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ABSTRACT
In large-scale metropolis, it is critical to efficiently allocate vari-
ous resources such as electricity, medical care, and transportation
to meet the living demands of citizens, according to the spatio-
temporal distributions of resources and demands. Previous researchers
have done plentiful work on such problems by leveraging Multi-
Agent Reinforcement Learning (MARL) methods, where multiple
agents cooperatively regulate and allocate the resources to meet the
demands. However, facing the great number of agents in large cities,
existing MARL methods lack efficient parameter sharing strategies
among agents to reduce computational complexity. There remain
two primary challenges in efficient parameter sharing: (1) during
the RL training process, the behavior of agents changes signifi-
cantly, limiting the performance of group parameter sharing based
on fixed role division decided before training; (2) the behavior of
agents forms complicated action trajectories, where their role char-
acteristics are implicit, adding difficulty to dynamically adjusting
agent role divisions during the training process. In this paper, we
propose Dynamic Parameter Sharing (DyPS) to solve the above
challenges. We design self-supervised learning tasks to extract
the implicit behavioral characteristics from the action trajectories
of agents. Based on the obtained behavioral characteristics, we
propose a hierarchical MARL framework capable of dynamically
revising the agent role divisions during the training process and
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thus shares parameters among agents with the same role, reduc-
ing computational complexity. In addition, our framework can be
combined with various typical MARL algorithms, including IPPO,
MAPPO, etc. We conduct 7 experiments in 4 representative re-
source allocation scenarios, where extensive results demonstrate
our method’s superior performance, outperforming the state-of-the-
art baseline methods by up to 31%. Our source codes are available
at https://github.com/tsinghua-fib-lab/DyPS.

CCS CONCEPTS
• Computing methodologies→Multi-agent reinforcement
learning; Multi-agent planning; • Applied computing → Sup-
ply chain management.

KEYWORDS
Multi-agent reinforcement learning, dynamic parameter sharing,
spatio-temporal resource allocation.
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1 INTRODUCTION
In large-scale modern urban scenarios, it is a crucial decision-
making problem to allocate a large number of various resources,
e.g., water [33, 42], electricity [51], medical care [17, 18], transporta-
tion [19, 49, 50], etc., across the city (Figure 1a). Proper and efficient
allocation of resources meets the living and industrial demands of
citizens, which is the basis for ensuring the normal functioning

3128

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3637528.3672052
https://github.com/tsinghua-fib-lab/DyPS
https://doi.org/10.1145/3637528.3672052
https://doi.org/10.1145/3637528.3672052


KDD ’24, August 25–29, 2024, Barcelona, Spain Jingwei Wang et al.

and prosperity of the cities. However, due to the heterogeneous
and time-varying distribution of the resources and demands, the
optimal solution to such resource allocation problem must fully
take the complicated spatio-temporal characteristics into consider-
ation [3, 14, 36, 37]. Therefore, finding efficient resource allocation
strategies is a challenging yet important problem.

Recent advancements in reinforcement learning (RL) inspire
researchers to solve resource allocation problem within the frame-
work of Markov decision process (MDP) [17, 18]. Especially, multi-
agent reinforcement learning (MARL) is widely applied in such
problems [19, 28, 30, 33, 50], where multiple RL agents work co-
operatively to regulate and allocate resources. In large-scale cities,
the amount of resources and demands tend to be enormous, which
requires a large number of agents to be fully capable of allocating
resources throughout the city, leading to an unacceptable huge
number of learnable parameters and computational consumption
(Figure 1b). Facing such situation, a typical solution is parameter
sharing among agents [6, 10, 13, 35, 48]. Some rudimentary solu-
tions simply share parameters among all agents [10, 13, 35, 48],
which minimize the number of learnable parameters but discard
the behavioral differences among agents with different roles (Fig-
ure 1c). Modified design models the spatio-temporal features of
the agents before RL training and clusters agents into fixed groups
according to their similarities, where agents in each group share
parameters [6]. This design maintains the modeling of differences
among the roles of agents while keep a small number of learnable
parameters (Figure 1d).

Despite the prevalence of MARL with parameter sharing in solv-
ing resource allocation problems, there remain two major unsolved
challenges in these methods, limiting the performance of exist-
ing parameter sharing strategies. (1) Changing of agents’ roles
during training. The majority of existing solutions fix the role
grouping of agents before RL training, but during the training
process, the roles of agents change significantly when their be-
haviors are updated. Therefore, the pre-fixed role grouping may
not match the well-trained agents and limits the overall perfor-
mance. (2) Difficulty in identifying agents’ roles. The behavior
of agents forms complicated action trajectories during the steps of
the decision-making process, where their role characteristics are
implicitly embedded in the trajectories. This hinders the identifi-
cation of the agents’ explicit roles and increases the difficulty of
dynamically adjusting the roles during the training process.

Facing these challenges, we proposeDynamicParameter Sharing
(DyPS) framework, which dynamically identifies and adjusts the
agents’ roles along with the RL training process (Figure 1e), solv-
ing large-scale resource allocation problems. Specifically, DyPS
includes a self-supervised role modeling part and a hierarchical
MARL part. The former part employs a Variational Long Short-term
Memory (VLSTM) [15] and a Conditional Variational Auto Encoder
(CVAE) [38] to respectively depict the behavioral characteristics of
each agent and each group from the action trajectories. The latter
part consists of two levels, the Group Selection Module and the
Group-based Resource Allocation Module, where the Group Selec-
tion Module dynamically groups agents according to their roles
based on the behavioral characteristics extracted by VLSTM and
CVAE, and the Group-based Resource Allocation Module learns
multi-agent resource allocation strategies with parameters shared

among agents within the same group. Both modules are trained via
Actor-Critic (AC) [24] manner according to the feedback in agent-
environment interactions. We evaluate our framework across 7
experiments of 4 representative resource allocation scenarios, and
extensive results indicate its superior performance, surpassing the
state-of-the-art baseline methods by up to 31%. Also, our framework
can be easily combined with multiple typical MARL algorithms and
improve their performance on resource allocation problems.

