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. Abstract
Large Language Model-based Multi-Agent Systems (LLM-
based MAS), where multiple LLM agents collaborate to solve
complex tasks, have shown impressive performance in many
areas. However, MAS are typically distributed across dif-
ferent devices or environments, making them vulnerable to
perturbations such as agent failures. While existing works
have studied the adversarial attacks and corresponding de-
fense strategies, they mainly focus on reactively detecting and
mitigating attacks after they occur rather than proactively de-
signing inherently resilient systems. In this work, we study
the resilience of LLM-based MAS under perturbations and
find that both the communication topology and prompt de-
sign significantly influence system resilience. Motivated by
these findings, we propose ResMAS: a two-stage framework
for enhancing MAS resilience. First, we train a reward model
to predict the MAS’s resilience, based on which we train a
topology generator to automatically design resilient topology
for specific tasks through reinforcement learning. Second, we
introduce a topology-aware prompt optimization method that
refines each agent’s prompt based on its connections and in-
teractions with other agents. Extensive experiments across
a range of tasks show that our approach substantially im-
proves MAS resilience under various constraints. Moreover,
our framework demonstrates strong generalization ability to
new tasks and models, highlighting its potential for building
resilient MASs. Our code is open-source1 for reproducibility.

Introduction
Large language model-based multi-agent systems (LLM-
based MAS; hereafter referred to as MAS) have exhibited
impressive capabilities across a wide range of domains, in-
cluding software development (Qian et al. 2024; Hong et al.
2023), mathematical problem solving (Li et al. 2023), and
operations research (Xiao et al. 2023). In an MAS, multiple
LLM agents collaborate to solve complex tasks through cer-
tain role-play and communication patterns, often achieving
superior performance compared to single-agent approaches.
Despite these advances, agents within an MAS are typically
deployed across different devices or environments, making
the MAS vulnerable to perturbations and attacks. As a result,
the resilience, defined as the ability of a system to main-
tain its functionality under perturbations (Cohen et al. 2000;

1https://anonymous.4open.science/r/LLM MAS resilience-
891B

Gao, Barzel, and Barabási 2016), has become an important
issue for MAS.

In recent years, there have been extensive studies about
resilience of MAS under adversarial attacks. Several studies
propose attack strategies such as prompt injection (Yu et al.
2024; Huang et al. 2025; Tian et al. 2023) and knowledge
editing (Ju et al. 2025, 2024), and find that harmful infor-
mation can rapidly spread in MAS (Gu et al. 2024; Lee and
Tiwari 2024). Other works have focused on detecting and
defending against attacks using techniques like psycholog-
ical testing (Zhang et al. 2024b) and graph-based anomaly
detection (Wang et al. 2025b). However, existing studies
mainly focus on the safety issue of MAS caused by adversar-
ial attacks, while largely overlooking more common, non-
malicious errors in MAS such as failures or miscommuni-
cation. Furthermore, prior works concentrated on detecting
and mitigating attacks, with little focus on proactively de-
signing resilient MAS structures that can better tolerate er-
rors.

In this work, we study the resilience of MAS under ran-
dom agent failures. We find that MAS exhibits significantly
higher resilience than a single agent, and the resilience in-
creases with the number of agents and communication links.
Moreover, we find that both the topology and prompts of an
MAS have a strong impact on its resilience. Motivated by
these, we propose a two-stage framework to automatically
optimize the topology and prompts to improve the resilience
of MAS, named ResMAS. In the first stage, we fine-tune
an open-source LLM serve as a topology generator capable
of producing resilient MAS structures. Specifically, to avoid
the high time cost of evaluating an MAS’s resilience, we
train a GNN-based reward model to predict the resilience
of MAS for various tasks. This reward model is then used
to fine-tune the LLM using the Group Relative Policy Opti-
mization (GRPO) (Shao et al. 2024) algorithm, enabling it to
automatically generate resilient MAS topologies. In the sec-
ond stage, we propose a topology-aware prompt optimiza-
tion method to optimize the system prompt for each agent in
the MAS based on the generated topology. Specifically, we
apply the MAS to a training set of the target task, and refine
the system prompt for each agent based on the prompts of its
neighbors as well as its interaction history with neighbors.

