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Abstract

World models have emerged as a pivotal research direction, with recent break-
throughs in generative Al underscoring their potential for advancing artificial gen-
eral intelligence. For embodied Al, world models are critical for enabling robots
to effectively understand, interact with, and make informed decisions in real-world
physical environments. This survey systematically reviews recent progress in
embodied world models, under a novel technical taxonomy. We hierarchically
organize the field by model architectures, training methodologies, application
scenarios, and evaluation approaches, thus offering researchers a clear technical
roadmap. We first thoroughly discuss vision-based generative world models and
latent space world models, along with their corresponding training paradigms.
We then explore the multifaceted roles of embodied world models in robotic ap-
plications, from functioning as cloud-based simulation environments to on-device
agent brains. Additionally, we summarize important evaluation dimensions for
benchmarking embodied world models. Finally, we outline key challenges and
provide insights into promising future research directions within this crucial do-
main. We summarize the representative works discussed in this survey at https:
//github.com/tsinghua-fib-lab/Awesome-Embodied-World-Model.

1 Introduction

World models, which involve constructing representations of world states and modeling state tran-
sitions, have emerged as a cutting-edge research topic in recent years. The concept of world models
can be traced to psychological studies on hypothetical thinking [22]], where the mind internally
simulates future world states. In 2018, Ha et al. [36] introduced an early Al-era realization of
a world model for reinforcement learning, ingeniously integrating spatial compression of high-
dimensional perceptual inputs with temporal dynamics modeling. The recent blooming of gen-
erative Al has significantly advanced world modeling research, with interactive visual generative
models [} [11} 198} 99] such as Genie [[11]] and HunyuanWorld [98]] demonstrating exceptional ca-
pabilities in both visual generation and future state prediction, establishing them as powerful world
model implementations. Parallel to these visually explicit approaches, another paradigm represented
by JEPA [3] advocates for latent-space world state representations to enable more efficient action
planning. While both directions are rapidly evolving, their comparative merits remain an open ques-
tion for further exploration. To structure the field, we classify existing embodied world models based
on their generation modalities, control signals, and generation views, which is depicted in Figure
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Figure 1: Classification of existing embodied world models according to the generation modalities,
action types and applications.

Current representative world models are largely confined to virtual game environments [[11} 35/ [131,
113]] and autonomous driving [31}1108| [111]. World modeling for embodied scenarios is an emerg-
ing field, and constructing powerful physical world models represents a critical technological path
toward enabling embodied agents to achieve Artificial General Intelligence (AGI). Such embodied
world models are essential for robots to effectively understand and interact with their environments.
By constructing accurate representations of the world, these agents can learn to reason, make in-
formed decisions, adapt to new scenarios, and produce effective actions. The key advantages of
world models for embodied agents manifest in two key dimensions. First, by encoding represen-
tations of physical environments and their transition dynamics, embodied world models facilitate
long-horizon planning in complex, real-world scenarios [17], which is a capability that surpasses
the limitations of basic imitation learning approaches. Second, through the distillation of universal
world priors, they significantly enhance out-of-distribution (OOD) generalization [130], enabling
robust adaptation to previously unseen tasks and scenarios.

From a technical perspective, current embodied world modeling approaches primarily follow
three architectural paradigms: video generation-based models that operate in observable visual
space [[112, [139] 24]], 3D reconstruction-enhanced models that incorporate geometric representa-
tions [49} 71, [123]], and latent world models that maintain compressed state representations for effi-
cient robotic action planning [117}[3]. The first two approaches extend established computer vision
and multimodal generative techniques to model world states in pixel space, while the third paradigm
focuses on learning compact latent representations of the world. In terms of training methodologies,
embodied world models typically employ conditional generation objectives that incorporate exter-
nal instructions to predict state transitions, including text-conditioned generation [[139, 52 |65, [63]]
and action-trajectory [141}|115}34] controlled future prediction. Recent advances have introduced
visual-action joint prediction frameworks to enhance action understanding [107, |61} [140], as well
as physics-constrained learning paradigms [135,/93] to ensure generated content adheres to physical
laws. Embodied world models serve three primary roles in robotic applications. First, they func-
tion as cloud-based data synthesis engines [52, 53} [132]], generating high-quality synthetic training
data essential for training advanced robotic policy models like VLA (Visual Language Action) and
VLN (Visual Language Navigation) models. Second, they act as environment proxies [62} 85} [73]],
supporting the evaluation of embodied agents in simulated settings without the need for a real en-
vironment. Finally, they can operate as the on-device “’brain” for robots [3| (137, [126], performing



Table 1: Categorization of existing related surveys.

Survey Year Main Topic Limitations

Zhu et al. [142] 2024 General world model Limited to general applications

Ding et al. [20] 2024 General world model Limited to concepts and applica-
tions

Xie et al. [120] 2025 General world model Limited to 3D cognition ability

Guan et al. [33], Feng et
al. [23], Tu et al. [TOT] 2024, 2025 Driving world model Different research domain

Comprehensive introduction of em-
Liu et al. [69] 2025 Embodied Al bodied robots and simulators, with
limited techniques of world models

Overview of physical simulators
and world models, only discussing
world model architectures without
more technical details

Long et al. [72] 2025 Embodied Al

Comprehensive overview of em-

Liang et al. [64] 2025 Embodied AI bodied learning, only briefly dis-
cussing world model concepts and

architectures

real-time future state inference to guide robotic action planning. For clarity, we organize existing
representative embodied world models into three axes: modalities, action types and applications, as
illustrated in Figure

Existing surveys on related topics primarily fall into three categories, as summarized in Table[T} The
first category is about general world models [[142| |20l [120], which extensively discuss the evolu-
tion of concepts, fundamental functionalities, and applications across various fields, offering broad
coverage but lacking in-depth analysis of underlying technologies. The second category focuses on
world models in autonomous driving [33} 129} 23} 1101]], providing a comprehensive overview of the
latest progress in that specific domain. The third category encompasses embodied Al-related sur-
veys 69, [72} 164]. While these works discuss general techniques for developing embodied agents,
including world models, they do not provide a systematic technical review specifically dedicated
to embodied world models. Differently, our survey is the first to focus on embodied world mod-
els, comprehensively discussing the full-stack technology from model architectures and training
paradigms to applications and evaluations, organized meticulously along technical routes.

The main contributions of this survey can be summarized as follows:

* We provide a systematic and up-to-date review of the rapidly developing research on embodied
world models, summarizing the significant value of world models for embodied agents.

* We propose a novel technical taxonomy that hierarchically organizes the field into model archi-
tectures, training methodologies, application scenarios and evaluation approaches, providing re-
searchers with a clear technical roadmap.

* We highlight future research directions and trends of embodied world models, along with promis-
ing future research questions, to further inspire subsequent research in the community.

The following content of this survey is structured as follows: Section 2 introduces fundamental
concepts and background related to embodied world models. Section 3 delves into the current model
architectures for embodied world models. Section 4 discusses training paradigms for embodied
world models. Section 5 explores the functionalities and applications of embodied world models.
Section 6 presents diverse evaluation perspectives for embodied world models. Finally, Section 7
discusses the current challenges and outlines future research directions in this field. The framework
of the survey is illustrated in Figure
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Figure 2: The framework of the survey. We systematically review the model architectures, training
paradigm, application scenarios and benchmarks of embodied world models.

2 Background

The concept of world models originates in cognitive science. Craik’s theory of mental models [56]
proposed that humans perceive and reason about the external world by constructing abstract in-
ternal representations. System dynamics research further emphasized the role of internal models
in simulating and predicting the behavior of complex systems [26], thereby laying the conceptual
foundation for reinforcement learning and robotic control. In the 1990s, Sutton’s Dyna architec-
ture [95] was the first to unify learning, planning, and reacting, demonstrating how an agent could
accelerate policy improvement by both learning and leveraging an internal environment model. In
parallel, Schmidhuber introduced a neural system that, for the first time, explicitly separated a con-
troller from a world model [89} 90} [88]]. In this design, the controller selected actions to maximize
cumulative reward, while the world model learned to predict environmental dynamics, enabling
multi-step forward planning. This crystallized the core principle of world models—decoupling pol-
icy from environment simulation and using the model for internal rollouts. Nearly three decades
later, this logic was revived in the deep learning era. Ha and Schmidhuber [36] reintroduced the
term “world model” in machine learning and proposed a hierarchical architecture with three compo-
nents: a controller (C) for decision-making, a vision model (V) for compressing high-dimensional
perceptual inputs, and a memory model (M) serving as the world model to capture temporal dynam-
ics. Conceptually, this mirrors the 1990 controller—world model separation, but it is implemented
with modern deep neural networks that provide stronger representation, compression, and planning
capabilities. By simulating the environment in latent space and predicting hypothetical outcomes,
this framework significantly improved generalization and transfer across tasks, though early appli-
cations remained constrained by limited computational resources and immature algorithms. Within
this evolving landscape, representative world models emerged, including Genie [11], exemplifying
the autoregressive paradigm, and Sora [142], showcasing the potential of diffusion—Transformer
architectures for high-fidelity dynamic world generation.