In summary, the main contributions of this work include:

• We design a dynamic parameter sharing MARL framework
for large-scale resource allocation problems. This framework
is trained via environmental feedback, which dynamically
groups the agents according to their changing roles dur-
ing RL training. Then, agents within the same group share
parameters, reducing the computational complexity while
maintaining up-to-date modeling of agents’ roles.

• We employ VLSTM and CVAE to extract behavioral char-
acteristics of agents from their action trajectories via self-
supervised learning. Therefore, we can identify the role of
agents based on their behavioral characteristics and then
dynamically adjust the grouping during RL training.

• Extensive experiments on various scenarios demonstrate
that DyPS significantly outperforms the state-of-the-art base-
line methods with up to 31% improvement on resource allo-
cation tasks. Moreover, DyPS can be easily combined with
multiple MARL algorithms and improve their performance
on resource allocation.

2 PRELIMINARIES
2.1 Problem Formulation
In this paper, we mainly consider a targeted urban area that is
divided into a set of 𝐾 disjoint uniform grids, and 𝑇 is the total
of number time steps considered in the task. Here, we provide a
mathematical definition of resource, demand, and spatio-temporal
resource allocation problems.

Definition 1 (Resource). The total number of available re-
sources at time step 𝑡 is denoted as 𝑁𝑡 . The available resources are
distributed across the grids, where the number of available resources
at time step 𝑡 in grid 𝑘 is denoted as 𝑁𝑘𝑡 , and

∑
𝑘 𝑁

𝑘
𝑡 = 𝑁𝑡 .

Definition 2 (Demand). Demands in the city are needs for re-
sources, which are distributed across the grids. The number of demands
at time step 𝑡 in grid 𝑘 is denoted as 𝐷𝑘𝑡 , and

∑
𝑘 𝐷

𝑘
𝑡 can be either

smaller or larger than 𝑁𝑡 , which corresponds to the situation with
abundant or scarce resources.

Definition 3 (Spatio-Temporal ResourceAllocation). Given
a targeted urban area with certain resources and demands over𝑇 time
steps, a resource allocation strategy is to move the resources among
grids andmeet the demands in each grid at each time step. The number
of resources moved from grid 𝑖 to 𝑗 at step 𝑡 is denoted as𝑀𝑖 𝑗

𝑡 . Addi-
tionally, constraints may appear at specific tasks, where the movement
of resources must follow the constrains. The goal of this problem is to
find an effective resource allocation strategy to maximize the global
benefit after utilizing the resources.
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Resources

Demands

Urban area

(a) Resource allocation problem

No parameter sharing Overall parameter sharing

Fixed-grouping parameter sharing Dynamic parameter sharing

Agent

High complexity, full role modelling
e.g. IPPO [9]

RL Training

Minimal complexity, no role modelling
e.g. MAPPO [47]

Low complexity, poor role modelling
e.g. SePS [6]

Low complexity, good role modelling
DyPS (ours)

(b) No parameter sharing (c) Overall parameter sharing

(d) Fixed-grouping parameter sharing (e) Dynamic parameter sharing

Figure 1: Comparison among resource allocation MARL methods with different parameter sharing designs. (a) Illustration of
resource allocation problem in urban scenario. (b) None parameter sharing. (c) Overall parameter sharing. (d) Fixed-grouping
parameter sharing. (e) Dynamic parameter sharing (proposed DyPS).

2.2 Multi-Agent Markov Decision Process
A spatio-temporal resource allocation problem can be solved iter-
atively following the framework of multi-agent Markov decision
process (MAMDP), where multiple cooperative agents gradually al-
locate the resources to meet the needs step by step. A MAMDP [31]
can be defined by the tuple (𝑛,S,A, 𝑃, 𝑅,𝛾), where 𝑛 denotes the
total number of agents. The global state 𝑠 = (𝑠1, · · · , 𝑠𝑛) ∈ S =

S1 × · · · × S𝑁 consists of local state of each agent. The joint action
𝑎 = (𝑎1, · · · , 𝑎𝑛) ∈ A = A1 × · · · ×A𝑁 consists of the local action
of each agent and is produced by the global policy 𝜋𝜃 : S ↦→ A.
The global policy 𝜋𝜃 is parameterized with 𝜃 = (𝜃1, · · · , 𝜃𝑁 ) and
each agent 𝑖 is assigned with a local policy 𝜋𝜃𝑖 to produce local
action 𝑎𝑖 . The state transition probability function 𝑃 : S ×A ↦→ S′

returns a distribution over successor states given a state and a joint
action. The global one-step reward 𝑅 is the sum of local one-step
rewards from each agent, i.e., 𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 ) =

∑𝑛
𝑖=1 𝑟𝑖 (𝑠𝑡 , 𝑎𝑡 ). The objec-

tive is to find a global policy 𝜋𝜃 to maximize the discounted return
𝐺 : 𝐺 =

∑𝑇
𝑡=1 𝛾

𝑡𝑅𝑡 (𝑠𝑡 , 𝑎𝑡 ), where 𝛾 is the discount factor.
In this work, we formulate the resource allocation problem as a

MAMDP, where 𝑛 agents cooperatively regulate and allocate the
resources to meet the demands. In such problems, the global state
is the distribution of resources and demands, and other intrinsic
features of the target area; joint action is the allocation strategies
decided jointly by all agents over the target area; and global reward
is task-specific global benefit after utilizing the resources. Note that
the number of agent does not necessarily equals the number of
grids 𝐾 , where the design of how 𝑛 agents cover all grids can be
task-specific.

