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Abstract

The urban environment is characterized by complex spatio-temporal dynamics
arising from diverse human activities and interactions. Effectively modeling these
dynamics is essential for understanding and optimizing urban systems. In this
work, we introduce UrbanDiT, a foundation model for open-world urban spatio-
temporal learning that successfully scales up diffusion transformers in this field.
UrbanDiT pioneers a unified model that integrates diverse data sources and types
while learning universal spatio-temporal patterns across different cities and scenar-
ios. This allows the model to unify both multi-data and multi-task learning, and
effectively support a wide range of spatio-temporal applications. Its key innova-
tion lies in the elaborated prompt learning framework, which adaptively generates
both data-driven and task-specific prompts, guiding the model to deliver superior
performance across various urban applications. UrbanDiT offers three advantages:
1) It unifies diverse data types, such as grid-based and graph-based data, into a
sequential format; 2) With task-specific prompts, it supports a wide range of tasks,
including bi-directional spatio-temporal prediction, temporal interpolation, spatial
extrapolation, and spatio-temporal imputation; and 3) It generalizes effectively
to open-world scenarios, with its powerful zero-shot capabilities outperforming
nearly all baselines with training data. UrbanDiT sets up a new benchmark for
foundation models in the urban spatio-temporal domain. Code and datasets are
publicly available at https://github.com/tsinghua-fib-lab/UrbanDiT.

1 Introduction

The urban environment is characterized by complex spatio-temporal dynamics arising from diverse
human activities and interactions within the city. These dynamics are reflected in different types
of data. For example, grid-based data divides urban space into regular cells, often used to track
crowd flows. In contrast, graph-based data represents spatial structures like road networks as nodes
and edges, such as traffic speeds on roads. The data from different cities are usually with unique
layouts, infrastructures, and planning strategies. Effectively modeling their spatio-temporal dynamics
is crucial for optimizing urban services and understanding how cities function. Therefore, it raises an
essential research question: can we develop a foundation model, similar to those in natural language
processing [41, 4] and computer vision [3, 26, 10], that learns universal spatio-temporal patterns and
serves as a general-purpose model for various urban applications?

In the context of urban spatio-temporal modeling, recent advancements such as GPD [53], Ur-
banGPT [23], and UniST [51] have opened exciting avenues for understanding complex urban
dynamics. As compared in Table 1, these models either utilize LLMs [23] or develop unified models
from scratch [51, 53] tailored for urban spatio-temporal predictions. By training on multiple datasets,
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Figure 1: A diagram of UrbanDiT: a foundation model that integrates diverse data sources while
addressing multiple tasks.

they have showcased impressive generalization capabilities. However, their focus remains largely on
prediction tasks, and they are often restricted to specific data types—such as grid-based data [23, 51]
or graph-based traffic data [53]. Thus, realizing the full potential of foundation models capable of
seamlessly handling diverse data types, sources, and tasks in open-world scenarios remains an open
and largely unexplored area of research.

Urban spatio-temporal data is usually defined by varying spatio-temporal resolutions and complex
interactions among entities. Building a foundation model requires a scalable architecture capable
of accommodating these complexities. Moreover, the intricate nature of urban spatio-temporal
dynamics necessitates a model that can learn from complex data distributions. Diffusion Transformers,
exemplified by models like Sora [3], offer a compelling solution for this purpose. By combining the
generative power of diffusion processes with the scalability and flexibility of transformer architectures,
diffusion transformers present a promising backbone.

In this work, we introduce UrbanDiT, which unifies training across diverse urban scenarios and tasks,
effectively scaling up diffusion transformers for comprehensive urban spatio-temporal learning. It
offers three appealing benefits: 1) It unifies diverse data types into a sequential format, allowing it to
capture spatio-temporal patterns across various cities and domains. 2) It supports a wide range of
tasks with a single model via task-specific prompts, without the need for re-training across different
tasks. 3) It generalizes well to open-world scenarios, exhibiting powerful zero-shot performance. To
build UrbanDiT, we first unify different input data by converting it into the sequential format. We
transformer blocks as the denoising network, which are equipped with both temporal and spatial
attention modules. To integrate diverse data types and tasks, we propose a unified prompt learning
framework. It maintains memory pools to capture learned spatio-temporal patterns and generate
data-driven prompts, while also create task-specific prompts for various spatio-temporal tasks. These
prompts are concatenated into the unified sequential input before being fed into the transformer
modules. The design of prompt learning serves as a flexible intermediary, adaptable to a wide range
of scenarios.

UrbanDiT, built on the DiT backbone with a prompt learning framework, is a pioneering open-world
foundation model. It excels at handling diverse urban spatio-temporal data and a wide range of tasks,
including bi-directional spatio-temporal prediction, temporal interpolation, spatial extrapolation, and
spatio-temporal imputation. This makes UrbanDiT a powerful and universal solution for various
urban spatio-temporal applications. We summarize our contributions as follows:

• To the best of our knowledge, we are the first to explore a foundation model for general-purpose
urban spatio-temporal learning, integrating diverse data types and multiple urabn tasks within a
single unified model.

• We present UrbanDiT, an open-world foundation model built on diffusion transformers. Through
our proposed prompt learning, UrbanDiT effectively brings together heterogeneous spatio-temporal
data and tasks, using data-driven and task-specific prompts to enhance performance.

• Extensive experiments demonstrate that UrbanDiT effectively captures complex urban spatio-
temporal dynamics, achieving state-of-the-art performance across multiple datasets and tasks.
It also exhibits powerful zero-shot capabilities, proving its applicability in open-world settings.
UrbanDiT marks a significant step forward in the advancement of urban foundation models.

2



Table 1: Comparison between existing models and UrbanDiT across five aspects.
Method Model Init. Data Type Diverse Data Sources Task Flexibility Zero-shot

GPD [53] Scratch Graph × × ×
UniST [51] Scratch Grid ✓ × ✓

UrbanGPT [23] LLMs Grid ✓ × ✓
CityGPT [12] LLMs Languages × ✓ ×

UrbanDiT Scratch Graph/Grid ✓ ✓ ✓

2 Related Work

Urban Spatio-Temporal Learning. Urban spatio-temporal learning encompasses a variety of tasks
such as prediction [39, 2, 52, 22, 54], interpolation [1, 16], extrapolation [30, 29], and imputation [40,
18], addressing how urban systems evolve across space and time. Deep learning has achieved
significant progress in these areas, with techniques ranging from CNNs [22, 54], RNNs [43, 42,
24], MLPs [36], GNNs [2, 15], and Transformers [7, 19], to the more recent use of diffusion
models [52, 40, 45]. Each of these approaches has been employed to model complicated spatio-
temporal relationships inherent to urban environments. However, most existing models are tailored
to specific datasets and tasks. In contrast, our approach is designed to handle multiple tasks and
generalize across diverse urban scenarios.