The concept of embodied intelligence can be traced back to Turing’s proposal in the 1950s, which
emphasized that machine intelligence should not be confined to symbolic reasoning but must also
possess the ability to perceive and act in order to interact with the environment [102]. In the
1980s, Brooks and colleagues advanced this idea by criticizing traditional AI’s overreliance on sym-
bolic representations and proposing behavior-based robotics, highlighting that intelligence emerges
through embodiment and interaction with the environment [10]. This work established the ba-
sic paradigm of the perception—planning—control (PPC) loop. As shown in the Fig[3] within this
framework, traditional methods primarily adopted layered architectures: perception relied on vision
models, high-level planning was based on logical rules [27], and low-level execution depended on
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Figure 3: Three types of robotic learning frameworks. Traditional methods split tasks into visual
perception, rule-based planning, and control stages. Hierarchical methods use LLMs/VLMs for
perception and planning, and use separate policy learning models. End-to-end approaches integrate
perception, planning, and control within VLA and world models.

classical control algorithms [28]], imitation learning, and reinforcement learning. However, these ap-
proaches relied heavily on manual design, and the limited flow of information across layers hindered
adaptation to complex environments.

In the current large model era, the landscape of embodied learning and decision-making is defined by
two prominent, parallel-evolving paradigms: Vision-Language-Action (VLA) models and World
Models. Here, we provide a detailed comparative analysis of them to reveal their fundamental dif-
ferences. First, in terms of input and output information, both VLA and world models typically take
a textual instruction and the current observation as input, with some VLA architectures also incorpo-
rating the robot’s state. As for model output, VLA models directly produce a predicted action for the
robot to execute, essentially functioning as a direct mapping from perception and language to action.
In contrast, world models output a sequence of future observations, which can be either explicit vi-
sual frames or latent representations. The generation of a final action from this prediction typically
requires a subsequent step, such as introducing an action decoder or employing rejection sampling
for optimal action planning. We illustrate the workflow and 10 comparison of VLA and world mod-
els for embodied decision-making in Figure 4] Second, in terms of base model architecture, VLA
models are fundamentally built upon an autoregressive Large Language Model (LLM) backbone.
This approach tokenizes and aligns visual and action information with text, essentially recasting
the embodied decision-making as a token prediction task in the language space. Conversely, World
Models generally utilize vision-centric generative models, such as DiT, as their backbone. Their
core function is to align textual and action information with spatiotemporal visual tokens, enabling
the generation of future visual states. We present an illustrative comparison of their token learning
paradigm in Figure 5]

Each of the two approaches possesses respective advantages and disadvantages. VLA models, which
still follow a traditional imitation learning path, learn a direct mapping between visual perception,
language understanding, and action execution from human teleoperation data. The key advantages
of VLA are the effectiveness of policy warm-up via utilizing high-quality teleoperation data, and
superior complex instruction understanding and reasoning capabilities inherited from LLMs. How-
ever, they suffer from three major drawbacks: (1) poor data scalability, as teleoperation data is costly
to collect; (2) limited generalization, as they are often trained in idealized environments and strug-
gle with out-of-distribution scenarios; and (3) a lack of common sense, as imitation learning alone



1 A Y
| 5 |
1
i - 5 Action token i
b 1
i Intial observation [ Large Language Model ] — AL i
1 LR 1
i > Vi VLA Model Predicted Action |
H et isual token Language token 1
1 TextInstruction H
. . . . 1
I\ VLA for embodied decision making !
| T ‘:
! i
i ‘ - i
E 1
i Intial observation — — AL i
1 .« .
i —> | World Model Action Decoder Predicted Action i
L i i
i Text Instruction Future observations H
. . . 1
l\ World model for embodied decision making !

Figure 4: Workflow and input/output comparison of the world model and VLA model for embodied
decision-making.
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Figure 5: A comparative overview of VLA and world models, illustrating their distinct token space
and modality alignment. VLA models process the world in a language token space, whereas world
models are grounded in a spatial-temporal vision token space.

cannot model the deep causal principles of the physical world. Differently, world models aim to
build an internal, predictive understanding of the physical world by learning state dynamics from
large-scale unsupervised data. The primary strength is data efficiency and scalability, because world
models can leverage vast amounts of unlabeled video data for training. They also offer better gener-
alization by learning universal world dynamics and concept combination. The main disadvantage of
world models is their current technical immaturity, as their capacity for deep action and instruction
understanding still needs significant improvement.

Given that the physical world is fundamentally composed of spatiotemporal visual dynamics, which
are more accurately captured by visual tokens than the high-level semantic abstractions of language
tokens, we argue that world models are a more promising and better-suited paradigm for embodied
learning over a long period. Current frontier research of world models broadly follows three direc-
tions. One approach is video-based, which conceptualizes the world as a continuous sequence of
images and learns environmental dynamics by predicting future frames, thereby implicitly capturing
physical laws and object interactions. The advantage of this path lies in leveraging the virtually
unlimited supply of 2D video data on the internet to learn highly complex and high-fidelity visual
dynamics. Another approach is 3D-enhanced world models, which prioritize geometric accuracy
and physical consistency, making it indispensable for safety-critical applications such as robotics.
In addition, a third direction, exemplified by JEPA [3], emphasizes learning compact and abstract
world state representations in latent space. By modeling environmental dynamics at the level of
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tion models; and (c) modeling the world in latent space with latent world models.

implicit representations, such models can support action prediction and planning more efficiently,
while also providing stronger abstraction and generalization capabilities.

Alongside the evolution of model architectures, the training paradigms of embodied world models
have also diversified, largely reflecting the functional role the model assumes. When a world model
is designed as a data generation engine, its primary objective is to synthesize high-fidelity obser-
vational data to facilitate downstream policy learning. In this setting, instruction-conditioned train-
ing, action-conditioned training, style transfer-based methods, and physics-informed approaches are
commonly adopted to enhance the realism and diversity of the generated data. By contrast, when
the world model serves as an edge-side policy optimizer, the focus shifts toward directly guiding
agents in policy generation. In this case, video—action joint training is emerging as the predominant
paradigm. Furthermore, due to the persistent limitations of current world models in terms of gener-
alization and controllability, reinforcement learning-based training has been increasingly employed
to improve robustness and adaptability in complex, dynamic environments.

World models ultimately serve multiple roles as simulation and prediction engines in embodied
intelligence. First, they act as cloud-based data synthesis tools [52,49], generating high-quality ob-
servational data to support the training of advanced policy models such as Visual-Language-Action
and Visual-Language-Navigation. Second, they function as environment proxies [62] [85], enabling
the evaluation of agents without requiring real-world environments. Finally, world models can op-
erate as on-device “brains” for robots [3}[137], performing real-time future state inference to guide
action planning. In this way, world models play a central role in data generation, environment eval-
uation, and online decision-making, forming a key foundation for the advancement of embodied
intelligence.

3 Architectures of Embodied World Models

Current embodied world models are predominantly categorized into three architectural paradigms,
distinguished by their world state representation spaces and tailored to address distinct core needs of
embodied intelligence: video generation-based models (Fig[6h) operate in observable visual space,
primarily synthesizing high-quality robotic video data while modeling the world in 2D pixel space;
3D reconstruction-enhanced models (Fig [6b) integrate explicit 3D geometric representations to en-
code depth, volumetric structure, and object poses, enabling physically consistent world modeling
in 3D space; latent world models (Fig [6k) maintain compact compressed latent states, modeling
the world in low-dimensional latent space by distilling task-relevant information from redundant
sensory data to boost efficiency, thus facilitating efficient state inference and action planning.

3.1 Video Generation-based Models

Video generation models have recently become the backbone for many embodied world models,
as they provide a scalable foundation for simulating high-fidelity and temporally coherent visual
dynamics. The key challenge lies in converting these models from non-interactive video genera-
tors into interactive world models, where action-conditioning and causal structure are essential for



Diffusion Based Autoregressive Hybrid

1 i
SEEE - EEEE

| I

Autoregressive Model

TClip 1 Tcip2

[ Autoregressive Model ]

1 .1
P 1 I
BEEE

Clip 1
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embodied intelligence. Broadly, three architectural paradigms have emerged in this line: diffusion-
based models, autoregressive models, and hybrid approaches that combine both, as illustrated in

Figure

Diffusion-based Models. Diffusion models, originally designed for unconditional or text-
conditioned video synthesis, are increasingly adapted into world simulators by introducing causal
and action-conditioned mechanisms. A landmark development was Sora[81], released by OpenAl
in 2024, which achieved unprecedented levels of photorealism and long-horizon video generation,
marking the first industrial-scale diffusion model capable of producing cinematic-quality content.
Building on this, the community introduced Open-Sora[138]], an open-source initiative that reim-
plemented efficient video VAEs and diffusion transformer backbones, making large-scale video
synthesis research accessible beyond proprietary systems. Most recently, Wan[104] has further ad-
vanced diffusion-based modeling in the open-source ecosystem, offering 1.3B and 14B parameter
variants trained with flow-matching and massive curated datasets. Wan integrates a novel spatio-
temporal VAE, scalable pretraining strategies, and multi-task extensions including text-to-video,
image-to-video, instruction-guided editing, and real-time generation, consistently achieving state-
of-the-art performance across benchmarks. Complementing these large-scale foundation models,
CogVideoX]124]] demonstrated the scalability of diffusion transformers for long-horizon synthesis,
while Vid2World [48]] proposed “causalization” to embed autoregressive rollout and causal action
guidance directly into the diffusion pipeline. Collectively, these advances illustrate how diffusion-
based models have rapidly evolved from generic video synthesis tools into versatile platforms for
causally grounded, action-conditioned, and temporally scalable world simulation, while still facing
challenges of inference efficiency, responsiveness, and real-time interactivity.

