loss item in Algorithm 2 equals to 𝑙𝑐 (𝜃𝑐 ) + 𝑙𝑎 (𝜃𝑎).
More details including neural network structures of the actor and
critic are shown in Appendix D.

For the expert solution layer, as suggested by WHO [21], popu-
lations with a higher risk of being infected are supposed to have
a higher priority to the vaccines. Therefore, we further allocate
the vaccines in a certain community to each CBG in proportion to
the number of newly reported cases in the last 24 hours, because
people in CBGs with more new cases are more likely to be infected.

3.5 Explainability Analyses on the RL Model
Inspired by previous work [12], we design a method to analyze
which factors in the multi-factor contact network play the most
roles in RL decision making. Thus we can shed light on the explain-
ability of RL strategies and enlighten the experts in turn. With the
trained modelM and the input factors {𝑓1, 𝑓2, ...}, which are tensors
with different dimensions, we mask one of the factors by replacing
all its elements with its mean value and get 𝑓𝑖 . Then we analyse the
importance of 𝑓𝑖 , denote as𝜓𝑖 by calculating the absolute change
on the outputs before and after masking it as follows:

𝜓𝑖 =| M({𝑓𝑗 }) −M({𝑓𝑗 | 𝑗 ≠ 𝑖} ∪ {𝑓𝑖 }) |, (11)

where larger𝜓𝑖 means that the outputs ofM are affected more by
𝑓𝑖 , i.e., 𝑓𝑖 plays a more important role.

4 EXPERIMENTS
4.1 Experimental Settings
To evaluate the performance of our method in solving real-world
problems, we conduct extensive experiments in three MSAs with
real-world data and settings. We show the information about these
MSAs in Table 1. The number of vaccines available in each MSA is
set in proportion to its population, i.e., 200 doses per day per 37367
people. We adopt the intrinsic parameters of COVID-19 pandemic
spreading intensity in these MSAs from the original research of BD
model [7], which are obtained in fitting and calibration with the
real world reported situation and are shown in Appendix E.

Table 1: Details of the MSAs in experiments.

MSA 1 2 3

Name Atlanta Dallas Miami
Population 7191638 8895355 6635035

Number of CBGs (𝑁 ) 3130 4877 3555
Number of POIs (𝑀) 39411 52999 40964

Number of communities (𝐾 ) 7 10 8
Number of time steps (𝑇 ) 1512 (Mar. 1, 12am-May 2, 11pm, 2020)

4.2 Community Division Results
In Figure 4, we show the spatial distribution of CBGs in the divided
communities and the TSNE dimension reduced POI visiting vectors
of CBGs in each community, i.e., the total number of people visiting
each POI over all time steps. Here we take MSA 1 as an example
and the results in MSA 2 and 3 are shown in Appendix F.

Figure 4: Community division results inMSA 1. The left panel
is the spatial distribution of the CBGs and the right one is
the dimension reduced POI visiting vectors of CBGs in three
of the communities with corresponding color.

From the results, we verify that CBGs in the same community
divided on the contact network also show good spatial locality,
ensuring the real-world feasibility of vaccine allocation strategies
on the community level. Besides, the POI visiting vectors of CBGs
in the same community show clustering in the dimension reduced
space, proving that our community division algorithm is able to
capture the similarities in POI visiting patterns.

4.3 Performance Evaluation
We evaluate the performance of our method on the metrics of total
cases and deaths in comparison with the following baselines:
• None: None vaccine scenario, server as the blank control.
• Random: Allocating vaccines randomly among CBGs, corre-
sponding to the situation with no specific strategy.
• Equality [19]: Allocating vaccines in proportion to the popula-
tion of each CBG to guarantee equality.
• Seriousness [4]: Allocating vaccines in proportion to the total
number of cases in each CBG considering the pandemic spreading
seriousness.
• Pure Experts [21]: Allocating vaccines in proportion to new
cases in the last 24 hours in each CBG as WHO experts’ sugges-
tion, considering the dynamic pandemic spreading risk. Mention-
ing that this baseline is identical to the expert solution layer in
our RL enhanced experts method.

We train RL models in the three MSAs and obtain the testing results
over 63 days with the best model. Considering the randomness in
the pandemic spreading simulation, we perform 100 repeated tests
and calculate the average result. We show the cases and deaths
reduction comparing none vaccine scenario and the performance
improvement comparing the best baseline in Table 2. We show the
performance comparisons with standard deviation in Figure 5.