2.3 Actor-Critic Algorithm
Actor-Critic (AC) methods [24], which leverages advantages from
both value-based [32] and policy-based [39] methods, is a typical
solution to MAMDP. AC methods include two estimators: a critic
𝑉𝜋𝜃 and an actor 𝜋𝜃 . The critic𝑉𝜋𝜃 plays the role of the value-based

method by estimating the value of the current state during training.
It aims to minimize the TD error 𝛿𝑡 to precisely estimate the value
of the current state:

𝛿𝑡 = (𝛾𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝑉𝜋𝜃 (𝑠𝑡+1) −𝑉𝜋𝜃 (𝑠𝑡 ))2 . (1)

The actor 𝜋𝜃 plays the role of the policy-based method via inter-
acting with the environment and generating actions according to
the current policy. It utilizes an advantage function 𝐴𝜋𝜃 to make
𝜋𝜃 update more stable than policy gradient methods [43]:

𝐴𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝑉𝜋𝜃 (𝑠𝑡+1) −𝑉𝜋𝜃 (𝑠𝑡 ), (2)

and the actor 𝜋𝜃 is updated through 𝐽 (𝜃 ):

∇𝐽 (𝜃 ) = E[∇𝜃 𝑙𝑜𝑔𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )𝐴𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )] . (3)

In this work, we mainly proposed DyPS based on AC algorithms to
solve the spatio-temporal resource allocation problem.

3 METHODS
3.1 System Overview
An overview of DyPS’s architecture is presented in Figure 2. DyPS
is comprised of three modules: Self-supervised Role Modeling,
Group Selection, and Group-based Resource Allocation. For spatio-
temporal resource allocation problems, agents demonstrate both
similarities and differences. We employ VLSTM to capture the char-
acteristics of individual agents and employ CVAE to encode the
functionalities of different groups. Based on the behavioral char-
acteristics extracted by VLSTM and CVAE, the Group Selection
Module dynamically groups agents. The Group-based Resource
Allocation Module contains multiple Resource Allocation Policy
Networks, each corresponding to a specific resource allocation pat-
tern. The hierarchical decision structure enables rich behavioral
patterns for making decisions on different resources. Simultane-
ously, it achieves parameter sharing to reduce training costs by
sharing behavioral patterns.
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Figure 2: Overview of DyPS’s architecture, including a Self-
supervised Role modeling part and a hierarchical MARL part
(Group Selection Module and Group-based Resource Alloca-
tion Module).
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Figure 3: Structure of CVAE.

3.2 Self-supervised Role modeling
To effectively cluster agents into groups and determine which
agents share parameters, role modeling for both groups and in-
dividual agents is essential. We employ two distinct self-supervised
methods to model group roles and individual agent roles respec-
tively, as follows:

3.2.1 CVAE for Group Role modeling. Agents within the same
group share the same policy network. Modeling the role of each
group is crucial for effectively clustering agents. Existing research [12,
41] demonstrated that the behavioral patterns of a policy network
can be modeled through the state-action pairs obtained from the
interaction between the agent and the environment. Considering
that in some states, different policy networks may make identical
decisions, therefore the same state-action pair could correspond
to several policy networks. Therefore, we employ CVAE to en-
code the behavioral patterns of different policy networks, as shown
in Figure 3. CVAE simultaneously learns a probabilistic encoder
𝑞(𝑧 (𝑔) [𝑚] |𝐼 (𝑔) [𝑚];𝜃𝑒 ) and a probabilistic decoder 𝑝 (𝑎𝑡 |𝑧 (𝑔) [𝑚], 𝑠𝑡 ;𝜃𝑑 ),
where 𝐼 (𝑔) [𝑚] denotes the identification of the Resource Allocation
Policy Network𝑚, 𝑠𝑡 and 𝑎𝑡 are the state of resources and the action
output by the policy network, and 𝑧 (𝑔) [𝑚] is the encoding of role of
the group𝑚. Different from the classical structure of autoencoders,
𝑠𝑡 bypasses the encoder and can only be received by the decoder.

LSTM LSTM LSTM...

(a)

Encoder

(b)

Decoder

(c)

Figure 4: Structure of VLSTM. (a) is the feed-foward process
of LSTM in VLSTM, (b) is the inference model and (c) is the
generative model.

Based on this design, 𝑧 (𝑔) [𝑚] only contains the information of the
policy itself. We set the prior 𝑝 (𝑧 (𝑔) [𝑚];𝜃𝑝 ) to be the standard
multivariate Gaussian, and the learning of CVAE is to maximize
the evidence lower bound ELBO like VAE,

𝐸𝐿𝐵𝑂𝑐 = E𝑞 (𝑧 (𝑔) [𝑚] |𝐼 (𝑔) [𝑚];𝜃𝑒 ) log𝑝 (𝑎𝑡 |𝑧
(𝑔) [𝑚];𝜃𝑑 )

− 𝐷𝐾𝐿
[
𝑞(𝑧 (𝑔) [𝑚] |𝐼 (𝑔) [𝑚];𝜃𝑒 ) | |𝑝 (𝑧 (𝑔) [𝑚];𝜃𝑝 )

]
. (4)

3.2.2 VLSTM for Agent Role modeling. In this section, we model
the roles of agents from trajectory histories using VLSTM. Recent
studies [11, 20, 29] have shown that the trajectories of agents con-
tain spatio-temporal information. Extracting this information can
help the Group Selection Agent precisely select groups for agents.
Therefore, we utilize VLSTM [15] to extract the spatio-temporal
features from the trajectory histories of resources, which combines
the Variational Autoencoder (VAE) [23] with LSTM to enhance
its robustness [8] in dynamic environments (e.g., real-world ride-
hailing) [15].

As shown Figure 4, the VLSTM model contains an inference
model and a generative model. Trajectory history of agent 𝑛 is
denoted as T (𝑎)

𝑡 [𝑛] = {𝑠0, 𝑎0, 𝑟1, 𝑠1, , · · · , 𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡 }. In the fol-
lowing formulas, for simplicity, we omit agent identification. For
example, we use T𝑡 instead of T (𝑎)

𝑡 [𝑛]. VLSTM module can learn
to encode complicated sequential features of T𝑡 with a stochastic la-
tent variable 𝑧𝑡 . The generation model 𝑝𝜃 predicts the state-reward
pair 𝑒𝑡+1 = (𝑠𝑡+1, 𝑟𝑡+1) of given the its internal states ℎ𝑡−1 as shown
in Figure 4(c),

[𝜇𝑝,𝑡 , 𝜎2𝑝,𝑡 ] = 𝑓 𝑝 (ℎ𝑡−1), (5)

