
1

Virtual Machine Migration Planning in
Software-Defined Networks

Huandong Wang, Yong Li, Member, IEEE, Ying Zhang, Member, IEEE, Depeng Jin, Member, IEEE,

Abstract—Live migration is a key technique for virtual machine (VM) management in data center networks, which enables flexibility in
resource optimization, fault tolerance, and load balancing. Despite its usefulness, the live migration still introduces performance
degradations during the migration process. Thus, there has been continuous efforts in reducing the migration time in order to minimize
the impact. From the network’s perspective, the migration time is determined by the amount of data to be migrated and the available
bandwidth used for such transfer. In this paper, we examine the problem of how to schedule the migrations and how to allocate network
resources for migration when multiple VMs need to be migrated at the same time. We consider the problem in the Software-defined
Network (SDN) context since it provides flexible control on routing.
More specifically, we propose a method that computes the optimal migration sequence and network bandwidth used for each
migration. We formulate this problem as a mixed integer programming, which is NP-hard. To make it computationally feasible for large
scale data centers, we propose an approximation scheme via linear approximation plus fully polynomial time approximation, and obtain
its theoretical performance bound and computational complexity. Through extensive simulations, we demonstrate that our fully
polynomial time approximation (FPTA) algorithm has a good performance compared with the optimal solution of the primary
programming problem and two state-of-the-art algorithms. That is, our proposed FPTA algorithm approaches to the optimal solution of
the primary programming problem with less than 10% variation and much less computation time. Meanwhile, it reduces the total
migration time and service downtime by up to 40% and 20% compared with the state-of-the-art algorithms, respectively.

Index Terms—VM migration planning, Software-defined Network (SDN), Migration sequence, Minimum migration time.

F

1 INTRODUCTION

A S the increasing number of smart devices and various
applications, IT services have been playing an impor-

tant role in our daily life. In recent years, the quality and re-
silience of services have been drawing increasing attention.
For example, it is important to optimize the delay, jitter and
packet less rate of the service [2], as well as evacuate it before
damages caused by disasters like earthquake to a suitable
safe location [3]. On the other hand, since the advantage
of the virtualization technology, it has been increasingly
adopted in modern data centers and related infrastructures.
Separating the software from the underlying hardware,
virtual machines (VMs) are used to host various cloud
services [1]. VMs can share a common physical host as well
as be migrated from one host to another. Live migration,
i.e., moving VMs from one physical machine to another
without disrupting services, is the fundamental technique
that enables flexible and dynamic resource management
in the virtualized data centers. Through applying these
technologies, it is possible to optimize various parameters
of IT services such as delay, packet loss rate by adjusting the
locations of VMs dynamically, as well as evacuate services
quickly before disasters by migrating the VMs from the
dangerous site to a suitable location.

While there are continuous efforts on the optimal VM
placements to reduce network traffic [5], [6], VM migration

H. Wang, Y. Li and D. Jin are with State Key Laboratory on Mi-
crowave and Digital Communications, Tsinghua National Laboratory for
Information Science and Technology, Department of Electronic Engineer-
ing, Tsinghua University, Beijing 100084, China (liyong07@tsinghua.edu.cn,
jindp@tsinghua.edu.cn).
Y. Zhang is with Ericsson Research Silicon Valley Lab, San Jose, CA, USA.

has received relatively less attention. We argue that careful
planning of VM migration is needed to improve the system
performance. First of all, in the case of evacuating services
before disasters or recovering services after damages, we
must migrate all VMs under constraints such as limited
time or improve the impaired quality of services in time.
Thus, it is important for us to minimize the evacuation time,
i.e., the total migration time. Then, the migration process
consumes not only CPU and memory resources at the source
and the migrated target’s physical machines [6], [7], but also
the network bandwidth on the path from the source to the
destination [6]. The amount of available network resource
has a big impact on the total migration time, e.g., it takes
longer time to transfer the same size of VM image with less
bandwidth. As a consequence, the prolonged migration time
should influence the application performance. Moreover,
when multiple VM migrations occur at the same time, we
need an intelligent scheduler to determine which migration
tasks to occur first or which ones can be done simultane-
ously, in order to minimize the total migration time.