The results show that in all the three MSAs, our method outper-
forms all the baseline methods, including the pure expert solution.
Quantitatively, with the same number of vaccines, our method re-
duces 9.01% infections and 12.27% deaths more than the pure expert
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Table 2: Experimental results averaged over 100 repeated experiments. Columns 5 to 9 show the reductions relative to ’None’
Scenario. The last column indicates the performance improvement of ’RL Enhanced Experts’ over ’Pure Experts’.

MSA Metric None Metric Random Equality Seriousness Pure Experts RL Enhanced
Experts

Performance
Improvement (%)

1 Total Cases 19841.38 Cases Reduction 7758.31 7724.11 11538.14 13583.82 14709.36 8.29
Total Deaths 662.40 Deaths Reduction 249.46 234.89 338.80 408.70 454.09 11.11

2 Total Cases 13846.38 Cases Reduction 5026.64 5059.85 7972.30 9721.15 10703.85 10.11
Total Deaths 425.51 Deaths Reduction 149.46 134.99 222.51 276.21 313.68 13.57

3 Total Cases 27748.97 Cases Reduction 8856.13 7420.30 12166.34 15850.69 17219.68 8.64
Total Deaths 1119.59 Deaths Reduction 333.40 266.40 465.01 605.97 679.39 12.12

(a) Cases (b) Deaths

Figure 5: Performance comparisons with standard deviation.

solution, i.e., the best baseline, on average in all the three MSAs. Ac-
tually, our method outperforms all the baselines during the whole
testing process and more details are shown in Appendix G.

Besides the public health expert solutions, we also compare the
performance of the following machine learning (ML) baselines:
• GBM [25]: A baseline for pandemic intervention by predicting
the future health states, which strikes a balance between preci-
sion and recall.
• HRLI [15]: A state-of-the-art RL baseline for pandemic inter-
vention by applying different strategies to people classified into
different categories.

The results are shown in Table 3, which indicate that our method
also outperforms the ML-based methods. Here we only take MSA 1
as an example and without loss of generality, the results in other
MSAs have the same trend.
Table 3: Performance comparisonwithMLbaselines averaged
over 100 repeated experiments.

Metric GBM HRLI RL Enhanced Experts

Cases Reduction 8917.76 10340.38 14709.36
Deaths Reduction 288.53 339.40 454.09

4.4 Critic Role of Contact Network and SPR
We conduct the following ablation studies to verify the critical role
of multi-factor contact network and self-supervised representation:
• No Contact Network: We take away the whole multi-factor
contact network and only keep Community States and Commu-
nity Diffs vectors. We encode these two vectors with identical
fully connected layers (without GCN layers) in Figure 3 and train
RL models only with the PPO loss.
• No SPR: We keep the multi-factor contact network but take away
the self-supervised representation loss by SPR in Algorithm 2
and train RL models only with the PPO loss.

We show the results of ablation studies in Table 4. From the
No Contact Network study, we find that the performance drops
sharply without the information from the multi-factor contact net-
work, i.e., only reducing 5.44% infections and 6.78% deaths more
than the pure expert solution comparing 9.01% and 12.27% with
the full system. From the No SPR study, we find that even with
the multi-factor contact network, the RL agent cannot utilize the
abundant information hidden in it efficiently without SPR, and thus
there is no significant performance improvement. Generally, we
prove that the multi-factor contact network and the SPR method
are both of vital importance, only with both of them can the RL
agent obtain and well utilize adequate information about the MSAs
and make efficient vaccine allocation strategies.
Table 4: Ablation study results averaged over 100 repeated
experiments.

MSA Metric Full System No Contact
Network No SPR

1 Cases Reduction 14709.36 14189.57 14129.48
Deaths Reduction 454.09 431.93 431.19

2 Cases Reduction 10703.85 10128.51 10157.90
Deaths Reduction 313.68 292.65 295.05

3 Cases Reduction 17219.68 17067.79 16842.75
Deaths Reduction 679.39 658.82 658.05

4.5 Generalizability to More Scenarios
Previous experimental results in the three MSAs have already
shown the generalizability of our method among different places.
In order to test whether our method works well in more various
pandemic spreading situations, we further design the following
scenarios other than the original settings in Section 4.1:
• Scarce Vaccines: Half number of vaccines are available.
• Abundant Vaccines: Doubled vaccines are available.
• Omicron Strain: The virus is two times more infectious, corre-
sponding to the currently spreading Omicron strain [8].

We take MSA 1 as an example and perform 100 random tests lasting
63 days. We show the average results in Table 5.