Autoregressive Models. Autoregressive models differ from diffusion approaches in that they gen-
erate video tokens sequentially, frame by frame or patch by patch, inherently encoding causality
and temporal continuity. This makes them naturally suited for embodied rollouts where actions and
states must evolve in a consistent temporal order. By conditioning each prediction on past tokens,
autoregressive systems support direct action integration, enabling interactive control with low la-
tency. Genie[l1] represents one of the earliest large-scale autoregressive world models, showing
that high-capacity transformers can capture action-conditioned dynamics and produce responsive
short-horizon rollouts. Building on this, Lumos-1[128] demonstrates how scaling autoregressive
transformers to billions of parameters improves both controllability and long-term stability, while
1VideoGPT [115] introduces efficient video tokenization schemes that significantly reduce the com-
putational burden of sequential prediction. These works collectively highlight the major strengths
of autoregressive modeling—real-time responsiveness, direct causal grounding, and smooth tempo-
ral evolution—while also revealing limitations: they often struggle to match the visual fidelity and
stylistic diversity achieved by diffusion models, and scaling to long horizons can lead to compound-
ing errors that degrade rollouts over time.



Table 2: Representative video generation models toward world modeling across three paradigms.

Paradigm Model Key Contributions
Diffusion Sora [81] Photorealism; Long-horizon; Industrial-scale training
Open-Sora [[138] Open-source; Efficient VAE; DiT backbone
Wan [104] Spatio-temporal VAE; Flow-matching; Multi-task
coverage
CogVideoX [124]] Large transformer; High fidelity; Long rollout
Vid2World [48]] Causalization; Action guidance; Interactivity
Autoregressive Genie 1 [11] AR world model; Action-conditioned rollouts
Lumos-1 [[128]] Billion-scale AR; Controllability; Stability
1VideoGPT [115]] Efficient tokenization; AR rollouts
Hybrid Genie 2 [18] Diffusion + AR; Interactive; Long-horizon sims
NOVA [19] Non-quantized AR; Dual prediction; Diffusion de-
noising
RoboScape-long [91]  Adaptive combination of Diffusion and AR genera-
tion
VideoGPT [143]] AR rollout; Diffusion priors; Realism + Causality
MAGI-1 [100] Scalable hybrid; Chunk-wise generation; Streaming

Hybrid Models. To combine the strengths of both paradigms, hybrid designs leverage the high-
quality synthesis of diffusion with the causal grounding and interactivity of autoregression. Ge-
nie 2[18] exemplifies this approach by integrating a diffusion backbone for visual fidelity with an
autoregressive rollout mechanism to maintain interactivity, enabling longer and more responsive
simulations than its predecessor. NOVA[19] further advances the hybrid paradigm by discarding
vector quantization entirely and adopting a continuous-space autoregressive formulation. It intro-
duces a two-level mechanism—temporal frame-by-frame causal prediction and spatial set-by-set
masked prediction—augmented with a diffusion-style denoising objective. Despite its compact size
(0.6B parameters), NOVA achieves competitive results with state-of-the-art diffusion models on
text-to-video benchmarks, while being significantly more efficient in training and inference. Be-
yond these, Video-GPT[115] incorporates autoregressive rollout while distilling diffusion priors to
enhance realism, and MAGI-1[100] scales hybrid autoregressive—diffusion modeling with chunk-
wise generation, enabling efficient streaming video synthesis, controllable long-horizon rollouts,
and real-time deployment at trillion-token scale. More recently, Roboscape-long [91] introduces
an auto-regressive framework that performs varying-length chunk denoising, thereby enabling the
generation of long-horizon embodied videos. Collectively, these systems demonstrate that hybrid
designs represent a natural evolution of autoregressive and diffusion paradigms, unifying realism,
causality, and efficiency, though challenges remain in optimization stability and scaling to ultra-long
rollouts.

Overall, video generation-based world models progress along three complementary trajectories: (i)
diffusion-based methods enhanced with causal and action-guided extensions, (ii) autoregressive de-
signs that directly support interaction and real-time rollouts, and (iii) hybrid approaches that inte-
grate both paradigms to achieve controllability and realism simultaneously. Together, these advances
highlight the transition from generic video generation to embodied simulation, establishing the foun-
dation for world models that are not only visually realistic but also causally grounded, interactive,
and adaptive to agent actions.

3.2 3D Reconstruction-enhanced Models

Integrating 3D reconstruction into world models has emerged as a key direction to improve realism
and geometric consistency in dynamic world modeling [4} 47]]. Reconstruction provides structural
priors for generation, while generation in turn enriches reconstruction, forming a bidirectional inter-
play.

Existing studies generally follow two trajectories: cascade paradigms and unified paradigms. As
illustrated in Figure [8| cascade models explicitly reconstruct 3D geometry and render novel views
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(e.g., 3DGS, NeRF), whereas unified models incorporate multi-view priors such as depth, normal,
and ray maps into a single framework. In cascade paradigms, reconstruction outputs are incorpo-
rated as memory or conditional guidance for generation. Wu et al. [[L18]] introduced a video world
model with hierarchical memory modules, including short-term working memory, long-term spatial
memory represented by point clouds, and sparse episodic memory. This design enables the model
to maintain spatial coherence across long video sequences. Chen et al. [[15] proposed a novel world
model, which embeds point clouds and camera poses into the video generator. By injecting 3D struc-
tural priors, the model achieves high-fidelity, controllable world simulations. Zuo et al. [[144]] pre-
sented GaussianWorld, a framework that models scene evolution in 3D Gaussian space. By explicitly
leveraging reconstruction priors and conditioning on RGB observations, the model produces geo-
metrically consistent video predictions. Conversely, generative models can facilitate reconstruction.
Min et al. [78] presented a world model which is based 4D pretraining framework and learns compact
spatiotemporal bird’s-eye view representations by predicting 3D occupancy from past multi-camera
images and actions, offering better scalability for downstream tasks. Zhao et al. [[134] showed that
novel trajectory synthesis and multi-view video generation can serve as enriched supervision sig-
nals for 4D reconstruction, thereby improving reconstruction quality. Ni et al. [80] further advanced
this idea by proposing ReconDreamer, which introduces progressive trajectory perturbations and
online restoration to enhance robustness under large viewpoint shifts. To address cross-view in-
consistencies, Ni et al. [79] developed WonderFree, which integrates video diffusion priors with
cross-view consistency constraints, enabling efficient and view-aligned video generation. Similarly,
HunyuanWorld [98]] employs a staged pipeline: Panorama-DiT generates panoramic priors, while
depth reconstruction ensures structural alignment. This system supports diverse downstream tasks,
including image-to-3D object synthesis and sky generation. In the field of robotics, several recent
models are pushing the boundaries of generative Al for manipulation tasks. EnerVerse [49] unifies
video generation and 4D Gaussian Splatting into a closed loop. EnerVerse-AC [54] introduces a
novel action map to control the video generation for embodied scenarios. Furthermore, ORV [123]
additionally provides precise semantic and geometric cues to enhance the temporal consistency and
controllability of generation results.

In unified paradigms, geometry and dynamics are jointly represented within a single neural frame-
work to avoid error accumulation inherent to cascaded pipelines. Aether [97]] integrates depth and
ray map reconstruction into generative modeling, enabling human-like spatial reasoning. Its design
allows strong zero-shot generalization to real-world scenes. Chen et al. [16] proposed Deep Verse,
a 4D autoregressive world model that unifies visual, depth, and pose information in a shared state
space. By incorporating geometry-aware memory mechanisms, DeepVerse maintains long-term
spatial consistency in complex environments. Geo4D [55] predicts some additional physical infor-
mation including point maps, depth maps, and ray maps, to achieve a more complete understanding
of the scene. Zhen et al. [[135]] proposed TesserAct, which leverages RGB-D-normal supervision and
consistency regularization to enforce spatiotemporal coherence in generated 4D embodied worlds.
Future prediction and unified perception are also emphasized. Wu et al. [114] introduced Geome-
try Forcing, which aligns implicit diffusion features with external geometric priors such as VGGT,
showing that explicit 3D annotations are not always required to learn structured geometry. More
recently, Shang et al. [93] proposed RoboScape, a physics-informed world model that integrates
temporal depth prediction and keypoint dynamics learning. By encoding both geometric consis-

10



g & &
01 0o o
| obsexrvatio observation| observation|

Reconstruction Loss in

Latent Space
N i
Latent-Space \ &8 v,

I I, <
World Model f latent vec

Reconstruction Loss in
. ——
Pixel Space

Pixel-Space
World Model f

a, @D
action

Figure 9: Comparative schematic of pixel-space world models and latent-space world models.