More specifically, there can be complex interactions be-
tween different migration tasks. While some independent
migrations can be performed in parallel, other migrations
may share the same bottleneck link in their paths. In this
case, performing them simultaneously leads to longer total
migration time. In a big data center, hundreds of migration
requests can take place in a few minutes [8], where the effect
of the migration order becomes more significant. Therefore,
we aim to design a migration plan to minimize the total
migration time by determining the orders of multiple migra-
tion tasks, the paths taken by each task, and the transmission
rate of each task.

2

There have been a number of works on VM migration
in the literature. Work [11], [35] focused on minimizing
migration cost by determining an optimal sequence of
migration. However, their algorithms were designed un-
der the model of one-by-one migration, and thus cannot
perform migration in parallel simultaneously, leading to a
bad performance in terms of the total migration time. Bari
et al. [9] also proposed a migration plan of optimizing the
total migration time by determining the migration order.
However, they assumed that the migration traffic of one VM
only can be routed along one path in their plan. Compared
with single-path routing, multipath routing is more flexible
and can provide more residual bandwidth. Thus, we allow
multiple VMs to be migrated simultaneously via multiple
routing paths in our migration plan.

In this paper, we investigate the problem of how to re-
duce the total migration time in Software Defined Network
(SDN) scenarios [10], [11]. We focus on SDN because with a
centralized controller, it is easier to obtain the global view of
the network, such as the topology, bandwidth utilization on
each path, and other performance statistics. On the other
hand, SDN provides a flexible way to install forwarding
rules so that we can provide multipath forwarding between
the migration source and destination. In SDN, the forward-
ing rules can be installed dynamically and we can split the
traffic on any path arbitrarily. We allow multiple VMs to
be migrated simultaneously via multiple routing paths. The
objective of this paper is to develop a scheme that is able
to optimize the total migration time by determining their
migration orders and transmission rates. Our contribution
is threefold, and is summarized as follows:

• We formulate the problem of VM migration from the
network’s perspective, which aims to reduce the total
migration time by maximizing effective transmission
rate in the network, which is much easier to solve
than directly minimizing the total migration time.
Specifically, we formulate it as a mixed integer pro-
gramming (MIP) problem, which is NP-hard.

• We propose an approximation scheme via linear ap-
proximation plus fully polynomial time approxima-
tion, termed as FPTA algorithm, to solve the formu-
lated problem in a scalable way. Moreover, we obtain
its theoretical performance bound and computational
complexity.

• By extensive simulations, we demonstrate that our
proposed FPTA algorithm achieves good perfor-
mance in terms of reducing total migration time,
which reduces the total migration time by up to 40%
and shortens the service downtime by up to 20%
compared with the state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section 2,
we give a high-level overview of our system, and formulate
the problem of maximizing effective transmission rate in the
network. In Section 3, we propose an approximation scheme
composed of a linear approximation and a fully polynomial
time approximation to solve the problem. Further, we pro-
vide their bounds and computational complexities. In Sec-
tion 4, we evaluate the performance of our solution through
extensive simulations. After presenting related works in
Section 5, we draw our conclusion in Section 6.

Networking Resources

Computing Resources

Control ModuleNetwork

Device

Fig. 1. System Overview

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Overview
We first provide a high-level system overview in this sec-
tion. As shown in Fig. 1, in such a network, all networking
resources are under the control of the SDN controller, while
all computing resources are under the control of some cloud
management system, such as OpenStack. Our VM migration
plan runs at the Coordinator and it is carried out via the
OpenStack and SDN controller.

