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Abstract—Various dedicated web services in the cyberspace, e.g., social networks, e-commerce, and instant communications, play a
significant role in people’s daily-life. Billions of people around the world access these services through multiple online identifiers (IDs),
and interact with each other in both the cyberspace and the physical world. Thanks to the rapid development of wireless and mobile
technologies, nowadays these two kinds of interactions are highly relevant with each other. In order to link between the cyberspace and
the physical world, we propose a new type of social network, i.e., co-location social network (CLSN). A CLSN contains online IDs
describing people’s online presence and offline “encountering” events when people come across each other. By analyzing real data
collected from a mainstream ISP in China, which contains 32.7 million IDs across the most popular web services, we build a
large-scale CLSN, and explore its unique properties from various aspects. The results indicate that the CLSN is quite different from
existing online and offline social networks in terms of classic graph metrics. Moreover, we propose a community-based user
identification algorithm to find all online IDs belonging to the same physical user. Using some ground-truth data, we demonstrate that
our proposed algorithm achieves a high accuracy in user identification. Finally, we perform a user-centric analysis, and we demonstrate
the behavioral difference among different types of users.
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1 INTRODUCTION

THanks to the rapid development of the Internet and
web technologies, various dedicated web services in

the cyberspace, i.e., social networking services (SNS), e-
commerce, and instant communication, are growing quickly.
They have attracted billions of users around the world, and
have become an important part of people’s daily life. It is
quite normal for an individual user to have multiple iden-
tifiers (IDs) in the cyberspace, such as SNS accounts, email
addresses, and instant messenger accounts. By referring to
these accounts, people interact with each other online, for
example, sending messages to each other. Moreover, more
and more offline social events, ranging from informal get-
togethers (e.g. movie night and dining out) to professional
activities (e.g. technical conferences and business meetings),
use online platforms to do the organizing. Therefore, online
interactions will trigger people’s movement and interactions
in the physical world. Meanwhile, people’s offline interac-
tions will further boost the interactions in the cyberspace,
not only for IDs on the same online platform, but also for
IDs coming from multiple platforms. Given these facts, to
understand Internet users’ behavior, it is important to make
observations from both online and offline perspectives, and
consider them as an integrated whole.

On one hand, there are numerous papers studying on-
line social networks by investigating data from SNS plat-
forms [1], [2], e-mail networks [3], and instant messenger
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networks [4]. However, all these work do not take the
users’ offline interactions into account. On the other hand,
researchers have also investigated a lot on users’ social
interactions in the physical world, for example, human
mobility patterns [5]. However, little has been done to
systematically explore the links between the online and
offline social networks. In this paper, we propose a new
type of social networks, known as co-location social networks
(CLSN). In a CLSN, we put the users’ online IDs and their
offline social interactions together, where each ID uniquely
corresponds to a user, and is attached to all entries generated
by the user in the corresponding service. As a result, this
new network can capture the face-to-face social interactions
in participating events in the offline physical world when
the online IDs are appearing in the same locations. In this
paper, we conduct a data-driven investigation for CLSNs. It
is based on real data collected from a mainstream Internet
service provider in China with 32.7 million online IDs
across different popular online services in one month. The
constructed network can not only demonstrate the presence
of online IDs, but also get insights from their mobility and
co-existence in the physical world.

Our study reveals many unique aspects of the con-
structed CLSN, which are different from conventional pure
online or offline social networks. In terms of the static
network structure, our findings include the existence of a
giant connected component, a high average degree, and a
strong locality of social interactions. In addition, we found
that adding more types of online IDs to a CLSN can signif-
icantly increase the network connectivity, which implies a
synergistic relationship among these different types of IDs.
Furthermore, we look at the forming of the CLSN from a
dynamic perspective.
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Based on the constructed network, we aim to further
map the online IDs in the cyberspace to users in the physical
world, i.e., detecting physical users from how these cyber ID
interact with each other. This is a very challenging problem,
as two IDs might come across each other no matter they
belong to the same user or not. To achieve an accurate
mapping, we propose a community-based user identifica-
tion algorithm. By checking against the ground-truth data,
we validate that our algorithm achieves a high accuracy
in finding online IDs belonging to the same user. We also
perform a detailed investigation about the impact of key
parameters on its performance.

Based on the discovered users, we finally perform a
series of user-centric analysis. By running K-means clus-
tering algorithm we divided users into three types, i.e.,
business-dominated users, entertainment-dominated users,
and comprehensive users. Our study shows the difference
among these types from different aspects, e.g., temporal
behaviors, and ID composition. For example, we quanti-
tatively characterize the difference between entertainment-
dominated users and business-dominated users in terms
of the frequency of using online social networks, instant
messengers, and e-commerce services, during weekdays
and weekends.

The rest of the paper is organized as follows. After
presenting related works in Section 2, we introduce our data
set and formally define CLSN in Section 3. We examine the
statistic network structure and dynamic properties of CLSN
in Section 4. Then, we investigate the user identification
problem in the CLSN in Section 5 and further investigate
the links between IDs of physical world and cyberspace in
Section 6. Finally, we draw our conclusion and discuss the
potential future works in Section 8.

2 RELATED WORK

The recent growth and popularity of online social networks
(OSNs) such as Facebook, Twitter, and Linkedin has lead
to a surge in measurement and analysis of OSNs [4], [6]–
[9]. Existing work includes the analysis of static network
structures [4], [10], dynamic network growth patterns [11],
[12], link strength modeling [8], and social link predic-
tion [13]. Moreover, even before the emergence of OSNs,
offline social networks in the physical world has been an
important research topic for tens of years [14]. Existing
work include studying the origin of social relationships
[15], and detecting social interactions [16]. However, none
of these literatures has considered the online and offline
social networks as an integrated whole, while they are
highly related to each other. On the other hand, some online
systems have recently started to integrate users’ offline
activities. There are two existing types, i.e., location-based
social networks (LBSNs) [5], [17], [18], and event-based
social networks (EBSNs) [19]. In LBSNs such as Foursquare
and Gowalla, an individual user can share his latest loca-
tion to the platform by conducting a “check-in”. However,
LBSNs do not record users’ interactions in the physical
world. In EBSNs, users can organize offline events through
online platforms such as Meetup (www.meetup.com) and
Plancast (www.plancast.com). As a result, the platform can
track users’ co-attendance of a certain event. Still, other

TABLE 1
Dataset summary.