&) 4
0, Ly
prediction latent vec

tency and physical properties (such as object shape and material), RoboScape enhances the fidelity
of video rendering and improves complex motion modeling.

Overall, 3D reconstruction-enhanced world models advance along two trajectories: cascade models,
which incorporate reconstruction as priors or memory for generation, and unified models, which
learn geometry and dynamics jointly in an end-to-end manner. While cascaded approaches empha-
size leveraging external models, unified approaches highlight the intrinsic coupling of representa-
tions. Together, they greatly enhance temporal coherence, geometric fidelity, and physical reasoning,
paving the way for scalable world models that can both understand and simulate the physical world.

3.3 Latent Space World Models

When constructing world models from temporal snapshots (such as video frames or game screens),
modeling environment dynamics directly at the pixel level incurs prohibitive computational cost
during feedback and often causes the model to overfit redundant details, which hinders generaliza-
tion and reasoning [121]. Consequently, a growing body of work has focused on mapping temporal
data into a latent space and building world models therein. Representative works from recent years
are summarized in Table[3] We present a brief comparative schematic of pixel-based reconstruction
world models and latent-space world models, as shown in Figure[9]

Hafner et al. [39] introduced PlaNet, a purely model-based agent that learns latent dynamics directly
from pixel observations and performs online planning within the latent space. PlaNet employs a
Recurrent State-Space Model (RSSM) that combines deterministic and stochastic latent transitions,
enabling robust long-term predictions while maintaining computational efficiency. A key innovation
is the latent overshooting objective, which regularizes multi-step predictions in latent space without
requiring costly pixel reconstructions. Empirically, PlaNet achieves competitive performance on
continuous control tasks from pixels with up to 200x fewer environment interactions than model-
free baselines.

Building upon PlaNet, Hafner et al. [38] proposed Dreamer, which extends latent dynamics mod-
eling to policy optimization. Dreamer decouples world-model learning and policy learning: the
world model is first trained via latent overshooting and pixel reconstruction, after which an actor-
critic agent is trained entirely within the latent imagination. By back-propagating analytic value
gradients through imagined latent trajectories, Dreamer attains state-of-the-art data efficiency on 20
visual control tasks, outperforming both model-based and model-free methods while requiring less
training time. Recognizing the limitations of Gaussian latent variables in capturing multi-modal
environment transitions, Hafner et al. [40] presented DreamerV2, which replaces Gaussian latents
with categorical variables optimized via straight-through gradients. DreamerV2 additionally intro-
duces KL balancing to stabilize training by decoupling the learning rates of the prior and posterior
distributions. On the Atari 2600 benchmark, DreamerV?2 becomes the first latent-imagination agent
to achieve human-level performance across 55 tasks using a single GPU, surpassing prior model-
free baselines such as Rainbow and IQN. Most recently, Hafner et al. [42] introduced DreamerV3, a
fully general-purpose algorithm that learns robust world models under fixed hyperparameters across
more than 150 tasks spanning continuous and discrete control, visual and proprioceptive inputs, and
sparse and dense rewards. DreamerV3 incorporates several robustness techniques—symlog trans-
formations, two-hot regression, percentile-based return normalization, and KL balancing with free
bits—that collectively enable stable learning across vastly different signal scales and reward struc-
tures. Notably, DreamerV3 is the first agent to collect diamonds in Minecraft from scratch without
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human demonstrations or curricula, addressing a long-standing open challenge in open-world ex-
ploration.

While the Dreamer lineage demonstrated remarkable success in simulated domains, its reliance on
dense reward signals and high-fidelity action labels rendered direct transfer to real-world settings
challenging. In 2022, LeCun [39] articulated the Joint-Embedding Predictive Architecture (JEPA)
as a conceptual shift: instead of reconstructing pixels or optimizing task-specific rewards, the agent
learns a latent space in which future observations are predictable from past ones. This idea was first
instantiated for images by Assran et al. [2]] with I-JEPA, which masks large spatial blocks in a single
image and trains a ViT to predict the representation of the masked regions from the visible context.
By dispensing with handcrafted augmentations and pixel-level losses, I-JEPA yields semantically
rich features that transfer strongly to ImageNet classification and low-level vision tasks while using
an order-of-magnitude fewer GPU-hours than comparable generative approaches.

The temporal analogue was concurrently developed by Bardes ef al. [8] in V-JEPA. Operating on
short video clips sampled from 2 million publicly available videos, V-JEPA masks spatio-temporal
cubes and trains a predictive transformer to infer the missing latent representations. Importantly,
the objective is purely predictive—no action labels, text, or pixel reconstructions are used—yet the
resulting frozen backbone attains competitive accuracy on Kinetics-400 and Something-Something-
v2, surpassing prior self-supervised video methods under linear probing. These results established
that large-scale, action-free video datasets can suffice for learning general-purpose world represen-
tations. Motivated by the scalability of masked prediction, Assran et al. [3] subsequently introduced
V-JEPA 2, which enlarges the encoder to 1 billion parameters and trains on 22 million hours of
curated internet video plus 1 million images. A progressive-resolution schedule allows efficient
absorption of temporal context without prohibitive compute. Combined with attentive probes, V-
JEPA 2 sets new state-of-the-art on motion-centric benchmarks such as Something-Something-v2
and Epic-Kitchens action anticipation, while remaining competitive on appearance-centric tasks like
ImageNet. Crucially, V-JEPA 2’s latent space can be repurposed for embodied planning with min-
imal additional supervision. By freezing the pretrained encoder and training a lightweight, action-
conditioned predictor on just 62 hours of unlabeled teleoperation data from the Droid dataset, the
authors obtain V-JEPA 2-AC, a latent world model that performs zero-shot model-predictive control
on Franka arms for pick-and-place tasks in unseen laboratory environments. This constitutes one of
the first demonstrations of a vision-only world model trained primarily on passive internet video yet
capable of closed-loop robotic manipulation without task-specific rewards or demonstrations.

Concurrent with the above developments, a complementary line of work has explored task-oriented
latent dynamics and offline-to-online finetuning to bridge simulation and real-world deployment.
Hansen et al. [44] propose TD-MPC, a model-based RL algorithm that performs local trajec-
tory optimization in a learned latent space while jointly training a terminal value function via
temporal-difference learning. TD-MPC departs from pixel-reconstruction objectives, instead learn-
ing latent representations directly from reward signals, yielding superior sample efficiency on high-
dimensional continuous control tasks. Building upon TD-MPC, Feng et al. [25] introduce TD-
MPC-offline, which integrates uncertainty-aware planning and offline-pretrained world models to
enable few-shot finetuning on real robots. Specifically, they pretrain a latent world model on of-
fline robotic datasets and then finetune it with as few as 20 online trials using a test-time regularizer
that balances estimated returns against epistemic model uncertainty. This framework demonstrates
robust transfer from offline data to online adaptation. Extending this line of research, Hansen et
al. [43] present TD-MPC2, a scalable and robust generalist world model that learns across 104 di-
verse continuous control tasks—including high-dimensional locomotion, dexterous manipulation,
and physiologically accurate musculoskeletal control—using a single set of hyperparameters. TD-
MPC?2 leverages implicit, decoder-free latent dynamics and a normalized task-embedding space
to generalize across embodiments and action spaces, achieving state-of-the-art performance while
maintaining training stability at scales up to 317 million parameters.

Taken together, the progression from Dreamer to JEPA delineates a clear temporal trajectory: early
latent-dynamics research focused on mastering simulators with dense rewards, whereas the JEPA
family has shifted attention to learning general-purpose world representations from the open-ended
visual stream of the internet. The emergence of TD-MPC and its successors further complements
this trajectory by providing a principled framework for transferring latent world models from offline
pretraining to online real-world control, thereby narrowing the gap between simulated and physical
intelligence. The latest developments suggest that, once equipped with scalable predictive objectives
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Table 3: Summary of representative latent space world models.

Model Application Area World Model Type / Contribution
PlaNet [39] Visual control RSSM; latent overshooting; data-efficient
planning.
Dreamer [38]] Model-based RL Latent imagination actor-critic; analytic value
gradients.
DreamerV?2 [40] Model-based RL Categorical latents; KL balancing;
human-level Atari.
DreamerV3 [42] Model-based RL Robust training (symlog, two-hot, KL
free-bits); 150+ tasks incl. Minecraft.
I-JEPA [2] Image learning Masked prediction; semantic latent features.
V-JEPA [8] Video learning Spatio-temporal masking; predictive
transformer; strong transfer.
V-JEPA 2 [3] Video learning 1B-parameter encoder; progressive resolution;
SOTA motion benchmarks.
V-JEPA 2-AC [3] Robotic control Frozen encoder + lightweight predictor;
zero-shot MPC for robotics.
TD-MPC [44] Continuous control Task-oriented latent dynamics; TD-learning
for MPC.
TD-MPC-offline [25] Robotic control Offline-to-online finetuning with

uncertainty-regularized planning.

Multi-task continuous

TD-MPC2 [43]] control

Scalable implicit world model; single
hyperparameter set across 104 tasks.

and modest interaction data, such representations can bootstrap effective planning in the physical
world, narrowing the gap between simulated and real-world intelligence.