More specifically, devices in the network, switches or
routers, implement forwarding according to their obtained
forwarding tables and do some traffic measurement. The
SDN controller uses a standardized protocol, OpenFlow,
to communicate with these network devices, and gathers
link-state information measured by them. Meanwhile, the
SDN controller is responsible for computing the forwarding
tables for all devices. On the other hand, the cloud controller,
OpenStack, is responsible for managing all computing and
storage resources. It keeps all the necessary information
about virtual machines and physical hosts, such as the
memory size of the virtual machine, the residual CPU
resource of the physical host. Meanwhile, all computing
nodes periodically report their up-to-date information to it.
Besides, OpenStack also provides general resource manage-
ment functions such as placing virtual machines, allocating
storage, etc. On the other hand, the OpenStack component,
Neutron, manages the virtual networking, e.g., the commu-
nication between VMs, which is realized by collaborating
with the SDN controller. The states of the virtual network,
which can be obtained from Neutron, can be also used
to implement applications such as optimizing the delay of
traffic between VMs.

The processes of VM migration are described as follows.
Firstly, migration requests of applications are sent to the
Coordinator. Based on the data collected from the Open-
Stack and SDN controller, our proposed VM migration plan
outputs a sequence of the VMs to be migrated with their
corresponding bandwidths. Then, these migration requests
are sent to the OpenStack from the Coordinator with the
determined orders. After accepting a migration request, the
OpenStack first communicates with the SDN controller to
build a path from the source host to the target host through
its networking component, Neutron. Specifically, they finish

3

the reconfigure the flow tables of switches on the migration
path, and provide a bandwidth guarantee. Then, a linkage
is established from the source host to the target host, and the
VM migration plan is carried out at the corresponding time
by OpenStack. During migrations, the Coordinator is still
monitoring the network states and process of migrations,
and dynamically adjusts the migration sequence of VMs as
well as their corresponding bandwidths in tune with the
changing network conditions.

On the other hand, live migration is designed to move
VMs from one physical machine to another with the mini-
mal service downtime. It uses a pre-copy phase to transmit
the memory of the migrating VM to the destination physical
machine while it is still running to minimize the size of the
data that should be transmitted in the downtime. However,
pages that are modified during the pre-copy phase must
be iteratively re-sent to ensure memory consistency. We use
the page dirty rate to represent the size of memory that is
modified per second during the pre-copy phase. Thus, the
migration time of each VM depends on the memory size,
the page dirty rate, and the transmission rate of it.

To compute the migration sequence of VMs, we need
network topology and traffic matrix of the data center.
Besides, memory sizes and page dirty rates of VMs, and
residual physical resources such as CPU and memory are
also needed. Most of them can be obtained directly from the
SDN controller or OpenStack, but measurements of page
dirty rate and traffic matrix need special functions of the
platform. We next present the approach to measure them in
details:

Page Dirty Rate Measurement: We utilize a mechanism
called shadow page tables provided by Xen [1] to track
dirtying statistics on all pages [2]. All page-table entries
(PTEs) are initially read-only mappings in the shadow ta-
bles. Modifying a page of memory would result a page fault
and then it is trapped by Xen. If write access is permitted,
appropriate bit in the VMs dirty bitmap is set to 1. Then by
counting the dirty pages in an appropriate period of time,
we obtain the page dirty rate.

Traffic Measurement: We assume SDN elements,
switches and routers, can spilt traffic on multiple next hops
correctly, and perform traffic measurements at the same
time [13], [14]. To aid traffic measurements, an extra column
in the forwarding table is used to record the node in the
network that can reach the destination IP address as in [13].
Take Fig. 2(a), which is the topology of the inter-datacenter
WAN of google, as an example, where all nodes are SDN
forwarding elements. For instance, we assume node 8 (IP
address 64.177.64.8) is the node that can reach the subset
195.112/16, and the shortest path from node 7 to node
8 goes through node 6 (IP address 64.177.64.6). Then, the
forwarding table of node 7 is shown in Fig. 2(b), where the
first entry is corresponding to the longest matched prefix
195.112/16. When a packet with the longest matched prefix
195.112/16 is processed by node 7, α showed in Fig. 2(b)
increases by the packet length. Thus, it tracks the number
of bytes routed from node 7 to node 8 with the longest
matched prefix 195.112/16. Using these data, the SDN
controller can obtain the traffic matrix of the network, for
example, by querying the SDN elements [15]. Tootoonchian
et al. [15] proposed a traffic matrix estimation system for

(a) Google’s inter-datacenter WAN

Prefix Node Next Hop Traffic
195.112/16 64.177.64.8 64.177.64.6 α
195.027/16 64.177.64.3 64.177.64.4 β

...