Urban Foundation Models. Foundation models have made significant progress in language mod-
els [11, 41, 4] and image generation [3, 26, 10]. Recently, researchers have extended the concept
of foundation models to urban environments, aiming to address unique challenges of urban spatio-
temporal data. Some representative works in this area include UrbanGPT [23], UniST [51], and
CityGPT [13]. UrbanGPT introduces LLMs designed for spatio-temporal predictions within urban
contexts. UniST develops a foundation model from scratch specifically for urban prediction tasks,
demonstrating zero-shot capabilities that allow the model to generalize to new scenarios without ad-
ditional training. CityGPT, on the other hand, focuses on enhancing the LLM’s ability to comprehend
and solve urban tasks by improving its understanding of urban spaces. Table 1 provides a comparison
of key abilities across existing urban foundation models and UrbanDiT. As shown, UrbanDiT is
trained from scratch, allowing it to fully leverage data diversity while offering flexibility across a
wide range of tasks. Compared to previous efforts, UrbanDiT represents a significant advancement in
developing urban foundation models.

Diffusion Models for Spatio-Temporal Data. Diffusion models, originally popularized in image
generation, have recently gained attention in handling spatio-temporal data and time series. They
iteratively add and remove noise from data, allowing them to capture complex patterns across both
temporal and spatial dimensions [49, 52, 18, 45, 34]. In the context of time series, diffusion models
have been applied to tasks such as forecasting [21, 34] and imputation [48, 40], outperforming
traditional methods by generating more accurate and coherent sequences. For spatio-temporal
data, diffusion models have proven useful in a variety of tasks, including traffic prediction [45],
environmental monitoring [52], and human mobility generation [60, 59]. By effectively modeling
spatio-temporal dependencies, these models can capture both the spatial correlations and temporal
dynamics inherent in urban systems. UrbanDiT leverages the generative power of diffusion models
to capture complex urban spatio-temporal patterns, while its flexible conditioning mechanisms allow
it to address a wide range of spatio-temporal tasks.

3 Method

3.1 Preliminary

Urban Spatio-Temporal Data. Urban spatio-temporal data typically falls into two categories: grid-
based and graph-based data. Grid-based data is structured in a uniform grid layout. Graph-based data,
on the other hand, highlights connectivity, capturing the relationships between various urban entities
like streets and intersections. For both different spatial organizations, the temporal dimension is
characterized as time series data. The data can be denoted as XN×T , where N denotes the number of
spatial partitions. For graph-based data, N corresponds to the number of nodes, while for grid-based
data, it is defined as the product of the height and width of the grid (N = H ×W ). This enables a
unified representation of urban spatio-temporal data with different spatial organizations.
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Figure 2: Illustration of the whole framework of UrbanDiT, including four key components: a)
Unifying different urban spatio-temporal data types; b) The diffusion pipeline of our UrbanDiT; c)
Different masking strategies to specify different tasks; d) Unified prompt learning with data-driven
and task-specific prompts to enhance the denoising process.

Urban Spatio-Temporal Tasks. In addition to the commonly recognized (1) forward prediction task,
urban spatio-temporal analysis encompasses several other critical tasks. (2) Backward Prediction
involves estimating past states based on current or future data. It is essential for understanding
historical trends and validating predictive models. (3) Temporal Interpolation aims to estimate
values at unobserved time points within a known temporal range. (4) Spatial Extrapolation involves
predicting values beyond the observed spatial domain. (5) Spatio-Temporal Imputation refers to the
process of filling in missing values in spatio-temporal datasets.

3.2 UrbanDiT

Figure 2 illustrates the overall framework of UrbanDiT, which is based on diffusion transformers.
This framework seamlessly integrates various data types and tasks into a cohesive model.

Unification of Data and Tasks. We convert data, characterized by a three-dimensional structure (2D
spatial and 1D temporal dimensions), into a unified sequential format. For the temporal dimension,
we employ patching techniques commonly used in foundational models for time series [32]. For grid-
based data, we apply 2D patching methods, which are widely utilized in image processing, to organize
the data. This allows us to rearrange the three-dimensional grid data into a one-dimensional sequential
format. For graph-based data, we use Graph Convolutional Networks (GCN) [55] to process each
node and integrate it with the temporal dimension to reshape the data into a one-dimensional format
as well. More details of data unification can be found in Appendix B.1

To adapt to various tasks, we employ a unified masking strategy. These tasks can be framed as
reconstructing missing parts of the data, with distinct masking strategies tailored to each task. For
Forward Prediction, we mask future time steps while utilizing past and present data points to predict
the missing values. Conversely, for Backward Prediction, we mask past time steps to estimate
historical values based on current and future observations. In the case of temporal interpolation
tasks, we apply masks to specific time points within a continuous series, allowing the model to
fill in these gaps. For spatio-temporal imputation, we randomly mask missing values across both
spatial and temporal dimensions, enabling the model to leverage surrounding context for accurate
estimations. Finally, in spatial extrapolation tasks, we mask areas outside the observed spatial domain
to predict values for unobserved regions based on existing spatial patterns. Consequently, the input
of the denoising network Xt is represented as the concatenation of noise features and unmasked
spatio-temporal data (conditional observations):

Xt = Xt ∗ (1−M) +X0 ∗M
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where Xt denotes the noise features, M is the mask that controls the availability of values for
downstream tasks, and X0 represents the clean values of the spatio-temporal data. In this way, we
can modulate different masks M to facilitate various urban spatio-temporal applications.

Sequential Input of Spatio-Temporal Data. We first apply temporal patching to process time series
data at each spatial location, represented as XN×T ′×D = CONV(XN×T×D), where T ′ = T

pt
and pt

is the temporal patch size. Next, for grid-based data, we implement 2D spatial patching, resulting
in Xp = CONV2D(XH×W×T ′×D), where Xp ∈ RL×D, L = H×W×T

ps×ps×pt
. In this way, we effectively

reorganize the data into a format well-suited for transformers.

Spatio-Temporal Transformer Block. The overall model is composed of multiple spatio-temporal
transformer blocks. Each block employs both temporal attention and spatial attention, with spatial
and temporal attention mechanisms operating independently. This design choice is made to enhance
computational efficiency, as the complexity of attention scales with the square of the sequence length.

