
Route-and-Reason: Energy-Efficient Scaling of LLM Reasoning
via Reinforced Model Routing

Chenyang Shao∗
Department of Electronic

Engineering, BNRist
Tsinghua University

Zhongguancun Academy
Beijing, China

shaocy24@mails.tsinghua.edu.cn

Xinyang Liu∗
Department of Electronic

Engineering, BNRist
Tsinghua University

Beijing, China
liuxinya21@mails.tsinghua.edu.cn

Yutang Lin
Department of Electronic Engineering

Tsinghua University
Beijing, China

yt-lin21@mails.tsinghua.edu.cn

Fengli Xu†
Department of Electronic

Engineering, BNRist
Tsinghua University

Zhongguancun Academy
Beijing, China

fenglixu@tsinghua.edu.cn

Yong Li
Department of Electronic

Engineering, BNRist
Tsinghua University

Zhongguancun Academy
Beijing, China

liyong07@tsinghua.edu.cn

Abstract
Chain-of-thought has been proven essential for enhancing the com-
plex reasoning abilities of Large LanguageModels (LLMs). However,
the associated surge in test-time compute leads to prohibitive en-
ergy consumption and carbon footprints, posing strict challenges
for sustainable AI deployment. Recent advances have explored rout-
ing queries among multiple models as a promising mitigation strat-
egy. Yet, previous works operate primarily at the coarse-grained
task level, often resulting in resource inefficiency by failing to align
model capabilities with specific step-level difficulties. Collaboration
at the level of intermediate reasoning steps (thoughts) could enable
more efficient coordination, but it also poses significant challenges
for router scheduling, placing immense demands on the quality of
task decomposition and the precision of the router. To address this,
we propose R2-Reasoner, a novel framework centered around a
Reinforced Model Router designed to achieve energy-efficient
and scalable LLM reasoning. This router orchestrates collaboration
across 9 heterogeneous models, with parameter scales ranging from
less than 1B to hundreds of billions. It functions by decomposing
complex queries into subtasks and dynamically assigning each to
its optimal model via a subtask allocator, minimizing computational
overhead without compromising quality. Training involves a two-
stage alternating process for the decomposer and allocator, inte-
grating supervised fine-tuning with reinforcement learning for self-
supervised refinement. Extensive experiments across 6 benchmarks
demonstrate that R2-Reasoner reduces computational overhead by
84.46% in API cost and 71.14% in energy consumption compared to
∗ These authors contributed equally to this work.
† Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW ’26, Dubai, United Arab Emirates
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2307-0/2026/04
https://doi.org/10.1145/3774904.3793038

state-of-the-art baselines while maintaining competitive accuracy.
Our framework paves the way for the development of Green AI
and more environmentally sustainable reasoning systems. Code is
open-source at https://github.com/tsinghua-fib-lab/R2-Reasoner.

CCS Concepts
• Computing methodologies→ Reinforcement learning; Co-
operation and coordination.

Keywords
Sustainable AI, Energy-efficient Inference, Model Router, Large
Language Model, Reinforcement Learning

ACM Reference Format:
Chenyang Shao∗, Xinyang Liu∗, Yutang Lin, Fengli Xu†, and Yong Li. 2026.
Route-and-Reason: Energy-Efficient Scaling of LLM Reasoning via Rein-
forced Model Routing. In Proceedings of the ACM Web Conference 2026
(WWW ’26), April 13–17, 2026, Dubai, United Arab Emirates. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3774904.3793038

1 Introduction
Chain-of-Thought (CoT, [32]) has endowed large language models
(LLMs) with significantly enhanced reasoning capabilities. Build-
ing on this, LLM reasoning has progressed from prompting-based
sequential thoughts to reinforcement learning–driven long-chain
reasoning [5, 12, 18, 22, 27, 31], further evolving into the para-
digm of test-time scaling. This evolution, however, comes with a
substantial increase in computational overhead, resulting in high
energy consumption and expanded carbon footprint, which poses
significant challenges for the sustainable deployment of large-scale
AI systems. To mitigate such overhead, model router has been
introduced to route queries across models according to problem
difficulty, model capability and associated computational demand.
This strategy is recognized as an effective means of balancing the
enhancement of reasoning performance with energy efficiency. Its

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3793038
https://github.com/tsinghua-fib-lab/R2-Reasoner
https://doi.org/10.1145/3774904.3793038

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Chenyang Shao, Xinyang Liu, Yutang Lin, Fengli Xu, and Yong Li

recent deployment in GPT-5 [23] further demonstrates the great
potential of this approach.

Recent studies have increasingly explored model routers in var-
ious scenarios. One line of research aims to select one or more
models that are most suitable for each task from a knowledge cover-
age perspective [6, 9, 10, 35]. This approach can be viewed as a form
of LLM ensembling, motivated by the observation that different
LLMs exhibit complementary strengths in different knowledge do-
mains.While effective for knowledge-intensive tasks such as factual
QA, these methods are limited when applied to multi-step com-
plex reasoning (e.g., mathematical derivations), and they seldom
explicitly optimize for computational overhead or energy efficiency.
Another line of work focuses on device-cloud collaboration, where
local lightweight small language models (SLMs) and cloud-based
LLMs are coordinated such that simpler tasks are routed to SLMs,
while more complex tasks are escalated to LLMs [4, 13, 17, 26].
However, operating at the task level often results in overly coarse
routing granularity, making accurate routing decisions challenging
and introducing additional computational overhead.

To address these limitations, we revisit the problem of model
routing from the perspective of sub-tasks. Even complex reasoning
problems often comprise relatively simple sub-tasks, which can
be effectively resolved by more computationally efficient small-
scale language models (SLMs). If these simpler “thoughts” can be
accurately identified and delegated to such SLMs, while reserving
the more complex, capability-intensive sub-problems for larger
LLMs, the overall energy consumption can be substantially reduced.
This hierarchical approach aligns naturally with typical deployment
scenarios in commercial Model-as-a-Service (MaaS) platforms (e.g.
Azure), where a diverse pool of models is oftenmaintained, enabling
dynamic allocation based on sub-task complexity.

Nevertheless, implementing such a framework faces two core
challenges. First, high-quality task decomposition, splitting the
overall problem into coherent, solvable sub-tasks, is non-trivial [33,
38], as poor decomposition can produce erroneous intermediate
steps or inefficient work allocation, undermining both outcomes
and efficiency [37, 39]. Second, determining the difficulty of each
sub-task is challenging but critical for assigning the right model;
errors may overload smaller models or waste larger ones, reducing
inference efficiency and accuracy.

To overcome these challenges, we propose R2-Reasoner, a
framework that leverages a Reinforced Model Router to efficiently
scale LLM reasoning. As the core component, the Router opera-
tionalizes task decomposition and subtask allocation as two distinct
yet interconnected LLMs: the Task Decomposer generates a struc-
tured sequence of sub-tasks from an input query, while the Subtask
Allocator assigns each subtask to the most suitable model, rang-
ing from lightweight SLMs to powerful LLMs, based on estimated
difficulty. By explicitly separating decomposition and allocation,
R2-Reasoner enables fine-grained, scalable collaboration across het-
erogeneous models, optimizing both computational efficiency and
reasoning accuracy.

To fully unlock the potential of the Model Router, we develop a
staged reinforcement learning pipeline that progressively refines its
routing policy. We decouple the joint training of the Decomposer
and Allocator into an alternating iterative process, avoiding the
non-differentiability and gradient blockage in end-to-end updates

across two LLMs. Specifically, this strategy synergizes supervised
fine-tuning (SFT) with Group Relative Policy Optimization (GRPO)
within an alternating framework, facilitating stable and coordinated
policy refinement driven by self-supervised feedback. The frame-
work requires no additional human annotation, ensuring robust
adaptability in dynamic real-world scenarios.

Extensive evaluations across 6 benchmarks validate the efficacy
of our framework. The results demonstrate a substantial reduction
in inference costs, achieving an 84.46% decrease in API expenses and
a 71.14% decrease in energy consumption while maintaining rea-
soning performance competitive with strong baseline methods and
even improving average accuracy by 3.73%. Further experiments
demonstrate that R2-Reasoner exhibits strong generalization, ca-
pable of directly adapting to previously unseen models. Moreover,
our framework supports a flexible and controllable trade-off be-
tween accuracy and inference cost, enabling practical deployment
across diverse energy and budget constraints. In summary, our key
contributions are:
• We propose R2-Reasoner, a novel framework centered around
a Reinforced Model Router designed to enable energy-efficient
scaling of LLM reasoning at test-time. It facilitates fine-grained,
collaborative reasoning by decomposing complex tasks and allo-
cating subtasks across a diverse pool of heterogeneous models.