(b) Modified Forwarding Table

Fig. 2. Google’s inter-datacenter WAN and the modified forwarding table
for example.

OpenFlow networks called OpenTM, which intelligently
chooses switches to query and combines the measurements
to estimate the traffic matrix. At the same time, it does not
impose much overhead on the network.

2.2 Problem Overview

In this section, we provide an overview of our problem and
then give an example of optimizing the total migration time
by determining the migration orders and transmission rates
of VMs.

In a cloud data center or inter-datacenter WAN, VMs
hosted on physical machines are leveraged to provide var-
ious services. By virtualization, software is separated from
its underlying hardware, and thus VMs can share a common
physical host as well as be migrated from one host to
another. In order to provide better services or troubleshoot
when some physical infrastructure failures happen, data
centers adjust the locations of VMs, demanding us to mi-
grate series of VMs from their source hosts to target hosts.
We assume there is no alternate network dedicated to VM
migrations, because of the cost of its deployment, especially
in large-scale infrastructures. Thus, only residual bandwidth
can be used to migrate VMs. Then, our goal is to determin-
ing the VMs’ migration orders and transmission rates that
satisfy various constraints, such as capacity constraints for
memory and links, to optimize the total migration time.

Now we give an example in Fig. 3. In this network,
there are 2 switches (S1 and S2) and 4 physical machines
(H1 to H4) hosting 3 VMs (V1 to V3). Assume the capacity
of each link is 100MBps and memory size of each VM
is 500MB. Then, there is a host failure happening at H3.
Thus, we must move all VMs on H3 to other locations.
To satisfy various constraints such as limitation of storage,
we finally decide to migrate V1 to H1, V2 to H2, and V3
to H4, respectively. The optimal plan of migration orders
and transmission rates is that first migrate V1 and V3 si-
multaneously, respectively with paths {(H3, S1, H1)} and
{(H3,S2,H4)} and the corresponding maximum bandwidths

4

Fig. 3. An example of migration request and plan.

of 100MBps. Then migrate V2 with paths {(H3, S1, H2),
(H3, S2, H2)} and the corresponding maximum bandwidth
of 200MBps. It takes 7.5s in total to finish all the migrations.
Then, take random migration orders for example, i.e., first
migrate V1 and V2 simultaneously, respectively with paths
{(H3, S1, H1)} and {(H3, S2, H2)} and the corresponding
maximum bandwidths of 100MBps. Then migrate V3 with
path {(H3, S2, H4)} and the corresponding maximum band-
width of 100MBps. It takes 10s in total to finish all the
migrations.

In this example, V1 and V3 can be migrated in parallel,
while V2 can be migrated with multipath. However, V1 and
V2, V3 and V2 share same links in their paths, respectively.
By determining a proper order, these migrations can be
implemented making full use of the network resources.
Thus, the total migration time is reduced by 25% in the
example, illustrating the effect of the migration plan.

2.3 Mathematical Model for Live Migration

In this section, we present the mathematical model of live
migration. Since the pre-copy migration is the most com-
mon and widely-used approach, and currently cannot be
replaced by other methods, we mainly focus on the planning
based on pre-copy migration in our work. We use M to
represent the memory size of the virtual machine. Let R
denote the page dirty rate during the migration and L
denote the bandwidth allocated for the migration. Then, the
process of the live migration is shown in Fig. 4. As we can
observe, live migration copies memory in several rounds.
Assume it proceeds in n rounds, and the data volume
transmitted at each round is denoted by Vi (0 ≤ i ≤ n).
At the first round, all memory pages are copied to the target
host, and then in each round, pages that have been modified
in the previous round are copied to the target host. Thus, the
data transmitted in round i can be calculated as:

Vi =

{
M if i = 0,
R · Ti−1 otherwise.