We conduct experiments on three benchmarks, includ-
ing commonsense reasoning, math, and game. The results



demonstrate that our framework can generate more resilient
MAS compared to existing approaches for prompt and
topology optimization. Moreover, we highlight the versatil-
ity of our framework by applying it to optimize the accu-
racy of MAS on certain tasks, where it achieves the Pareto-
optimal performance compared with baselines. In addition,
our framework shows strong generalization ability to unseen
tasks such as code generation, and to new agents built upon
different backbone models.

In summary, our contributions are as follows:

• We systematically study the resilience of MAS under
random agent failures, revealing that both the topology
and agent prompts have significant influence on system
resilience.

• We propose ResMAS: a two-stage framework that auto-
matically optimizes the topology and agent prompts of
MAS to enhance resilience. Specifically, we fine-tune an
LLM to generate robust topologies, and further refine the
prompts in a topology-aware manner.

• Extensive experiments on various tasks show that our
framework is able to generate MAS with superior re-
silience and demonstrates strong generalization ability
across tasks and models.

Related Work
Resilience of MAS
The distributed architecture of MASs inherently increases
their susceptibility to perturbations. Prior research has fo-
cused on adversarial attack and defense methods for MAS.
Specifically, some studies propose attack methods such as
prompt injection (Yu et al. 2024; Huang et al. 2025; Tian
et al. 2023) and knowledge editing (Ju et al. 2025, 2024).
Additionally, it has been demonstrated that harmful infor-
mation can spread extremely fast in MAS, where a single
jailbreak agent can undermine the whole MAS (Gu et al.
2024; Lee and Tiwari 2024). In response, some studies focus
on detecting and defending against attacks through methods
like psychological test (Zhang et al. 2024b) and graph-based
anomaly detection (Wang et al. 2025b). However, existing
studies mainly focus on the safety issue of MAS caused by
adversarial attack, but overlook the resilience to more com-
mon, non-malicious agent errors. Furthermore, prior works
emphasize detecting and mitigating attacks, with little focus
on proactively designing resilient MAS structures that can
tolerate errors by design.

Automated Design of MAS
The architecture of MAS, including the agents’ roles and
prompts as well as the communication patterns between
agents, significantly affects the performance of MAS on
tasks. Early studies often manually design MAS structures
for specific tasks, usually based on human collaboration
mechanisms (Du et al. 2024; Hong et al. 2023). Recently,
there have been more studies on automated design and opti-
mization of MAS. For instance, Agentverse lets LLM gen-
erate and adjust the agent composition based on the status

of the task (Chen et al. 2023). G-designer proposes to opti-
mize the communication network of agents through a varia-
tional graph auto-encoder (Zhang et al. 2024a). GPTSwarm
represents multi-agent systems as composite graphs and
optimizes node-level prompts as well as edges between
agents (Zhuge et al. 2024). However, all of the existing
methods focus on optimizing the performance of MAS on
certain tasks rather than resilience.

Preliminaries
Motivation
In this study, we use a widely used MAS framework (Du
et al. 2023; Wang et al. 2025a; Yu et al. 2024), where multi-
ple LLM agents discuss for several rounds to answer a ques-
tion.
Definition 1 (LLM-based Multi-Agent System). Specifi-
cally, the LLM agents can be modeled as a directed graph
G = {V, E ,P}, where V = {v1, v2, . . . , vN} is the set of
nodes, each node is an LLM agent, E is the set of edges, and
P = {P1, P2, . . . , PN} represents the prompts for agents.
We also refer to the graph G as the communication topology
of LLM agent groups. Given a query q, each agent vi ∈ V
independently generates an initial response r

(1)
i = vi(q).