𝑧𝑡 ∼ 𝑁 (𝜇𝑝,𝑡 , 𝜎2𝑝,𝑡 ), (6)

[𝜇𝑒,𝑡 , 𝜎2𝑒,𝑡 ] = 𝑓 𝑑 (𝑧𝑡 , ℎ𝑡−1), (7)

𝑒𝑡+1 | 𝑧𝑡 ∼ 𝑁 (𝜇𝑒,𝑡 , 𝜎2𝑒,𝑡 ), (8)

where 𝑓𝑝 are parameterized feed-forward neural networks, and
ℎ𝑡−1 is the hidden state variable of the LSTM contains historical
spatial-temporal information, which can be recurrently updated
with this formula and is shown in Figure 4(a),

ℎ𝑡 = 𝑓
𝑒 (ℎ𝑡−1; 𝑧𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡 ) . (9)

where 𝑓 𝑒 is a LSTM layer.
The inference model 𝑞𝜙 of VLSTM approximates the latent vari-

able 𝑧𝑡 given state 𝑠𝑡 and hidden state variable ℎ𝑡−1 as shown in
Figure 4(b),
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[𝜇𝑧,𝑡 , 𝜎2𝑧,𝑡 ] = 𝜙𝑒 (𝑠𝑡 , ℎ𝑡−1), (10)

𝑧𝑡 | 𝑠𝑡 ∼ 𝑁 (𝜇𝑧,𝑡 , 𝜎2𝑧,𝑡 ) . (11)

The learning of VLSTM is to maximize the evidence lower bound
ELBO like VAE [23],

𝐸𝐿𝐵𝑂𝑣 =

𝑇∑︁
𝑡=1

[−𝐷𝐾𝐿 (𝑞𝜙 (𝑧𝑡 |𝑧1:𝑡−1, 𝑠1:𝑡−1) | |𝑝𝜃 (𝑧𝑡 |𝑧1:𝑡−1, 𝑠1:𝑡 ))

+𝐸𝑞𝜙 (𝑧𝑡 |𝑧1:𝑡−1,𝑠1:𝑡 ) [log(𝑝𝜃 (𝑠𝑡 |𝑧1:𝑡−1, 𝑠1:𝑡−1)))],
(12)

Finally, we append the identity id of each agent. we denote the
hidden state encoded by complete trajectory histories T (𝑎)

𝑇
[𝑛] of

agent 𝑛 as ℎ (𝑎) [𝑛]. Then ℎ (𝑎) [𝑛] is further served as role represen-
tation of agent 𝑛 to help the decision-making of Group Selection
Agent.

3.3 Group Selection Module
This module is designed to determine the group of each agent,
i.e., to decide its corresponding behavioral pattern by selecting the
policy network for resource allocation. In this decision problem, the
Group Selection Module needs to choose an appropriate resource
allocation policy network based on the extracted role of resource
allocation policy networks and the spatio-temporal behavior of
agents. At the time step 𝑡 = 0, once a resource allocation policy
network is chosen, the agent is bound to the selected group until
the end of the episode.

The detailed setting of the MAMDP of the Group Selection Mod-
ule is as follows.

• State: The state of Group Selection Module is defined as
𝑠 (𝑔) = (𝐼 (𝑎) [𝑛], ℎ (𝑎) [𝑛], 𝑧 (𝑔) [𝑚]), which contains the iden-
tity of agent 𝐼 (𝑎) [𝑛], extracted role ℎ (𝑎) [𝑛] of agent 𝑛 by
VLSTM and role information 𝑧 (𝑔) [𝑚] of group𝑚 modelled
by CVAE.

• Action: The action of the Group Selection Module 𝑎 (𝑔) is
determined by the state 𝑠 (𝑔) and is executed at the start of
each episode. As shown in Figure 2, the 𝑎 (𝑔) can be calculated
by

𝑎 (𝑔) [𝑚,𝑛] = Softmax(
[
𝐼 (𝑎) [𝑛], ℎ (𝑎) [𝑛]

]
𝑊𝑧 (𝑔) [𝑚]), (13)

where 𝑎 (𝑔) denotes the probability matrix and the item in
the 𝑚-th row and the 𝑛-th column of the matrix denotes
the probability that the 𝑛-th agent is assigned to the𝑚-th
parameter group.

• State Transition: This is a one-step MAMDP. Once an ac-
tion is executed, the next action decision is made only after
the episode concludes.

• Reward: The reward 𝑟 (𝑔) is defined as the episode rewards
among all agents in the Resource Allocation Module.

3.4 Group-based Resource Allocation Module
This module consists of multiple agents divided into several groups,
with each group representing a resource allocation policy network.
The network parameter set of group𝑚 is denoted as𝜓𝑚 . Then the

Algorithm 1 The training algorithm of DyPS
1: Initialize parameters for VLSTM and CVAE. Initialize number

of Resource Allocation Agent with 𝑁 and number of groups
with𝑀 . Initialize parameters for Group Selection Module and
policy networks in each group with 𝜑 and {𝜓1,𝜓2, · · · ,𝜓𝑀 }.

2: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 𝑘 = 0, 1, 2, · · ·𝑀𝑎𝑥𝐸𝑝𝑖 do
3: Initialize a set of transitions 𝐷 =

{
𝜏𝑖
}
.

4: Receive a state for Group Selection Module 𝑠 (𝑔) via VLSTM
and CVAE for episode 𝑘 .