Diffusion Transformer. We adopt the diffusion transformer model, which integrates a denoising
network designed to process complex inputs effectively. The inputs to the denoising network consist
of three key components: the noisy spatio-temporal data, the timestep, and the prompt. For the
timestep t, we utilize them for layer normalization following previous practices [33, 28], which
helps stabilize and standardize the input features at each timestep. The prompt, which provides
contextual information or guidance for the model, is concatenated with the input data to enhance the
model’s understanding of the data and task at hand. This concatenation is straightforward due to
the transformer’s capability to manage variable sequence lengths, providing flexibility in processing
diverse inputs. By incorporating these elements, the diffusion transformer model effectively learns to
denoise and generate robust desired results in spatio-temporal contexts.

3.3 Unified Prompt Learning

Data-Driven Prompt. The data-driven prompt is crucial for training a unified model with multiple
and diverse datasets, as such datasets often exhibit significant variations in patterns and distributions.
In this context, the prompt acts as a guiding mechanism, helping the model to effectively navigate
these differences and generate accurate results. Similar to retrieval-augmented generation, prompts
retrieve the most relevant information, enhancing the model’s ability to contextualize and interpret
spatio-temporal data. By aligning the model’s learning process with the specific characteristics of
various spatio-temporal patterns, data prompts ensure that UrbanDiT can adaptively respond to a
wide range of urban spatio-temporal scenarios.
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Figure 3: Structure of memory pools.

To achieve this goal, we employ memory net-
works, specifically utilizing three memory pools
designed to capture the time-domain, frequency-
domain and spatial patterns of spatio-temporal dy-
namics. For different input data, the prompt net-
work retrieves prompts from these memory pools
based on the respective time-domain, frequency-
domain, and spatial patterns. As shown in Figure 3,
each memory pool is structured as a key-value store
(Kt, Vt) = {(k1t , v1t ), ..., (kNt , vNt )}, (Kf , Vf ) =
{(k1f , v1f ), ..., (kNf , vNf )}, (Ks, Vs) = {(k1s , v1s), ..., (kNs , vNs )}, where both keys and values are
learnable embeddings and randomly initialized. The data-driven prompts are generated as follows:

αt = SOFTMAX(Xt,Kt), Pt =
∑

αt · Vt,

αf = SOFTMAX(Xf ,Kf ), Pf =
∑

αf · Vf ,

αf = SOFTMAX(Xs,Ks), Ps =
∑

αs · Vs,

X = CONCAT(Pt, Pf , X).

Task-Specific Prompt. We design task-specific prompts to enhance the model’s performance across
different tasks. These prompts are generated from the mask, and we employ attention mechanisms
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to obtain the mask prompt Pm from the mask map as Pm = ATTENTION(FLATTEN(M)). The
learned pattern Pm is then concatenated with the input sequence, resulting in X = CONCAT(Pm, X).
This enables the model to effectively incorporate task-specific information. We provide details of
data-driven and task-specific prompts in Appendix B.2

3.4 Training and Inference

The training process alternates between multiple datasets and tasks. In each iteration, we randomly
select a dataset and a corresponding task to perform gradient descent training. This approach enhances
the model’s robustness by exposing it to diverse scenarios and helps prevent overfitting by ensuring
the model learns from a wide range of inputs and objectives. Let D = {D1, D2, . . . , Dm} represent
the set of datasets, and T = {T1, T2, . . . , Tk} denote the set of tasks. Let L(di, ti) be the loss
function for the chosen dataset di and task ti, with the model parameters denoted as θ. Overall, the
training process is summarized as follows:

For i = 1 to N : di ∼ Uniform(D), ti ∼ Uniform(T )

⇒ θ ← θ − η∇L(di, ti; θ)

where N is the total number of training iterations and η is the learning rate.

For the training of the UrbanDiT model, we adopt a novel diffusion training approach proposed by
the InstaFlow [26], which significantly improves the efficiency of spatio-temporal data generation. By
employing rectified flow, it is an ordinary differential equation (ODE)-based framework that aligns
the noise and data distributions through a straightened trajectory, as opposed to the curved paths often
seen in traditional models.

4 Performance Evaluations

Datasets. We utilize a diverse set of datasets from multiple domains and cities to evaluate urban
spatio-temporal applications, which include taxi demand, cellular network traffic, crowd flows,
transportation traffic, and dynamic population, reflecting a broad spectrum of urban activities. The
datasets are sourced from different cities such as New York City, Beijing, Shanghai, and Nanjing, each
representing unique urban characteristics. These datasets vary significantly in their spatial structures
(e.g., grid or graph formats), the number of locations, and their spatial and temporal resolutions.
These variations are influenced by differences in city structures, urban planning strategies, and data
collection methodologies across regions. For a detailed summary of the datasets, please refer to
Table 4 and Table 5 in Appendix A. We split the datasets into training, validation, and testing sets
along the temporal dimension, using a 6:2:2 ratio. To ensure no overlap between them, we carefully
remove any overlapping points, ensuring clear separation across the temporal splits for evaluation.

Baselines. To evaluate the performance of UrbanDiT, we establish a comprehensive benchmark,
comparing it against state-of-the-art models across different urban tasks. For prediction tasks, we
include both traditional time series models such as Historical Average (HA) and ARIMA, as well as
advanced deep learning-based spatio-temporal models like STResNet [54], ACFM [25], STNorm [9],
STGSP [58], MC-STL [56], PromptST [57], STID [36], and UniST [51]. Additionally, we compare
against leading video prediction models, including SimVP [14], TAU [38], MAU [6], and MIM [44],
as well as recent time series forecasting approaches such as PatchTST [32], iTransformer [27], Time-
LLM [20], and the diffusion-based model CSDI [40]. For graph-based datasets, we evaluate UrbanDiT
against cutting-edge spatio-temporal graph models, including STGCN [50], DCRNN [22], GWN [47],
MTGNN [46], AGCRN [2], GTS [35], and STEP [37]. Furthermore, for spatio-temporal imputation
tasks, we compare our model with state-of-the-art baselines such as CSDI, ImputeFormer [31],
Grin [8], and BriTS [5], adapting these methods for temporal interpolation and spatial extrapolation
tasks. We provide more details of baselines in Appendix C.1

4.1 Comparison to the State-of-the-art

Bi-directional Spatio-Temporal Prediction. For this task, we set both the historical input window
and prediction horizon to 12 time steps. Depending on the dataset, the temporal granularity varies—12
steps may correspond to 1 hour for datasets with 5-minute intervals, 6 hours for datasets with 30-
minute intervals, and 12 hours for those with 1-hour intervals. For baselines that cannot handle