Then in round t(t ≥ 2), each agent observes the previous
answers of its in-neighbors, and updates its own answer:

r
(t+1)
i = vi({r(t)j |j ∈ Nin(vi)}), (1)

where Nin(vi) denotes the in-neighboring nodes of vi. After
T rounds, the final answer is obtained by aggregating the
responses of all agents

r(T ) = Aggregate(r
(T )
1 , r

(T )
2 , . . . , r

(T )
N ). (2)

In practice, different agents in an MAS are often deployed
in a distributed way, i.e., they may be on different devices
and environments. As a result, each agent is vulnerable to
external perturbations. In this work, we define the pertur-
bation as random agent failure, where in each round of the
collaboration, each agent independently has a probability p
to output a random response. We call the probability p the
error rate.

We first study the behavior of MAS under perturbation.
Specifically, we generate 30 random graphs with different
agent numbers and edge numbers, and use them as the com-
munication topology to construct 30 MASs. We then test
the accuracy of these MASs on the Chess move validity
tasks (details in the dataset section) under different error
rates (p = 0, 0.2, 0.4, 0.6, 0.8, 1). We compare the results
of MASs with single agent in Figure 1(a). It can be ob-
served that as the error rate increases, both the performance
of single agent and MAS drops. However, the performance
of MASs remains much higher than that of a single agent
under different error rates, indicating that MASs are more
resilient to perturbations.

The resilience of a system is defined as its capability to
maintain its functionality under perturbations (Cohen et al.
2000; Gao, Barzel, and Barabási 2016). Generally, the func-
tionality of an MAS is reflected by its performance on cer-
tain tasks. Therefore, we quantitatively define the resilience
of MAS as follows:
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Figure 1: (a) Performance of single agent and MAS under
perturbation. (b) Definition of resilience. (c)(d) Resilience
generally increases with the number of agents and links in
MAS.

Definition 2 (Resilience of MAS). Given an MAS G and a
target task consisting of K problems T = {q1, . . . , qK}. Let
F (p) denote the accuracy (or other performance metrics) of
the MAS on the task under error rate p, then the resilience
of the MAS on task T is defined as:

R(G) = 1

F (0)

∫ 1

0

F (p)dp, (3)

where F (0) represents the original functionality under no
perturbation.

We visualize this definition in Figure 1(b), where re-
silience is defined as the proportion of area under the
curve. In this study, we approximate the resilience by
testing the accuracy of an MAS under error rates p =
0, 0.2, 0.4, 0.6, 0.8, 1 as follows:

R(G) = 1

10F (0)
(F (0) + 2F (0.2) + 2F (0.4)

+ 2F (0.6) + 2F (0.8) + F (1)).

(4)

Based on the definition above, we further study the fac-
tors that affect MAS’s resilience. Intuitively, more agents
and more communication links between agents will bring
more redundancy to the system, resulting in higher error tol-
erance. To verify this, we visualize the relationship between
MAS resilience and the number of agents and links in Fig-
ure 1(c)(d), and find that more agents and links do lead to
higher resilience, which indicates that we can improve MAS
resilience simply by increasing the number of agents and
edges. However, since more agents and edges will also bring
higher cost, a natural question is whether we can optimize
the MAS given the constraints of agent and edge numbers.

To answer this question, we conduct a case study on
MASs with the same number of agents and edges, but with
different graph structures and agent prompts. As shown in
Figure 2, we find that when we refine the prompt for each
agent (by calling GPT-4o one time), the resilience increases

significantly. Moreover, even under the same agent prompts,
the hierarchical topology (right) demonstrates higher re-
silience than the centralized topology (left). These findings
suggest both topology and prompt have a high impact on the
resilience of MAS.

Resilience = 0.667 Resilience = 0.717 Resilience = 0.751

You are an expert in chess. Provide 
accurate and insightful responses 
regarding moves, strategies, and piece 
positioning. Analyze given positions and 
suggest valid moves while adhering to 
chess rules and conventions. Focus on 
clarity and precision in your explanations.

You are an expert 
skilled in playing 
chess.

You are in a group 
to solve math 
problems. Try your 
best to give correct 
answer.