# Records # Online IDs # Subscribers # Services
470 million 32.7 million 3.4 million 4

types of offline interactions organized offline, for example,
events not registered in the platform, cannot be tracked at
all. Moreover, for both LBSNs and EBSNs, users’ online
information and interactions are restricted to a single site,
while in practice, people might communicate with each
other via multiple online platforms. In our study, we aim to
link the physical world and cyberspace using massive data
collected from a mainstream ISP. Our work differs from an
earlier work published by Cranshaw et al. [20] significantly.
First, we involve multiple types of online IDs to accurately
capture users’ online activities from different aspects, while
they only use the user information from Facebook. Second,
in terms of scale, our study involves 32.7 million online IDs,
while their study covers 389 Facebook users with very in-
frequent interactions among users. In short, we adopt richer
online-offline information to investigate a large group of
millions of users, and our study can draw a comprehensive
picture of online-offline social interactions.

In terms of user identification, linking accounts of the
same user across datasets are recognized as an important
open problem studied in diversity contexts [21]–[30]. Most
existing solutions rely on either utilizing different portions
of the same dataset [21]–[23] or observing the same behavior
across thematically similar domains [24], [28]. Specifically,
Korula et al. [21] focused on linking user IDs based on the
friendship graph. Similarly, Kazemi et al. [22] presented an-
other graph matching algorithm that relies on smaller seeds
than other approaches. Goga et al. [23] used user profile
attributes such as user name, profile photos. Narayanan
et al. [24] linked users of Netflix and IMDB based on the
similarity of their movies ratings. Zhang et al. [25] focused
on linking users based on their social graph. Naini et al. [26]
focused on linked users by matching their statistics. Mu et
al. [27] described a multi-platform user ID linkage (MUIL)
problem, and used “latent user space” for linking user
profiles. Another work from Goga et al. described a set
of similarity features for ID linking such as timestamp of
posts and writing styles [28]. Gao et al. [29] proposed an
unsupervised method to link users based on their attributes
and social features. Riederer et al. [30] proposed a generic
and self-tunable algorithm of cross-domain user linking
which utilizes the temporal-spatial behaviors of humans to
build a new type of maximum weight matching. However,
most of existing approaches can only match user identifiers
of two domains, while there are multiple types of online IDs
involved in our analysis to accurately capture users’ online
activities from different aspects. What’s more, we focus on
linking online IDs of the same user by utilizing their offline
social interactions, which differs from existing approaches
significantly.

3 CO-LOCATION SOCIAL NETWORKS: DATA COL-
LECTION AND CONSTRUCTION

In this section, we first introduce the collection of data that
records massive users’ online and offline behaviors. Then,
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Items Mean Standard
Deviation

IDs in one subscriber 12.70 122.28
IDs on devices with the same OS type 6.06 69.59
Subscribers accessed by one online ID 1.31 41.68
OS types appeared in one subscriber 2.45 2.57

(b) Related statistics

Fig. 1. Basic properties about the collected data set.

we introduce the concept of co-location social networks
(CLSN) and give its formal definition.

3.1 Data Collection and Processing
The data set we used is collected by a mainstream Internet
service provider (ISP) in China. It records users’ accessing
activities via broadband subscribers, which are associated to
a physical locations, e.g., a WiFi access point or a broadband
interface. To observe the online behavior of users, our study
focuses on a series of representative online services in China,
i.e., QQ (online instant messenger), Weibo (online social net-
work), Taobao (online shopping site), and cell phone, which
are summarized in Table 1 with their website URLs and total
number involved in our data set. All of them are the leading
and most popular ones among the corresponding categories
in China. By sniffing millions of broadband subscribers in
Shanghai city, the ISP performs deep packet inspection (DPI)
to capture users’ login actions to aforementioned online
services from each subscriber. As soon as a user accesses
one of these services, the login action will be recorded. The
data collection was from Nov. 1 to Nov. 30, 2015, and the
collected data trace is as large as 50 GB.

Table 1 presents a summary of the dataset. We can
observe that there are 470 million entries in our data set.
Each entry contains following fields: name of the online

TABLE 2
Services involved in our study.

Services Types Website Number
QQ Instant messengers (IM) qq.com 11M
Taobao E-commerce (EC) taobao.com 15M
Weibo Online social networks

(OSN)
weibo.com 2M

Cell phone - - 4M

service, online ID, identity of the broadband subscriber,
Operating System (OS) the user used, and login time, which
is accurate to hours in our data set. Let us look at a sample
entry: <Weibo, 123456, 789, iOS, 2015112113>. This entry
represents a user launched an iOS-based Weibo application
at 13PM Nov. 21, 2015 with ID 123456, and the identity
of the corresponding subscriber is 789. Over 3.4 million
subscribers and 32.7 million online IDs for different types
of services are involved in our dataset. In addition, to pre-
serve user privacy, the online ID and subscriber identity are
anonymized. Overall, we denote L as the set of all locations
(broadband subscriber) and denote T as the set of time bins,
of which the size is 1 hour in our dataset. In addition, we
define V as the set of all online IDs, and we let S represent
the set of types of online IDs. For each ID v ∈ V , we denote
s(v) as its type (service). Further, ∀ location l ∈ L, we use
binary variable Xt

vl ∈ {0, 1} to represent whether user v
appeared in location l on the time bin t.

Characteristics. We now provide an informative
overview of the data set. We are interested in the following
four metrics, i.e., the number of online IDs that appear in
one subscriber, the number of subscribers accessed by one
online ID, the number of online IDs that appear on devices
with the same OS type, and the number of different OSs
that appear in one subscriber, of which the complementary
cumulative distribution function (CCDF), the mean and
standard deviation are shown in Fig. 1(a) and (b), respec-
tively. We can observe that there are in average 12.70 online
IDs that appear in a single subscriber, and a single online
ID accesses 1.31 subscribers in average. In addition, there
are 6.06 online IDs that appear in devices with the same OS
type for one subscriber, and 2.45 different kinds of OSs that
appear in one subscriber on average. Though the dimension
of subscribers is more coarse-grained compared with the
dimension of devices, it is unique and can be corresponding
to true locations in physical world. On the other hand, since
we can only know the types of OS in the dimension of
devices, we still cannot distinguish online IDs of different
users. In addition, the sharing of devices is pretty common
in physical world, and it may introduce extra noise by using
this information. Thus, we ignore the information of devices
in the following analysis.

Strengths and Limitations. Our data set includes 3.4
million subscribers and 32.7 million online IDs for different
types of services, from which we can observe users roam
around in the physical world while accessing online services
in cyberspace space. This large-scale data set guarantees
the credibility of our analysis of user behaviors in the
physical world and cyberspace. On the other, there are also
some limitations of data set. First, the timestamps are only
accurate to hours in our data set. Then, online IDs and
subscriber identities in our dataset are anonymized. Thus,
we cannot utilize users’ profile information as gender, age
in investigating their behavior. Third, though the latitude
and longitude of broadband subscribers are also known
in our dataset, which arrive accurately decimally hind 4,
there is strong hybridity of urban functions in China, e.g.,
residential areas are very close to business areas. Thus,
we cannot obtain the profile information of subscribers
(locations) directly from the latitude and longitude. Instead,
we use the statistics of user behavior in these subscribers to
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Fig. 2. Illustration of definition and construction of co-location social network.

characterize their attributes.