6



TaxiBJ FlowSH TaxiNYC CrowdNJ PopBJ
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 53.03 91.55 13.43 38.92 26.49 77.10 0.48 0.93 0.232 0.343
ARIMA 57.5 291 9.15 26.70 23.91 99.22 0.443 0.989 0.236 0.404

STResNet 26.55 37.96 45.63 59.82 14.81 26.88 0.511 0.718 0.546 0.751
ACFM 19.87 30.95 24.95 46.92 9.85 20.82 0.284 0.468 0.141 0.200

STNorm 19.00 31.21 11.88 28.46 10.43 26.94 0.231 0.384 0.132 0.198
STGSP 17.54 27.31 17.54 38.77 10.52 25.94 0.263 0.410 0.157 0.229

MC-STL 28.51 38.50 33.83 46.06 26.01 36.75 0.727 0.504 0.235 0.311
MAU 46.37 71.07 21.38 45.04 21.79 49.15 0.402 0.648 0.166 0.256
MIM 42.40 68.18 22.49 47.29 9.151 24.53 0.399 0.715 0.214 0.298

SimVP 21.67 35.58 15.87 28.59 9.08 19.69 0.191 0.282 0.148 0.213
TAU 15.86 26.43 15.22 26.04 9.08 19.46 0.219 0.326 0.135 0.196

PromptST 16.12 27.42 9.37 23.01 8.24 22.82 0.161 0.306 0.099 0.171
UniST 14.04 23.67 9.10 19.95 5.85 17.55 0.119 0.191 0.106 0.172

STID 16.36 25.55 12.92 21.19 8.32 18.49 0.160 0.234 0.203 0.262
PatchTST 30.55 53.36 10.69 28.17 17.03 50.45 0.223 0.465 0.189 0.291

PatchTST-all 33.62 60.55 12.16 31.79 21.27 58.61 0.403 0.811 0.176 0.279
iTransformer 24.05 42.17 10.19 25.91 45.19 45.19 0.216 0.466 0.154 0.249
Time-LLM 29.55 51.20 10.57 28.19 17.65 52.94 0.210 0.405 0.115 0.195

CSDI 14.76 25.87 8.77 23.37 5.05 16.37 0.094 0.168 0.078 0.136

UrbanDiT 12.61 21.09 5.61 14.44 5.58 15.53 0.092 0.166 0.077 0.129

Table 2: Performance comparison for grid-based forward prediction evaluated using MAE and RMSE.
The results are the average prediction errors across all prediction steps. The best result is highlighted
in bold, and the second-best is indicated with underlining.

TaxiBJ FlowSH TaxiNYC CrowdNJ PopBJ
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CSDI 36.66 75.89 15.53 34.77 19.56 69.10 0.34 0.74 0.18 0.32

Imputeformer 37.13 77.53 17.67 38.96 20.28 49.85 0.39 0.71 0.21 0.34
Grin 41.73 92.61 22.56 47.76 22.44 58.15 0.51 0.71 0.23 0.38

BriTS 59.94 112.34 33.74 59.10 23.39 58.47 0.50 0.70 0.54 0.75

UrbanDiT (ours) 8.10 12.23 5.44 10.17 4.91 12.52 0.099 0.155 0.084 0.146

Table 3: Performance comparison for spatial extrapolation evaluated using MAE and RMSE. The
results represent the average errors across different extrapolation steps.

datasets with different shapes, we train individual models for each dataset.For more flexible models
like UniST and PatchTST, we train a single unified model across multiple datasets.

Table 2 provides a comprehensive benchmark for forward prediction on grid-based data. Appendix
Table 7 illustrates the results for graph-based data. As observed, traditional deep learning models
such as STResNet, ACFM, and MC-STL, do not deliver competitive performance. Similarly, video
prediction models, such as MAU, MIM, and SimVP, reveal limitations, suggesting the difference
between urban spatio-temporal dynamics and those in conventional video data. UniST demonstrates
relatively strong performance, suggesting that training a universal model across different datasets
holds potential for improving prediction accuracy. However, time-series forecasting models struggled
to capture the complex spatial interactions inherent in urban environments, indicating that precisely
modeling these interactions is critical for achieving better results in urban spatio-temporal prediction.
Notably, CSDI ranks second in most cases, showing the effectiveness of diffusion-based models
in capturing complex patterns within urban spatio-temporal data. Our proposed model, UrbanDiT,
delivers the best performance across different datasets using a single unified model, achieving a
relative improvement of 11.3%.

We also compare the backward prediction performance of UrbanDiT with the second-best baseline,
CSDI, as shown in Appendix Table 6. Notably, CSDI is specifically trained for backward prediction
tasks. However, UrbanDiT not only excels in forward prediction but also surpasses specialized
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(a) PopSH - 5% few-shot                                            (b) PopSH - 10% few-shot

Figure 4: Evaluation of UrbanDiT and baseline models in 5% and 1% few-shot scenarios on the
PopSH dataset. The red dashed line indicates UrbanDiT’s zero-shot performance

models like CSDI in backward prediction by 30.4%. This result demonstrates UrbanDiT’s ability to
capture complex spatio-temporal patterns more effectively.

Temporal Interpolation. We set the missing ratio to 0.5, meaning that we only know the even-
numbered time steps (e.g., 0, 2, 4, ..., 2n), and the model is required to predict the odd-numbered time
steps (e.g., 1, 3, 5, ..., 2n-1). Appendix Table 9 demonstrates that UrbanDiT, employing a unified
model, outperforms baselines trained separately for different datasets in most cases.

Spatial Extrapolation. We evaluate the models’ ability to predict missing values in specific spatial
regions by masking 50% of of spatial locations across the temporal sequence. The objective is to
determine how effectively models extrapolate unobserved spatial information from the remaining
visible data. As shown in Table 3, UrbanDiT achieves the best performance in most cases.

Spatio-Temporal Imputation. This task assesses the models’ capacity to impute missing values
across both spatial and temporal dimensions. We randomly mask 50% of positions in the 3D spatio-
temporal data, simulating real-world scenarios where urban data may be incomplete due to sensor
failures or irregularities in data collection. As shown in Appendix Table 10, UrbanDiT achieves the
best performance in most cases.

These results substantiate that UrbanDiT consistently delivers superior performance across diverse
tasks and datasets using a single, unified model. This capability positions UrbanDiT as a general-
purpose foundation model, enabling practitioners to leverage optimized parameters directly, thereby
simplifying deployment and enhancing applicability in urban spatio-temporal applications.