4 Training Paradigm of Embodied World Models

Depending on the different applications of the world model, the training paradigms also differ. When
the world model serves as a data generation engine, its goal is to generate high-quality observa-
tional data for downstream policy learning. The training paradigms of the world model mainly
include instruction-conditioned training, action-conditioned training, style transfer-based training,
and physics-informed training. When the world model serves as an edge-side action planner, its
goal is to guide the agent in generating policies. At this point, the training paradigm of the world
model is mainly action-conditioned training and video-action joint training. In addition, the existing
world models still have deficiencies in generalization and action controllability. Thus, an increasing
number of researchers have begun to use the reinforcement learning-based training method to train
world models. This is because the RL training paradigm can make up for the characteristics that the
pixel fitting learning target generated solely by video is difficult to learn, such as motion controlla-
bility and geometric accuracy. A schematic diagram of the world model training paradigm is shown

in Fig. [I0]

4.1 Instruction-conditioned Training

In this training paradigm, the input of the world model consists of historical observation sequences
and text-based control instructions. This training paradigm evolved from the traditional controllable

video generation model owing to the fact that textual instruction can provide high-level control
signals to the generation process.
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Figure 10: Training Paradigms of Embodied World Models: Instruction-conditioned training,
action-conditioned training, physical-informed training, video-action joint training, and reinforce-
ment learning training.

Table 4: Summary of models with different training paradigms. ICT: Instruction-conditioned Train-
ing, ACT: Action-conditioned Training, PIT: Physical-informed Training, VAT Video-Action Joint
Training, RLT: Reinforcement Learning Training.

Method Paradigm Contribution

Sora [[70]] ICT Text-driven video generation model

RoboDreamer [[139] ICT Decompose text instructions into fine-grained phrases
Pandora [119] ICT Real-time text control generation

Cosmos [1]] ICT Instruction controllable world simulator

Vid2World [48] ACT Adding the embeddings of actions and observations
UWM [140] ACT Concatenating the embeddings of actions and observation
EnerVerse-AC [54]] ACT Multi-channel aciton injection using cross-attention
FLARE [137] ACT Generate action tokens using diffusion

RoboScape [93]] PIT Key point tracking and depth as physical information
TesserAct [135] PIT Decouple geometry, materials, and motion for 4D modeling
HMA [107] VAT Using Transformer to predict observation and action
UVA [61]] VAT Symmetrical encoder and decoupled diffusion head
WorldVLA [12] VAT World model head renders observations with action head
RLVR-World [116] RLT Training the world model using a RL paradigm

When Sora [[70] was first proposed, it was regarded as a kind of world model because it could
generate long and high-quality videos based on text instructions. However, it cannot interact in
real time with control signals. RoboDreamer [[139] breaks complex instructions into fine-grained
short phrases and stitches corresponding video segments, enabling zero-shot composition of unseen
tasks. Furthermore, Pandora [119] further augments the autoregressive backbone with diffusion-
based frame synthesis, allowing real-time textual edits while guaranteeing cross-domain visual con-
sistency via a history buffer. Cosmos [1] unifies a hierarchical diffusion renderer with a learned
Newtonian physics module, enabling text-driven generation of long-horizon, physically-plausible
scenes that can be steered on the fly by continuous control signals.

4.2 Action-conditioned Training

Although high-level control of text information can control the model to generate different videos,
it is difficult to provide fine-grained control signals. The action sequence, due to containing fine-
grained control information, can be used to enhance the fine-grained perception and generation
capabilities of the world model. In the paradigm of action-conditioned training, the world model
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receives the input of the action sequence and the observation sequence and generates the future
observations based on the action control signal. The action sequence is regarded as a sequence of
control signals to the object, which can affect the object and is controllable, which usually refers to
the target pose of the embodiments in embodied Al.

In this training paradigm, a key challenge is how to inject action signals so that they are both causal
and controllable. Vid2World [48] represents the robot’s 6-DoF pose trajectory as a dense action
tensor and injects it into the diffusion process by direct element-wise addition with the visual latent
features before every U-Net decoder block. A causal mask is applied in the temporal attention layers
to ensure that predictions at time t depend only on actions up to the current timestamp, preserving
temporal causality. Unified World Models [140] decouple the diffusion timesteps of actions and
images, allowing flexible marginalization or conditioning. Instead of direct addition, they concate-
nate action tokens with latent image patches and let a transformer jointly denoise both modalities
via cross-attention. EnerVerse-AC [54] introduces a multi-level action-conditioning mechanism in
which spatial action maps rendered from end-effector poses are concatenated with image latents,
while delta-action embeddings are fused via cross-attention layers, enabling finer spatial and tem-
poral control. FLARE [137] avoids dense pixel-level injection altogether. It aligns a small set of
learnable future tokens in the diffusion transformer with latent embeddings of future observations
conditioned on the action sequence, achieving implicit world modeling without extra architectural
complexity. Furthermore, there are also some action injection methods, such as using an Action-
Control Transformer Block that handles continuous and discrete action signals [125]]. Continuous
vectors are channel-wise concatenated after spatio-temporal compression. The discrete codes are
treated as key/value pairs in cross-attention, allowing a single pre-trained diffusion backbone to
merge the action information.

4.3 Physics-informed Training

Although diffusion and autoregressive models can produce visually compelling videos, they fre-
quently violate basic physical laws—objects float, liquids pass through solids, or human joints bend
impossibly. Physics-informed training explicitly injects physics-related priors into the learning ob-
jective to close the sim-to-real gap. These physical priors mainly include inherent properties of
objects, such as hardness, elasticity, color, material, etc, spatial structure information, such as depth,
normal, and point cloud, dynamic interaction information, such as key point trajectory and motion
speed or acceleration, and environmental physical parameters, such as light, force or moment direc-
tion, collision constraints, and relative motion. Although there are many physical constraints, the
key issue in this research lies in how to select the appropriate physical laws and effectively integrate
them into the world model.

RoboScape [93] exemplifies the paradigm by fusing RGB and depth branches within a shared autore-
gressive backbone: predicted depth is injected layer-wise as a physical prior, while self-supervised
key-point trajectories capture contact-driven dynamics; together they enforce spatial coherence and
cut sim-to-real policy gaps. TesserAct [135]] employs a 4D entity modeling approach, extracting the
underlying codes for geometry, materials, and motion, and then routing the masks for specific tasks,
thereby enabling the implementation of video prediction, 4D reconstruction, and visual planning
through a single model.

4.4 Video-action Joint Training

The video-action joint training paradigm can simultaneously predict future observation results and
actions. Such methods achieve this by using the multi-task learning approach to enable the model
to better learn the correspondence between video and actions, thereby enhancing the prediction
performance. The core design is a shared latent space into which visual and action features are
projected via distinct encoders, then decoded by separate diffusion or autoregressive heads.

HMA [107] introduces Heterogeneous Pre-training (HPT) to map actions from different robot mor-
phologies into a common embedding, and employs masked autoregression so that the same Trans-
former parameters simultaneously predict next frames and next joint angles. UVA [61] proposes a
symmetrical encoder followed by decoupled diffusion heads: one head synthesizes video, the other
regresses continuous actions, while a masking schedule flexibly switches between reconstruction,
forecasting, and pure action generation objectives. WorldVLA [12] instantiates the paradigm with
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three encoders (image, text, action) feeding a joint latent space; a world-model head renders future
observations conditioned on the action head’s predicted controls.

4.5 RL-based Training

Over the past period of time, an increasing number of researchers have begun to utilize the RL
framework to train LLMs and VLMs, in order to enhance the understanding and reasoning capa-
bilities of large models in handling corner cases. Then a natural question arises: Can we use the
methods of RL to train the world model?

RLVR-World [[116] was the first to introduce the RL-based training paradigm into the world model,
and used a metric for video generation quality as the reward. It formulates the world model itself as
an autoregressive strategy, whose action is the next sequence of latent state tokens, and directly uses
visual metrics such as LPIPS as rewards to optimize the world model. The success demonstrates that
reinforcement learning can indeed sculpt world-model dynamics toward downstream utility without
catastrophic forgetting of generative fidelity.

Based on these early successful results, the next research frontier lies in making the reward mecha-
nism not merely slightly improve the quality of video generation. We expect it to have the potential
to become a major indicator for controlling behavioral controllability and may better guide the world
model to follow the laws of physics. The training method based on RL shapes the underlying dy-
namic mechanisms, enabling small changes in continuous joint angles to be transformed into reliable
and physically logical future outcomes.

S Applications of Embodied World Models

The recent improvements in architectural design and training paradigms have catalyzed significant
progress in embodied world models, revealing a promising future for their widespread application.
These models, which learn to simulate the dynamics of the physical world from data, offer powerful
solutions to several long-standing challenges in robotics. This section introduces the motivation,
implementation, and benefits of applying embodied world models in four domains: 1) Robotic Data
Generation, 2) Reinforcement Learning Environment Simulation, 3) Robotic Policy Evaluation, and
4) Action Planning in Agents, as shown in Figure [IT] Representative works in embodied world
model application are listed in Table[3]

5.1 Offline Robotic Data Generation Engine

Training robust and generalizable robotic policies requires vast and diverse data [103} 182} 57]]. One
of the most significant bottlenecks challenging the scalability of robot learning is data scarcity [93].
Traditional methods for collecting robotic data often involve human teleoperation of a physical
robot, which is usually time-consuming, labor-intensive, and fraught with safety risks. Further-
more, data collected this way often lacks diversity, reflecting the biases and limited behaviors of
human operators. These critical limitations have motivated the use of embodied world models as
powerful offline data generation engines.