3.2 Co-Location Social Network: Definition and Con-
struction
We aim to build a network to link users’ online and offline
activities. Thanks to our massive data set, we are able
to accurately determine whether two online IDs are co-
located, i.e., getting connectivity from the same subscriber
in a certain time period, of which the duration is one hour
in our data set. A subscriber can be either the broadband
interface of an apartment, which includes both the wired
and WiFi traffic of a family, or the broadband interface of a
company, which includes traffic from several subnetworks.
Thus, different subscribers are corresponding to different
locations. If two online IDs get connectivity from the same
subscriber in the same time period, they are at the same
location in that time period. Then, we can look into the
frequency of their co-location behaviors. For online IDs
belonging to the same person, or a small group of people
who are living or working together, i.e., family members or
close friends, they would have a high probability to “meet”,
i.e., accessing the Internet from the same subscriber at the
same location. Based on this intuition, we build a new social
network to characterize the relationship between online IDs
by referring to their offline co-location activities.

Our newly introduced network can be represented by a
network G = (V,E). As we use “co-location” information
to construct the network, we denote our newly introduced
network as co-location social network (CLSN). Similarly to
existing social networks, CLSNs capture social interactions
among users. In addition, different from both the traditional
online social networks, which characterizes online interac-
tions between virtual IDs in the cyberspace (e.g., exchang-
ing messages, sharing photos), and offline social networks,
representing offline interactions between human beings in
the physical world, CLSNs incorporate two important social
elements as follows.
• Online virtual IDs as nodes: In network G, the node

set V are the online virtual IDs. As one physical user
might have several online IDs on one or multiple
online services, one user might own more than one
node in the network.

• Offline social interactions as edges: In network G,
the edge set E includes observed offline social inter-
actions among the nodes. If two online IDs appear

at the same location in the same time bin, we would
conclude that they are “co-located”, and an edge will
be created between them.

Definition 1 (CLSN) Co-location social network (CLSN)
is a weighted undirected graph G = (V,E), in which each
node v ∈ V represents an online ID. For two IDs v1 ∈ V
and v2 ∈ V , if they have ever accessed the Internet from the
same location in the same time bin, there will be an edge
e = (v1, v2) ∈ E. The link weight w(e) of edge e between v1
and v2 characterizes the frequency of co-location behaviors
of v1 and v2. If they appear in the same location very often,
a large weight will be assigned to the corresponding edge.

Fig. 2 demonstrates how we extract the online IDs and
the corresponding users’ offline interactions to build the
graph G. As shown in the left part of Fig. 2, we have three
users U1, U2, and U3. U1 owns the IDs V 1 and V 2, U2
owns the ID V 3, and U3 owns the IDs V 4 and V 5. On one
hand, online IDs belonging to the same user always have
a high probability to login from the same place. According
to the right part of Fig. 2, we can see the edges (V 1, V 2)
and (V 4, V 5) are very thick. On the other hand, online IDs
belonging to the other users might still login from the same
place. In our example, we assume that U1 and U2 are very
close friends, and they have a high chance to meet from time
to time. Meanwhile, we assume that U2 and U3 are ordinary
friends, and they meet occasionally. According to the right
part of Fig. 2, we can see the edges (V 1, V 3) and (V 2, V 3)
are much thicker than the edges (V 3, V 4) and (V 3, V 5).

To show the constructed CLSN in a visualized example,
we sample 50 online IDs with their corresponding locations
where they appear in our data set, and plot the graph
of the offline interactions between these IDs and locations
in Fig. 3(a) as well as the corresponding CLSN graph in
Fig. 3(b). This visualized CLSN, which is a part of the whole
network, shows a unique structure and properties like the
existing of a giant component with small islands. These will
be thoroughly analyzed in next section.

4 CLSN: STRUCTURE AND DYNAMICS

In this section, we analyze the constructed CLSN from two
different angles. On one hand, we look at the aggregation
view, i.e., the CLSN constructed by the entire data set, to
study its graph structure by referring to several classic graph
metrics. On the other hand, we examine the CLSN from a
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Fig. 3. Examples for the constructed CLSN with 50 nodes.

dynamic view by analyzing a series of daily snapshots and
its evolution.

4.1 Constructed CLSN: A Static Perspective

In this section, we analyze the CLSN by evaluating several
classic graph metrics, including the component size, path
length, node degree, and clustering coefficient. A number
of works have studied these metrics in different social
networks, e.g., Renren [2], Facebook [1], Twitter [31], and
MSN [4]. In our work, we aim to reveal the main similar-
ities and differences between the CLSN and existing social
networks in terms of these metrics.

Using the number of component distribution in Fig. 4(a),
a complementary cumulative distribution function (CCDF)
and a cumulative distribution function (CDF) in Fig. 4(b),
we show the connectivity of CLSN. As shown in Fig. 4(a), in
this network, about 17.3 million nodes (53% of nodes in the
network) are connected with each other, forming the largest
connected component. The other 15.4 million nodes form
2.31 million small connected components and 7.33 million
isolated nodes. Fig. 4(b) displays the distribution of the con-
nected components. From the results, we can observe that
the size of small connected components follows a power-
law distribution. Compared with other social networks,
for example, the instant-messaging network in [4], whose
giant component covers about 99.9% of the nodes, the giant
component of CLSN is relatively smaller. Although there is
a huge connected component covering more than 50% of
users, there are still a large number of small-scale connected
components in the CLSN, indicating the relatively large
number of users tend to use online services in private places
rather than public places.

As a unique feature of CLSNs, there are multiple types
of online IDs. To evaluate the difference among these types
of IDs in terms of their impact, we study different subsets
of the network by referring to different combinations of ID
types.

By studying our data set, we find that 34.14% of all IDs
are IM ones, with the most highest frequency of appearing.

Therefore, we study CLSN based on these IDs, and show
different kinds of combinations in Fig. 4(c). Specifically, for
the IM-only network, there are 5.37 million isolated IM
accounts, i.e., they do not belong to the largest connected
component. However, when we consider all online IDs, the
number of isolated IM accounts will be reduced to 4.44
million. To compare the impact between other types of IDs,
we study the “IM+E-commerce”, “IM+OSN” and “IM+Cell
phone” networks. From the result, we can observe that if we
add the OSN accounts or cell phone to the IM-only network,
the number of isolated IM accounts will be reduced by
0.52 and 0.48 million, respectively. Differently, if we add
the E-commerce accounts to the IM-only network, it will
be reduced by 0.11 million only. Therefore, the OSN and cell
phone accounts play a more significant role in getting the
network connected. The main reason for that phenomenon
might be that people are cautious in using their E-commerce
accounts, and they would prefer to use them in private
places such as home. Differently, they are more willing to
use their OSN and cell phone accounts in public places.