4.2 Few-shot and Zero-shot Performance

A key strength of foundation models is their ability to generalize easily. Therefore, we perform
experiments in both few-shot and zero-shot scenarios, testing its adaptability to new datasets with
little or no additional training. In the few-shot scenario, we train UrbanDiT on a small portion of
the target dataset—specifically using only 5% and 10% of the available data—and then evaluate its
performance on the corresponding test set. This setup challenges the model to generalize well from
sparse data. In the zero-shot scenario, no data from the target dataset is provided for training. Instead,
we directly evaluate UrbanDiT’s performance on the target dataset, relying solely on its pretrained
knowledge to handle unseen data without any fine-tuning.

Figure 4 demonstrates the few-shot and zero-shot performance of UrbanDiT in comparison to
baseline models. In the few-shot setting (with 5% and 1% of the training data), UrbanDiT consistently
outperforms baselines, showing its strong ability to learn from minimal data. Even more striking, in
the zero-shot scenario, UrbanDiT exhibits exceptional inference capabilities, surpassing nearly all
baseline models that had access to training data. This highlights its generalization ability without
fine-tuning, reinforcing its effectiveness as an open-world foundation model.

4.3 Ablation Studies

Prompt. Unified prompt learning is a key design in UrbanDiT. To investigate the contribution of
each prompt to the final performance, we conduct ablation studies by systematically removing each
type of prompt. Specifically, we identify four types of prompts: F for frequency-domain prompt,
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T for time-domain prompt, S for spatial prompt, and M for task-specific prompt. We denote the
removal of a prompt as w/o {F, T, S,M} and indicate the absence of any prompt as w/o P .

21

22

23

24

25

RM
SE

Full
w/o T

w/o F
w/o S

w/o M
w/o P

Figure 5: Ablation study on the prompt design
using RMSE on the TaxiBJ dataset.

Figure 5 presents the results of ablation studies. The
findings reveal that removing any single prompt sig-
nificantly degrades the model’s performance. In the
absence of prompt design altogether, the model ex-
hibits the poorest performance. Among the four types
of prompts, the removal of the frequency-domain
prompt has the most pronounced negative impact on
the overall performance.

Inference Steps of Diffusion Models. We further
investigate the effect of inference steps on the perfor-
mance of diffusion models. The number of inference
steps is a critical factor in balancing the model’s accu-
racy and efficiency. Appendix Figure 8 illustrates the
performance of the diffusion model across different
numbers of inference steps for two datasets, TaxiBJ
and TaxiNYC, measured using RMSE. Notably, we
observe that around 20 inference steps provide the
optimal balance between computational efficiency and model performance for both datasets. By
setting the diffusion steps to 500 and the inference steps to 20, we achieve a 25x improvement in
efficiency compared to the original DDPM [17], without sacrificing accuracy.

4.4 Scalability
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Figure 6: The scalability of UrbanDiT.

As a foundation model, it is crucial to under-
stand how model performance evolves as the
datasize scale varies across different model sizes.
This information is valuable for practitioners
to train and fine-tune the foundation model ef-
fectively. In Figure 6, we explore the rela-
tionship between model performance and data-
size scale for three model sizes: UrbanDiT-S
(small), UrbanDiT-M (medium), and UrbanDiT-
L (large). As observed, all three models
demonstrate improved performance as the data
size increases. However, when the dataset
size increases from 0.8 to 1, the large model,
UrbanDiT-L, shows a notably steeper improve-
ment (with a slope of 0.011), compared to the
medium (slope of 0.0015) and small models
(slope of 0.0019). This pronounced scaling ef-
fect for the large model indicates its potential to further enhance performance as more data becomes
available. These results highlight the promising scalability of UrbanDiT-L, suggesting that it can
handle larger datasets and achieve even better outcomes with increased data size.

5 Conclusion

In this paper, we present UrbanDiT, an open-world foundation model built on diffusion transformers
and a unified prompt learning framework. UrbanDiT enables seamless adaptation to a wide range
of urban spatio-temporal tasks across diverse datasets from urban environments. Our extensive
experiments highlight the model’s exceptional potential in advancing the field of urban spatio-
temporal modeling. We believe this work not only pushes the boundaries of urban spatio-temporal
modeling but also serves as an inspiration for future research in the rapidly evolving field of foundation
models. Nonetheless, UrbanDiT currently focuses on human activity data such as mobility and traffic.
To support holistic urban modeling, future work should incorporate environmental variables like air
pollution, climate indicators, and microclimate dynamics.
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Table 4: Basic statistics of grid-based data.
Dataset City Type Temporal Period Spatial partition Interval Mean Std
FlowSH Shanghai Mobility flow 2016/04/25 - 2016/05/01 20× 20 15min 31.935 137.926
PopBJ Beijing Crowd flow 2021/10/25 - 2021/11/21 28× 24 One hour 0.367 0.411
TaxiBJ Beijing Taxi flow 2013/06/01 - 2013/10/30 32× 32 Half an hour 97.543 122.174

CrowdNJ Nanjing Crowd flow 2021/02/02 - 2021/03/01 20× 28 One hour 0.872 1.345
TaxiNYC New York City Taxi flow 2015/01/01 - 2015/03/01 10× 20 Half an hour 38.801 103.924

PopSH Shanghai Dynamic population 2014/08/01 - 2014/08/28 32× 28 One hour 0.175 0.212

Table 5: Basic statistics of Graph-based data.
Dataset City Type Temporal Period Interval #Nodes #Edges Mean Std

SpeedSH Shanghai Traffic speed 2022/01/27 - 2022/02/27 15min 21099 39065 7.815 4.044
SpeedBJ Beijing Traffic speed 2022/03/05 - 2022/04/05 15min 13675 24444 6.837 3.412
SpeedNJ Nanjing Traffic speed 2022/03/05 - 2022/04/05 15min 13419 25100 6.699 4.253

A Datasets

We provide a detailed overview of the datasets utilized in our study to support future research in the
field of urban spatio-temporal modeling. The datasets are categorized into two distinct types: grid-
based and graph-based spatio-temporal data. Each type of data reflects different spatial organizations
and dynamics, enabling a comprehensive evaluation of model performance across varied urban
scenarios.

Grid-based data represent spatial information in a structured, uniform grid layout, where each grid
cell corresponds to a specific geographical area. Table 4 outlines the essential details and statistics for
the grid-based datasets, including spatial resolution, temporal resolution, temporal period, and the
size of each dataset.