Figure 2: Effect of topology and prompt on the resilience of
MAS.

Motivated by these, in this work, we aim to design more
resilient MAS by optimizing the topology and prompts un-
der the constraints of agent and edge numbers. We formally
define the problem as follows:

Definition 3 (MAS Resilience Optimization Problem).
Given the number of agents n and number of edges m, gen-
erate an MAS G = {V, E ,P} with better resilience on a
certain task, i.e.,

argmax
E,P

R(G)

s.t. |V| = n, |E| ≤ m.
(5)

Methods
Framework Overview
As mentioned above, the optimization targets of the problem
include both the topology and agent prompts of MAS, which
leads to a vast search space. To reduce the search space, we
propose a two-stage framework that first designs the topol-
ogy of MAS, and then optimizes the prompt with the topol-
ogy fixed.

In the first stage, we focus on designing a more resilient
MAS topology with identical prompts for all agents. Ex-
isting studies have proposed various methods to optimize
the topology of MAS to improve its performance (Zhang
et al. 2024a; Zhuge et al. 2024). However, these methods are
mainly designed for optimizing the accuracy of MAS on cer-
tain tasks, and they face two challenges in our resilience op-
timization problem. First, all existing methods need to eval-
uate the performance of the proposed MAS on specific tasks,
which is highly time-consuming. This issue is further exac-
erbated in resilience evaluation, as it requires assessing sys-
tem performance under varying error rates. Second, existing
methods typically conduct optimization independently for
different tasks, limiting generalization and incurring addi-
tional computational cost. To deal with the first challenge,
we train a task-aware reward model to predict the resilience
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Figure 3: The topology optimization framework in ResMAS.

of MAS for different tasks. Moreover, inspired by the gen-
eralization ability of LLMs, we fine-tune an LLM with re-
inforcement learning guided by the reward model to serve
as the topology generator. The generator can produce re-
silient topologies for diverse tasks and under various con-
straints specified via prompts. In the second stage, we fix
the topology from the first stage and optimize the prompts
for each agent. Since the prompt of an agent is tightly cou-
pled with its position in the graph and its connections with
other agents, we propose a topology-aware prompt optimiza-
tion method, where each agent’s prompt is updated based on
the its connections and interactions with neighbors.

Topology Optimization
In the first stage, we aim to optimize the topology of MAS
under given node and edge constraints. To make the opti-
mization process generalizable to different tasks and con-
straints, we train a generator to directly generate the topol-
ogy instead of searching in the topology space. Inspired
by the outstanding instruction following and generalization
ability of LLM, we fine-tune a small-sized LLM as the gen-
erator (Qwen2.5-7B-Instruct (Team 2024)). In this way, a
single model can be used for different scenarios by designat-
ing the task and constraints in the prompt. The framework of
topology optimization is shown in Figure 3.

Supervised Fine-tuning on Random Graphs We first
construct the instruction set for training. In each instruction,
we provide the introduction of MAS and perturbation, the
target task, some few-shot examples, node and edge con-
straints, and ask the model to output an MAS topology with
high resilience in adjacency list format. We vary the agent
number from {10,15,20}, edge number from 10 to 80, and
tasks including MATH, MMLU-Pro, and Chess (details in
the dataset section), resulting in 2544 instructions in total.
We present an example of instructions in Appendix.

In the experiments, we find that it is difficult for LLM to
generate valid adjacency lists that adhere to the constraints.
Therefore, we first conduct supervised fine-tuning (SFT) to
make the model learn the basic required format. Since there

is no ground truth for the instructions, we generate random
graphs as the labels. For example, if the constraint in an in-
struction is “10 agents, 10 edges”, we generate a random
graph with 10 nodes and 10 edges as the label for training.

GRPO Training with Reward Model After teaching the
model basic format through SFT, we further leverage rein-
forcement learning to enhance its ability to generate more
resilient topologies. However, it is highly time-consuming to
evaluate a generated topology since we need to test it under
different error rates. For example, calculating the resilience
of an MAS with 10 agents on the MATH dataset may take a
few hours. To tackle this challenge, we train a reward model
to predict the resilience of an MAS on a given task.