• We introduce an iterative training pipeline to optimize theModel
Router, not only allowing for the iterative refinement of routing
policy but also circumventing the non-differentiability that arises
in end-to-end gradient propagation between two LLMs.

• Extensive experiments on six complex reasoning benchmarks
demonstrate that R2-Reasoner can substantially reduce reason-
ing costs while maintaining high accuracy, effectively bridging
the gap between advanced reasoning capabilities and the require-
ments of environmentally sustainable AI infrastructure.

2 Related works
2.1 Task Decomposition and Multi-step

Reasoning
The chain-of-thought (CoT) prompting technique [32] has emerged
as a key method for enhancing LLM reasoning, enabling step-by-
step inference without additional training. Building on this idea,
more advanced paradigms such as tree-of-thought (ToT) [34] gener-
alize reasoning into structured sequences of intermediate “thoughts.”
Leveraging this notion, task decomposition methods and process
reward models [18] have been proposed to guide or supervise in-
dividual reasoning steps. Together, these approaches illustrate an
emerging paradigm that scales reasoning through both structural
decomposition and increased compute [27].

2.2 Collaborative Reasoning Among LLMs
Recent research has explored several strategies for enabling col-
laborative reasoning among multiple language models, each with
distinct trade-offs. Model partitioning [3, 17, 36] distributes a single
LLM across nodes, but suffers from high communication overhead
and limited robustness. Simple referral [4] routes easy queries to
small models and harder ones to stronger LLMs, though perfor-
mance depends on accurately assessing query difficulty. Token
correction [13] lets a SLM draft outputs while a LLM revises subop-
timal tokens, improving quality but incurring extra decoding costs.

Route-and-Reason: Energy-Efficient Scaling of LLM Reasoning via Reinforced Model Routing WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Final Answer

Allocation Data Collection

TASK

Iterative
RL

Rejection sample
F(D1,D2,D3) =

argmin i∈{1,2,3} len(Di)

TASK

Easy Medium Hard

Decomposition Data Collection

α-quantile
token probability

0.98 0.79 0.72 0.39 0.35

Fitting the allocation

Allocate Models to each Subtask
Procedural Review

Mechanism

Chain-like Reasoning Process

“…Do you think the
current answer to the
subtask is right? If not,
response yourself and
override it….”

Grouping & Initial Allocation

Current Allocation leads to the correct answer. Try to downgrade Model.
Current Allocation leads to the wrong answer. Go backward or upgrade model.

Independent
Supervised
Fine-tuning

Decomposer

Allocator

Inside Groups

Between Groups

M H H

Decomposition Plan 2
Evaluate

Score =
w0 * Numsubtask

+ w1 * token
+ w2 * Coe

S1=1237

S2=1558

S3=875

Pretrained
7B

Decomposition Plan 1

Decomposition Plan 3

Independent
Supervised
Fine-tuning

Pretrained
7B

Right,
no need to

revise

False,
The answer
should be …

1.0

0.9

0

0.1

0

0.9

0.1

0

1.0

0

Figure 1: Overview of Our R2-Reasoner Framework
Despite these advances, existing methods remain constrained by
coordination efficiency, accuracy, and scalability, underscoring the
need for more adaptive collaboration frameworks.
3 Preliminaries
Problem Definition: We consider a scenario of a commercial
Model-as-a-Service platform hosting a diverse set of heterogeneous
models. The goal of the platform is to orchestrate these models to
provide users with high-quality inference serviceswhileminimizing
both operational costs and environmental impact. Let M𝑝𝑜𝑜𝑙 =

{𝑀1, 𝑀2, . . . , 𝑀𝑁 } denote the heterogeneous model pool available
on the platform. Models in this pool vary in parameter scale and
reasoning capability. The entire set of reasoning tasks is represented
as T = {𝑇1,𝑇2, . . . ,𝑇𝑛}. Let the reasoning accuracy over the entire
task set be denoted as 𝐴𝑐𝑐 , with the API cost represented by 𝐶Api
and the energy consumption presented by 𝐸. Notably, 𝐶Api serves
as an appropriate proxy for energy consumption, as API pricing
typically scales with parameter size and reasoning chain length,
which are the primary drivers of computational demand, and 𝐸

serves as a direct calculation of reasoning consumption.
For each task 𝑇 , denote the decomposition process as: 𝑇 →

{𝑡1, 𝑡2, . . . , 𝑡𝑘 }. Based on the decomposed subtasks 𝑡𝑖 , the model
routing scheme can be denoted as: 𝑀 : 𝑡𝑖 ↦→ M𝑝𝑜𝑜𝑙 , which pri-
oritizes assigning subtasks to the most resource-efficient models
in M𝑝𝑜𝑜𝑙 that meet the difficulty requirements, while invoking
high-capacity models only for subtasks that necessitate advanced
reasoning capabilities. The goal of optimization is to minimize the
discrepancy between the model’s allocation scheme𝑀 and the op-
timal scheme𝑀∗: min |𝑀 −𝑀∗ |. The optimal scheme𝑀∗ is derived
through a search strategy thatmaximizes the usage of eco-friendly,
lower-cost models while maintaining accuracy. During the opti-
mization process, as the allocation scheme approaches the optimal
solution, the API cost (𝐶𝐴𝑝𝑖) and energy consumption (𝐸) decrease,
indicating a reduction in the system’s overall energy footprint,
while accuracy (𝐴𝑐𝑐) remains well-maintained.

4 Methodology
The R2-Reasoner framework is centered around aModel Router,
which consists of two primary modules: a Task Decomposer
(Mdecomp) and a Subtask Allocator (Malloc). The Task Decom-
poser is engineered to break down complex input tasks 𝑇 into
well-structured and logically ordered subtasks. Following this, the
Subtask Allocator strategically routes each subtask 𝑡𝑖 to the most
suitable model from M𝑝𝑜𝑜𝑙 . The routing is driven by the estimated
difficulty of each subtask, aiming to strike an optimal balance be-
tween reasoning fidelity and energy efficiency. The design and
training of these interconnected components are detailed below.

4.1 Generating Coherent Subtask Sequences via
Task Decomposer

The Task Decomposer (Mdecomp) serves as the first stage of the
Model Router, responsible for transforming a complex task𝑇 into a
sequence of logically connected subtasks {𝑡1, 𝑡2, . . . , 𝑡𝑘 }. The quality
of this decomposition is crucial: redundant or incoherent break-
downs can cause error propagation, while clear and concise sub-
tasks provide a strong foundation for subsequent allocation.

To supervise training, we construct a decomposition dataset
Ddecomp using a rejection sampling strategy. For each task, mul-
tiple candidate decompositions are generated and then evaluated
along three dimensions: Conciseness, assessed by the number of
subtasks to avoid both excessive fragmentation and overly coarse
splits. Practicality, estimated by the total token cost of solving all
subtasks with a baseline model. Coherence, measuring the logical
continuity between adjacent subtasks, with fewer breaks indicating
higher quality.

These criteria are linearly combined into a weighted score, where
lower values correspond to higher-quality decompositions. A bi-
nary correctness signal 𝐶 (𝑑) ∈ {0, 1} is further incorporated to
ensure that the selected decomposition can solve the original task.
When possible, only candidates with 𝐶 (𝑑) = 1 are retained, and

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Chenyang Shao, Xinyang Liu, Yutang Lin, Fengli Xu, and Yong Li

among them the one with the best score is chosen. This guarantees
that Ddecomp contains decompositions that are concise, coherent,
and practical while remaining effective for solving the task. The
resulting pairs (𝑇,𝑑∗) are then used to fine-tune Mdecomp. More
details and formulas are provided in the Appendix B.1.

4.2 Strategic Model Assignment for
Collaboration via Subtask Allocator

OnceMdecomp produces a subtask sequence, the Subtask Alloca-
tor (Malloc) determines how to distribute these subtasks across the
heterogeneous model pool M𝑝𝑜𝑜𝑙 . Formally, for each subtask 𝑡𝑖 , it
selects a model𝑀 𝑗 ∈ M𝑝𝑜𝑜𝑙 , yielding an assignment𝑀𝐴 : 𝑡𝑖 ↦→ 𝑀 𝑗 .

To enable Malloc to learn efficient assignment policies, we con-
struct a high-quality dataset Dalloc of model allocation schemes.
Rather than relying on hand-crafted heuristics, we employ a system-
atic search procedure over the vast space of possible assignments,
seeking schemes that minimize resource consumption while main-
taining perfect accuracy. The resulting allocation pairs ({𝑡𝑖 }, 𝑀∗

𝐴
)

serve as supervision signals for training Malloc to imitate these
cost-effective strategies.