From the results, we find that our method keeps outperforming
the best baseline by a similar magnitude regardless of the number
of available vaccines. Also, our method reaches higher performance
gain, reducing 13.97% and 16.17% more infections and deaths when
the virus’s infectiousness is doubled. These results prove that our
method has good generalizability and thus can be applied in either
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Table 5: Experimental results on more scenarios in MSA 1 averaged over 100 repeated experiments.

Scenario Metric None Metric Random Equality Seriousness Pure Experts RL Enhanced Experts

Scarce Vaccines Total Cases 19841.38 Cases Reduction 4487.14 4161.96 8762.97 10954.32 11865.10
Total Deaths 662.40 Deaths Reduction 143.57 126.50 251.65 321.96 359.92

Abundant Vaccines Total Cases 19841.38 Cases Reduction 11974.65 12535.53 13730.39 15321.17 16512.47
Total Deaths 662.40 Deaths Reduction 391.29 390.62 412.06 469.36 521.85

Omicron Strain Total Cases 316905.50 Cases Reduction 83747.85 84131.23 83544.84 100093.13 114079.08
Total Deaths 12148.13 Deaths Reduction 3371.37 3201.43 3167.28 3789.89 4402.68

(a) Importance Analyses on Input Factors (b) Strategies Visualization

Figure 6: (a) Importance analyses on input factors regarding the output 𝜇 of PPO actor in the last day in MSA 1. (b) Vaccine
allocation strategies visualization where the color indicates the proportion of allocated vaccines.

various places or various scenarios. It is also worth mentioning
that our method can be generalized with only slight adjustments to
other pandemics that have similar disease models as the COVID-19.

4.6 RL Enlightens the Experts
We take MSA 1 as an example for explainability analyses with
the method in Section 3.5 on the trained RL model. We show the
results in Figure 6. From the importance analyses of the input
factors, we find that besides the pandemic spreading situation, i.e.,
Community States and Community Diffs, the RL agent also pays
great attention to edge weights in the contact network, which
reflects the POI visiting patterns, proving the critical role of the
multi-factor contact network again. This discovery enlightens the
importance of population mobility and contact in vaccine allocation
and pandemic intervention, which have already been adopted in
some countries by tracing the contacts via wearable devices [11].

Meanwhile, the age structures of the communities, reflecting
the vulnerability and death risk, are also emphasized by the RL
agent. And in the strategies visualization, we notice that by consid-
ering various factors, RL agent allocates vaccines quite differently
from the pure expert solution, where the latter only focuses on the
pandemic spreading situation itself. Therefore, we are supposed
to not only focus on the current pandemic spreading situation but
also consider more about latent risks laying in the vulnerable com-
munities, which decide long-term pandemic spreading tendency.

5 RELATED WORKS
5.1 RL for COVID-19 Intervention
The strong ability in serial decision-making of RL has long been
studied to aid the COVID-19 pandemic intervention. First, RL algo-
rithm for predicting the pandemic spreading situation to support

the policymakers to optimize their policies [16] has been studied.
Second, researchers have proposed various RL solutions for lock-
down strategies, balancing the pandemic intervention and the side
effect on social economy [17, 20].Third, an RL-based system is de-
signed and deployed within the Greek borders for efficient and
targeted COVID-19 testing [1]. Besides, RL methods for allocating
medical equipment such as ventilators [2] are also proposed.

However, it is almost unexplored how to allocate COVID-19
vaccines, especially in the large-scale metropolis scenario. We are
the first to solve this problem in our work.

5.2 Self-supervised Representation Learning
Self-supervised representation learning aims to obtain efficient
feature representations for downstream tasks by introducing some
unsupervised auxiliary tasks. Recently, it has been widely used in
the fields of natural language processing [9], computer vision [14]
and reinforcement learning [29, 30, 32, 34, 35].

In RL-related works, SAC-AE [34] introduces auxiliary tasks
such as pixel-level reconstruction. CURL [30] applies image aug-
mentation to generate positive and negative pairs and uses them
for contrastive learning. However, these representation learning
methods for image observations are difficult to be applied to other
types of inputs. Further, ATC [32] avoids such a problem by gener-
ating positive and negative pairs and contrastive losses according
to the temporal relationship. SPR [29] and PlayVirtual [35] further
introduce dynamics modeling to improve data efficiency.