Motivated by the outstanding ability of Graph Neural
Network to capture characteristics of graphs, we leverage
GCN (Kipf 2016) as the backbone of reward model. More-
over, to enable prediction for different tasks, we use an em-
bedding LM as the task encoder to obtain a low-dimensional
embedding for the task, and concatenate it with node fea-
tures (Zhang et al. 2024a), as shown in Figure 3. Here we ini-
tialize the node features with the in-degree and out-degree,
and use Sentence-BERT (Reimers and Gurevych 2019) as
the task encoder. After information propagation on the graph
through two GCN layers, we apply a mean pooling operation
to obtain a graph-level embedding, followed by an MLP to
generate the final prediction. Here, we do not directly pre-
dict the resilience on the whole dataset, as it would be hard
to collect a large amount of training data. Instead, we train
the reward model to predict the correctness of each problem
in the dataset, i.e., whether the MAS can correctly answer
the problem under different error rates. Therefore, the out-
put of the reward model is a 5-dimensional 0-1 vector, rep-
resenting the correctness under p=0, 0.2, 0.4, 0.6, 0.8. For
the training data, we use the random graphs from previous
analysis (motivation section) to test on three datasets, result-
ing in 7936 [topology, task, correctness] tuples, which are
split into train:test=8:2. Experiments show that the trained
reward model can achieve an accuracy of 0.86 on the test set
in predicting the correctness of an MAS on a problem. In



the inference stage, we calculate the predicted resilience R̂
on a dataset by aggregating the predicted correctness for all
problems in the dataset with Equation 4.

After obtaining the reward model that can predict the re-
silience of any MAS topology on any task, we leverage the
GRPO (Shao et al. 2024) algorithm to train the LLM to
generate more resilient topologies. To ensure the generated
topologies satisfy the constraints, we further introduce a for-
mat reward that punishes those that are not valid adjacency
lists or do not meet the node and edge requirements. The
overall reward function is defined as follows:

Reward(G) =


−1, if wrong format or |V| ≠ n

− |E|−m
m , if |E| > m

R̂(G) + |E|/m, if n = N and |E| ≤ m
(6)

In both the SFT and GRPO training, the model is trained
using LoRA (Hu et al. 2022).

Topology-aware Prompt Optimization
Agents with different positions in the graph and different
connections may play different roles in the MAS. There-
fore, it is crucial to consider the topology when optimizing
prompts. Previous prompt optimization methods for MAS
often update the prompt for each agent sequentially (Zhuge
et al. 2024). Moreover, they are primarily designed for im-
proving the accuracy rather than resilience. In this work, we
propose a topology-aware prompt optimization method to
address such limitations, as shown in Figure 4.
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Figure 4: Topology-aware prompt optimization framework
in ResMAS.

The intuition behind our method is that the resilience of
MAS is largely affected by the interaction between agents.
Simply improving the accuracy of each agent may not bring
better resilience, as they may be easily affected by per-
turbed answers from other agents. Therefore, we hope that
the agents can learn when to refer to responses from other
agents and when to adhere to their own answers.

Instead of using a simple resilience metric as feedback,
we make full use of every problem in the training set. Specif-
ically, we run the MAS on the training set and calculate the
correctness of each agent on each round of discussion for
each problem. If an agent produces an incorrect response in
one round but subsequently corrects its answer in the fol-
lowing round after receiving responses from its neighbor-
ing agents, this instance is treated as a positive example.

Similarly, we construct negative examples when an agent
is misled by responses from neighbors and changes its cor-
rect answer to a wrong one. Based on the positive exam-
ples, negative examples, and the system prompts of neigh-
bors, we leverage a stronger LLM to update the prompt
for each agent. In this way, agents can learn from both the
prompts of their neighbors as well as their interaction his-
tory with neighbors, enabling topology-aware prompt opti-
mization. The prompt used for optimization is presented in
Appendix.