However, exhaustive search over all allocations would be pro-
hibitively expensive in both time and cost. We therefore design a
Grouped Search Strategy to approximate optimal assignments
efficiently. The process begins by estimating the difficulty of each
subtask 𝑡𝑖 using the predictive confidence of a baseline model. We
use 𝛼-quantile method, which refers to calculating a specific quan-
tile from the token probabilities generated by LLM during inference
to denote the confidence that LLM has in answering the given query
and then the difficulty of the given query. If the maximum token
probability exceeds a threshold 𝜏easy, the subtask is labeled as easy;
if it falls below 𝜏hard, it is labeled as hard; otherwise, it is labeled
as medium. In parallel, the model pool M𝑝𝑜𝑜𝑙 is partitioned into
three capability groups: small language models (SLMs), medium
language models (MLMs), and large language models (LLMs). Each
difficulty level is paired with the corresponding capability group
(easy→SLM, medium→MLM, hard→LLM).

Based on this categorization, an initial allocation𝑀
(0)
𝐴

is ob-
tained by assigning each subtask to the medium-capacity model
within its corresponding group. This serves as the starting point
for iterative refinement: if the current allocation already achieves
correctness (𝐴𝑐𝑐 = 1), the allocator attempts to replace some mod-
els with cheaper ones to reduce cost; if correctness fails, subtasks
are escalated to stronger models within the same group, and only
if necessary, across groups. The search is bounded by a maximum
number of iterations (𝑁iter_alloc ≤ 20), after which the resulting
allocation𝑀∗

𝐴
is accepted. The collection of such ({𝑡𝑖 }, 𝑀∗

𝐴
) pairs

constitutes Dalloc, which is then used to train Malloc. Details of the
search algorithm is provided in Appendix B.2. This strategy enables
Malloc to learn fine-grained, capability-aware assignment policies
that balance accuracy and efficiency. The detailed formulation of
the grouped search procedure is deferred to Appendix B.2.

4.3 Dual-Module Co-training via Iterative
Reinforcement Learning

After the initial SFT ofMdecomp (𝜃decomp) andMalloc (𝜃alloc), We em-
ploy a staged RL pipeline to further refine their capabilities and
promote synergistic collaboration within the Model Router. In each

iteration, one module’s parameters are updated while the other re-
mains fixed, allowing targeted improvements based on task success
feedback, which also circumvents the non-differentiability and dis-
continuities arising from cascading two LLMs, thereby stabilizing
training. The primary reward signal is a binary indicator based on
the final correctness of the task 𝑇 :

𝑅𝑓 𝑖𝑛𝑎𝑙 (𝑇, {𝑡𝑖 }, 𝑀𝐴) =
{

1 if final answer is correct
0 if final answer is incorrect

(1)

We adopt Group Relative Policy Optimization (GRPO) as the opti-
mization algorithm for this co-training phase. Training proceeds
iteratively for each module:

(1) UpdatingMdecomp (𝜃decomp): The decomposer acts as the pol-
icy, generating sequences of subtasks {𝑡𝑖 } for an input task𝑇 . The
fixed allocator Malloc (𝜃alloc) assigns models to these subtasks,
and the final outcome is used to compute 𝑅𝑓 𝑖𝑛𝑎𝑙 . The reward is
propagated back to estimate the advantage 𝐴𝑖,𝑘 for decomposi-
tion decisions.

(2) UpdatingMalloc (𝜃alloc): The allocator acts as the policy, gener-
ating assignments 𝑀𝐴 (𝑡𝑘) for each subtask 𝑡𝑘 provided by the
fixed decomposerMdecomp (𝜃decomp). The final correctness again
determines 𝑅𝑓 𝑖𝑛𝑎𝑙 , which guides the advantage estimates𝐴𝑖,𝑘 for
allocation choices.

This alternating optimization encourages the two modules to
progressively adapt to each other, leading to improved overall rea-
soning performance.

4.4 End-to-End Workflow at Test Time
With the R2-Reasoner’s Task Decomposer (Mdecomp) and Subtask
Allocator (Malloc) trained through SFT and the iterative RL pipeline,
the framework can be deployed for inference. For a user query
𝑄𝑢𝑠𝑒𝑟 , the workflow is as follows: (1) Task Decomposition: The
query 𝑄𝑢𝑠𝑒𝑟 is first processed by the fine-tuned Task Decomposer:
{𝑡1, . . . , 𝑡𝑘 } = Mdecomp (𝑄𝑢𝑠𝑒𝑟). (2) Subtask Allocation: The re-
sulting sequence of subtasks {𝑡1, . . . , 𝑡𝑘 } is then passed to the fine-
tuned Subtask Allocator for strategic model assignment: 𝑀𝐴 =

Malloc ({𝑡1, . . . , 𝑡𝑘 }), where𝑀𝐴 (𝑡𝑖) ∈ M𝑝𝑜𝑜𝑙 is the model assigned
to subtask 𝑡𝑖 . (3) Subtask Execution: Each subtask 𝑡𝑖 is executed
sequentially by its assigned model𝑀𝐴 (𝑡𝑖). The output of subtask
𝑡𝑖 can serve as input to the subsequent subtask 𝑡𝑖+1. (4) Result In-
tegration: The results from the executed subtasks are sequentially
integrated to formulate the final answer 𝐴final.

To flexibly adapt to scenarios with different cost budgets, achieve
a controllable accuracy–cost trade-off, and enhance reasoning ro-
bustness, we introduce an optionalProceduralReviewMechanism
(PRM). Let Mstrong denote a high-capability model (e.g., a frontier
LLM fromM𝑝𝑜𝑜𝑙) andMthresh a pre-defined threshold model rep-
resenting a minimum capability level. For each subtask 𝑡 𝑗 , let 𝑟 𝑗
be the output generated by its initially assigned model 𝑀𝐴 (𝑡 𝑗).
If 𝑀𝐴 (𝑡 𝑗) is below the threshold Mthresh, the output will be veri-
fied and potentially refined: 𝑟final𝑗 = PRM_Verify(Mstrong, 𝑟 𝑗) The
PRM_Verify function utilizes Mstrong to assess the correctness of
𝑟 𝑗 . If 𝑟 𝑗 is deemed incorrect or suboptimal, Mstrong provides a cor-
rected or refined response 𝑟 ′𝑗 ; otherwise, 𝑟

final
𝑗 = 𝑟 𝑗 . This 𝑟final𝑗 is then

used for all subsequent reasoning steps. This mechanism allows

Route-and-Reason: Energy-Efficient Scaling of LLM Reasoning via Reinforced Model Routing WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

LLM reasoning

Subtask A

1.Subtask Difficulty Estimation
s-Task1 s-Task5 s-Task6 s-Task3 s-Task2 s-Task4

Subtask B

0 𝑰𝒏𝒅𝒆𝒙𝑻𝒐𝒌𝒆𝒏

𝑷𝒓𝒐𝒃𝑻𝒐𝒌𝒆𝒏

EASY

HARD

> > > > >

3. Allocation Search Within Group Difficulty Ranking

EvaluationAnswer A Answer B

Subtask A

Subtask B

Subtask C

Answer C

Subtask C 😏

😑

😟

MEDIUM

Token
Probability

Confidence of
the answer

2.Initial Allocation

s-Task6

s-Task4

s-Task1 s-Task5

s-Task3 s-Task2

Task group Model group

1

Downward Allocation

Evaluation Correct

...

Evaluation Correct

Evaluation

Wrong

2

Upward Allocation

Evaluation Wrong

Upward Allocation

Evaluation

Return

Wrong

2

3

4

Return 4

Evaluation Correct

...

4. Allocation Search Between Groups
1

Evaluation Wrong

Evaluation Wrong

2

3
Evaluation Correct

Return 2

Return 3

Evaluation Correct

Return 1

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

Correct

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

Downward Allocation

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

1

easy

hard

easy

hard

Figure 2: Overview of Our Grouped Search Strategy for Optimal Allocation Scheme
targeted quality control, preserving accuracy while maintaining
the cost-efficiency of allocation.

5 Experiments
5.1 Experimental Setup
BenchmarksWe choose six widely-used open-source benchmarks:

(1) P3 [25] for program synthesis. P3 defines each puzzle by a
python program f and checks if the candidate input could make f
return True. It places emphasis on the ability involved during cod-
ing process such as syntax correctness and algorithmic reasoning.