In Fig. 4 (d), (e) and (f), and Table 3, we present three key
static properties of the network, that is, the diameter of the
network, and the distribution of the node degree and the
clustering coefficient. In these figures and tables, we com-
pare between the IM-only network and the comprehensive
network.

The distribution of the path length of the largest con-
nected component is shown in Fig. 4(d). Due to the giant
size of this component, we do not calculate path length
of every node pair. Instead, we randomly select 10 nodes,
and calculate the path lengths from all the other nodes
to them, and obtain its distribution. From the result, we
can observe that by adding other types of online IDs, the
average path length can be reduced. The impact of different
types of online IDs is similar to that shown in Fig. 4(c). That
is, the influence of the OSN accounts and cell phones are
quite similar to each other, and much larger than the E-
commerce accounts, also indicating that people tend to use
the E-commerce accounts more in private places compared
with other kind of online services. As for the comprehensive
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Fig. 4. Static properties of the constructed co-location social network.

network, we find that the distribution reaches the peak
at 5 hops, and the average path length is 4.85. The co-
location of online IDs is corresponding to users’ “encounter”
in physical world, and the distance between online IDs
must be larger than that of their corresponding users in the
physical world. It further indicates that, for example, a virus
can be infected from an arbitrary user to another by less than
6 times of “encounter” on average in physical world, which
reflects the small world phenomenon in the CLSN.

The distribution of the node degree is shown in Fig. 4(e).
For the comprehensive network, we can find that there are
about 42.00 edges per nodes on average, which means that
each ID appeared at the same places in the same time period
with about 42 other IDs on average. If ignoring multiple IDs
belonging to same person, we can infer that the number
of persons that the owner of the online ID met all over
the month is about 42, which is consistent with our priori
knowledge. In addition, it is not surprising that the node
degree for the IM account in the comprehensive network
is larger than that in the IM-only network, in which the
average node degree is 35.19. It is because that except for
the existing edges between IM accounts, there are also edges
between IM accounts and other kind of online IDs in the
comprehensive network.

As for the distribution of clustering coefficient, which is
shown in Fig. 4(f), we can observe the average clustering
coefficient is much larger than that in the online social
networks, such as 0.063 in Renren [2], 0.164 in Facebook [1],
and 0.106 in Twitter [31]. Therefore, online IDs in the CLSN
are tightly connected.

Overall, the CLSN is a new kind of social network
consisting of a giant connected component and many other

small connected components, which is similar to other kind
of social networks. In addition, it has small diameter, large
average node degree and clustering coefficient, indicating
the existence of significant small world phenomenon and
tight connection in the CLSN.

4.2 CLSN Evolution: A Dynamic Perspective

The CLSN analyzed in the last section is constructed by
aggregating users’ data for one month. To study the growth
and evolution of this network, we look at the daily snap-
shots and evolution of the CLSN, and examine how this
network is formed in a gradual way. In our study, we are
interested in the following key metrics, i.e., the number of
nodes, the size of the largest connected component, average
path length, and average node degree. In addition, we also
investigate the relationship between the number of nodes
and the number of edges from a dynamic perspective, and
the distribution of the time gap between two successive co-
location events of the same node pair.

Fig. 5(a) shows the fraction of IDs and locations that have
appeared as well as the number of newly added IDs and
locations each day. We observe that about 58% IDs and 90%

TABLE 3
Statistics of Static Structure of Co-location Social network.

Parameter IM-only
network

Comprehensive
network

Average diameter 6.71 4.85
Average node degree 35.19 42.00

Average clustering coefficient 0.4137 0.3824
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Fig. 5. Dynamic properties of the constructed co-location social network.

locations have appeared in the first 10 days. Afterwards, the
order of the magnitude of the number of newly added IDs
is decreased from 107 to 106 , and the number of the newly
added locations also decreases from 106 to 105 . After 20
days, the number of newly added IDs and locations exhibits
a very small change, indicating the network is tending to be
stable.

We also analyze the growth patterns of the largest con-
nected component of the network, and plot its size as well as
the growth rate as the function of time in Fig. 5(b). We can
observe that the size of the largest connected component
also increases quickly in the first several days, while it
becomes stable about after the 10th day.

As shown in Fig. 5(c), the average path length exhibits a
similar trend as the number of IDs, locations and the size of
the largest connected component. At the beginning, most of
the paths have only two hops, and the average path length
keeps increasing during the first 10 days. Afterwards, it
changes very little. Differently, according to Fig. 5(d), the
average node degree shows a different trend, as it keeps
growing steadily during the whole month.

In Fig. 5(e), we plot the logarithm of E(t) as a functions
of the logarithm of N(t), where E(t) and N(t) are the num-
ber of edges and nodes on the tth day. From the results, we
can observe they are linearly dependent, i.e., E(t) ∝ N(t)α,
with the slope α of 1.41. To evaluate how well the data
fits this model, we use coefficient of determination, i.e., R2

value. The obtained value of the R2 metric is 0.9959, which
is relatively high and confirms the accuracy of the model.

We show the distribution of the time gap between two
successive co-location events by the same node pair in
Fig. 5(f). The time gap between online IDs with different
types follows an exponential distribution. If we assume that

the login behavior of IDs follows Poisson distribution and
is uncorrelated with the place and login behavior of other
accounts, the time gap follows an exponential distribution.
Meanwhile, the parameters for the exponential distribution
for online IDs of different types are different. The parameter
for edges between E-commerce accounts is the largest, in-
dicating the highest frequency for them to be co-located,
while the parameter for edges between OSN accounts is
smallest. However, the parameter for edges between Cell
phone accounts is higher than that between OSN accounts,
indicating people tend to use cell phone more in public
places compared with OSN accounts. Overall, the edge
inter-arrival times is quite large, e.g., inter-arrival time of
over 50% online ID pairs of all types is larger than 100 hours,
indicating temporal granularity of one hour is enough to
capture the “co-location” of IDs.

Overall, the CLSN is rapidly evolved, and it is formed
almost completely within about 10 days, which guarantees
the reliability of study based on the data set of one month.
In addition, online IDs with different types exhibit different
patterns of activity in terms of time gap of their co-location
events.