An embodied world model functions by taking an initial environmental state and a sequence of
actions or text instructions to effectively predict the subsequent states of the robot and its environ-
ment. This predictive capability allows for the creation of robotic trajectories in an efficient way
to train a downstream robotic policy [52]. Leveraging extensive world knowledge acquired during
pretraining on large-scale, diverse corpora, many embodied world models can generate a rich va-
riety of trajectories that encompass different robotic behaviors, environmental conditions, and task
outcomes [52} |67]]. These introductions of synthesized diversity data are proven helpful to unlock
behavior and environment generalization in robot learning. Moreover, world models can also be
leveraged to generate failed trajectories with the least cost, helping to improve the policy’s general-
ization [54].

The use of embodied world models as data generation engines offers a scalable solution to the
challenges of data scarcity and homogenization. It dramatically reduces the labor, time, and financial
costs associated with human teleoperation, clearing a path toward more powerful and generalizable
robotic systems. Empirical results demonstrate that data synthesized by world models, whether
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Figure 11: Illustrations of four main applications of embodied world models. The model can be
deployed as: 1) A Data Generation Engine to overcome data scarcity by synthesizing diverse
trajectories. 2) A Reinforcement Learning Environment to enable efficient and safe policy training
in imagination. 3) A Policy Evaluator to provide scalable and reproducible assessment of robotic
behaviors. 4) A Planning Module to facilitate long-horizon reasoning by simulating potential action
outcomes.

used alone or in conjunction with real data, can significantly improve the performance of policies
across various robotic tasks [[52}|54}67]]. Despite these advantages, the simulation-to-reality gap [87]]
still remains a persistent challenge. While current works of world models are striving to minimize
this gap, the discrepancies between the generated data and physical reality can cause performance
degradation when a policy is deployed on a physical robot.

5.2 Environment Substitute for Reinforcement Learning

Reinforcement Learning has demonstrated remarkable success in enabling agents to learn complex
behaviors automatically. However, its practical application in robotics is often hindered by profound
sample inefficiency [127]]. Training robotic policies through direct trial-and-error interactions in the
real world can require millions of steps to converge, a process that is slow, expensive, and can cause
significant wear and tear on physical hardware. Furthermore, the physical embodied environment
and agents are not necessarily independent and identically distributed (i.i.d.), bringing instability
into the learning process. Model-based RL offers a powerful alternative paradigm that addresses
these issues by using a learned model of the environment.

This process can be described as “learning in imagination” [38]]. Instead of interacting with the
physical world, the agent interacts with the world model, exploring different action sequences and
learning from the predicted outcomes safely and efficiently. This process can be massively paral-
lelized and executed much faster than real-time, allowing the agent to accumulate a vast amount of
experience in a short period. Once a competent policy is learned, it can be transferred to the real
environment for deployment.

For example, the GenRL framework [75] proposes a system that connects the latent representations
of pretrained Vision-Language Models with the latent space of a generative world model. After
grounding vision-language prompts into embodied domains, agents can be trained for correspond-
ing behaviors in imagination. Similarly, iVideoGPT [115] introduces an autoregressive transformer
framework that integrates multimodal signals (visual observations, actions, and rewards) as a world
model. This model can then be used to conduct visual model-based reinforcement learning, achiev-
ing competitive performance in various robotic manipulation tasks. To overcome the need for costly
and time-consuming real-world interaction, RoboScape-R [96] employs a unified embodied world
model as a proxy. This model predicts future observations and reward signals, enabling efficient
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online reinforcement learning to train robotic policies within a purely simulated environment. For a
world model to be an effective substitute for the real world, it must learn a representation of the en-
vironment’s dynamics that is both accurate and generalizable. An inaccurate or biased world model
is a critical limitation, as the agent may exploit flaws in the model’s physics or logic, leading to
policies that are effective in imagination but fail catastrophically upon real-world deployment.

5.3 Robotic Policy Evaluator

The development of diverse and increasingly complex robotic policies presents a significant evalu-
ation challenge. Directly assessing these policies in the real world is a laborious, time-consuming,
and often expensive process. In addition, real-world evaluation may suffer from a lack of repro-
ducibility and stability, as minor, uncontrollable variations in physical conditions—such as lighting,
object position, or surface friction—can lead to inconsistent outcomes and noisy assessments. Em-
bodied world models provide a compelling solution to these evaluation challenges by serving as a
high-fidelity proxy for the real world [62}154].

Instead of being executed in a physical embodied environment, a policy’s actions are fed into a world
model for predicting the consequences. The world model then simulates the interaction and gener-
ates a video of the predicted outcome. This approach allows the evaluation process in an efficient
environment, reducing the need for physical robotic operations. It is also inherently reproducible
and safe since the evaluations are conducted virtually. For instance, RoboScape [93] can act as a
competitive robotic policy evaluator without the need for actual robotic experiments.

This method enables not just qualitative assessment but also the extraction of precise, quantitative
metrics. Furthermore, world models facilitate powerful counterfactual evaluation, providing deeper
insights into a policy’s generalization capabilities and failure modes.

5.4 Action Planner as Embodied Agents

A core challenge for contemporary Al is enabling systems to learn about the world and develop be-
havioral capabilities primarily through observation [S9]. For embodied agents, visual representation
is vital for understanding, predicting, and planning within their physical environment [46]]. Research
into human cognition indicates that we use internal mental models to forecast the outcomes of our
actions and formulate plans [26] 86, [74} [13|137]. Embodied world models aim to provide this same
capability to Al agents, addressing common struggles like long-term reasoning and planning. Two
primary architectural designs have emerged for integrating world models into action planners:

Bi-model Architecture: In this design, the world model and the policy planning model are sep-
arate components [46} |83) 92]. The world model simulates the outcomes of many different action
sequences based on prior knowledge. Then the world model can be used to enhance the target policy
model. This process improves performance, especially in novel scenarios and complex tasks. For
example, MoE-WM [92] proposes a hybrid approach by combining latent-space and visual-space
world models to predict future observations and collectively decode actions.

One-model Architecture: This approach utilizes the world model’s inherent capability for environ-
ment transition modeling to plan actions, a principle exemplified by the V-JEPA 2 architecture [3].
It is built upon a pretrained action-free joint-embedding-predictive model which is trained in a self-
supervised manner. The model’s action planning process involves sampling candidate action trajec-
tories and then optimizing them based on minimizing an energy function to derive a predicted trajec-
tory. Based on large-scale self-supervised training and post-training, the latent action-conditioned
world model gains robot skills like planning in tasks with visual goal specification and can generalize
zero-shot to new environments.

6 Benchmarks of Embodied World Models

Benchmarks for embodied world models aim to evaluate whether generative models can serve not
merely as visual synthesizers but as reliable simulators of physical and interactive environments.
Unlike traditional video generation metrics that emphasize visual fidelity or language alignment,
benchmarks in this domain must capture dimensions essential for embodied intelligence, includ-
ing physical plausibility, task execution, policy evaluation, and data scalability. To structure this
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Table 5: Representative Works in Embodied World Model Applications.
Application Area Method World Model Type

DreamGen [52] Finetuned WAN 2.1 [104]

RoboTransfer [[67] Multi-view, geometry, and appearance
conditioned diffusion model

EnerVerse-AC [54] UNet-based Video Diffusion Model

Offline Robotic
Data Generation

RL Envi GenRL [75] GRU-based Recurrent Architecture
nvironment 1VideoGPT [115]] Autoregressive Transformer over quantized
Substitute .
multimodal tokens
RoboScape-R [96]  Autoregressive Transformer predicting both
observation and reward
DreamerV3 [42]] Recurrent State-Space Model with discrete
latent representations
Robotic Policy WorldEval [62] Finetuned WAN 2.1 [[104]
Evaluator EnerVerse-AC [54] UNet-based Video Diffusion Model
Action P GPC [83] UNet-based Video Diffusion Model
ction Planner as . . op s
Embodied Agents VPP [46] Finetuned Stable Video Diffusion [9]
MOoE-WM [92] Mixture of latent and pixel space world
models

V-JEPA 2-AC [3]] Joint-Embedding Predictive Architecture [2]

landscape, we review four complementary perspectives. The first examines generated data quality,
reconceptualizing fidelity as a multi-dimensional construct that integrates perceptual, semantic, and
physical consistency. The second shifts focus to end-to-end manipulation evaluation, where world
models are assessed as planners capable of producing valid action trajectories. The third addresses
evaluation reliability, asking whether world-model-based assessments faithfully predict real-world
policy performance. Finally, the fourth perspective considers data scaling, measuring how synthetic
rollouts support efficient, generalizable, and transferable policy learning. Together, these bench-
marks establish a systematic framework for assessing embodied world models as both generators
of physically grounded data and enablers of embodied decision-making. Representative works and
associated metrics are summarized in Table

6.1 Generated Data Quality

In evaluating embodied world models, the quality of generated data is a central prerequisite, as
only videos that are visually convincing, semantically faithful, and physically coherent can provide
reliable substrates for reasoning and control. Recent benchmarks reconceptualize data quality as
a multi-dimensional construct rather than a single score. VBench [51] introduced sixteen disen-
tangled dimensions, separating perceptual video quality (temporal smoothness, subject consistency,
aesthetics) from condition consistency with text prompts (semantic fidelity, spatial relations, style).
T2V-CompBench [94] extended this view to spatio-temporal compositionality, assessing dynamic
attribute binding, motion and action binding, interactions, and numeracy through multimodal lan-
guage models, detection methods, and motion tracking. VBench-2.0 [136]] further advanced the field
by focusing on intrinsic faithfulness, measuring human fidelity, creativity, controllability, physics,
and commonsense via hybrid pipelines of VLM-LLM alignment, video-based question answer-
ing, and anomaly detection. Collectively, these works trace a progression from surface fidelity, to
compositional coherence, to intrinsic world faithfulness, showing that data quality must integrate
perceptual, semantic, and physical-consistency dimensions to support embodied intelligence.