(2) SCAN [16] for language-driven navigation. It consists of
navigation commands with corresponding action sequences. By
instructing machines to convert natural-language commands into
a sequence of actions and comparing the generated sample with
label, it focus on assessing the ability of logical traversal, backward
reasoning and anomaly detection.

(3)MATH [14] and CHAMP [19]for solving challenging math
problems. MATH consists of 12,500 challenging mathematics prob-
lems, while CHAMP contains 270 diverse high school competition-
level math problems. They mainly involve LLM’s conducting com-
putation and memorizing mathematical knowledge. Solving math
problems has been universally acknowledged as a crucial aspect to
measure LLM’s reasoning ability.

(4) CSQA [28] andMuSiQue [30] for commonsense reasoning.
These 2 benchmarks require a broader commonsense knowledge
base for LLM. Considering the knowledge base varies as the scale
of LLM varies, they are suitable for testing if different LLMs in our
framework could collaborate and compose an integrated knowledge
base in commonsense scenario.

For each benchmark, wemanually annotate a small set of samples
for in-context learning in task decomposition and select another
200 tasks as the test set.

Baselines Considering the scenario of collaborative reasoning,
we establish six baselines. (1) CoT [32]: CoT (Chain of Thought)
asks a single LLM to solve a task by decomposing the original
task into a sequence of sub-tasks and answering these sub-tasks
sequentially. (2) ToT [34]: ToT (Tree of Thoughts), based on the
framework of CoT, prompts multiple answers (N = 2) for each sub-
task, and retain the best answer by utilizing a scoring method. It
also only deploys one certian LLM. (3) DataShunt [4]: Datashunt
dynamically selects between a SLM and a LLM to finish the task. The
method first evaluates the difficulty of the given task, and allocate
the task to either SLM or LLM to solve utilizing the CoT method.
(4) AutoMix [2]: AutoMix consists of a few-shot self-verification
mechanism conducted by SLM to evaluate the confidence toward an
answer from SLM and a router that strategically routes queries to
LLM based on the confidence. (5) DoT [26]: DoT decomposes a task
into subtasks, builds a dependency graph, and allocates subtasks
to SLMs or LLMs using a Plug-and-Play Adapter on SLMs. This
framework enables efficient edge-cloud collaborative reasoning. (6)
Router-R1 [35]: Router-R1 chooses an LM as the router itself,
interweaving thinking process by the router with routing process by
the routed models, and integrates every response into the context.

Selection and Deployment of LLMs In R2-Reasoner method,
for candidate LLMs to solve different subtasks, We select Qwen2.5-
0.5B-instruct, Qwen2.5-1.5B-instruct, Qwen2.5-3B-instruct, Qwen2.5-
7B-instruct, Qwen2.5-14B-instruct, Qwen2.5-32B-instruct, Qwen2.5-
72B-instruct [24], DeepSeek-V3 [8], gpt-4o [21] as the LLM pool.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Chenyang Shao, Xinyang Liu, Yutang Lin, Fengli Xu, and Yong Li

Model
Program Synthesis

Language-Driven
Navigation

Math Problem
Solving

Commonsense
Reasoning

P3 SCAN MATH CHAMP CSQA MuSiQue
𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐸 (J) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐸 (J) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐸 (J) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐸 (J) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐸 (J) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐸 (J)

CoT (GPT-4o) 42 4.45 3177.99 68 2.75 4855.03 51.5 5.34 3836.04 55.5 4.45 3856.04 80 3.60 2986.33 57 0.85 619.64
ToT (GPT-4o) 38 14.55 11977.75 52 9.82 9045.48 63 9.97 5730.99 57 11.65 11943.07 82 20.50 18736.34 59 2.45 2112.15

CoT (Llama 3-8B) 5.5 - 256.13 17 - 191.20 10 - 328.94 19 - 78.66 70 - 466.25 38 - 48.55
ToT (Llama 3-8B) 5.5 - 479.11 13 - 339.41 29.5 - 497.09 25 - 651.85 68.5 - 1667.65 31 - 144.97

DataShunt 14 2.45 4073.25 23.5 1.72 1477.77 16 1.66 826.43 34 2.98 2936.83 73 1.28 160.98 47 0.46 372.89
AutoMix 14 0.04 78.73 43 0.12 332.16 44 0.03 48.08 44 0.34 145.93 66 0.001 13.20 51 0.0074 16.34
DoT 41 1.58 2437.95 63 1.20 1152.49 59 1.02 493.76 58 0.84 936.88 82 0.49 91.37 50 0.13 96.28

Router-R1 7 0.14 384.48 2 0.15 161.95 58 0.62 214.31 47 9.78 287.45 54 0.12 76.29 38 0.12 127.18
R2-Reasoner 38 1.16 1264.81 75 0.64 657.98 76.5 0.08 123.11 59.5 0.28 308.34 83.5 0.042 75.62 56.5 0.029 41.81
Improvement ↓9.52% ↓73.93% ↓60.20% ↑10.29% ↓76.73% ↓86.45% ↑21.43% ↓99.18 ↓97.85% ↑2.59% ↓66.67% ↓67.09% ↑1.83% ↓91.43% ↓17.24% ↓4.24% ↓98.82% ↓98.02%

Table 1: Performance of R2-Reasoner and baselines on 6 benchmarks. CAPI is averaged expense for each task, and 𝐸 is the
average energy consumption. API cost is measured in US dollar cents (¢), while energy consumption is measured in units of
Joules(J). “-” appears in experiments where reasoning is conducted solely using local deployed SLMs without invoking the
cloud-based LLMs or data is unavailable. The highest reasoning accuracy is highlighted in bold. The baseline with the highest
Acc is underlined and used to compute the “Improvement” in the last row.

The ability of these LLMs increases following the order above.
Among thesemodels, Qwen2.5-0.5B-instruct, Qwen2.5-1.5B-instruct,
Qwen2.5-3B-instruct, Qwen2.5-7B-instruct are fee free for being
locally deployed, while the other cloud-based LLMs charges, and
the price of the these LLMs also increases following the order above.
For SFT and RL training on the task decomposer and subtask alloca-
tor, we select Qwen2.5-7B-instruct as the base model. For CoT and
ToT baselines, we respectively deploy gpt-4o and LLaMA3-8B [20]
in our experiments. For DataShunt, AutoMix and DoT baselines, we
select gpt-4o as the LLM and LLaMA3-8B as the SLM. For Router-
R1 baseline, we adopt the same LLM pool as in our R2-Reasoner
method.

Evaluation For evaluation, we set three metrics: Acc, CAPI and
𝐸, which represents our three main concerns in LLM reasoning.
Acc measures the accuracy of our framework and the baselines on
four benchmarks.CAPI measures the average API cost for a single
task, calculated in US dollar cents. 𝐸 measures the average energy
consumption for each task, calculated in units of Joules. Specifically,
𝐸 is obtained by multiplying the total number of FLOPs with the
energy required per FLOP operation. The total number of FLOPs
is computed as the sum of FLOPs consumed by each model. For
a given model, the FLOPs can be approximated as Total FLOPs ≈
2𝑁params ·𝑇, where 𝑁params denotes the scale of model parameters
(For MoE architectures such as DeepSeek-V3, this corresponds
to the dynamically activated parameter scale. Given the absence
of officially details regarding the parameter scale of GPT-4o, we
adopt the estimate of 200B parameters reported in MEDEC [1] as
a reasonable approximation.), and 𝑇 represents the sum of input
and output tokens [15]. In addition, we assume that all models are
deployed on NVIDIA A100 SXM GPUs. Under this assumption, the
energy consumed per FLOP can be approximated by dividing the
GPU’s thermal design power (TDP) by its peak FLOPS throughput.
These hardware specifications can be obtained from the GPU’s
technical documentation [7].

5.2 Experimental Hyperparameters
We set sophisticatedly designed hyperparameters during dataset
construction to better capture the ideal task decompostion and
subtask allocation schemes.

During constructing the dataset for the Task Decomposer, we
computed a weighted average over the three dimensions of task
decomposition to obtain a score according to an equation 3, which
involves three hyperparameters:𝑤𝑐 ,𝑤𝑝 , and𝑤𝑑 . These three hyper-
parameters serve as weights for: (1) the total number of subtasks,
(2) the total number of tokens used during inference, and (3) the
coherence score, respectively. Empirically, these three components
exhibit significantly different value ranges across a wide range of
tasks. Specifically, our analysis shows that their average values
are approximately 5.87 (number of subtasks), 676.59 (token count),
and 0.1541 (coherence score). To ensure the comparability of these
components during weighted aggregation, our hyperparameter se-
lection strategy is based on normalizing them to a similar scale.
Accordingly, we set 𝑤𝑐 = 100, 𝑤𝑝 = 1, and 𝑤𝑑 = 1000, which
balances their contributions in the combined scoring function.