5 USER IDENTIFICATION

In the last section, we have analyzed the structure and evo-
lution of CLSN, and gained understandings from different
aspects. The CLSN is a social network constructed based
on virtual online IDs and physical co-location interactions.
Thus, the basic and fundamental problem here is how to
map the cyberspace IDs to physical world users, i.e., finding
all online IDs of one user by using the co-location behaviors
of online IDs. Thus, in this section, we first elaborately
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define the link weight in CLSN to characterize the co-
location behaviors of online IDs comprehensively. Then,
we develop a community-based algorithm to detect online
IDs belonging to the same user based on their topological
structure.

5.1 Measure Link Weight

We first exploit the expression of link weight to characterize
the co-location behaviors of online IDs. For each pair of
online IDs v1 and v2, a direct solution is to use the number
of times that they are “co-located” as their link weight as
in approaches [32], [33], which are formally expressed as
following:

w0(v1, v2) =
∑
t∈T

∑
l∈L

Xt
v1l ·X

t
v2l.

However, there are two important problems that have not
be addressed in this definition of link weight:
• Sparsity of co-location: As we can observe from Fig. 5(f),
inter-arrival time of over 50% online ID pairs of all
types is larger than 100 hours. Thus, the link weight
characterized by the number of sparse co-location, i.e.,
w0, is very likely to be biased.
• Diversity of locations: Co-locations at different places
bring different information to us. For example, co-
locations at private places such as home bring more
information to us than public place such as Starbucks
or KFC. However, different locations are equally dealt
with, which is unreasonable.
In order to solve the first problem, we further consider

the appearing of nodes in the same location at different
time bins by modelling the mobility of users, which will
be introduced in detail in Section 5.1.1. Then, in order to
solve the second problem, we further weight co-locations
at different places by considering the location context in
terms of entropy, which will be introduced in detail in
Section 5.1.2.

5.1.1 Modelling Human Mobility
The “co-location” of IDs might be sparse. For example, as we
can observe from Fig. 5, inter-arrival time of over 50% online
ID pairs of all types is larger than 100 hours. Thus, the link
weight characterized by the number of sparse co-location
is very likely to be biased. To deal with this problem,
we consider the appearing of nodes in the same location
at different time periods. Different with “co-location”, i.e.,
appearing at the same location in the same time period, we
assign a weight to the number of appearing in the same
location at different time periods, which is decreasing with
the time difference and in proportion to the probability they
are co-located in that place. Specifically, there have been a
number of works studying the mobility of humans. In [34],
there is a theorem describing the probability distribution of
the time duration that human stay in one place, which is
expressed in detail as follow:

Theorem 1 (Waiting time of humans) [34] Let4t denote
waiting time, that is the time a user spent at one location.
Then P (4t) follows P (4t) ∼ |4t|−1−τ with τ = 0.8± 0.1
and a cutoff of 4t = 17h.

Combining this result, we define the weight to the ap-
pearing in the same location with time difference 4t to be
|4t|−1−τ with a cutoff of 4t = 17h. Then, the link weight
of edges in CLSN is modified as follow:

wT (v1, v2) =
∑
l∈L

∑
t1∈T

Xt1
v1l
·max
t2∈T

Xt2
v2l
· (|t2 − t1|+ 1)−1−τ .

By this way, the appearing of nodes in the same location at
different time periods is involved in the weight, which helps
to reduce the impact of sparsity of IDs’ co-location.

5.1.2 Considering Location Context

On the other hand, we treat different locations equally in the
link weight defined in wT . However, in fact, co-locations
at different places bring different information to us. For
example, if the location is some public place with many
physical users such as Starbucks or KFC, two online IDs
which are co-located at this location have a large probability
of belonging to different users. We say these co-location
events are less important. However, if the location is a
private place with few physical users such as home, the
two IDs are very likely to belong to the same user. We
conclude that these co-location events are more important.
Thus, to improve the performance of the algorithm, we
further modify the link weight by taking the difference of
locations in consideration. Specifically, we use an important
concept in information theory, the entropy, to measure the
importance of a co-location at one place. Specifically, ∀
location l ∈ P , the entropy of l, H(l) can be calculated as:

H(l) = −
∑

v∈N(l)

Pl(v)logPl(v),

in which N(l) = {v|Xt
vl > 0, t ∈ T} is the set of online IDs

appeared at location l. Pl(v) is the probability of any online
ID appeared in l is v, which can be calculated as:

Pl(v) =

∑
t∈T X

t
vl∑

b∈N(l)

∑
t∈T X

t
bl

.

Based on the concept of entropy, we further modify link
weight as follows:

wST (v1, v2) =
∑
l∈L

∑
t1∈T

1

H(l)
Lt1v1l ·max

t2∈T
Lt2v2p · (|t2 − t1|+ 1)τ .

For locations of public places, the appeared online IDs
each day are unstable. Though there are many online IDs
appearing each day, online IDs appearing at two different
days have little in common between each other, leading to a
larger entropy. Thus, multiplied by 1/H(p), the co-locations
in public places have less contribution to the link weight.
While for locations of private places, the number of IDs
appearing at each day is small, and the online IDs appearing
at different days are almost the same, i.e., they are very
stable, leading to a smaller entropy. Thus, the co-locations
in private places have larger contribution to the link weight.
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5.2 Community-based Algorithm
As discussed in Fig. 2, online IDs belonging to the same
user will have a high chance to access the Internet from
the same locations. From the CLSN’s point of view, these
IDs will have more edges and larger weight among each
other, which can be further demonstrated by the large clus-
tering coefficient of the CLSN. Therefore, we model the user
identification as an existing community detection problem.
As defined in [35], a community in a weighted network
is defined as a cluster of nodes which have more and
stronger connections with nodes in the same cluster, and
comparatively fewer and weaker connections with nodes
belonging to others. Now, we adopt a community detection
algorithm for user identification.

Using community detection algorithms to detect users
in CLSNs is not trivial, since most of the existing commu-
nity detection algorithms are designed for binary networks,
which cannot be extended to weighted networks. Moreover,
many of the existing algorithms have high computational
complexity, and cannot be used in our large-scale network.
Considering these two issues, we design the user identifica-
tion algorithm based on the community detection algorithm
proposed by Lu et al. in [36], which is designed for weighted
networks with fast computation.

Before describing the algorithm, we first provide the
following two definitions as supplement knowledge for the
user identification.

Definition 3 (Belonging Degree [36]) In a weighted
network G = (V,E), the belonging degree of a node u
to a cluster C , denoted as B(u,C), is defined as the ratio
of the sum of weights of edges between u and C to the
sum of weights of all edges connected to u, which can be
formulated as:

B(u,C) =

∑
v∈C w(u, v)

Ku
, (1)

in which Ku =
∑
v∈G w(u, v). B(u,C) can represent the

probability of the node u to be included in cluster C . For
a node u, if all its neighbors are included in cluster C , we
have B(u,C) = 1.