5: Obtain action 𝑎 (𝑔) using Eq. (13).
6: Assign Group-based Resource Allocation Agents to resources

based on 𝑎 (𝑔) .
7: for 𝑡 = 0, 1, 2, ...𝑇 do
8: Obtain allocation action 𝑎𝑡 .
9: Execute action 𝑎𝑡 , obtain 𝑟𝑡 and 𝑠𝑡+1 from environment.
10: Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ) into 𝐷 .
11: Let 𝑠𝑡 = 𝑠𝑡+1.
12: end for
13: Obtain reward 𝑟 (𝑔) .
14: Update Group Selection Agent using the transition

(𝑠 (𝑔) , 𝑎 (𝑔) , 𝑟 (𝑔) ) via AC method.
15: Using set of trajectories 𝐷 for batch gradient updating.
16: Update VLSTM by maximizing Eq. (12).
17: Update CVAE by maximizing Eq. (4).
18: Update Group-based Resource Allocation Agents via AC

method.
19: end for

parameter set of the Resource Allocation Module is {𝜓1,𝜓2 · · ·𝜓𝑀 }.
For example, after the Group SelectionModule takes action𝑎 (𝑔) [𝑚,𝑛]
and assigns a group𝑚 for agent 𝑛, this module supplies policy net-
work 𝜓𝑚 to the agent 𝑛. We denote 𝑎 (𝑎)𝑡 [𝑛] as action of agent
𝑛, which is obtained by 𝜋 (𝑠 (𝑎)𝑡 [𝑛];𝜓𝑚) with policy network 𝜓𝑚 .
Subsequently, agents address spatio-temporal resource allocation
problems using Actor-Critic methods.

3.5 Training Algorithm
We summarize the training process of DyPS in Algorithm 1. As
we can observe, firstly, DyPS interacts with the environment and
collects a series of transitions by storing them in the set of transition
𝐷 in preparation for training (lines 3-12). Then, these transition
batches from 𝐷 are utilized for training. VLSTM and CVAE are
trained by maximizing ELBO (lines 15-17). The Group Selection
Module and Group-based Resource Allocation Module are trained
via AC method (line 14 and line 18). This process will be repeated
for𝑀𝑎𝑥𝐸𝑝𝑖 episodes until all the above modules of DyPS converge.

4 EXPERIMENTS
4.1 Experimental Scenarios
To thoroughly verify the effectiveness of DyPS, we set up 7 different
experiments in 4 scenarios of spatio-temporal resource allocation by
varying the number of resources and the number of needs in each
environment. These scenarios cover several representative aspects
of urban life and production, including transportation, medical care,
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and labor resources. The total number of resources and demands
over all steps of these scenarios are summarized in Table 1, and the
details of each scenario are as follows:

• Level-based foraging (LBF). As shown in Figure 5a, LBF
is a scenario where workers in a grid world are required
to forage randomly scattered food [1, 2]. Here, resources
are the workers, and demands are the food-foraging tasks.
In our MARL solution, each resource is controlled by one
agent, where the agents canmove in four directions, trying to
find food. Agents with different levels forage corresponding
levels of foods. State of this task is the food distribution in
adjacent grids, and we measure the performance via total
return, i.e., the total number of foraged foods.

• Multi-robot warehouse (RWARE). As shown in Figure 5b,
RWARE is a scenario that simulates robots moving goods
in a warehouse [1, 44]. Here, resources are the robots and
demands are the moving requests of goods. Various robots
move different types of goods. In our MARL solution, each
resource is controlled by one agent, where the agents can
move in four directions, moving goods from the requested
shelves to the goal posts. State of this task is the goods dis-
tribution in adjacent grids, and the current moving request.
We measure the performance via total return, i.e., the total
number of successfully delivered goods. Besides, constraint
exists in this scenario that each robot can only move specific
matched type of goods.

• Order dispatch in on-demand ride-hailing services (Ride-
Hailing). As shown in Figure 5c, Ride-Hailing is a real-
world scenario where drivers move to meet passengers’ or-
ders [21, 28, 40]. The environment is built based on the real-
world data in Chengdu from DiDi [40], a famous online
hailing platform. Here, resources refer to available drivers,
while demands correspond to passenger ride orders. In our
MARL solution, resources in each grid are controlled by one
agent, where each agent can dispatch resources in its grid
to target grids. Each agent controls one region, leading to
heterogeneity due to diverse resource demands and supplies
across cities. State of this task is the information of drivers
and orders in the grids, and we measure the performance by
the total value of orders served (GMV) and order response
rate (ORR).

• COVID-19 vaccines allocation (Medical) As shown in
Figure 5d, this is a real-world scenario that requires allocat-
ing a limited number of COVID-19 vaccines among urban
population to minimize infection [5, 17]. The environment
is built based on the real-world pandemic spreading data in
Atlanta [5]. Here, resources are COVID-19 vaccines and de-
mands are susceptible people around the city. In our MARL
solution, resources in each grid are controlled by one agent,
where each agent can dispatch resources in its grid to target
grids. Each agent controls one region, leading to heterogene-
ity due to diverse resource demands and supplies across cities.
State of this task is defined by the change in the number of
infections within the grids, and we measure the performance
by the reduced number of infections.

DemandsResources

(a) LBF (b) RWARE 

(c) Ride-Hailing (d) Medical 

Figure 5: Illustration of experimental scenarios. (a) Level-
based foraging (LBF). (b) Multi-robot warehouse (RWARE).
(c) Order dispatch in on-demand ride-hailing services (Ride-
Hailing). (d) COVID-19 vaccines allocation (Medical)

Table 1: Statistics of experimental scenarios.

Scenario #Grids #Resources #Demands #Agents

LBF (1) 100 6 4 6
LBF (2) 100 12 10 12

RWARE (1) 200 8 4 8
RWARE (2) 200 16 8 16

Ride-Hailing (1) 36 360 30000 36
Ride-Hailing (2) 100 1000 70000 100

Medical 3130 4.53M 7.19M 3130

4.2 Performance Evaluation
To verify the performance of DyPS we conduct spatio-temporal
resource allocation experiments across 7 scenarios, comparing the
following baseline parameter sharing methods:

• NoPS. In this baseline, all agents have their own parameters,
and there is no overlap of gradients. This method retains
the spatio-temporal differences of each agent but does not
consider the spatio-temporal commonality of agents, which
is common in the literature and usually compared with other
parameter sharing methods, e.g., IPPO [9].

• PS. In this baseline, all agents share one set of parameters. It
assumes that agents have similar spatio-temporal common-
ality but ignores the differences of each agent, which can be
usually seen in the literature, e.g., MAPPO [47].
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Table 2: Performance comparison over all baselines in six scenarios. Each value denotes the mean and standard deviation over
5 runs with different seeds. Bold numbers are the best in each column, and underlined numbers indicate sub-optimal value in
each column.