(1)

Meanwhile, the elapsed time at each round can be calculated
as:

Ti =
R · Ti−1

L
=
M ·Ri

Li+1
, (2)

Migration Time

Stop-and-

copy round

T0 T1 T2 T3 Tn-1

Image-copy round

Round 1 2 3 ... n-1

Pre-copying rounds

Tdown

Fig. 4. Illustration of live migration performing pre-copy in iterative
rounds.

where Ri and Li is the i-th power of R and L, respectively.
Assume the page dirty rate is smaller than the bandwidth
allocated for the migration. Let λ denote the ratio of R to L,
that is:

λ = R/L. (3)

If R ≥ L, then for all i ≥ 1 we have Vi = R · Ti−1 =
R · Vi−1/L = λ · Vi−1 ≥ Vi−1. It means that the remaining
dirty memory does not reduce after each round, and we will
never finish the migration. Thus, we assume R < L, and we
have λ < 1.

Combining the above analysis, the total migration time
can be represented as:

Tmig =
n∑
i=0

Ti =
M

L
· 1− λ

n+1

1− λ
. (4)

Let Vthd denote the threshold value of the remaining
dirty memory that should be transferred at the last iteration.
We can calculate the total rounds of the iteration by the
inequality Vn ≤ Vthd. Using the previous equations we
obtain:

n =

⌈
logλ

Vthd
M

⌉
. (5)

In this model, the downtime caused in the migration can
be represented as:

Tdown = Td + Tr, (6)

where Td is the time spent on transferring the remaining
dirty pages, and Tr is the time spent on resuming the VM
at the target host. For simplicity, we assume the size of
remaining dirty pages is equal to Vthd.

2.4 Problem Formulation
The network is represented by a graph G = (V,E), where
V denotes the set of network nodes and E denotes the set
of links. Let c(e) denote the residual capacity of the link
e ∈ E. Let a migration tuple (sk, dk,mk, rk) denote that a
virtual machine should be migrated from the node sk to the
node dk with the memory size mk and the page dirty rate
rk. There are totally K migration tuples in the system. For
the migration k, lk represents the bandwidth allocated for it.
Let Pk denote the set of paths between sk and dk. The flow
in path p is represented by the variable x(p). Besides, as
different migrations are started at different times, we define
binary variableXk to indicate whether migration k has been
started at the current time.

We first discuss the optimization objective. To obtain an
expression of the total migration time is difficult in our

5

TABLE 1
List of commonly used notations.

Notation Description
M The memory size of the virtual machine.
R The page dirty rate during the migration.
L The bandwidth allocated for the migration.
Vi The data transmitted in round i.
Ti The ratio of R to L.
λ The memory size of the virtual machine.

Tmig The total migration time.
Tdown The downtime caused in the migration.
V, n Set of network nodes and the number of network

nodes.
E,m Set of network links and the number of network

links.
K The number of VMs to be migrated.
H The number of hosts in the network.
c(e) Residual capacity of the link e ∈ E.
sk Source host of the migration k.
dk Target host of the migration k.
mk Memory size of the migration k.
lk Bandwidth allocated for the migration k.
rk Page dirty rate of the virtual machine corresponding

to the migration k.
Xk Binary variable indicating whether migration k has

been started.
P Set of all paths in the network.

Pk Set of paths between sk and dk .
Pe Set of paths using link e ∈ E.
x(p) The amount of flow in path p ∈ P.
l∗, N∗ The optimal solution for (10) with fewest nonzero

variables and the number of nonzero variables in it.
l̂, N̂ The optimal solution for (12) such that at least N∗

equalities that hold in inequality constraints of (12)
and the number of nonzero variables in it.

u(e) The dual variables of the problem (11).
dist(p)