Definition 4 (Conductance [36]) In a weighted network
G = (V,E), the conductance of a cluster C , i.e., Φ(C), is
defined as the ratio of the sum of weights of all cut edges of
C to the sum weights of all edges connected to nodes in C ,
which can be represented as:

Φ(C) =
cut(C,G\C)

w(C)
, (2)

where cut(C,G\C) denotes the weights of the cut edges
of C , which can be calculated as

∑
v∈G\C

∑
u∈C w(u, v).

w(C) denotes the sum of weights of all edges in cluster
C , including the cut edges, which can be calculated as
cut(C,G\C) +

∑
u,v∈C w(u, v). Conductance is a natural

and widely-adopted notion of community goodness and
is also known as the normalized cut metric [37]. With
a lower conductance, there are more and stronger edges
between nodes of the community, and thus the community
is suitable.

The community-based algorithm is shown in Algo-
rithm 1, in which C is the target cluster, i.e., the set of online
IDs of one user. NC is the set of the neighbors of C , and

TC is the set of types of online IDs involved in C . The
algorithm starts from one or two initial nodes, and works
in an iterative way to discover prospective nodes belonging
to the cluster. In each iteration round, among all nodes
adjacent to C , it picks the node with the highest belonging
degree. This node will be added to C and a new cluster
C ′ will be formed. After that, it compares Φ(C) and Φ(C ′).
If Φ(C ′) < Φ(C), it will continue to select another node.
Otherwise, C is designated as a detected cluster. In addition,
if there is no neighbor of C or all types of online IDs are all
involved in C , it also stops iterating.

We have made the following three adjustments to tailor
this algorithm to fit our problem better. First, we change
the method of finding the initial nodes. In [36], the initial
nodes are the pair of nodes (u, v) with the biggest edge
weight wuv . However, in a CLSN, such two nodes can still
belong to two different users, if they have frequent offline
interactions. Therefore, in our solution, we just select one
initial node with the biggest Ku, as this node must be the
most active online ID of some user. Second, we assume that
C can only involve one online ID of each type at most.
In reality, one physical user may have multiple IDs of the
same type. However, they tend to mainly use one ID, which
contributes to their behavior most. In addition, considering
owning multiple IDs of one type for one user also introduces
much complexity and noise to our problem. Thus, in our
algorithm, we assume the target cluster can only involve
one ID of each type at most. Third, we modify the condition
of convergence of Φ(C ′) < Φ(C) to be Φ(C ′) < Φ(C)+Φth,
where Φth is an adjustable parameter. A larger Φth can
efficiently reduce the false positive results, while a smaller
Φth can reduce the false negative results. Thus, by selecting
a suitable value of Φth, we can trade off between the false
positive rate and false negative rate.

5.3 Compared Algorithm
We compare our algorithm with four state-of-the-art algo-
rithms as follows:

Algorithm 1: Community-based Algorithm

Input: Network G = (V,E), the set of types of online
IDs S, the type s(v) ∈ S for all online ID v ∈ V , and
an initial online ID u0.

Output: C , the cluster of online IDs belonging to the
owner of u0.

Initialize:
C ← {u0};
SC ← S;
NC ← {v|(u0, v) ∈ E};

while NC 6= ∅ and SC 6= ∅ do
umax = argmaxu∈NC

B(u,C);
C ′ = C ∪ {umax};
if Φ(C ′) < Φ(C) + Φth then

C = C ′;
else

break;
SC = SC\{s(uc)};
NC = {v|(u, v) ∈ E, u ∈ C, v /∈ C}\{v|s(v) /∈ S}.
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Fig. 6. Performance vs. different parameters for the community-based algorithm.

5.3.1 NE Algorithm
Cecaj et al. [32] link IDs belonging to the same user based
on the number of “encountering” events of these IDs, which
is equal to w0 introduced in Section 5.1 as follow:

w0(v1, v2) =
∑
t∈T

∑
l∈L

Xt
v1l ·X

t
v2l.

Specifically, by assuming a Dirichlet prior, they find that the
probability of ID pairs (v1, v2) belonging to the same person
is in proportion to the number of their “encountering”
events, i.e., w0(v1, v2).

5.3.2 POIS Algorithm
Riederer et al. [30] also consider using the “encountering”
events to match the same users. They assume the number
of visits of each user to a location during a time period
follows Poisson distribution, and an action (e.g. login) on
each service occurs independently with Bernoulli distribu-
tion. Based on this mobility model, the algorithm computes
a weight for every candidate pair of IDs, which can be
calculated as follows,

wPOIS(v1, v2) =
∑
t∈T

∑
l∈L

φl,t(X
t
v1l, X

t
v2l),

where φ measures the importance of an “encountering”
event in location l at time slot t. By defining Y (v1, v2) as the
binary variable representing whether online IDs v1 and v2
belong to the same physical user, φ can be given as follows,

φl,t(X
t
v1l, X

t
v2l) =

P (Xt
v1l
, Xt

v2l
|Y (v1, v2) = 1)

P (Xt
v1l

)P (Xt
v2l

)
.

It can be calculated based on their mobility model with
the assumptions of Poisson visits and Bernoulli actions. In
addition, this algorithm filters out IDs by the “eccentricity”
factor ε, which is defined as the threshold for the weight gap
between the best and second-best IDs.

5.3.3 CS-based Algorithm
Another solution to link IDs is based on their topological
structure in social network. Since online IDs belonging to
the same physical user tend to appear in the same places,
they are usually co-located with same online IDs and have
similar distribution of weight between these IDs. On the
other hand, cosine similarity (CS) is a widely adopted metric

to measure the similarity of nodes in social network [28],
[38]–[40]. It is formally defined as follow:

wCS(vi, vj) =

∑
vk∈V w(vi, vk) · w(vj , vk)√∑

vk∈V w
2(vi, vk) ·

√∑
vk∈V w

2(vj , vk)
.

A larger cosine similarity indicates the two nodes have
similar distribution of co-locations between their social
neighbors. Thus, they tend to belong to the same physical
user.

5.3.4 KLD-based Algorithm
Kullback-Leibler divergence (KLD) is another important
metric widely used in ID linking [26], [41], which can be
formally defined as follow:

wKL(v1, v2) = −DKL(pv1 |
pv1 + pv2

2
)−DKL(pv2 |

pv1 + pv2
2

),

where pv1 is a |V |-sized vector with each element pv1(vx) =
w(v1, vx)/Σv∈V w(v1, v). It represents the distribution of co-
locations between node u and other nodes in the social net-
work. In addition, DKL is the Kullback-Leibler divergence
function [41], which can be calculated as follow:

DKL(p|q) = −
∑
v∈V

p(v)log
q(v)

p(v)
.