Generally, existing works mainly focus on representing the in-
put of images while it is almost unexplored how to deal with
graph-structured input, which is commonly seen in many scenar-
ios though. In contrast, we focus on representing the multi-factor
contact network to support the following RL task in this paper.
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6 CONCLUSIONS
In this paper, we studied the problem of large-scale COVID-19
vaccine allocation. We proposed an RL enhanced experts method,
which efficiently utilizes multi-factor contact network information
via self-supervised representation learning. Extensive experiments
in three MSAs under various scenarios with real-world data prove
that our method outperforms all the baselines and has good general-
izability in solving real-world problems. Meanwhile, the explainabil-
ity analyses on the trained RL model not only add to the credibility
and feasibility of our method in the real world but also provide
enlightenment to the experts and benefit future decision-making.

By doing these, our work not only provides technical innova-
tions but is also applicable in addressing real-world challenges.
Experimental results show that our method is especially efficient in
scenarios with a more infectious virus, which is helpful in dealing
with the currently spreading Omicron strain. The generalizabil-
ity indicates that our method has the potential to be applied in
more scenarios and more places around the world, especially in
undeveloped regions where vaccines are in shortage. Furthermore,
our method can be adapted to other pandemics with only slight
adjustments. All these advantages contribute to advancing global
good health and well-being greatly.
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A IMPLEMENTATION DETAILS FOR
REPRODUCIBILITY

We perform training and testing using Python 3.8 and Pytorch 1.10
with NVIDIA GeForce RTX 3090 GPUs. Here we provide detailed
values of the hyper-parameters in Table 6 for reproducibility.

Table 6: Values of the hyper-parameters.

Hyper-parameter Notation in the context Value

Encounter threshold 𝜉 10
Average community size 𝑆 500

Small item in normalization 𝜖0 1 × 10−5
Clip bounds for Community Age (𝛿𝑙 , 𝛿𝑢 ) (0,1)

Clip bounds for POI Areas (𝛿𝑙 , 𝛿𝑢 ) (0,0.99)
Clip bounds for POI Times (𝛿𝑙 , 𝛿𝑢 ) (0,0.99)

Clip bounds for edge weights (𝛿𝑙 , 𝛿𝑢 ) (0,0.99)
Slope of the Leaky-ReLU function – 0.01

EMA ratio 𝜅 0.5
Batch size (MSA 1 and 2) 𝑁𝐵 256

Batch size (MSA 3) 𝑁𝐵 128
Training epoch 𝐸 10

Replay buffer size 𝐵 8192
Weight for SPR loss 𝜆 2

Optimizer – Adam
Learning rate – 1 × 10−4

Small item in reward function 𝜖𝑟 1
Long term reward decay rate 𝛾 0.6
Small item in PPO clip bound 𝜖 0.2

B VECTOR NORMALIZATIONS IN SPR
In this section, we show the details of the three different vector
normalization methods in the neural network for different types
of data. For dynamic feature vectors, we perform typical batch
normalization in the deep neural network as follows:

𝑦 =
𝑥 −𝑀𝑒𝑎𝑛[𝑥]√︁
𝑉𝑎𝑟 [𝑥] + 𝜖0

× 𝛾 + 𝛽, (12)

where mean and variance are calculated over the mini-batches and
𝛾, 𝛽 are learnable affine parameters. For static feature vectors, we
perform the following normalization:

𝑦 =
𝑥 −𝑀𝑒𝑎𝑛[𝐶𝑙𝑖𝑝 (𝑥, 𝛿𝑙𝑥, 𝛿𝑢𝑥)]√︁

𝑉𝑎𝑟 [𝐶𝑙𝑖𝑝 (𝑥, 𝛿𝑙𝑥, 𝛿𝑢𝑥)]
, (13)

where 𝐶𝑙𝑖𝑝 (𝑥, 𝑎, 𝑏) equals to𝑀𝑖𝑛[𝑀𝑎𝑥 [𝑥, 𝑎], 𝑏]. For edge weights,
which are all positive numbers, we simply use:

𝑦 =
𝑥

𝑀𝑎𝑥 [𝐶𝑙𝑖𝑝 (𝑥, 𝛿𝑙𝑥, 𝛿𝑢𝑥)]
. (14)

where maximum is calculated over the mini-batches. The hyper-
parameters 0 ≤ 𝛿𝑙 < 𝛿𝑢 ≤ 1 in the latter twos constrain the lower
and upper bounds of data in calculating the mean value, standard-
deviation or maximum value, avoiding the situation that most of
the elements are over-suppressed by several extreme ones, which
occurs when the data exhibits a long-tailed distribution.