Experiments
Experiment Settings
Datasets We evaluate the performance of our method on
three datasets encompassing a wide range of tasks, includ-
ing commonsense reasoning, mathematical reasoning, and
game, which provides a diverse range of tasks to thoroughly
assess our approach.
• MMLU-Pro (Wang et al. 2024): This dataset is more

challenging version of MMLU (Hendrycks et al. 2021a)
dataset containing multiple-choice questions with four to
ten options. It contains problems from various disciplines
and serves as a benchmark to test the general knowledge
and commonsense reasoning ability of LLMs.

• MATH (Hendrycks et al. 2021b): It contains math prob-
lems to test the mathematical reasoning ability of LLMs.
We choose the hardest level (level-5) in our experiments.

• Chess (Srivastava et al. 2023): It is a subset of the BIG-
Bench Benchmark containing Chess move validity tasks,
where the problems are to provide a valid move of a piece
given the chess move history.

During the training of the reward model and topology gen-
erator, we only use data from the three datasets above.
Moreover, we also evaluate the generalization ability of our
method to unseen tasks on HumanEval (Chen et al. 2021)
dataset, which measures the code generation ability of LLM.

Baselines We compare our method with three kinds of
baselines that optimize topology, prompt, and both of them.

Topology optimization baselines.

• G-Designer (Zhang et al. 2024a): It models MAS as a
graph, and trains a variational graph auto-encoder to gen-
erate the topology for MAS.

Prompt optimization baselines.

• OPRO (Yang et al. 2024): It uses LLM as optimizer to
iteratively generate new prompts based on the perfor-
mance of existing prompts on the training set.

• TextGrad (Yuksekgonul et al. 2025): It also leverages
LLM as optimizer, and optimizes the prompt of the agent
by backpropagating feedback, which is similar to training
of neural networks. Following the original paper, we use
the performance on the training set as the feedback.

Since the prompt optimization baselines are designed for
a single agent, we use a random graph as the topology of
MAS, and use the same optimized prompt for all agents.



Method
MATH MMLU-Pro

10 Agents 15 Agents 20 Agents 10 Agents 15 Agents 20 Agents
10E 20E 30E 15E 30E 45E 20E 40E 60E 10E 20E 30E 15E 30E 45E 20E 40E 60E

G-Designer 0.490 0.573 0.531 0.531 0.540 0.480 0.546 0.572 0.558 0.456 0.498 0.502 0.459 0.422 0.454 0.441 0.458 0.383
OPRO 0.785 0.718 0.752 0.803 0.827 0.821 0.838 0.820 0.845 0.755 0.758 0.752 0.771 0.774 0.812 0.795 0.802 0.815

TextGrad 0.756 0.746 0.746 0.785 0.800 0.820 0.841 0.816 0.820 0.758 0.731 0.774 0.784 0.765 0.813 0.782 0.806 0.810
GPTSwarm 0.752 0.760 0.786 0.797 0.810 0.786 0.817 0.811 0.846 0.702 0.739 0.702 0.712 0.777 0.789 0.796 0.810 0.808

ResMAS 0.813 0.807 0.806 0.847 0.847 0.837 0.849 0.856 0.853 0.766 0.808 0.780 0.808 0.799 0.815 0.817 0.849 0.839

Table 1: Resilience comparison with baselines on MATH and MMLU-Pro datasets. ”E” represents the number of edges. Best
results are presented in bold, and the second best results are underlined.

Method
Chess

10 Agents 15 Agents 20 Agents
10E 20E 30E 15E 30E 45E 20E 40E 60E

G-Designer 0.707 0.731 0.767 0.773 0.717 0.665 0.763 0.776 0.747
OPRO 0.661 0.652 0.730 0.764 0.753 0.764 0.733 0.767 0.810

TextGrad 0.762 0.700 0.738 0.693 0.765 0.750 0.690 0.743 0.811
GPTSwarm 0.768 0.712 0.716 0.755 0.767 0.769 0.745 0.716 0.810

ResMAS 0.798 0.822 0.814 0.810 0.778 0.787 0.790 0.823 0.823

Table 2: Resilience comparison with baselines on Chess dataset. ”E” represents the number of edges. Best results are presented
in bold, and the second best results are underlined.