Graph-based data, on the other hand, capture urban spatial relationships through a network of nodes
and edges, where nodes typically represent points of interest (e.g., intersections or key locations), and
edges represent the connections between them (e.g., roads or transit lines). This type of data is well-
suited for modeling scenarios that involve irregular spatial structures, such as transportation networks.
Table 5 provides a comprehensive summary of the graph-based datasets, including information on the
number of nodes, edges, temporal resolution, temporal period, and dataset size.

B Methodology Details

B.1 Sequential Format of Input Data

We provide a detailed description of the data unification process for both grid-based and graph-based
spatio-temporal data. The key goal is to transform the data into a unified sequential format suitable
for the transformer’s input.

Grid-based data is structured in a uniform grid layout, typically represented in a three-dimensional
form Xgrid ∈ RT×H×W with two spatial dimensions (height H and width W ) and one temporal
dimension T . To process this data, we utilize 3D Convolutional Neural Networks (3D CNN), which
are widely used for capturing both spatial and temporal dependencies in spatio-temporal tasks. The
process is formulated as follows:

X ′ = CONV3D(Xgrid, kernel size = (pt, ps, ps))

Xp = RESHAPE(X ′, [N ])

where N = T
pt
× H

ps
× W

ps
represents the total number of spatio-temporal partitions, effectively

converting the data into a one-dimensional sequence for further processing by the transformer model.

Graph-based data is inherently non-Euclidean, capturing relationships between urban entities (e.g.,
streets and intersections). The spatial dimension is represented by a graph structure with nodes and
edges, and the temporal dimension is still captured as a time series at each node. The graph-based
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data can be represented as a tensor Xgraph ∈ RN×T , where N is the number of nodes in the graph, and
T is the number of time steps. To handle the temporal dimension, we first apply a 1D convolutional
network (1D CNN) along the time axis to capture local temporal dependencies. Next, to capture
spatial relationships, we apply a Graph Convolutional Network (GCN) [55] on the graph structure.
For each temporal patch, the GCN aggregates information from neighboring nodes using the graph’s
adjacency matrix A ∈ RN×N . Finally, we reshape the graph-based data into a sequential format. The
operations are formulated as follows:

X ′ = CONV1D(Xgraph, kernel size = pt)

X ′ = GCN(X ′, A,W )

Xp = RESHAPE(X ′, [M ])

where M represents the number of spatio-temporal patches, ensuring that the graph-based data is
transformed into a one-dimensional sequence, similar to the grid-based data. This unified sequential
representation allows both data types to be processed consistently by the transformer model.

B.2 Unified Prompt Learning

We provide details of how to obtain the data-driven and task-specific prompts.

Time-domain patterns. Suppose the patched spatio-temporal data is denoted as X ∈ RT ′×N ′
, where

T ′ = T
pt

and N ′ = H
ps
× W

ps
. we extract time-domain patterns by applying an attention mechanism

along the temporal dimension. This is done independently for each spatial location, allowing us to
capture temporal dependencies across different spatial patches as follows:

Xt = ATTENTION(XT ), XT ∈ RN ′×T ′
, Xt ∈ RN ′×1×D

where D is the embedding size.

Frequency-domain patterns. In our work, we employ four distinct approaches to compute features
in the frequency domain, depending on the configuration of the Fast Fourier Transform (FFT) and
thresholding mechanisms:

• Without FFT Threshold: we directly compute the FFT of the input tensor. The tensor is permuted
along the appropriate dimensions, and the real and imaginary components of the FFT are concate-
nated along the last dimension. This results in a frequency domain representation of the data. It is
formulated as follows:

XFFT = FFT(X),

Xfreq = [ℜ(XFFT),ℑ(XFFT)] ,

where ℜ(XFFT) represents the real part of the FFT, and ℑ(XFFT) represents the imaginary part.

• Basic FFT Threshold: we apply a basic threshold technique by computing the amplitude of
the FFT and creating a binary mask. The mask retains frequency components whose amplitude
is greater than the mean amplitude, filtering out low-frequency noise and preserving significant
frequency components. The process is formulated as follow:

XFFT = FFT(X),

A = |XFFT|, µA =
1

H ×W × T

∑
A,

M = I(A > µA), XFFT,filtered = XFFT,⊙M,

Xfreq = [ℜ(XFFT,filtered),ℑ(XFFT,filtered)] .

• Quantile-based FFT Threshold: We further refine the frequency selection by applying a threshold
based on the 80t% of the amplitude distribution. This approach retains the most prominent
frequency components, allowing for more flexible filtering compared to the mean-based threshold.
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The selection process can be formulated as follows:

XFFT = FFT(X),

A = |XFFT|, q80 = Quantile(A, 0.8),

M = I(A > q80), XFFT,filtered = XFFT ⊙M,

Xfreq = [ℜ(XFFT,filtered),ℑ(XFFT,filtered)] .

• Top-k Frequency Filtering: We retain only the top k frequency components (e.g., the first three).
We generate a mask to preserve only these dominant components, filtering out the rest. It is
formulated as follows:

XFFT = FFT(X), A = |XFFT|,
indices = argsort(A, descending)[: k],
M = mask(indices), XFFT,filtered = XFFT ⊙M,

Xfreq = [ℜ(XFFT,filtered),ℑ(XFFT,filtered)] .

Spatial patterns. For the same patched spatio-temporal data X ∈ RT ′×N ′
, we extract spatial patterns

by applying an attention mechanism along the spatial dimension, independently on each temporal
patch. This process allows us to model spatial dependencies within each time patch as follows:

Xs = ATTENTION(X), X ∈ RT ′×N ′
, Xt ∈ RT ′×1×D

C Experiment Details

C.1 Baselines

• HA: History Average is a forecasting method that predicts future values by calculating the mean of
historical data from the same time periods.

• MIM [44]: This model utilizes the difference in data between consecutive recurring states to
address non-stationary characteristics. By stacking multiple MIM blocks, it can capture higher-
order non-stationarity in the data.

• MAU [6]: The Motion-aware Unit extends the temporal scope of prediction units to seize correla-
tions in motion between frames. It encompasses an attention mechanism and a fusion mechanism,
which are integral to video prediction tasks.

• SimVP [14]: A simple yet effective video prediction model is entirely based on convolutional
neural networks and employs MSE loss as its performance metric, providing a reliable benchmark
for comparative studies in video prediction.

• TAU [38]: The Temporal Attention Module breaks down temporal attention into two parts: within-
frame and between-frames, and employs differential divergence regularization to manage variations
across frames.