C NEURAL NETWORK STRUCTURES IN SPR
In this section, the detailed structures of the auxiliary neural net-
works in the SPR training for self-supervised representation learn-
ing are shown as follows:

• State transition model: This neural network takes in the cur-
rent state 𝑧𝑡 and action 𝑎𝑡 and predicts the next step state 𝑧𝑡+1.
The current state head consists of two fully connected layers
FC [16, 32] and the action head consists of two fully connected
layers FC [8, 16]. The outputs of the two heads are concatenated
and then go through two fully connected layers FC [16, 8] to
reach the final output.
• Projection: This neural network project the state embeddings
into lower dimensional space for SPR loss calculation. First, the
input tensor is reshaped into a one-dimensional vector and then
it goes through three fully connected layers FC [128, 64, 16] to
reach the final output.
• Prediction: This is the additional neural network on the on-
line branch before SPR loss calculation. It consists of three fully
connected layers FC [32, 32, 16].

All activation functions between layers in the above neural net-
works are Leaky-ReLU functions.

D DETAILS IN THE RL TRAINING
In this section, we show more details in the RL training process
which are omitted in Section 3.4. First, detailed structures of the
actor and critic neural network are as follows:
• Actor: This neural network takes in the state embeddings and
outputs 𝜇 and 𝜎 for action sampling from a multivariate normal
distribution. First, the tensor of the state embeddings is reshaped
into a one-dimensional vector and then passes through a back-
bone network with two fully connected layers FC [128, 64]. Then
for the 𝜇 branch, the backbone outputs pass through two fully
connected layers FC [64, 𝐾], and for the 𝜎 branch, the backbone
outputs also pass through two fully connected layers FC [64, 𝐾],
where 𝐾 is the number of communities.
• Critic: This neural network takes in the state embeddings and
outputs the estimation of the state value. The tensor of the state
embeddings is reshaped into a one-dimensional vector and then
passes through four fully connected layers FC [128, 64, 16, 1] to
reach the final output.
Second, the detailed mathematical formulation of the SmoothL1

loss function we used in the calculation of the critic loss 𝑙𝑐 is:

SmoothL1(𝑥,𝑦) = 1
𝑛
Σ𝑖𝑧𝑖 , (15)

where

𝑧𝑖 =

{
0.5(𝑥𝑖 − 𝑦𝑖 )2, | 𝑥𝑖 − 𝑦𝑖 |< 1
| 𝑥𝑖 − 𝑦𝑖 | −0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(16)

Third, we train RL models in all the three MSAs for 30 episodes
(1512 steps, i.e., 63 days, each episode) with 128 parallel computed
different random seeds.

E INTRINSIC PARAMETERS OF COVID-19
In this section, we show the intrinsic parameters describing the
different intensity of COVID-19 pandemic spreading in the three
experimental MSAs in fitting and calibration with the real world
reported situation, including:
• 𝑝0: Proportion of initially infected cases at the start step.
• 𝛽 : Scaling factor on the probability of COVID-19 transmission
happened in CBGs.
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(a) MSA 1

(b) MSA 2

(c) MSA 3

Figure 8: Curves of cases and deaths during the whole testing
process with different strategies.

• 𝜓 : Scaling factor on the probability of COVID-19 transmission
happened in POIs.

• 𝑆𝑑 : Scaling factor on the death rate.
We show the exact value of 𝑝0 and the dimensionless relative values
of the latter three scaling factors in Table 7 for intuitive understand-
ing. We adopt their absolute values in our implementation from
the BD model paper [7].

Table 7: Intrinsic parameters of COVID-19.

Parameter MSA 1 MSA 2 MSA 3

𝑝0 2 × 10−4 2 × 10−4 5 × 10−4
𝛽 0.59 1.00 0.19
𝜓 1.00 0.61 0.74
𝑆𝑑 1.00 0.86 0.65

F COMMUNITY DIVISION RESULTS
In Figure 7, we show the spatial distribution of CBGs in the divided
communities and the TSNE dimension reduced POI visiting vectors
of CBGs in each community, in MSA 2 and 3.

(a) MSA 2

(b) MSA 3

Figure 7: Community division results in MSA 2 and 3. The
left panels are the spatial distribution of the CBGs and the
right ones are the dimension reduced POI visiting vectors of
CBGs in three of the communities with corresponding color.

G DETAILED EXPERIMENTAL RESULTS
DURING THEWHOLE TESTING PROCESS

We show the detailed curves of cases and deaths during the whole
testing process with different strategies in Figure 8. From the results,
we prove that our method not only reduces the final total cases and
deaths but also outperforms all the baseline methods during the
whole testing process.
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