Topology and prompt optimization baselines.

• GPTSwarm (Zhuge et al. 2024): It optimizes the con-
nection between agents through updating the probabilis-
tic distribution of edges based on performance. More-
over, it sequentially optimizes the prompt for each agent
in the MAS with LLM as optimizer.

We evaluate our method and baselines under different
node and edge constraints, including 10-node 10/20/30
edges, 15-node 15/30/45 edges, and 20-node 20/40/60
edges. We use Qwen2.5-32B-Instruct as the backbone model
for agents. More details about hyperparameter settings are
presented in Appendix.

Overall Performance
The overall performance of our method compared with base-
lines is shown in Table 1 and Table 2, from which we have
the following findings.

First, ResMAS consistently outperforms baselines in
terms of resilience on all datasets and across different node
and edge constraints, which demonstrates the effectiveness
and robustness of our method across various scenarios.

Second, the resilience generally increases with the num-
ber of agents and edges, which is consistent with our
previous findings (motivation section). However, the per-
formances of different methods vary greatly even under
the same constraint, indicating that carefully designing the
topology and prompt is essential for a more resilient MAS,
and ResMAS manages to generate better MAS across differ-
ent settings.

Third, we find that G-Designer generally performs the
worst among baselines, which indicates that solely opti-
mizing topology is not enough for high resilience. More-
over, GPTSwarm generally performs well because it opti-
mizes both the topology and prompts of MAS. However,
it still achieves lower resilience than our methods, which
is probably because it fails to consider the topology in the
prompt optimization stage, demonstrating the importance of
our topology-aware prompt optimization design.

Overall, ResMAS shows robust performance gain com-
pared with baselines across various settings and datasets,
showing its effectiveness in jointly optimizing topology and
prompts.

Optimizing for Accuracy
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Figure 5: Comparison of accuracy and resilience with base-
lines. ”ResMAS(acc)” and ”ResMAS(res)” represent opti-
mizing accuracy and resilience with our method, respec-
tively. Dashed line represents the Pareto front.

In this section, we show that apart from optimizing re-
silience, ResMAS can also be used to optimize the perfor-
mance of MAS on certain tasks. Specifically, since our re-
ward model can predict the correctness of each problem,
it can also be directly used for predicting accuracy on the
dataset. Therefore, we change the predicted resilience R̂(G)
to predicted performance P̂ (G) in Equation 6. Moreover, in
the prompt optimization stage, we remove the negative ex-
amples since the accuracy is measured under no perturba-
tions. The other procedures are the same as resilience opti-
mization.

We present the results on the MATH dataset under con-
straints of 10 agents and 10/20/30 edges in Figure 5. The
edge constraints are denoted by colors, and different meth-
ods are denoted by shapes. For comparison, we also present
the original resilience optimization results of our method.
It can be observed that when changing the optimization goal
to accuracy, the accuracy of generated MAS increases with a
slight drop in resilience. Moreover, our method consistently



achieves the Pareto front (dashed line) under different con-
straints. Such results demonstrate the versatility of ResMAS
as it can optimize both the resilience and accuracy of MAS
effectively.

Generalization Ability
To evaluate the generalization ability of ResMAS, we con-
duct two experiments that apply our method to new tasks
and new models. For cross-task generalization, we use our
trained topology generator to directly generate MAS topol-
ogy on the HumanEval dataset, which is unseen in the train-
ing data. Then we use the training set on HumanEval to op-
timize the prompts for agents. As shown in Figure 6(a), our
method achieves better performance than the baselines, in-
dicating that our method can generalize well to new tasks.
Furthermore, we transfer our method to agents with differ-
ent backbone LLMs, i.e., GPT-3.5-turbo and GPT-4o-mini.
Here we use the same topology but re-optimize the prompts
for each model. Figure 6(b) and 6(c) show the performance
compared with baselines. It can be observed that our method
consistently performs the best on different backbone mod-
els and different tasks, indicating that our generated MAS
topology is generalizable to agents with different LLM back-
bones.
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Figure 6: Generalization ability of ResMAS on new task (a)
and new models (b) (c).