To obtain the Practicality and the binary correctness signal
𝐶 (𝑑) ∈ {0, 1} in the scoring process, we adopt a locally deployed
LLaMA3-8B as the baseline evaluation modelMeval, which could
offer provides fast, consistent, and relatively rigorous feedback for
our task-decomposition framework.

During constructing the dataset for the Subtask Allocator, we
initially categorize subtasks to groups of different difficulty level
by an 𝛼-quantile method. For the quantile value selection, lower
𝛼-quantile value tends to overestimate the difficulty of all subtasks,
shifting overall allocation toward the hard group, which results in
selecting larger models. In contrast, higher 𝛼-quantile value tends
to underestimate subtask difficulty, shifting the allocation toward
the easy group and thus selecting smaller models. After conducting
pilot studies onmultiple original tasks, we set 𝛼 = 0.3 as our quantile
value to ensure a proper initial allocation.

To obtain the appropriate thresholds 𝜏easy and 𝜏hard, we originally
set the 𝜏easy as 0.66 and 𝜏hard as 0.33, then we conduct a pilot study
of dozens of original tasks on several benchmarks to check the

Route-and-Reason: Energy-Efficient Scaling of LLM Reasoning via Reinforced Model Routing WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

ratio of across-group refinement. If the ratio is too high, which
means our current threshold setting could not precisely group the
subtasks based on their difficulty level, we examine the detailed
token probability value and modify the set thresholds. Finally, the
𝜏easy is set as 0.8, and 𝜏hard is set as 0.52. Details regarding hardware
resources and hyperparameter configurations used in training can
be found in Appendix C.

5.3 Main Results
The comparison between our framework and the baselines in six
benchmarks are shown in Table 1. We have highlighted in bold the
highest accuracy results among the eight baseline experiments on
each benchmark, while the associated API costs and energy con-
sumption are underlined. We compute the relative improvement of
our results compared to the baseline with the highest accuracy. The
experimental results demonstrate that our framework significantly
reduces the API cost and energy consumption while retaining a
comparable reasoning accuracy. The relative changes in accuracy
compared to the highest baseline accuracy are: -9.52%, +10.29%,
+21.43%, +2.59%, +1.83%, -4.24%. Even for P3, the decline in accu-
racy is still acceptable. The boost in accuracy on benchmark like
MATH and SCAN validate the potential of our work in enhancing
reasoning ability. Meanwhile, our framework achieves a tremen-
dous reduction in API cost and energy consumption compared to
the baseline with the highest accuracy, reaching averagely a decline
of 84.46% in API cost and 71.14% in energy consumption.

The accuracy of our framework on benchmarks like MATH and
SCAN surpassing the CoT and ToT method shows the potential dis-
advantage of excessive reasoning. It usually happens in reasoning
process conducted by LLMs of large scale, often deviates from the
correct and suitable answer for a subtask because it automatically
proceed with reflective or divergent thinking. We design several
precise and exquisite prompts attempting to avoid the phenomenon.

Overall, the results demonstrate that R2-Reasoner achieves energy-
efficient LLM reasoning, which shows great potential of construct-
ing green and environment-friendly reasoning systems.

5.4 Ablation Study
To rigorously evaluate the contribution and of each stage, we report
the performance metrics (𝐴𝑐𝑐 and 𝐶𝐴𝑃𝐼) of the Task Decomposer
after each training stage, as summarized in Table 2. The table com-
pares the base model, the model after supervised fine-tuning (SFT),
and the final model after SFT combined with RL.

As observed, the SFT stage improves performance across all
benchmarks compared to the base model. Importantly, the addition
of the RL stage consistently further enhances both accuracy and
cost efficiency on every task. For instance, accuracy increases by
5–8% on most benchmarks, while 𝐶𝐴𝑃𝐼 is reduced or maintained at
a comparable level. This consistent improvement demonstrates that
the RL stage not only reliably enhances task performance but also
stabilizes the routing decisions across tasks. Overall, these results
strongly validate the effectiveness and robustness of our RL-based
multi-stage training process.

5.5 Generalization to Newly Unseen LLMs
To evaluate the generalization capability of the proposed R2-Reasoner,
we conduct an additional experiment in which several models are re-
placed with alternatives of comparable capacity, without retraining

the framework. Specifically, Qwen2.5-7B is replaced with GLM-4-
9B-Chat [11], and DeepSeek-V3 with Kimi-K2-Instruct [29]. The
results are summarized in Table 3.

As observed, the performance of our framework remains largely
stable on SCAN, MATH and CSQA. Accuracy decreases by 11.8%
on P3, 13% on CHAMP and 9% on MuSiQue, which can be attrib-
uted to differences in the reasoning capabilities of the replaced
models. Meanwhile, 𝐶𝐴𝑃𝐼 increases due to the higher API costs
associated with the new models. Overall, these results indicate that
the framework exhibits robust generalization to previously unseen
LLMs. Importantly, the R2-Reasoner does not rely on any particu-
lar model; as long as the relative ordering of model capabilities is
preserved, the router can maintain stable and reliable performance
across different model pools.

5.6 Trade-off Between Reasoning Cost and
Accuracy

Our framework supports a flexible trade-off between accuracy and
cost, enabling adaptation to different budget scenarios. By adjusting
the routing threshold within R2-Reasoner, we can dynamically
balance performance and expenditure. As shown in Figure 3, when
compared against DoT and DataShunt baselines on MATH and
SCAN benchmarks, our method establishes a new Pareto frontier.
The results clearly show that R2-Reasoner consistently achieves
significantly higher accuracy for a given cost budget, or conversely,
reaches a target accuracy at a substantially lower cost than both
competing methods.

This remarkable efficiency is quantitatively demonstrated across
both datasets. On theMATH benchmark, R2-Reasoner achieves over
70% accuracy for less than 0.08 cents, while the stronger baseline,
DoT, requires approximately 6 cents to reach similar performance—
a cost reduction of more than 75×. This advantage holds on the
SCAN dataset, where our method reaches 60% accuracy for about
0.4 cents, a task that costs the DoT baseline approximately 5 cents.
These results empirically prove that our routing mechanism en-
ables highly effective and budget-aware reasoning, offering practi-
cal adaptability for diverse real-world deployment scenarios with
varying budget constraints and providing a sophisticated approach
for building up sustainable reasoning system.

5.7 Inference Time Comparison
We conducted additional experiments under a consistent network
environment to evaluate the end-to-end reasoning latency of our
framework against several baseline methods. Each experiment was
performed independently under identical conditions. All API calls
were made sequentially in a single thread to eliminate concurrency-
related interference and ensure that external factors did not distort
the latency measurements. The reported results represent the av-
erage latency across all tasks in the benchmark, computed after
completing full inference runs for every task. In each bar plot, the
bar with the darkest color corresponds to our proposed method.
The summarized results are presented in Figure 4.

The inference latency results demonstrate significant differences
among the evaluated routing methods across the four benchmark
tasks. Notably, R2-Reasoner consistently achieves the lowest or
near-lowest latency in most cases. For instance, on P3, R2-Reasoner
completes inference in 14.27 seconds, substantially faster than CoT

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Chenyang Shao, Xinyang Liu, Yutang Lin, Fengli Xu, and Yong Li

Stages P3 SCAN MATH CHAMP CSQA MuSiQue
𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢)

base 23.5 0.314 14 0.066 67 0.150 50 0.494 70.5 0.147 43 0.0226
w/ SFT 33 2.027 68 0.577 75.5 0.079 58 0.370 82 0.056 51.5 0.0301
w/ SFT+RL 38 1.160 75 0.636 76.5 0.080 59.5 0.280 83.5 0.042 56.5 0.0287

Table 2: Performance (𝐴𝑐𝑐 and 𝐶𝐴𝑃𝐼) after each training stage.

Models P3 SCAN MATH CHAMP CSQA MuSiQue
𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢) 𝐴𝑐𝑐 (%) 𝐶𝐴𝑃𝐼 (¢)

Initial Pool 38 1.160 75 0.636 76.5 0.080 59.5 0.280 83.5 0.042 56.5 0.0287
Modified Pool 33.5 1.278 75 0.656 75 0.105 51.5 0.310 81.5 0.060 51.5 0.0438

Table 3: Experimental results of generalization capability of R2-Reasoner to new LLMs

0 2 4 6 8 10 12

CApi(¢)
10

20

30

40

50

60

70

80

Ac
c

(%
)

DoT
DataShunt
R2-Reasoner

0.06 0.08 0.10 0 2 4 6 8 10

CApi(¢)
20

30

40

50

60

70

Ac
c

(%
)

DoT
DataShunt
R2-Reasoner

0.4 0.5

Figure 3: Acc-Cost trade-off curves on MATH (left) and SCAN (right). A magnified inset is provided to the right of the original
sub-figure to more precisely illustrate the Pareto frontier of our method.