Similarly with cosine similarity, a larger wKL also indicates
that the two nodes have larger probability to belong to the
same physical user.

All these algorithms are designed for pair-wise ID
matching between two services. However, there are IDs of
multiple services involved in our problem. Thus, we apply
them by adding the matched ID one by one.

5.4 Performance Evaluation
To evaluate the accuracy of our proposed user identification
algorithm, we need some ground-truth data for the valida-
tion. We use the information of devices to obtain the ground-
truth. Specifically, compared with PC, cell phones are more
private devices. Therefore, we extract the list of online IDs
on each cell phone device. To ensure they are not mixed with
the IDs on other devices with the same type of OS in the
same subscriber, we further remove devices with more than
1 online IDs of the same type, and use them as the ground
truth to evaluate our user identification algorithm. For each
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Fig. 7. Performance of different algorithms.

user, we pick up one online ID for a selected service type
as the initial node, and use different algorithms to detect
all online IDs belonging to this user. After obtaining a set
of online IDs, we compare it with the ground-truth data
by looking at another selected type of IDs to obtain the
accuracy.

We use three key metrics in binary classification to quan-
tify the detection accuracy, i.e., precision, recall, and F1-score
[42]. For each user, the precision is defined as the fraction of
online IDs selected by our algorithm that are included in the
ground-truth data, and the recall is defined as the fraction
of online IDs in the ground-truth data that are successfully
retrieved. The F1-score is the harmonic mean of precision
and recall, and it can be calculated as F1 = 2· precision·recallprecision+recall .

We first select the IM accounts and E-commerce accounts
as an example to show the performance of our proposed
community-based algorithm and the influence of different
parameters. Specifically, we tune the parameter Φth and
obtain the value of F1-score, Recall and Precision, which
are shown in Fig. 6(a). We can observe that with the in-
creasing of Φth, precision shows an upward trend while
recall shows a downward trend. However, the decreasing
of recall is faster than the increasing of precision, leading to
the decreasing of F1-score.

Then, we study the impact of modified link weight.
Specifically, we show the best performance of the
community-based algorithm with modified link weight and
without modified link weight in Fig. 6(b). As we can
observe, by using the modified link weight, the F1-score
is increased by about 0.13, and the precision is increased
by over 0.22, indicating the effectiveness of modified link
weight.

In Fig. 6(c), the best performance of different pairs of
online IDs is compared. As we can observe, the user identifi-
cation based on IM accounts to E-commerce accounts shows
the best F1-score of 0.66 and the best recall of 0.79 and the
worst precision of 0.58. The user identification based on IM
accounts shows the best precision of 0.70 and the worst
recall of 0.60, while the user identification based on cell
phone numbers shows the worst F1-score of 0.57. Overall,
the performance of our proposed algorithms of different
pairs of online IDs do not show much difference.

Then, we compare the performance of the community-
based algorithm against the four state-of-the-art algorithms.
Specifically, we show their best performance in Fig. 7(a).

As we can observe, our proposed community-based algo-
rithm outperforms other algorithms. The performance gaps
between our proposed algorithm and baselines are over 0.12
in terms of F1-score. Then, we further show their precision-
recall plot in Fig. 7(b). Similarly, the performance of our
proposed community-based algorithm outperforms other
algorithms, since it lies in the top right corner, meaning it
has larger precision when recall is equal and larger recall
when precision is equal. Take the CS-based algorithm as
an example. Their performance gap is small when recall
or precision is close to 1, while it is large when recall and
precision are balanced. For example, the gap of precision
between two algorithms is only about 0.04 when recall is 0.1,
while it is 0.15 when recall is 0.4, indicating the effectiveness
of our proposed algorithm.

6 USER PERSPECTIVE ANALYSIS

By detecting the online IDs of one user, we link the cy-
berspace and physical world, which enables characterizing
the user’s behavior from these two aspects. Specifically, as a
single user might have multiple online IDs, by clustering
them together, we can study their behaviors in terms of
different usage of online IDs. For example, e-mail accounts
are mainly used for business and professional scenarios, and
they are more active in weekdays and in office buildings.
Also, online shopping accounts are more active during
after-work hours and in apartments. Thus, by detecting
all online IDs of a user and combining them together, a
user’s cyberspace activities can be characterized in a com-
prehensive way. In this section, we focus on analyzing the
user’s properties based on the results of user identification
by investigating the relationship of the behaviors between
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Fig. 8. Statistics of traces in terms of spatial and temporal dimension.
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Fig. 9. Daily behavior of users for using different kinds of online IDs, where the same row represents behavior of same cluster of users and deep
color indicates a higher distribution density.

these two kinds of IDs of the cyberspace and physical world.
Specifically, we focus on a subset of our dataset, which
consists of 2,425 users correctly identified by the proposed
user identification algorithm. We first present basic statistics
of users in Section 6.1. Then, we analyze the behavior of
users in terms of their daily patterns and weekly patterns in
Section 6.2 and Section 6.3, respectively.

6.1 Basic Statistics Analysis
In order to measure the benefit obtained from merging
different online IDs, we compare the merged traces and un-
merged traces in terms of spatial and temporal dimension.
Specifically, in the temporal dimension, we investigate the
distribution of time gap between each time bin and its most
recent record. The results are shown in Fig. 8(a). As we can
observe, by merging login records of multiple online IDs,
the time gap is obviously reduced. In terms of the spatial
dimension, we show the distribution of spatial distance be-
tween adjacent records in Fig. 8(b). We can observe that the
spatial distance is also reduced. For example, the average
spatial distance is reduced by about 19.8%. These results
demonstrate that by combining different types of online IDs
together, the quality of the obtained traces is significantly
improved, which benefits the analysis of user behavior.

6.2 Daily Behavior Analysis of Users
We first analyze the daily behavior of online IDs by clus-
tering. Using access frequency across one day of different
kinds of online IDs as the feature and applying hierarchi-
cal clustering algorithm, we successfully divide users into
clusters with the same preference of online service usage.
That is, users who prefer to use the same kind of online
IDs in the same time period are divided into one cluster.
The results are shown in Fig. 9. Specifically, Fig. 9(a) shows
the usage of IM accounts, Fig. 9(b) shows the usage of EC
accounts, Fig. 9(c) shows the usage of OSN accounts, and
Fig. 9(d) shows the overall usage of different services. The x-
axis shows the time in hours and y-axis shows the obtained
clusters of online IDs, i.e., each row in the figure represents
the temporal distribution of one cluster. In addition, rows of
identical height in different figures correspond to the same
cluster of users. The color presents the distribution density
of login records, where deep color indicates a higher distri-
bution density and light color stands for a lower distribution
density.