Scenario LBF (1) LBF (2) RWARE (1) RWARE (2) Ride-Hailing (1) Ride-Hailing (2) Medical
Metric Return Return Return Return GMV ORR GMV ORR Infection Reduction

NoPS 0.31±0.02 0.91±0.05 2±0.15 0.35±0.12 230680±2550 0.40±0.02 519200±4250 0.20±0.01 253±24
PS 0.25±0.03 0.83±0.04 2.5±0.22 1.21±0.15 250940±2230 0.43±0.01 542500±4140 0.23±0.02 345±43

PS-id 0.52±0.02 0.91±0.05 4.6±0.20 10.45±1.15 260590±2150 0.45±0.03 556320±3970 0.24±0.01 378±55
PSA 0.41±0.03 0.90±0.03 4.5±0.18 12.11±2.12 253920±2080 0.42±0.03 547500±4270 0.22±0.03 365±68
SePS 0.61±0.04 0.96±0.03 6±0.15 33.21±2.50 257690±2210 0.43±0.02 545300±4210 0.23±0.02 452±72

DyPS (Ours) 0.68±0.02 0.98±0.04 6.7±0.20 35.41±2.31 318200±2240 0.66±0.02 713520±3480 0.35±0.02 539±78

• PS-id. Compared with the baseline PS, this method adds the
id of the agent to the state of the agent to distinguish the
spatio-temporal differences between different agents. It is
encountered very often in the literature [10, 13, 35].

• PSA [45]. This method is based on the framework of actor-
critic [4]. It maintains each agent an actor and a critic to
model the spatio-temporal differences of each agent and
assigns a shared critic to model the spatio-temporal com-
monality of agents. These two critics will work together to
train the actor of each agent.

• SePS [6].This method analyzes the spatio-temporal features
of the agents by pre-sampling the trajectory in the environ-
ment before RL learning, and then groups them based on
the analysis and keeps this grouping unchanged during the
training process of RL.

Experimental results are summarized in Table 2, where the mean
and standard deviation are obtained over 5 runs with different seeds.
The results show that DyPS significantly outperforms all baseline
methods in all scenarios in terms of the task-specific evaluation
metrics, with at most 31% improvement achieved in Ride-Hailing
(2) scenario, a large-scale real-world resource allocation task. It can
also be observed that the SOTA parameter sharing method, SePS,
performs well in the LBF and RWARE environments but does not
perform well in the Ride-Hailing scenarios with a larger scale. This
may be because agents in the first two scenarios have relatively
clear role division, which can be defined before RL training. On the
contrary, agents’ roles change during RL learning in larger-scale
scenarios, which makes the pre-defined role grouping mismatch
the trained agents, harming the performance. This stresses the
necessity of dynamical adjusting of role grouping in our method.

4.3 Ablation Studies
To provide a comprehensive understanding of the key components
of DyPS, we conduct a series of experiments to investigate the effect
of different components.

• w/o CVAE. This view evaluates the effectiveness CVAE in
modeling the role of each group of agents. It removes CVAE
from DyPS and directly decides the group of each agent via
MLP, which takes in representations obtained from VLSTM.

• w/o VLSTM. This view evaluates the effectiveness VLSTM
in modeling the role of each agent. It removes VLSTM from
DyPS and decides the group of each agent via inner produc-
tion of agent IDs and CVAE representations.

• w/o Repr. This view removes both CVAE and VLSTM from
DyPS, and decides the group of each agent via MLP, which
only takes in agent IDs.

We report the results in two scenarios in Table 3. It illustrates
that removing VLSTM will make DyPS hard to model the spatio-
temporal differences and commonality among agents, thus degrad-
ing the performance. Also, removing CVAE makes it difficult for the
group selection module to distinguish the role of each group, which
damages the performance of DyPS. In a nutshell, each component
of DyPS improves the parameter sharing performance, and the full
version achieves the best.

Table 3: Results of ablation studies. Each value denotes the
mean and standard deviation over 5 runs with different seeds.
Bold numbers are the best in each column.

Scenario Ride-Hailing (1) Ride-Hailing (2)
Metric GMV ORR GMV ORR

w/o CVAE 305750±2250 0.65±0.01 859430±4220 0.48±0.02
w/o VLSTM 301200±2100 0.64±0.02 865270±4010 0.49±0.04
w/o Repr. 290990±2190 0.62±0.03 849260±4190 0.46±0.03

DyPS (Ours) 318200±2240 0.66±0.02 873810±4080 0.50±0.01

4.4 Adaptability to Multiple MARL Algorithms
To verify the general adaptability of DyPS, we integrate our frame-
work with various on-policy MARL algorithms. Specifically, we
substitute the role-based resource allocation module with various
MARL algorithms.

• IPPO [9]. This is the approach we employ in our previous
experiments. In IPPO, each agent optimizes its own returns
independently, and the network parameters between differ-
ent agents are separate.

• CoPO [34]. This approach employs meta-learning to adjust
the relationship between the local and global levels of agents.
It shares a common set of network parameters among all
agents.

• MAPPO [47]. This method features a decentralized actor
and centralized critic structure, with all agents sharing the
same reward function and a common set of parameters.

We report the results in the Ride-Hailing (2) scenario in Table 4.
When combined with different MARL methods, DyPS consistently
enhances performance by employing dynamic parameter sharing,
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thereby highlighting its robust scalability. It’s notable that MAPPO
exhibits subpar performance attributed to reward sharing across all
agents, exacerbating issues with credit assignment and rendering
it unsuitable for tackling problems with large-scale agents.

Table 4: Results of adaptability tomultiple MARL algorithms.
Each value denotes the mean and standard deviation over 5
runs with different seeds.

Scenario Ride-Hailing (2)
Metric GMV ORR

IPPO 519200±4250 0.20±0.01
DyPS+IPPO 713520±3480 0.35±0.02

CoPO 633410±2100 0.34±0.02
DyPS+CoPO 873810±4080 0.50±0.01

MAPPO 536300±21040 0.22±0.01
DyPS+MAPPO 591460±4705 0.34±0.02

4.5 Role Utilization Comparison
To validate the effectiveness of DyPS’s role-based dynamic param-
eter sharing design, we compare it with different methods of role
utilization.