COT
GPT-4o

TOT
GPT-4o

COT
Llama3

TOT
Llama3

Data
Shunt

DoT R2-
Reasoner

0

20

40

60

80

In
fe

re
nc

e
La

te
nc

y
(s

)

35.80

93.10

18.10

58.30

25.10 23.50
14.27

(a) P3

COT
GPT-4o

TOT
GPT-4o

COT
Llama3

TOT
Llama3

Data
Shunt

DoT R2-
Reasoner

0

5

10

15

20

25

30

In
fe

re
nc

e
La

te
nc

y
(s

)

9.21

32.50

5.00

21.80

7.60
5.50

7.22

(b) SCAN

COT
GPT-4o

TOT
GPT-4o

COT
Llama3

TOT
Llama3

Data
Shunt

DoT R2-
Reasoner

0

10

20

30

40

50

60
In

fe
re

nc
e

La
te

nc
y

(s
)

34.50

60.50

21.10

49.00

24.90 22.60

9.88

(c) MATH
Figure 4: Inference latency comparison of different methods across three benchmarks.

and ToT configurations with both GPT-4o and LLaMA 3-8B models,
which require between 18.1 and 93.1 seconds. Similar trends are ob-
served on MATH and CSQA, where R2-Reasoner reduces inference
time by more than 50% compared to the heaviest baselines (ToT).

On SCAN, R2-Reasoner incurs a slightly higher latency than
CoT (LLaMA 3-8B), but it still remains considerably faster than the
majority of other methods, including all GPT-4o-based baselines.
This performance advantage can be attributed to the framework’s
adaptive routing strategy, which prioritizes lightweight models for
simpler instances and selectively invokes higher-capacity models
only when necessary. As a result, R2-Reasoner achieves both time
efficiency and cost efficiency, without compromising task perfor-
mance. Overall, these results highlight the framework’s capability
to perform fast and scalable reasoning across diverse benchmarks,
demonstrating clear practical advantages over existing LLM routing
methods.

6 Conclusion
In this work, we present R2-Reasoner, a novel framework leveraging
a reinforcedModel Router to enable energy-efficient scaling of large
language model reasoning. Enabled by an iterative training pipeline,
our framework fosters adaptive, sustainable model collaboration by
strategically allocating subtasks to the most resource-efficient mod-
els, thereby significantly minimizing computational waste. Looking
forward, R2-Reasoner paves the way for Green AI in complex rea-
soning systems and energy-aware computing ecosystems.

Acknowledgments
This work was supported in part by the National Natural Science
Foundation of China (grant no. 62472241 and 23IAA02114), in part
by the joint project of Infinigence AI & Tsinghua University.

Route-and-Reason: Energy-Efficient Scaling of LLM Reasoning via Reinforced Model Routing WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

References
[1] Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen-Yildiz,

Fei Xia, and Thomas Lin. 2025. Medec: A benchmark for medical error detection
and correction in clinical notes. In Findings of the Association for Computational
Linguistics: ACL 2025. 22539–22550.

[2] Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju,
Swaroop Mishra, Pei Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappa-
ganthu, Yiming Yang, Shyam Upadhyay, Manaal Faruqui, and Mausam. 2025.
AutoMix: Automatically Mixing Language Models. arXiv:2310.12963 [cs.CL]
https://arxiv.org/abs/2310.12963

[3] Fenglong Cai, Dong Yuan, Zhe Yang, and Lizhen Cui. 2024. Edge-llm: A collabo-
rative framework for large language model serving in edge computing. In 2024
IEEE International Conference on Web Services (ICWS). IEEE, 799–809.

[4] Dong Chen, Yueting Zhuang, Shuo Zhang, Jinfeng Liu, Su Dong, and Siliang
Tang. 2024. Data Shunt: Collaboration of Small and Large Models for Lower
Costs and Better Performance. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38. 11249–11257.

[5] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. 2024. Step-level Value Pref-
erence Optimization for Mathematical Reasoning. arXiv preprint arXiv:2406.10858
(2024).

[6] Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. 2024.
Routerdc: Query-based router by dual contrastive learning for assembling large
language models. Advances in Neural Information Processing Systems 37 (2024),
66305–66328.

[7] NVIDIA Corporation. 2025. NVIDIA A100 Tensor Core GPU. https://www.nvid
ia.com/en-us/data-center/a100/. Accessed: 2025-11-25.

[8] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian
Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong
Wang, Liyue Zhang, Meng Li, MiaojunWang, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,
Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang,
Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong,
Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen
Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma,
Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and
Zizheng Pan. 2025. DeepSeek-V3 Technical Report. arXiv:2412.19437 [cs.CL]
https://arxiv.org/abs/2412.19437

[9] Jasper Dekoninck, Maximilian Baader, and Martin Vechev. 2024. A unified
approach to routing and cascading for llms. arXiv preprint arXiv:2410.10347
(2024).

[10] Tao Feng, Yanzhen Shen, and Jiaxuan You. 2024. Graphrouter: A graph-based
router for llm selections. arXiv preprint arXiv:2410.03834 (2024).

[11] Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan
Zhang, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning
Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu
Sun, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang,
Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang,
Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai
Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao
Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and
Zihan Wang. 2024. ChatGLM: A Family of Large Language Models from GLM-
130B to GLM-4 All Tools. arXiv:2406.12793 [cs.CL] https://arxiv.org/abs/2406.1
2793

[12] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu,
Runxin Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. 2025. DeepSeek-R1 in-
centivizes reasoning in LLMs through reinforcement learning. Nature 645, 8081
(2025), 633–638.

[13] Zixu Hao, Huiqiang Jiang, Shiqi Jiang, Ju Ren, and Ting Cao. 2024. Hybrid slm
and llm for edge-cloud collaborative inference. In Proceedings of the Workshop on
Edge and Mobile Foundation Models. 36–41.

[14] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem
solving with the math dataset. arXiv preprint arXiv:2103.03874 (2021).

[15] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[16] Brenden Lake and Marco Baroni. 2018. Generalization without systematicity:
On the compositional skills of sequence-to-sequence recurrent networks. In
International conference on machine learning. PMLR, 2873–2882.

[17] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge AI: On-demand accel-
erating deep neural network inference via edge computing. IEEE Transactions on
Wireless Communications 19, 1 (2019), 447–457.

[18] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s
Verify Step by Step. arXiv:2305.20050 [cs.LG] https://arxiv.org/abs/2305.20050

[19] Yujun Mao, Yoon Kim, and Yilun Zhou. 2024. CHAMP: A Competition-level
Dataset for Fine-Grained Analyses of LLMs’ Mathematical Reasoning Capabilities.
arXiv preprint arXiv:2401.06961 (2024).

[20] Meta. 2024. Introducing Meta Llama 3: The most capable openly available LLM
to date. https://ai.meta.com/blog/meta-llama-3/

[21] OpenAI. 2024. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/.
[22] OpenAI. 2024. Introducing OpenAI o1. https://openai.com/o1/
[23] OpenAI. 2025. Introducing GPT-5. https://openai.com/index/introducing-gpt-5/.
[24] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen

Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang
Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. 2025. Qwen2.5 Technical
Report. arXiv:2412.15115 [cs.CL] https://arxiv.org/abs/2412.15115

[25] Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, and Adam Tauman Kalai. 2021.
Programming puzzles. arXiv preprint arXiv:2106.05784 (2021).

[26] Chenyang Shao, Xinyuan Hu, Yutang Lin, and Fengli Xu. 2025. Division-of-
thoughts: Harnessing hybrid language model synergy for efficient on-device
agents. In Proceedings of the ACM on Web Conference 2025. 1822–1833.

[27] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling LLM Test-
Time Compute Optimally can be More Effective than Scaling Model Parameters.
arXiv:2408.03314 [cs.LG] https://arxiv.org/abs/2408.03314

[28] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2018. Com-
monsenseqa: A question answering challenge targeting commonsense knowledge.
arXiv preprint arXiv:1811.00937 (2018).