Within this progression, adherence to physical laws has emerged as a particularly crucial dimension,
since only physically plausible videos can underpin reliable reasoning and control. VideoPhy [J5]]
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Table 6: Evaluation perspectives, representative works, and metrics for embodied world models.

Perspectives Representative Works  Metrics
VBench [51] Temporal quality, frame-wise quality, semantics
consistency and style consistency.
T2V-CompBench [94] Video LLM-based metrics, spatial relationships,
generative numeracy and dense optical tracking.
VBench-2.0 [136] Human fidelity, creativity, controllability,
physics and commonsense.
VideoPhy [5]] Semantic adherence and physical commonsense.
Generated VideoPhy-2 [6] Semantic adherence, physical commonsense and
Data Quality physical rules.
PhyGenBench [77] Key physical phenomena detection, physics
order verification and naturalness evaluation.
WorldModelBench [60] Instruction following, physics adherence and
commonsense.
EWMbench [129] Scene consistency, motion correctness, and
semantic alignment & diversity.
DreamerV3 [41]] Planning performance on downstream tasks.
f&ld',tofnq V-JEPA 2 [3] QA accuracy, action anticipation recall and
anipulation planning success rate.
Evaluation

WorldSimBench [84]

Task success rate and execution accuracy.

WPE [85]] Evaluating In-Distribution and
Out-of-Distribution policies.
Evaluation Reliability

towards Policy Model

Pearson correlation coefficient and Mean
Maximum Rank Violation.

WorldEval [62]

Pearson correlation and R? between world
models and the ground-truth simulator.

RoboScape [93]

DreamGen [52]
RoboTransfer [67]]

Instruction following and physics alignment.
Multi-view consistency, geometric consistency,
and semantic consistency.

Data Scaling in

Downstream
Policy Model

GenSim [106]
WorldGPT [32)

Success rates.

Cosine similarity for state prediction, task

accuracy, and generation efficiency.
Traj-LLM [58]] Average displacement error, final displacement

error, and miss rate.

RoboScape [93]] Pearson correlation and R?.

first foregrounded this issue through human judgments of commonsense plausibility in material in-
teractions, while VideoPhy-2 [[6] scaled evaluation to sports and object-interaction scenarios with
rule-level annotations of laws such as gravity and momentum conservation, coupled with automatic
evaluators distilled from human feedback. PhyGenBench [/7] establishes a law-grounded eval-
uation paradigm by linking prompts to 27 physical laws and introducing a three-tier framework
that assesses phenomenon recognition, temporal ordering, and naturalness through vision—language
models. WorldModelBench [60] broadened this perspective to application-driven domains such
as robotics and driving, integrating instruction following, commonsense, and fine-grained physics
adherence categories. Finally, EWMBench [129] specializes in the evaluation of embodied world
models in robotic manipulation, combining scene consistency, trajectory-based motion correctness,
and semantic alignment with task instructions. Taken together, these benchmarks trace a trajec-
tory from intuitive plausibility to explicit law-grounded testing to task-specific embodied settings,
establishing physical evaluation as a systematic pillar of generated data quality.
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whether the world model can directly generate valid trajectories to achieve specified goals.
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Figure 13: Workflow of benchmarking evaluation reliability towards policy models. Candidate
policies are tested both in the world model and in the real world, with their outcomes compared
using correlation- and ranking-based metrics.

6.2 End-to-end Manipulation Evaluation

The evaluation of action planning accuracy treats the world model not as a training environment but
as the agent itself. The key question is whether the model can predict the outcomes of actions and
generate trajectories that effectively achieve the specified goals. This assesses the model’s capacity
for decision-making and long-horizon planning. Figure [I2]illustrates the workflow of this bench-
mark, where the world model itself serves as a planner to generate trajectories, and the resulting
rollouts are evaluated against ground-truth references.

More recently, large-scale self-supervised approaches have advanced the frontier of planning accu-
racy. V-JEPA 2 [3] leverages internet-scale video pretraining to learn predictive representations
of physical dynamics, and with only ~62 hours of robot interaction data, fine-tunes an action-
conditioned module that supports zero-shot robotic planning. The model demonstrates pick-and-
place manipulation on Franka arms in novel environments without task-specific rewards, underscor-
ing the benchmark value of evaluating zero-shot planning success.

Complementing algorithmic progress, WorldSimBench [84]] provides the first benchmark frame-
work explicitly targeting world models as planners. Its Implicit Manipulative Evaluation (measuring
whether generated videos can be consistently translated into correct actions)—tests models in three
embodied domains: open-ended environments (Minecraft), autonomous driving, and robotic manip-
ulation. This provides a principled way to measure whether a world model’s imagined rollouts align
with actionable control sequences.

In this perspective, the world model is judged as a planning agent, and benchmarks emphasize
decision quality, rollout fidelity, and the capacity to generate trajectories that directly translate into
successful embodied actions.
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6.3 Evaluation Reliability towards Policy Model

Evaluation reliability highlights whether embodied world models can provide policy assessments
that remain predictive of real-world outcomes. Rather than focusing solely on perceptual fidelity,
this dimension examines whether the metrics obtained from world-model-based evaluation are trust-
worthy indicators of actual robotic performance, thereby reducing the long-standing sim-to-real gap.
Figure |13| shows how this benchmark operates by comparing policy evaluations conducted in the
world model with those obtained from real-world executions, emphasizing correlation, ranking sta-
bility, and bias analysis.

Recent work highlights several strategies for enhancing evaluation reliability. On the one hand,
Quevedo et al. [85] introduce World-model-based Policy Evaluation (WPE), where an action-
conditioned video generation model serves as a proxy for policy testing. By comparing generated
rollouts with real-robot executions under the same action sequences, WPE proposes metrics based
on pixel-level similarity, perceptual scores, and semantic segmentation. Empirical findings show
that WPE tends to underestimate in-distribution policies and overestimate out-of-distribution ones,
yet consistently preserves relative policy rankings. This suggests that even imperfect world models
can serve as reliable pre-deployment evaluators when real-world testing is expensive or risky.

Building on this idea, Li et al. [[62] propose WorldEval, an automated framework that turns a video
generation model into a policy evaluator through Policy2Vec, a latent action representation derived
directly from the policy network. By injecting these policy-specific embeddings into a pre-trained
video model, WorldEval generates policy-following videos that reveal the quality of the underlying
controller. Experiments across multiple manipulation tasks demonstrate that WorldEval achieves
a strong correlation with real-world success rates, reporting Pearson coefficients above 0.94 and
stable ranking consistency. Furthermore, WorldEval extends to safety detection, as collapsed or un-
safe policies produce unrealistic or degenerate video outputs, enabling early detection of hazardous
behaviors before deployment.

On the other hand, Shang et al. [93] propose RoboScape, a physics-informed embodied world model
that augments video generation with temporal depth prediction and adaptive keypoint dynamics
learning. By incorporating geometric and motion constraints into the training process, RoboScape
addresses common failure modes of purely RGB-based models, such as implausible object deforma-
tions or discontinuous motions. Experiments demonstrate that RoboScape not only improves visual
and physical fidelity but also achieves high alignment with ground-truth simulators in policy eval-
uation, yielding a Pearson correlation above 0.95. This underscores the importance of embedding
physical priors to ensure reliable evaluation.

Together, these studies show that reliable policy evaluation cannot be achieved by surface-level
visual quality alone. Instead, benchmarks must assess both the stability of policy rankings and
the extent to which generated rollouts respect physical constraints. Moving forward, evaluation
protocols should integrate rank consistency, Pearson correlation, and bias analysis (under- vs. over-
estimation) with physics-aware modeling objectives. Such practices will help ensure that embodied
world models are not only visually convincing but also trustworthy evaluators of robotic policies.

6.4 Data Scaling in Downstream Policy Model

Another key perspective for benchmarking embodied world models is their ability to scale policy
learning. In this setting, the world model is treated as a surrogate environment or data generator,
and its utility is reflected in improvements in sample efficiency, generalization, and adaptation as
the scale of generated data grows. Figure [I4] depicts how benchmarks assess the impact of data
scaling, where world models generate datasets of different sizes to train downstream policies, and
improvements in efficiency, generalization, and transferability are measured.