From the result, we can observe that most people tend
to use their EC accounts in only one hour throughout the

day, while they tend to use their IM accounts in all hours
over the day, reflecting the immediacy of the IM service.
In addition, the temporal distribution of login records of
both IM and EC accounts has an interrupt between 12PM
and 6AM, reflecting the daily sleep schedule of humans.
As for the OSN accounts, the temporal distribution of their
login records mainly concentrates on daily rest time, such as
7AM (wake-up time), 1PM (lunch break) and 5PM (quitting
time). In addition, from Fig. 9(d), we can observe the overall
usage of users is most similar with the usage of the IM
service. Although login records of different kinds of online
IDs show different temporal patterns, the peak of their
usage frequency is very close for the same clusters of users,
reflecting the consistency of the users they belong to.

6.3 Weekly Behavior Analysis of Users
We next analyze the weekly behavior of online IDs by
clustering. Using the number of login records per day across
one week as the feature and applying K-means cluster-
ing algorithm, we find the online IDs can be divided to
three types, which we refer as business, entertainment and
comprehensive accounts, respectively. Their frequency as a
function of time along a week is shown in Fig. 10(a). The
business accounts tend to be more active on weekdays,
while the entertainment accounts tend to be more active
in weekends. In addition, the peak of access frequency of
entertainment accounts is usually in Saturday, and there has
been an obvious increasement since Friday. On the other
side, the access frequency of the comprehensive accounts
are almost keeping constant throughout the week.

Then, we use the utilization frequency of online IDs
of entertainment, business and comprehensive accounts to
analyze user behavior. By clustering, we also divide users
to three types, of which the result is shown in Fig. 10(b).
They use the online IDs of entertainment, business and
comprehensive most frequently, respectively. We refer these
users as entertainment-dominated, business-dominated and
comprehensive users.

These two dimensions of dividing users and online IDs
are closely relevant. In Fig. 10(c), we plot the patterns of
access frequency of different types of IDs for different kinds
of users. From the results, we can observe the entertainment-
dominated users tend to use e-commerce services most
frequently in weekends. The access frequency of IM ser-
vices in weekends is also increased compared with that
on weekdays, which indicates that they are using the e-
commerce and IM services in their entertainment. As for
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Fig. 10. Weekly behavior of users for using different kinds of online IDs.

the business-dominated users, access frequency of IM and
e-commerce services is obviously reduced in weekends
compared with that on weekdays, while that of their OSN
services is almost not changed, indicating that they are using
the IM and e-commerce services in their business. As for
the comprehensive users, it is not surprising that access
frequency of all their online IDs is little changed throughout
the week. However, different with business-dominated and
entertainment-dominated users, their access frequency of
OSN accounts is higher than IM and EC accounts, These
results further confirm the close relevance of the two di-
mensions of dividing users and online IDs.

7 IMPLICATION AND APPLICATION

In this work, we have explored a new type of social net-
work, i.e., co-location social network (CLSN), which shows a
significantly different perspective of users’ interaction than
LBSN [5], [17], [18] and EBSN [19]. For example, Cho et
al. [5] mainly focused on the relationship between users’ on-
line friendship network and offline mobility, while offline in-
teraction between users was ignored. Liu et al. [19] focused
on the difference of users’ online and offline interactions
restricted to a single site, while users’ cross-site interactions
was ignored. Different with them, CLSNs capture users’ of-
fline interaction cross multiple services. Specifically, through
static and dynamic perspective analysis, we find that CLSNs
exhibit stronger locality and faster evolution than existing
social networks [1], [2], [31]. Further by implementing a
community detection technique, we extract the community
structure formed by cross-site online IDs belonging to the
same user, and we then analyze the users’ behavior in terms
of different services in detail. Our work mainly reveals the
relationship of users’ online behavior cross multiple sites
and offline interactions.

On the other hand, we can further adopt the CLSNs to
address a very broad of important problems. We list five
possible applications as follows.

Analyzing online-offline social network interactions:
Previously, most of the existing literatures treat the online
social networks and offline social networks differently, and
existing interaction models make distinctions between these
two types of networks. However, the cyberspace and the
physical world are linked, and they are influenced by each

other. We can dig deeper to further analyze the relationship
between online activities and offline interactions.

Dynamic population sensing: Knowing where people
are and how they are distributed is important for a number
of critical social problems, such as public health, natural
disasters, and traffic management. Our work also introduces
a possibility of obtaining the up-to-date population distri-
bution in an accurate way. Instead of following traditional
practices such as population census, our sensing can be done
in real-time. We are able to estimate temporal variations
of the population density in emergency and data-scarce
situations.

Tracking of human mobility and social structure: By
using our CLSNs, we are able to perform a large-scale
human mobility tracking. We can observe physical interac-
tions among real users from a dynamic perspective. More
importantly, such tracking can be done by utilizing existing
network infrastructure, instead of deploying a large number
of tracking devices, e.g., cameras.

Link prediction: Link prediction is another important
problem in social network, which has been widely utilized
in many application areas, such as recommendation [43],
security [44], etc. Specifically in CLSNs, link prediction is to
predict whether and how many times two users encounter
each other in a certain time period, which further helps us
reveal the hidden relationship between users.

Community structure analysis: Through community de-
tection techniques, we have found the cluster of online IDs
belonging to the same user. Further community analysis can
dig deeper to reveal the relationship of user, e.g., a family or
a company. Compared with existing social networks, more
attribute information of communities can be obtained in
CLSNs, based on the link weight distribution of users’ IDs
of different services.

In summary, not only various new applications (e.g.
population sensing) can be achieved through CLSNs, but
many existing applications (e.g. link prediction, community
analysis) are strengthened in CLSNs as well, indicating the
usefulness and effectiveness of the CLSN.

8 CONCLUSION AND DISCUSSION

In this work, we propose the idea of co-location social
networks (CLSNs). By using a data set covering the login
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activities of 32.7 million online IDs and 3.4 million locations
in one month, we build a large-scale CLSN to link the online
IDs and offline co-location interactions. Our study covers
both the static network structure and dynamic evolution
properties of the constructed network. Our analysis shows
that the CLSN has small diameter, large average node
degree and clustering coefficient, indicating the existence
of significant small world phenomenon and tight connec-
tion. In addition, it is rapidly evolved and has different
patterns of activity in terms of different services. Further,
we demonstrate that using the constructed network, we are
able to judge which online IDs belong to the same person,
i.e., mapping the cyberspace IDs back to the physical world
users with high accuracy. Last but not least, we perform
a user-centric analysis, where a significant different access
time and service behaviors are revealed among different
types of users.
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