∑
e∈p u(e), the length of path p in the dual problem

of (11).
U The optimal value of the MIP problem (8).
V The optimal value of the LP problem (12).
W The transmission rate corresponding to the solution

of the FPTAS algorithm.
F The net transmission rate corresponding to the solu-

tion of the FPTA algorithm.
σ Accuracy level of the linear approximation.
ε Accuracy level of the FPTAS algorithm.
κ Accuracy level of the FPTA algorithm.

model, because we allow multiple VMs to be migrated si-
multaneously. Thus, the total migration time cannot simply
be represented as the sum of the migration time of each VM
like [11], [35], whose migration plans were designed under
the model of one-by-one migration. Moreover, even though
we obtain the expression of the total migration time, the
optimization problem is still difficult and cannot be solved
efficiently. For example, work [9] gives an expression of
the total migration time by adopting a discrete time model.
However, they did not solve the problem directly, instead,
they proposed a heuristic algorithm independent with the
formulation without any theoretical bound. Thus, we try to
obtain the objective function reflecting the total migration
time from other perspectives.

On the other hand, since the downtime of live migration
is required to be unnoticeable by users, the number of the
remaining dirty pages in the stop-and-copy round, i.e. Vn,
need to be small enough. According to the model provided
in the last subsection, we have Vn =M · λn. Thus, λn must
be small enough. For example, if migrating a VM, whose

memory size is 10GB, with the transmission rate of 1GBps,
to reduce the downtime to 100ms, we must ensure λn ≤
0.01. Thus, by ignoring λn in the equation (4), we have:

Tmig ≈
M

L
· 1

1− λ
=

M

L−R
. (7)

We call the denominator as net transmission rate. From
an overall viewpoint, the sum of memory sizes of VMs
is reduced with the speed of

∑K
k=1(lk − Xkrk), which is

the total net transmission rate in the network. In turn, the
integration of the net transmission rate respect to time is
the sum of memory sizes. Note that this conclusion also
works when the transmission rate is smaller than the page
dirty rate, as well as when the transmission rate changes
with time. In this case, we also need to maximize the total
net transmission rate to reduce the remaining memory to
be transmitted. By maximizing the total net transmission
rate, we can reduce the total migration time efficiently. Thus,
it is reasonable for us to convert the problem of reducing
the migration time to maximizing the net transmission rate,
which is expressed as

∑K
k=1(lk −Xkrk).

We now analyze constraints of the problem. A VM is
allowed to be migrated with multipath in our model. Thus,
we have a relationship between lk and x(p):∑

p∈Pk

x(p) = lk, k = 1, ...,K.

Note that x(p) in equation is dependent on k. However,
since the existence of page dirty rate, if there are multiple
migration requests with the same source and target hosts,
in order to minimize the total migration time, it is better to
migrate them one by one rather than migrate them simulta-
neously. Thus, given a group of VM migration requests, we
each time only consider one migration for each unique pair
of source and target hosts. In this case, there can be only
traffic of one migration on each path at one time. Thus, the
dependence between x(p) and k can be ignored.

Besides, the total flow along each link must not exceed
its capacity. Thus, we have:∑

p∈Pe

x(p) ≤ c(e), ∀e ∈ E.

For a migration that has not been started, there is no band-
width allocated for it. Thus, we have constraints expressed
as follow:

lk ≤ β ·Xk, k = 1, ...,K,

where β is a constant large enough so that the maximum fea-
sible bandwidth allocated for each migration cannot exceed
it. Then, the problem of maximizing the net transmission
rate can be formulated as follows:

max
∑K
k=1(lk −Xkrk)

s.t.



∑
p∈Pk

x(p) = lk, k = 1, ...,K∑
p∈Pe

x(p) ≤ c(e), ∀e ∈ E
lk ≤ β ·Xk, k = 1, ...,K

Xk ∈ {0, 1}, k = 1, ...,K

x(p) ≥ 0, p ∈ P

(8)

which is a mixed integer programming (MIP) problem.
When some old migrations are finished, the input of the

problem changes. Thus, we recalculate the programming

6

under the new updated input. We notice that migrations
that have been started cannot be stopped. Otherwise, these
migrations must be back to square one because of the effect
of the page dirty rate. Thus, when computing this problem
next time, we add the following two constraints to it:{

Xk ≥ X0
k , k = 1, ...,K

lk ≥ l0k, k = 1, ...,K
(9)

where X0
k and l0k are equal to the value of Xk and lk in the

last computing, respectively. It means a migration cannot be
stopped and its bandwidth does not decrease.