Recent advances demonstrate multiple pathways through which data scaling enhances downstream
policy performance. One representative direction is the use of controllable video world models
for robotic data augmentation. Jang et al. propose DreamGen [52], which leverages generative
video models to produce diverse yet physically plausible rollouts, enabling agents to acquire robust
policies that generalize across tasks and environments. Extending this idea, RoboTransfer [67] intro-
duces a geometry-consistent video diffusion model to improve sim-to-real transfer, leading to higher
success rates in real-world robotic deployments. Beyond trajectory augmentation, world models are
also utilized as task generators. GenSim [[106]] employs large language models to synthesize novel
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robotic tasks and simulation scenarios, thereby broadening the training distribution and improving
robustness under unseen conditions.

Another line of work investigates multimodal and language-augmented world models.
WorldGPT [32] aligns large language models with multimodal scene representations, allowing
agents to benefit from world models not only in perception but also in reasoning about task seman-
tics. In trajectory-centric domains, Traj-LLM [38] demonstrates that language-pretrained models
can augment world models for trajectory prediction, thereby assisting planning modules to acquire
more accurate and generalizable strategies. In addition, RoboScape [93] shows that embedding
physical priors into rollouts improves both sample efficiency and transferability when scaling to
robotic policy learning.

In summary, data scaling serves as a rigorous perspective for evaluating embodied world models: the
extent to which a model can effectively exploit large-scale synthetic or multimodal data to accelerate
learning, enhance generalization, and facilitate deployment determines its practical value. However,
challenges remain in ensuring that scaled data respects physical laws, avoids distribution collapse,
and balances diversity with fidelity.

7 Challenges and Future Works

7.1 Effective Data Collection

Generative world models in Al are systems that learn to simulate and predict real-world dynamics,
often used in reinforcement learning (RL), robotics, or video generation. However, the data collec-
tion for training the world model itself is also quite a challenge. Although there are a very large
number of Internet videos, few of them are specified for the embodied tasks and thus hard to use
when training world models [45]. The primary issue is the scarcity of high-quality, robot-relevant
data tailored to embodied tasks, where models require sequential, action-conditioned datasets that
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capture physical interactions, sensorimotor feedback, and environmental transitions—elements that
are expensive and labor-intensive to gather in real-world settings, often resulting in datasets orders
of magnitude smaller than those used for language or vision models (e.g., tens of thousands of hours
versus billions) [68]]. Bias and underrepresentation in training data further exacerbate challenges, as
skewed datasets—often drawn from limited sources—can perpetuate unfair outcomes or fail to cover
diverse scenarios, limiting adaptability across robotic domains [82]. That is, the data collection is
still the major direction in the future for better and stronger embodied world models.

7.2 Effective Architecture Designs and Causal Training

Another significant challenge in building generative world models for embodied robotics lies in
devising effective architecture designs that incorporate causal training, which refers to structuring
neural networks to learn and represent cause-effect relationships rather than mere statistical corre-
lations, enabling models to predict the outcomes of interventions and counterfactual scenarios in
dynamic physical environments. Some potential approaches for addressing this challenge are as fol-
lows. First, we can incorporate causal structures directly into model architectures. For example, it
may enhance the utility to employ causal transformers [76] (e.g., with causal masks) for sequential
reasoning in motion planning, focusing on relevant features while embedding cause-effect priors.
Second, some hybrid architectures with generation and action is also promising. For example, it
can enable differentiable planning and causal simulation of trajectories, by building modular VL As
or JEPA-based planners that condition on prompts for latent forecasting. Third, the causal relation
is actually a kind of physical regulation, and the method which can embed the physical laws are
also a potential solution. For example, one recent work [93]] embed physical priors into generative
models for joint RGB video generation and physics prediction, using unified architectures to ensure
causal consistency. In conclusion, it is promising to explore more on the causal architecture, hybrid
modules, physical laws, etc.

7.3 Effective Benchmark Construction

Another limitation in current embodied world model research is the absence of effective bench-
mark construction, which refers to the lack of comprehensive, standardized evaluation frameworks
tailored specifically to assess the unique capabilities and requirements of generative world models
in embodied Al systems, such as those used in robotics for simulating real-world dynamics, pre-
dicting action outcomes, and enabling long-horizon planning [[122]. This challenge arises because
existing benchmarks often focus on narrow aspects like visual perception or basic navigation, fail-
ing to holistically evaluate critical elements such as physical realism, motion dynamics, semantic
alignment with tasks, causal reasoning, and generalization across diverse environments, leading to
inconsistent comparisons between models and hindered progress in identifying true advancements
or weaknesses. To solve it, there are some promising future directions. First, it is essential to well
bridge the gap between the simulation and the real deployment. This calls for the development of
more easy-to-use and widely-used sim2real toolkits and systems, such as constructing benchmarks
with high-fidelity digital twins and physics engines [14]. Second, for the embodied task itself, the
assessment and evaluation are already very diverse, leading to various evaluation methods for the
embodied world model. The researchers should define the metrics of the embodied world model,
based on the critical abilities to support the embodied agents, rather than the perspective of Al-
based content generation [21]. Third, it is promising to involve more embodied agents combining
both LLM/VLM and traditional methods [30]], to autonomously interact with the simulation engine
and generated world model, to collect benchmark data. The agents should be empowered with adap-
tive policy to detect the weakness of the existing embodied world model, and consider more corner
cases during the data collection process. In conclusion, the future work should consider more on
sim2real gap, task-based evaluation, autonomous collection, etc.

7.4 Relation with Large Language Models

The advancement of large models serves as a key catalyst for the current development of embodied
intelligence, with early work demonstrating embodied reasoning and task-solving based on the in-
ternal world models of LLMs [S0]. Although current research on embodied world models primarily
focuses on a generative perspective [69} (72} 64], enhancing their capabilities from an understanding-
centric viewpoint has become an equally critical direction [20]. The necessity for this focus is
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particularly highlighted by findings that many existing multi-modal large language models exhibit
significant deficiencies in core capabilities such as fine-grained visual understanding and spatial
reasoning [[105} [109]]. Therefore, how to effectively improve the spatial understanding and reason-
ing abilities of these models [[110], and how to translate these advancements in understanding into
substantial improvements in generative performance [66], have emerged as key open questions. Ad-
dressing these issues will be instrumental in directly promoting the progress of embodied world
models.

7.5 Real-world Deployment and Applications

The real-world deployment and application of embodied world models represent a critical yet rela-
tively overlooked aspect of technological development, with key challenges in safety, generalization,
and efficiency standing as major bottlenecks to their maturation and practical use. Regarding safety,
current models often function as black-box controllers [69, [72}164], making it difficult to ensure reli-
ability in extreme or anomalous situations; consequently, investigating effective safety strategies to
construct inherently safe embodied world models is a crucial research direction. In terms of general-
ization, the performance of existing models remains significantly insufficient, heavily depending on
the diversity of training data [82]. While collecting more varied data is a viable short-term strategy,
the long-term solution lies in developing robust learning mechanisms that enable models to grasp
fundamental principles for true generalization. Concerning efficiency, the reliance on large mod-
els results in prohibitively large parameter sizes, low inference efficiency, high operational costs,
and unacceptable latency, making it essential to significantly improve their generation and inference
speed to render them practical and widely deployable.

7.6 Towards Universal and Cross-Scale Physical World Models

While current world models have found significant applications in virtual domains such as gam-
ing [4} [35] and are gaining traction in real-world scenarios like autonomous driving [78} [134] and
embodied intelligence 91} 93| [133]], the field remains fragmented, where models for different do-
mains are largely independent. This poses a significant challenge for achieving a universal model.
For instance, a driving world model primarily focuses on large-scale dynamics and external envi-
ronmental changes, whereas an embodied world model emphasizes the fine-grained details of object
manipulation. Another critical challenge lies in the heterogeneity of action control formats. Differ-
ent world models require varying types of action instructions, including text commands [1]], motion
trajectories [7]], and discrete joint states [93]. Unifying these diverse action spaces to control a single
generative model is a challenging research problem. Looking ahead, we aim to develop a domain-
agnostic physical world model that can generate and simulate different scenarios, from large-scale
locomotion to fine-grained manipulation. Such a model would represent a major step towards a
generalized embodied Al capable of understanding and interacting with our complex, multi-scale
world.

8 Conclusion

In this survey, we systematically review the rapid progress in embodied world models, a field critical
for the future of artificial general intelligence. To navigate this complex landscape, we introduced
a novel technical taxonomy that provides a clear, structured framework. This framework organizes
the field across four core dimensions: model architectures, training methodologies, application sce-
narios, and evaluation approaches. We first detailed vision-based generative world models and their
latent-space counterparts, along with distinct training paradigms. We then explored their diverse
applications, from serving as scalable cloud simulators to acting as on-device robot brains. We
also summarized key evaluation dimensions for effective benchmarking. Ultimately, this survey dis-
tills complex research into a clear, navigable guide. We conclude by outlining key challenges and
promising future directions, hoping to inspire further innovation in this vital domain.
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