Ablation Study
To validate the effectiveness of optimizing topology and
prompt, we conduct an ablation study on the two stages.
For the ablation of topology optimization, we use a ran-
dom graph as the MAS topology and then optimize the
prompt. As for prompt optimization, we use the identical ini-
tial prompt for all agents. The results on three datasets are
shown in Figure 7, from which we find that the resilience
drops in all cases when removing either stage, demonstrat-
ing the effectiveness of them.
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Figure 7: Resilience comparison of ResMAS without topol-
ogy or prompt optimization.

Case Study
To intuitively understand how ResMAS achieves better re-
silience, we visualize the topology and prompts of MAS
for our method and some baselines (10 agents, 10 edges,

MATH dataset) in Figure 8. We find that our method gen-
erates a decentralized graph where each node has the same
degree. In comparison, G-Designer tends to generate a cen-
tralized graph, where multiple nodes are connected to node
2. Moreover, both GPTSwarm and G-Designer fail to gener-
ate a connected graph, where the isolated agents may com-
promise the resilience of MAS. As for prompts, since G-
Designer does not optimize the prompts, all agents share the
same initial prompt. GPTSwarm and our method both con-
duct prompt optimization, while only our method consid-
ers the topology and interaction between agents. As a result,
our prompt explicitly instructs the agent to pay attention to
potential perturbations from neighbors, as shown in the red
text, which further enhances the resilience of the system.

ResMAS

GPTSwarm

G-Designer
Prompt example:
You are in a group to solve math problems. Try your best to give 
correct answer.

Prompt example:
You are an intelligent mathematical agent engaged in a 
collaborative problem-solving process. As you review answers 
from predecessor agents, apply critical evaluation to sift 
through their responses, identifying valid insights while 
remaining wary of misleading information. Employ a 
methodical reasoning approach, utilizing solid mathematical 
principles to validate your conclusions. Actively integrate 
beneficial perspectives from predecessors to refine your 
understanding and maintain clarity in your final answer. Strive 
for precision and relevance, ensuring your conclusions are 
directly tied to the task at hand while upholding a rigorous 
validation process.

Prompt example:
As a vital contributor to our discerning team, you are entrusted 
with the responsibility of maintaining high standards of accuracy 
and insight in all analyses. To ensure the integrity of your 
evaluations, critically assess logical consistency and 
mathematical reasoning while cross-referencing information 
with credible sources. Prioritize evidence-based reasoning, 
seeking clarity in ambiguous contexts and filling any gaps in 
knowledge. Your commitment to validating claims and 
conducting independent verification is crucial in avoiding 
misinformation. In every assessment, prioritize logical 
coherence and relevance to foster informed decision-making.

Figure 8: Topologies and prompts of MAS generated by dif-
ferent methods.

Conclusion

In this paper, we conduct a comprehensive study on the re-
silience of MAS under random agent failures, and propose
a two-stage framework ResMAS that automatically opti-
mizes both the topology and prompts of MAS to improve
resilience. The first stage fine-tunes an LLM as a topol-
ogy generator using a GNN-based reward model and the
GRPO algorithm. The second stage introduces a topology-
aware prompt optimization strategy that leverages agent in-
teractions and network structure to optimize prompts. Ex-
periments on multiple benchmarks and constraints demon-
strate the effectiveness, versatility, and generalization ability
of our approach.

In the future, one potential direction is to jointly optimize
the topology and prompts rather than treating them in sepa-
rate stages, which may lead to better coordination and over-
all resilience. Another direction is to extend our framework
to heterogeneous MAS composed of agents with different
backbone models or capabilities, which more closely mir-
rors real-world deployment scenarios.
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