• Role-As-State. This approach enhances state augmentation
by integrating the agents’ role representation, extracted by
VLSTM, into the states for decision-making.

• Rode [41]. This method also incorporates role discovery
and dynamic role assignment, using roles to decompose the
action space into sub-tasks and couple these sub-tasks with
specific roles.

We report the results for the Ride-Hailing (2) scenario in Table 5.
The results indicate that DyPS is the most effective role utilization
method. Regarding Role-As-State, with role-based state augmen-
tation, Role-As-State outperforms IPPO but is not as effective as
DyPS. Although Role-As-State can differentiate agents, the variance
among roles’ strategies prevents a single set of parameters from
fitting all strategies. In contrast, DyPS employs different groups of
parameters, enabling more heterogeneous strategies. As for Rode,
it surpasses DyPS-IPPO due to the capability of its advanced sub-
module QMIX. However, due to the generalization of DyPS, DyPS
demonstrates superior performance when combined with advanced
cooperative MARL methods like CoPO.

Table 5: Performance comparison over different role utiliza-
tion methods. Each value denotes the mean and standard
deviation over 5 runs with different seeds.

Scenario Ride-Hailing (2)
Metric GMV ORR

Role-As-State 573740±5310 0.26±0.01
Rode 781540±7830 0.40±0.02

IPPO 519200±4250 0.20±0.01
CoPO 633410±2100 0.34±0.02

DyPS+IPPO 713520±3480 0.35±0.02
DyPS+CoPO 873810±4080 0.50±0.01

4.6 Strategies Visualization and Explainability
The number of agent roles is a critical hyperparameter in DyPS.
We illustrate the performance across different numbers of roles in
the Ride-Hailing (2) scenario in Figure 6 (a). It reveals that the opti-
mal number of roles is 4, each corresponding to distinct resource-
demand distribution patterns: grid areas with high car and order
volumes, high car volumes with low order volumes, low car volumes
with high order volumes, and low car and order volumes.

To delve deeper, we visualize the evolution of role grouping
during training. As shown in Figure 6 (b), each grid represents an
agent, and agents with each color are within the same role group.
During DyPS training, we visualize the initial phase, mid-training
phase, and convergence phase to showcase group selection changes.
Initially, group assignment is random. During Middle stage, DyPS
starts grouping grids with similar order demand distributions as
depicted in Appendix Figure 7. By Late Stage, DyPS associates com-
parable roles with grids having similar order demand and vehicle
supply as depicted in Appendix Figure 8. This late-stage selection
is logical, as ride-hailing strategies should consider the dynamic
interplay between order demand and vehicle supply, not just order
distribution alone.

5 RELATEDWORKS
5.1 Spatio-Temporal Resource Allocation
Spatio-temporal resource allocation [3, 14, 37] refers to the regu-
lation and allocation of urban resources across time and space in
cities to meet people’s needs. Spatio-temporal resource allocation
optimization is beneficial to the upgrading and development of
industries such as transportation [49], logistics [28, 30], and en-
ergy [27, 42] in the city, which has received widespread attention
from researchers. Conventional research often utilizes operational
research algorithms to optimize spatio-temporal resource alloca-
tion. Examples include generic model for urban parking resource
allocation [49], convex optimization algorithm for the allocation of
delay-sensitive traffic resources [27], and integrated optimization
approach to allocate water resource for sustainable urban develop-
ment [42].

However, these methods have limited capability in solving large-
scale problems and often simplify the problem settings, making it
difficult to apply them in real-world scenarios. In recent years, with
the development of artificial intelligence, multi-agent deep rein-
forcement learning (MARL) based optimization of spatio-temporal
resource allocation has achieved remarkable success. For instance,
some researchers solve the problem of express pickup and delivery
via MARL [30], and others propose a mean field MARL to achieve ef-
ficient ride-hailing order dispatching [28]. As the scale of real-world
cities continues to increase, researchers are concerned about how to
scale up MARL algorithms to meet real-world demand. Therefore,
in this paper, we propose a hierarchical MARL approach to dynam-
ically share parameters among multiple agents, thereby reducing
the computational consumption and enabling MARL algorithms to
work in real-world scenarios.

3135



DyPS: Dynamic Parameter Sharing in Multi-Agent Reinforcement Learning for Spatio-Temporal Resource Allocation KDD ’24, August 25–29, 2024, Barcelona, Spain

1 2 3 4 5 6
Number of Roles

500000

600000

700000

800000

900000

G
M

V

0.25

0.30

0.35

0.40

0.45

0.50

O
R

R

GMV
ORR

(a)

Early Stage Middle Stage Late Stage

(b)

Figure 6: Strategies visualization and explainability of DyPS. (a) Performance with different numbers of roles. (b) Changing of
role grouping during DyPS training.

5.2 Scaling up of MARL Algorithms
Typical MARL methods have limited performance when scaling up
to real-world scenarios with a large number of agents. The main
problem is that the joint action-observation space grows exponen-
tially with the number of agents, which imposes high demand on
the scalability of learning algorithms [26]. On the one hand, action
decomposition is an alternative approach for reducing the complex-
ity [16, 41, 46]. Mean-field algorithm [46] approximates the con-
catenation of actions with the unweighted average of these actions,
which greatly reduces the dimension. However, such unweighted
approximation discards the varying strengths of agent-agent inter-
actions, losing precision in modeling the complex relations among
the agents. To solve this problem, recent work develops the un-
weighted average into weighed one and utilizes graph attention
mechanism to determine the weights, reaching better modeling
of agent-agent interactions [16]. Rode [41] reduces complexity by
decomposing the action space into sub-tasks and associating these
sub-tasks with roles. However, the decomposition of the action
space in Rode restricts it to discrete action spaces. Furthermore, it
lacks a generalized design, making integration with other MARL
algorithms challenging. In contrast, our proposed DyPS can handle
both discrete and continuous action spaces and can seamlessly in-
tegrate with various on-policy MARL algorithms without requiring
network structure modifications.