Remark that the network states, including the back-
ground traffic, page dirty rate of VMs, etc., are also changing
all over the time. With the change of the input for the
problem, the migration planning also need to be recalcu-
lated. Thus, in our approach, the programming will be
recalculated with updated network state information peri-
odically. On the other hand, network fluctuations will lead
to significant change of network states. Thus, it will also
trigger the re-planning of VM migrations. At certain time
points, the bandwidth might be not enough, even smaller
than the page dirty rate. In that case, our basic strategy,
i.e., maximizing the total net transmission rate, still achieves
the local optimum, but performance of our approxima-
tion algorithm may decrease. However, this performance
gap can be evaluated and bounded by Theorem 2. If the
performance gap is too large, we can dynamically adjust
our strategies, e.g., temporarily give up the approximation
algorithm and return to solve the primary problem as an
alternative solution.

Another problem should be considered is the priorities
of different migrations. In fact, migrations with shorter path
tend to be carried out early. The reason is that they consume
less resources compared with migrations with longer paths,
and have less conflict with other migrations. Thus, by max-
imizing the total net transmission rate, they are more likely
to be selected. However, in real scenarios, sometimes we
may need to first complete migrations with long paths, such
as migrations across datacenters. One solution is to support
the different priorities between migrations in the scheduling
process, which can be realised by replacing the total net
transmission rate in the objective function by the weighted
summation of the net transmission rates of different VMs.
By setting suitable weight, migrations with long paths can
be carry out in reasonable time.

By solving the programming, we obtain the VMs that
should be migrated with their corresponding transmission
rates, maximizing the total net transmission rate under the
current condition. By dynamically determining the VMs to
be migrated in tune with changing traffic conditions and
migration requests, we keep the total net transmission rate
maximized, which is able to significantly reduce the total
migration time.

3 APPROXIMATION ALGORITHM

Solving the formulated MIP problem, we obtain a well-
designed sequence of the VMs to be migrated with their
corresponding bandwidths. However, the MIP problem is
NP-hard, and the time to find its solution is intolerable

on large scale networks. For example, we implement the
MIP problem using YALMIP – a language for formulating
generic optimization problems [16], and utilize the GLPK
to solve the formulation [17]. Then, finding the solution
of a network with 12 nodes and 95 VMs to be migrated
on a Quad-Core 3.2GHz machine takes at least an hour.
Therefore, we need an approximation algorithm with much
lower time complexity.

3.1 Approximation Scheme

3.1.1 Linear Approximation
Let us reconsider the formulated MIP problem (8). In this
problem, only Xk, k = 1, ...,K, are integer variables. Be-
sides, the coefficient of Xk in the objective function is rk. In
practical data center, rk is usually much less than lk, i.e., the
migration bandwidth of the VM. Thus, we ignore the part of∑K
k=1Xkrk in the objective function, and remove variables

Xk, k = 1, ...,K . Then, we obtain a linear programming
(LP) problem as follows:

max
∑K
k=1 lk

s.t.


∑
p∈Pk

x(p) = lk, k = 1, ...,K∑
p∈Pe

x(p) ≤ c(e), ∀e ∈ E
x(p) ≥ 0, p ∈ P

(10)

We select the optimal solution l∗ for (10) with most variables
that are equal to zero as our approximate solution. Then we
let N∗ denote the number of variables that are not zero in
our approximate solution l∗, and the corresponding binary
decision variables Xk are then set to be 1, while the other
binary decision variables are set to be 0. Then the final
approximate solution is denoted by (l∗k, X

∗
k).

As for the primary problem with the additional con-
straints shown in (9), by a series of linear transformations,
the problem is converted to a LP problem with the same
form as (10) except for a constant in the objective function,
which can be ignored. Thus we obtain a linear approxima-
tion for the primary MIP problem.