[29] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen,
Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui,
Hao Ding, Mengnan Dong, Angang Du, Chenzhuang Du, Dikang Du, Yulun Du,
Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao, Hongcheng Gao, Peizhong Gao, Tong
Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang Guo, Hao Hu, Xiaoru Hao,
Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu, Zhenxing Hu,
Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao
Li, Yanhao Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin,
Zongyu Lin, Chengyin Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu,
Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo
Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe Lu, Lijun Lu, Shengling Ma, Xinyu
Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo Miao, Siyuan Pan, Yebo
Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi, Feifan
Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao,
Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou
Wang, Jiaxing Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang,
YejieWang, YiqinWang, YuxinWang, YuzhiWang, ZhaojiWang, ZhengtaoWang,
Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu, Xingzhe Wu, Yuxin Wu,
Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing Xu, L. H.
Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang,
Haotian Yao, Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu,
Enming Yuan, Hongbang Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao
Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun Zhang, Yizhi Zhang, Yongting
Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang, Haotian Zhao,
Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida
Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. 2025. Kimi K2: Open Agentic
Intelligence. arXiv:2507.20534 [cs.LG] https://arxiv.org/abs/2507.20534

https://arxiv.org/abs/2310.12963
https://arxiv.org/abs/2310.12963
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Chenyang Shao, Xinyang Liu, Yutang Lin, Fengli Xu, and Yong Li

[30] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.
2022. MuSiQue: Multihop Questions via Single-hop Question Composition.
arXiv:2108.00573 [cs.CL] https://arxiv.org/abs/2108.00573

[31] Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu,
and Zhifang Sui. 2023. Math-shepherd: A label-free step-by-step verifier for llms
in mathematical reasoning. arXiv preprint arXiv:2312.08935 (2023).

[32] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[33] Noam Wies, Yoav Levine, and Amnon Shashua. 2023. Sub-Task Decomposition
Enables Learning in Sequence to Sequence Tasks. arXiv:2204.02892 [cs.CL]
https://arxiv.org/abs/2204.02892

[34] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving
with large language models. arXiv preprint arXiv:2305.10601 (2023).

[35] Haozhen Zhang, Tao Feng, and Jiaxuan You. 2025. Router-R1: Teaching LLMs
Multi-Round Routing and Aggregation via Reinforcement Learning. arXiv
preprint arXiv:2506.09033 (2025).

[36] Mingjin Zhang, Jiannong Cao, Xiaoming Shen, and Zeyang Cui. 2024. Edge-
Shard: Efficient LLM Inference via Collaborative Edge Computing. arXiv preprint
arXiv:2405.14371 (2024).

[37] Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H
Chi, Quoc V Le, and Denny Zhou. 2023. Take a step back: Evoking reasoning via
abstraction in large language models. arXiv preprint arXiv:2310.06117 (2023).

[38] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-
most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625 (2022).

[39] Wang Zhu, Jesse Thomason, and Robin Jia. 2023. Chain-of-questions training
with latent answers for robust multistep question answering. arXiv preprint
arXiv:2305.14901 (2023).

A Supplementary Experiment Results
A.1 Performance Improvement of Decomposer
To evaluate how the two stages of SFT and RL training have im-
proved the task decomposer, we test 100 tasks on four benchmark
(one from each category) and report results using two global metrics:
Cd and the comprehensive Score (defined in Section 4.1). The Cd is
calculated as the accuracy of the final answer obtained by allocating
all subtasks generated from the current checkpoint to Llama3-8B,
while the Score is computed following Equation 3. The comparison
between the base model and our trained checkpoints is shown in
Table 4. On average, SFT and RL jointly yield a 27% increase in Cd
and a 6% reduction in Score. Across all benchmarks, SFT provides
consistent improvements, while RL exhibits mild instability but still
contributes overall gains. We attribute this instability to potential
insufficiencies in the reward function design.

Model
P3 SCAN MATH CSQA

𝐶𝑑 𝑆𝑐𝑜𝑟𝑒 𝐶𝑑 𝑆𝑐𝑜𝑟𝑒 𝐶𝑑 𝑆𝑐𝑜𝑟𝑒 𝐶𝑑 𝑆𝑐𝑜𝑟𝑒

base 0.06 2200.51 0.38 1600.19 0.28 1311.71 0.69 1171.53
w/ SFT 0.10 1848.40 0.46 1557.43 0.31 1265.60 0.75 1161.46

w/ SFT+RL 0.10 1788.41 0.45 1508.50 0.34 1234.63 0.72 1201.73

Table 4: Performance improvement achieved of the Task
Decomposer after multi-stage training.

Benchmark Conciseness Practicality Coherence

SCAN 3.00→2.9263 2197.04→2208.89 0.1459→0.1367
MATH 7.54→4.36 848.03→939.45 0.0364→0.0116

Table 5: Evaluation of decomposition quality before and after
the multi-stage training.

Beyond these global metrics, we further analyze decomposition
quality on three finer-grained dimensions: Conciseness, Practicality,
and Coherence. These dimensions are operationalized as follows:
Conciseness: measured by the number of subtasks generated. Practi-
cality: measured by the token cost required for reasoning.Coherence:
measured by the proportion of logically incoherent subtask pairs
(as described in Section 4.1).

Fewer subtasks are generally preferred, as they directly reduce
API cost and latency. An excessive number of subtasks may cause
redundancy and confusion. Token consumption is ideally lower,
since concise answers are desirable, though moderately longer rea-
soning chains may yield more thorough inference. For coherence,
a smaller value is better, indicating stronger logical consistency
among subtasks. As shown in Table 5, our multi-stage training sig-
nificantly improves decomposition quality across these dimensions,
further validating the effectiveness of our approach.

A.2 Performance Improvement of Allocator
To measure how the 2 stages of SFT and RL training have improved
the ability of subtask allocator, we test 100 tasks on each benchmark
and set 2 metrics for evaluation: Acc andMAE. The Acc metric mea-
sures how many allocation samples are correct according to the la-
bels in our allocation dataset. TheMAE metrics is based on the LLM
pool listed below: Qwen2.5-0.5B-instruct, Qwen2.5-1.5B-instruct,
Qwen2.5-3B-instruct, Qwen2.5-7B-instruct, Qwen2.5-14B-instruct,
Qwen2.5-32B-instruct, Qwen2.5-72B-instruct, DeepSeek-V3, gpt-4o.
Starting from Qwen2.5-0.5B-instruct as model 0, we sequentially
assign model indices from 0 to 8, making the size of the number
align with the scale of the LLMs. We calculate the MAE between
the prediction LLM ID and the label LLM ID. The MAE metric in-
dicates the distance on the LLM map, providing a supplementary
sign showing that even if the prediction is wrong, how close it is
to the labelled correct answer. The comparison of the base model
and our training checkpoint are shown in Table 6. In overall the
SFT and RL method have achieved on average 121.29% increase
on accuracy and 24.08% decrease on MAE. On all benchmarks, the
SFT method shows significant improvement in both metrics. RL
method is also slightly unstable but still further achieve an overall
improvement on the base of SFT method. The insuffiency of RL
method’s effect may be because some inevitable reward hacking
during the RL process.

Model P3 SCAN MATH CSQA
𝐴𝑐𝑐 𝑀𝐴𝐸 𝐴𝑐𝑐 𝑀𝐴𝐸 𝐴𝑐𝑐 𝑀𝐴𝐸 𝐴𝑐𝑐 𝑀𝐴𝐸

base 0.0923 3.0763 0.1138 3.1041 0.1016 2.5355 0.1773 2.5638
w/ SFT 0.2197 2.7762 0.2067 1.9107 0.2362 1.8685 0.3274 1.9419

w/ SFT+RL 0.2187 2.7862 0.2606 1.9361 0.2410 1.8603 0.3227 1.9834

Table 6: Performance improvement achieved of the Subtask
Allocator after multi-stage training.

A.3 RL Reduces Dependence on SFT Data
To further examine the effectiveness of the RL stage, we conducted
an additional experiment on the MATH dataset by deliberately
reducing the amount of supervised fine-tuning (SFT) data. Specifi-
cally, the SFT training set was reduced by 50%, while the number
of RL training epochs was doubled.

https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2204.02892
https://arxiv.org/abs/2204.02892

Route-and-Reason: Energy-Efficient Scaling of LLM Reasoning via Reinforced Model Routing WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Under this setting, the model’s accuracy initially dropped by
23% immediately after SFT due to the reduced amount of annotated
data. However, after applying RL, not only was this performance
degradation fully recovered, but the reasoning accuracy was further
improved by an additional 1.5% compared to the original full-data
SFT baseline. This result highlights a key advantage of our RL pro-
cess: beyond improving reasoning ability, it substantially reduces
dependence on large quantities of annotated SFT data. In
practice, this suggests that RL can serve as a scalable alternative
when labeled resources are limited, making our approach more
data-efficient and broadly applicable.