• STResNet [54]: STResNet employs residual neural networks to detect proximity, periodicity, and
trends in the temporal data.

• ACFM [25]: The Attentive Crowd Flow Machine model forecasts crowd movements by using an
attention mechanism to dynamically integrate sequential and cyclical patterns.

• STGSP [58]: This model highlights the significance of global and positional temporal data for
spatio-temporal forecasting. It incorporates a semantic flow encoder to capture temporal position
cues and an attention mechanism to handle multi-scale temporal interactions.

• MC-STL [56]: MC-STL utilizes mask-enhanced contrastive learning to efficiently identify spatio-
temporal relationships.

• STNorm [9]: It introduces two distinct normalization modules: spatial normalization for handling
high-frequency elements and temporal normalization for managing local components.

• STID [36]: This MLP-based spatio-temporal forecasting model discerns subtleties within the
spatial and temporal axes, showcasing its design’s efficiency and efficacy.
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• PromptST [57]: An advanced pre-training and prompt-tuning methodology tailored for spatio-
temporal forecasting.

• UniST [51]: A versatile urban spatio-temporal prediction model that uses grid-based data. It
employs various spatio-temporal masking techniques for pre-training and fine-tuning with spatio-
temporal knowledge-based prompts.

• STGCN [50]: The Spatio-Temporal Graph Convolutional Network is a deep learning architecture
for predicting traffic patterns, harnessing both spatial and temporal correlations. It integrates graph
convolutional operations with convolutional sequence learning to capture multi-scale dynamics
within traffic networks.

• GWN [47]: Graph WaveNet is a technique crafted to overcome the shortcomings of current spatial-
temporal graph modeling methods. It introduces a self-adjusting adjacency matrix and utilizes
stacked dilated causal convolutions to efficiently capture temporal relationships.

• MTGNN [46]: MTGNN is a framework tailored for multivariate time series analysis. It au-
tonomously identifies directional relationships between variables via a graph learning component
and incorporates additional information such as variable attributes.

• GTS [35]: GTS is an approach that concurrently learns the topology of a graph alongside a Graph
Neural Network (GNN) for predicting multiple time series. It models the graph structure using a
neural network, allowing for the generation of distinct graph samples, and aims to optimize the
average performance across the distribution of graphs.

• DCRNN [22]: The Diffusion Convolutional Recurrent Neural Network is a deep learning frame-
work for spatiotemporal prediction. It treats traffic flow as a diffusion phenomenon on a directed
graph, securing spatial interdependencies via two-way random walks and temporal interdependen-
cies through an encoder-decoder setup with scheduled sampling.

• STEP [37]:Spatial-temporal Graph Neural Network Enhanced by Pre-training is a framework that
uses a pre-trained model to enhance spatial-temporal graph neural networks for better forecasting
of multivariate time series data.

• AGCRN [2]: The AGCRN framework improves upon Graph Convolutional Networks by incorpo-
rating two adaptive components: Node Adaptive Parameter Learning and Data Adaptive Graph
Generation. This approach effectively captures nuanced spatial and temporal relationships within
traffic data, functioning independently of pre-set graph structures.

• PatchTST [32]: It employs patching and self-supervised learning techniques for forecasting multi-
variate time series. By dividing the time series into segments, it captures long-term dependencies
and analyzes each data channel separately using a unified network architecture.

• iTransformer [27]: This state-of-the-art model for multivariate time series utilizes attention
mechanisms and feed-forward neural network layers on inverted dimensions to emphasize the
relationships among multiple variables.

• Time-LLM [20]: TIME-LLM represents an advanced approach in applying large-scale language
models to time series prediction. It employs a reprogramming strategy that adapts LLMs for
forecasting tasks without altering the underlying language model architecture.

• CSDI [40]: CSDI is explicitly trained for imputation and can exploit correlations between observed
values, leading to significant improvements in performance over existing probabilistic imputation
methods.

• Imputeformer [31]: It introduces a low-rank inductive bias into the Transformer framework to
balance strong inductive priors with high model expressivity, making it suitable for a wide range of
imputation tasks.

• Grin [8]: GRIN introduces a novel graph neural network architecture designed to reconstruct
missing data in different channels of a multivariate time series, outperforming state-of-the-art
methods in imputation tasks.

• BriTS [5]: BRITS is a method for imputing missing values in time series data, utilizing a bidirec-
tional recurrent neural network (RNN) without imposing assumptions on the data’s underlying
dynamics.

It is worth noting that the baselines, including UniST [51] and PatchTST [32], can also be trained using
multiple datasets. In our comparison experiments, we train these models in a unified manner using
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the same diverse datasets to ensure a fair comparison. This approach ensures that the performance
gains of UrbanDiT are not merely due to dataset diversity, but reflect the model’s true advantage.

C.2 Experiment Configuration

For UrbanDiT-S (small), the model consists of 4 transformer layers with a hidden size of 256. Both
the spatial and temporal patch sizes are set to 2, and the number of attention heads is 4. UrbanDiT-M
(medium) is composed of 6 transformer layers with a hidden size of 384, maintaining the same spatial
and temporal patch sizes of 2, and 6 attention heads. UrbanDiT-L (large) includes 12 transformer
layers, a hidden size of 384, spatial and temporal patch sizes of 2, and 12 attention heads. Each
memory pool contains 512 embeddings, with the embedding dimension matching the model’s hidden
size. The learning rate is set to 1e-4, and the maximum number of training epochs is 500, with early
stopping applied to prevent overfitting. The batch size is tailored for each dataset to maintain a similar
number of training iterations across them.

C.3 Metrics.

To assess the performance of UrbanDiT in urban spatio-temporal applications, we employ widely
recognized evaluation metrics: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Given that UrbanDiT operates as a probabilistic model, we conduct 20 inference runs and use the
average result for comparison against the ground truth. We apply the same evaluation framework to
the probabilistic baselines, ensuring a consistent and fair assessment of all models.

D Additional Results

D.1 Results of Multiple Tasks

Table 6 to Table 10 illustrate additional results of multiple tasks.

D.2 Few-Shot and Zero-Shot Performance

Figure 7 demonstrates UrbanDiT’s few-shot and zero-shot capabilities on the TaxiBJ dataset.

D.3 Ablation Studies

D.4 Computational Analysis

table 11 provides an overview of model efficiency in terms of overall training time and inference
time. While the training time of UrbanDiT is longer than that of the baseline models due to its
inclusion of multiple datasets, it is important to note that training separate models for each dataset
and summing the total training time results in comparable times between UrbanDiT and the baseline
methods. Furthermore, UrbanDiT achieves the best performance across all datasets with a single,
unified model, demonstrating its efficiency and effectiveness in delivering superior results without
the need for multiple specialized models. This efficiency is crucial for real-world applications, where
scalability is key.