On the other hand, parameter sharing [7, 22, 25] among multi-
agents is a widely used method to tackle the scalability challenge.
It reduces learnable parameters of agents and improves sample effi-
ciency, thereby facilitating the training of a large number of agents.
However, naive parameter sharing [6] ignores the heterogeneity
among agents, thus harming the optimization performance. Recent
studies have proposed methods to enable selective parameter shar-
ing among agents, thereby preserving the heterogeneous roles of
agents. For example, SePS [6] analyzes the spatio-temporal features
of the agents by pre-sampling the trajectory in the environment
before RL learning, and then determines a fixed grouping of agents.
As we mentioned before, agents’ roles change during RL training,
and pre-fixed role grouping may mismatch the well-trained agents,
limiting the overall performance. Therefore, in this paper, we pro-
pose DyPS to dynamically adjust the parameter sharing among

agents during RL training, achieving better performance than naive
or pre-fixed parameter sharing strategies.

6 CONCLUSIONS
In this paper, we propose to solve the spatio-temporal resource
allocation problem by an effective framework named DyPS. In this
framework, we employ VLSTM and CVAE for self-supervised learn-
ing to extract the behavioral characteristics and thus identify the
roles of agents from their action trajectories. We design a hierarchi-
cal MARL framework, which is trained according to the environ-
mental feedback and can dynamically revise the parameter sharing
among agents based on their roles. We conducted extensive exper-
iments on various real-world scenarios, demonstrating that our
method can effectively and dynamically share parameters among
agents and achieve superior resource allocation performance com-
pared with other baselines. Also, our framework can be adapted to
various on-policy MARL algorithms, improving their performance
on resource allocation tasks. Our design and in-depth experimental
evaluations illustrate DyPS’s great potential in practical applica-
tions, providing optimized solutions for the allocation of various
resources in real-world scenarios. For future work, we aim to adapt
DyPS to off-policy reinforcement learning algorithms, such as value
decomposition methods.
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Table 6: Hyper-parameters in experiments.

Hyper-parameter LBF (1) LBF (2) RWARE (1) RWARE (2) Ride-Hailing (1) Ride-Hailing (2) Medical

Training steps 1M 1M 1M 1M 30k 30k 0.1M
Batch size 256 256 256 256 1024 1024 512
Optimizer Adam Adam Adam Adam Adam Adam Adam

Actor learning rate (Group Selection) 1e-5 1e-5 1e-5 1e-5 1e-4 1e-4 1e-5
Critic learning rate (Group Selection) 1e-5 1e-5 1e-5 1e-5 1e-4 1e-4 1e-5

Actor learning rate (Resource Allocation) 5e-4 5e-4 5e-4 5e-4 1e-3 1e-3 1e-4
Critic learning rate (Resource Allocation) 5e-4 5e-4 5e-4 5e-4 1e-3 1e-3 1e-4

Discount factor 0.99 0.99 0.99 0.99 0.97 0.97 0.99
Clip threshold (PPO) 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Lambda factor (PPO) 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Figure 7: Order distribution heat map in the scenario of Ride-
Hailing (1), the darker the color, the higher the order quan-
tity.

Figure 8: Resource-demand ratio (number of orders/number
of drivers) heat map in the scenario of Ride-Hailing (1), the
darker the color, the greater the supply-demand ratio.

Table 7: Results of rule-based methods in ride-hailing sce-
nario.

Scenario Ride-Hailing (1) Ride-Hailing (2)
Metric GMV ORR GMV ORR

Greedy 220770 0.37 539450 0.23
Nearest 162590 0.37 345180 0.24
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A APPENDIX
A.1 Details for Reproducibility
In this paper, we use a simple network structure to maintain the
scalability and generality of our framework. Regarding the CVAE
module, the encoder network is an MLP with a 64-dimensional
hidden layer, and the decoder network is an MLP with two 64-
dimensional hidden layers. The latent variable of the CVAE has a
dimensionality of 16. For the VLSTMmodule, the hidden dimension
of the LSTM is 64. The encoder network is an MLP with a 64-
dimensional hidden layer, and the decoder network is an MLP with
two 64-dimensional hidden layers.

We perform experiments using Python 3.9 and Pytorch 1.11
with NVIDIA GeForce RTX 3090 and NVIDIA A100 GPUs. Here,
we provide detailed values of the hyper-parameters used in the
experiments for reproducibility in Table 6.

A.2 Additional Information of the Ride-Hailing
Scenario

The distributions of orders and drivers are significant in ride-hailing
scenario. In Figure 7 and 8, we visualize order distribution and
resource-demand distribution in the scenario of Ride-Hailing (1).
The heat maps illustrate the uneven spatial distribution of resources
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Figure 10: Visualization of the role grouping result of SePS
method in the scenario of Ride-Hailing (1), where each color
indicates one group of agents.

and the mismatched distribution between resources and demands,
indicating the importance of efficient resource allocation strategies.

To gain a more intuitive understanding of the ride-hailing sce-
nario, We compare two common rule-based methods in the ride-
hailing scenario: (1) Greedy, which prioritizes high-priced orders,
and (2) Nearest, which prioritizes the nearest orders. The results
are shown in Table 7.

A.3 Details in Training Process
We draw the learning curves of DyPS and all baselines on scenario
Ride-Hailing (2) in Figure 9. It illustrates that both the training speed
and final effect of our method are much better than all baselines.

In addition, we can also observe that the training speed of NoPS is
slower than the other baselines that consider parameter sharing,
which verifies the effectiveness and efficiency of parameter sharing.
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Figure 9: Learning curves showing the mean GMVs during
training for a selection of the environments on scenario Ride-
Hailing (2). The shaded area represents standard deviation
across 5 seeds.

A.4 Extended Visualizations
It can be observed from Figure 10 that in the scenario of Ride-
Hailing (1), SePS has learned to group agents with spatial adjacency
into a role. However, since SePS fixes the role grouping before
training, it fails to adjust the role grouping according to the learning
of the resource allocation agent’s strategy.
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