B Further Supplements to Methods & Formulas
B.1 Detailed Formulation of Decomposer
Here, we provide a detailed formulation of the dataset construction
process for the Task Decomposer (4.1). The Task Decomposer, de-
noted as Mdecomp, is responsible for transforming a complex input
task𝑇 into a sequence of clearly defined and logically connected sub-

tasks:𝑇
Mdecomp
−−−−−−−→ {𝑡1, 𝑡2, . . . , 𝑡𝑘 }, where 𝑘 is the number of subtasks.

To systematically evaluate and select high-quality decompositions,
we define three complementary metrics. Conciseness measures
the number of subtasks 𝑘 , balancing between over-fragmentation
and overly coarse decomposition. Practicality estimates the com-
putational cost by summing the token usage of all subtasks under
a baseline evaluation modelMeval:

Practicality(𝑑) =
𝑘∑︁
𝑖=1

Tokens(𝑡𝑖 ,Meval). (2)

Coherence evaluates the logical flow by counting adjacent subtask
pairs that lack meaningful connection, denoted as Coepair (𝑑). It is
calculated as 𝐴/(𝑁 − 1), among which 𝐴 denotes the number of
pairs of adjacent subtasks in the sequence of multiple subtasks that
are independent from each other, and 𝑁 denotes the number of all
the subtasks. Lower values indicate better continuity.

These metrics are combined into an overall score for a candidate
decomposition 𝑑 = {𝑡𝑖 }𝑘𝑖=1:

Score(𝑑) =𝑤𝑐 ·𝑘+𝑤𝑝 ·
𝑘∑︁
𝑖=1

Tokens(𝑡𝑖 ,Meval) +𝑤𝑑 ·Coepair (𝑑), (3)

where 𝑤𝑐 ,𝑤𝑝 ,𝑤𝑑 > 0 are weighting coefficients. Lower scores
correspond to higher-quality decompositions.

Additionally, a binary correctness signal 𝐶 (𝑑) ∈ {0, 1} is deter-
mined by attempting to solve the original task using decomposition
𝑑 with the evaluation model Meval. For each task 𝑇 , we generate
a set of candidate decompositions S𝑇 = {𝑑1, 𝑑2, . . . , 𝑑𝑚} and select
the decomposition 𝑑∗ that minimizes the score while satisfying
correctness if possible:

𝑑∗ =


arg min𝑑∈S𝑇 ,𝐶 (𝑑)=1 Score(𝑑) if any 𝐶 (𝑑) = 1,

arg min𝑑∈S𝑇 Score(𝑑) otherwise.
(4)

The collection of all (𝑇,𝑑∗) pairs forms the decomposition dataset
Ddecomp.

Finally, the Task Decomposer is fine-tuned on Ddecomp using a
standard cross-entropy loss:

Ldecomp = −
∑︁

(𝑇,𝑑∗) ∈Ddecomp

∑︁
𝑖

log 𝑃𝜃decomp (𝑑
∗
𝑖 | 𝑇), (5)

where 𝑑∗𝑖 denotes the 𝑖-th subtask in the target decomposition.
This training ensures that Mdecomp consistently generates concise,
practical, and coherent subtask sequences suitable for efficient rea-
soning.

B.2 Grouped Search Strategy for Allocator
Training

Here, we provide the full details of the grouped search algorithm
used to construct the allocation dataset Dalloc (4.2).

Formal Problem. Given subtasks {𝑡𝑖 } from Mdecomp and a
model poolM𝑝𝑜𝑜𝑙 , the objective is to find an allocation scheme𝑀∗

𝐴

that minimizes resource consumption while ensuring correctness:

𝑀∗
𝐴 = arg min

𝑀𝐴

E[𝐶𝐴𝑝𝑖 (𝑀𝐴) +𝐶𝑇𝑖𝑚𝑒 (𝑀𝐴)] s.t. 𝐴𝑐𝑐 (𝑀𝐴) = 1.

(6)
Granularity Expansion. Each subtask 𝑡𝑖 is labeled with a diffi-

culty level based on 𝛼-quantile token probabilities:

𝐺 (𝑡𝑖) =

𝐺𝐸 𝑝 (𝑡𝑖) ≥ 𝜏𝑑𝑖 𝑓 𝑓 1,

𝐺𝑀 𝜏𝑑𝑖 𝑓 𝑓 2 < 𝑝 (𝑡𝑖) < 𝜏𝑑𝑖 𝑓 𝑓 1,

𝐺𝐻 𝑝 (𝑡𝑖) ≤ 𝜏𝑑𝑖 𝑓 𝑓 2 .

(7)

Simultaneously, models are grouped by capability:

M𝑝𝑜𝑜𝑙 = G𝑆𝐿𝑀
M ∪ G𝑀𝐿𝑀

M ∪ G𝐿𝐿𝑀
M . (8)

An initial allocation𝑀𝐴,0 maps each subtask to themedium-capacity
model within the corresponding group.

Within-Group Refinement. For each iteration 𝑗 , the allocation
𝑀𝐴,𝑗 is updated as:

𝑀𝐴,𝑗+1 (𝑡𝑖) =
{

smaller(G𝑋
M) if 𝐴𝑐𝑐 (𝑀𝐴,𝑗) = 1,

larger(G𝑋
M) if 𝐴𝑐𝑐 (𝑀𝐴,𝑗) = 0,

(9)

where 𝑋 =𝐺 (𝑡𝑖).
Cross-Group Adjustment. If correctness cannot be achieved

with within-group adjustments, inter-group changes are made:

𝑀𝐴,𝑗+1 (𝑡𝑖) ∈ G𝑌
M , 𝑌 ≠ 𝑋, (10)

subject to available model capacities.
Termination. The algorithm halts after at most 𝑁iter_alloc ≤ 20

iterations or when 𝐴𝑐𝑐 (𝑀𝐴,𝑗) = 1 with minimal resource usage.
The resulting allocations {({𝑡𝑖 }, 𝑀∗

𝐴
)} populate Dalloc.

Training Objective. The allocator Malloc is trained on Dalloc
via supervised fine-tuning. The loss function is defined as:

Lalloc = −
∑︁

({𝑡𝑖 },𝑀∗
𝐴
) ∈Dalloc

∑︁
𝑖

log 𝑃𝜃alloc (𝑀
∗
𝐴 (𝑡𝑖) | 𝑡𝑖). (11)

C Experiment Details
The hardware environment used for our experiments and the spe-
cific training hyperparameters are summarized in Table 7.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Chenyang Shao, Xinyang Liu, Yutang Lin, Fengli Xu, and Yong Li

Module Element Detail

System

OS Ubuntu 20.04.6 LTS
CUDA 12.4
Python 3.12.9
Pytorch 2.6.0
trl 0.17.0
accelerate 1.6.0
peft 0.15.1
flash_attn 2.7.4.post1
Device 2*NVIDIA A100 80G

Workflow API Siliconflow & Microsoft Azure

SFT

Mode Lora
Batch size 4, 8
Number of epochs 2, 3
Max token length 2048
Lora rank 32, 64
Optimizer AdamW
Learning rate 0.00002, 0.00003

RL Training

Algorithm GRPO
Number of Generation 4
Batch size 1
Global step 1024
Max token length 2048
Optimizer AdamW
Learning rate 0.0001, 0.00015

Table 7: Detailed Experimental Settings

	Abstract
	1 Introduction
	2 Related works
	2.1 Task Decomposition and Multi-step Reasoning
	2.2 Collaborative Reasoning Among LLMs

	3 Preliminaries
	4 Methodology
	4.1 Generating Coherent Subtask Sequences via Task Decomposer
	4.2 Strategic Model Assignment for Collaboration via Subtask Allocator
	4.3 Dual-Module Co-training via Iterative Reinforcement Learning
	4.4 End-to-End Workflow at Test Time

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Hyperparameters
	5.3 Main Results
	5.4 Ablation Study
	5.5 Generalization to Newly Unseen LLMs
	5.6 Trade-off Between Reasoning Cost and Accuracy
	5.7 Inference Time Comparison

	6 Conclusion
	Acknowledgments
	References
	A Supplementary Experiment Results
	A.1 Performance Improvement of Decomposer
	A.2 Performance Improvement of Allocator
	A.3 RL Reduces Dependence on SFT Data

	B Further Supplements to Methods & Formulas
	B.1 Detailed Formulation of Decomposer
	B.2 Grouped Search Strategy for Allocator Training

	C Experiment Details