Regarding inference latency, UrbanDiT incurs slightly higher costs due to its diffusion-based genera-
tive framework, which involves iterative sampling in the denoising process and multiple sampling for
probabilistic prediction. However, with Rectified Flow acceleration, inference is significantly faster,
notably outperforming CSDI. The resulting latency is reasonable and practically negligible given the
substantial performance gains and unified deployment benefits of the model.
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(a) TaxiBJ - 5% few-shot                                            (b) TaxiBJ - 10% few-shot

Figure 7: Evaluation of UrbanDiT and baseline models in 5% and 1% few-shot scenarios on the
TaxiBJ dataset. The red dashed line indicates UrbanDiT’s zero-shot performance
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Figure 8: Performance evaluation (RMSE) with varying numbers of inference steps on TaxiBJ and
TaxiNYC datasets.

TaxiBJ FlowSH TaxiNYC CrowdNJ PopBJ
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CSDI 17.40 33.98 10.65 31.88 4.83 15.43 0.094 0.16 0.082 0.14

UrbanDiT 11.57 20.08 5.996 14.37 4.71 15.07 0.16 0.099 0.071 0.117

Table 6: Performance comparison for grid-based backward prediction evaluated using MAE and
RMSE.
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SpeedBJ SpeedSH SpeedNJ
Model MAE RMSE MAE RMSE MAE RMSE

HA 1.35 2.13 0.92 1.46 1.94 3.01
STGCN 1.81 2.44 0.99 1.35 1.63 2.31
CRNN 1.37 1.98 0.89 1.28 1.53 2.38
GWN 1.69 2.32 0.93 1.32 1.50 2.16

MTGNN 1.15 1.70 0.86 1.33 1.57 2.42
AGCRN 1.66 2.29 1.14 1.56 1.77 2.46

GTS 1.76 2.36 1.31 1.74 2.04 2.68
STEP 1.45 2.04 0.93 1.32 1.58 2.42

STID 1.08 1.69 0.83 1.26 1.56 2.38
PatchTST 1.27 1.99 0.87 1.37 1.83 2.74
PatchTST 1.55 2.44 1.08 1.70 2.19 3.34

iTransformer 1.26 1.97 0.90 1.40 1.70 2.62
Time-LLM 1.28 2.00 0.87 1.36 1.82 2.76

UrbanDiT 1.02 1.66 0.78 1.20 1.51 2.30
Table 7: Performance comparison of prediction across three graph-based traffic speed datasets.

TaxiBJ FlowSH TaxiNYC CrowdNJ PopBJ
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CSDI 11.20 18.42 5.71 13.14 3.86 11.59 0.055 0.092 0.044 0.077

Imputeformer 11.99 19.83 6.72 15.69 5.61 16.72 0.079 0.16 0.066 0.11
Grin 13.69 23.45 9.61 26.28 8.10 21.32 0.10 0.18 0.083 0.16

BriTS 17.57 27.63 15.24 28.40 19.41 50.25 0.19 0.28 0.16 0.25

UrbanDiT (ours) 9.09 14.54 4.90 10.308 4.50 11.46 0.077 0.121 0.056 0.094

Table 8: Performance comparison for temporal interpolation evaluated using MAE and RMSE. The
results represent the average errors across different interpolation steps.

TaxiBJ FlowSH TaxiNYC CrowdNJ PopBJ
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CSDI 12.29 22.07 7.94 21.86 4.33 13.09 0.071 0.12 0.055 0.094

Imputeformer 13.65 23.18 9.22 19.97 5.95 16.36 0.093 0.16 0.069 0.12
Grin 16.83 27.61 9.70 23.52 9.15 21.43 0.16 0.30 0.096 0.18

BriTS 22.57 38.39 17.14 38.82 19.93 50.47 0.26 0.41 0.18 0.29

UrbanDiT (ours) 9.38 15.19 5.03 11.52 4.62 12.16 0.083 0.13 0.061 0.101

Table 9: Performance comparison for temporal imputation evaluated using MAE and RMSE. The
results represent the average errors across different imputation steps.

TaxiBJ FlowSH TaxiNYC CrowdNJ PopBJ
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CSDI 7.92 12.42 4.28 8.62 3.86 11.54 0.057 0.091 0.046 0.083

Imputeformer 9.70 13.80 5.50 10.30 4.79 15.35 0.076 0.12 0.061 0.11
Grin 11.96 19.62 9.21 19.68 9.62 20.77 0.11 0.19 0.080 0.14

BriTS 13.99 23.53 17.95 38.57 19.17 50.15 0.21 0.44 0.13 0.19

UrbanDiT (ours) 7.83 12.13 5.07 9.79 3.63 11.44 0.057 0.090 0.049 0.092

Table 10: Performance comparison for grid-based spatio-temporal imputation evaluated using MAE
and RMSE. The results represent the average prediction errors across different prediction steps.
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Table 11: Model Training and Inference Times

Model Train Time All Inference Time
STGCN 17 min 2 s
DCRNN 77 min 8 s
GWN 16 min 1 s
MTGNN 14 min 0.8 s
AGCRN 21 min 2 s
GTS 126 min 17 s
STEP 177 min 27 s
STResNet 5.7 min 0.6 s
ACTM 56 min 0.9 s
STNorm 46 min 5 s
STGCP 8 min 4 s
MC-STL 31 min 7 s
MAU 82 min 13 s
MIM 84 min 14 s
TAU 22 min 6 s
PromptST 45 min 9 s
Imputeformer 28 min 6 s
BriTS 82 min 10 s
Grin 17 min 2 s
UniST 5 h 19 s
STID 10 min 5 s
PatchTST 33 min 5 s
iTransformer 23 min 6 s
Time-LLM 6 h (multiple datasets) 5 min
CSDI 5.5 h 38 min
UrbanDiT 4 h (multiple datasets) 57 s
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release all the code and data, as well as instructions for how to replicate
the results. See abstract and Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have submitted code and data anonymously as supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide sufficient information on experimental setting. See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the the statistical significance of the experiments suitably and
correctly. See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources. See Section ??.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We make sure that the presented research conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide thorough discussion about broader impacts of this work. See
Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in the paper are properly credited. The license and terms of use
are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets introduced in the paper are well documented and we provide
the documentation alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We provide sufficient information on the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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