3.1.2 Fully Polynomial Time Approximation
The exact solution of the LP problem (10) still cannot be
found in polynomial time, which means unacceptable com-
putation time for large scale networks. Thus, we further
propose an algorithm to obtain the solution in polynomial
time at the cost of accuracy.

Actually, ignoring the background of our problem and
removing the intermediate variable lk, we can express the
LP problem (10) as:

max
∑
p∈P x(p)

s.t.

{ ∑
p∈Pe

x(p) ≤ c(e), ∀e ∈ E
x(p) ≥ 0, p ∈ P

(11)

This is a maximum multicommodity flow problem, that
is, finding a feasible solution for a multicommodity flow
network that maximizes the total throughput.

Fleischer et al. [19] proposed a Fully Polynomial-time
Approximation Scheme (FPTAS) algorithm independent of
the number of commodities K for the maximum multicom-
modity flow problem. It can obtain a feasible solution whose

7

objective function value is within 1+ ε factor of the optimal,
and the computational complexity is at most a polynomial
function of the network size and 1/ε.

Specifically, the FPTAS algorithm is a primal-dual algo-
rithm. We denote u(e) as the dual variables of this prob-
lem. For all e ∈ E, we call u(e) as the length of link
e. Then, we define dist(p) =

∑
e∈p u(e) as the length of

path p. This algorithm starts with initializing u(e) to be
δ for all e ∈ E and x(p) to be 0 for all p ∈ P. δ is a
function of the desired accuracy level ε, which is set to be
(1 + ε)/((1 + ε)n)1/ε in the algorithm. The algorithm pro-
ceeds in phases, each of which is composed of K iterations.
In the rth phase, as long as there is some p ∈ Pk for some
k with dist(p) <min{δ(1 + ε)r, 1}, we augment flow along
p with the capacity of the minimum capacity edge in the
path. The minimum capacity is denoted by c. Then, for each
edge e on p, we update u(e) by u(e) = u(e)(1 + εc

c(e)). At
the end of the rth phase, we ensure every (sj , dj) pair is
at least δ(1 + ε)r or 1 apart. When the lengths of all paths
belonging to Pk for all k are between 1 and 1 + ε, we stop.
Thus, the number of phases is at most

⌈
log1+ε

1+ε
δ

⌉
. Then,

according to theorem in [19], the flow obtained by scaling
the final flow obtained in previous phases by log1+ε

1+ε
δ

is feasible. We modified the FPTAS algorithm by adding
some post-processes to obtain the feasible (lk, Xk) and x(p)
to the primal MIP problem, and the modified algorithm
is given in more detail in Algorithm 1. The computational
complexity of the post-processes is only a linear function of
the network size and the number of the VMs to be migrated.
In addition, the computational complexity of the FPTAS
algorithm is at most a polynomial function of the network
size and 1/ε [19]. Thus, the computational complexity of
our approximation algorithm is also polynomial, and we
obtain a fully polynomial time approximation (termed as
FPTA) to the primal MIP problem (8). In next subsections,
we will analyze its performance bound and computational
complexity in details.

3.2 Bound Analysis

To demonstrate the effectiveness of our proposed algorithm,
we now analyze the bound of it. We first analyze the bound
of the linear approximation compared with the primary MIP
problem (8), then analyze the bound of the FPTA algorithm
compared with the linear approximation (10). With these
two bounds, we finally obtain the bound of the FPTA algo-
rithm showing in Algorithm 1 compared with the primary
MIP problem (8).

3.2.1 Bound of the Linear Approximation

We discuss the bound of the linear approximation compared
with the primary MIP problem in the data center network
with full bisection bandwidth. A bisection of a network is
a partition into two equally-sized sets of nodes. The sum of
the capacities of links between the two partitions is called
the bandwidth of the bisection. The bisection bandwidth
of a network is the minimum such bandwidth along all
possible bisections. Therefore, bisection bandwidth can be
thought of as a measure of worst-case network capacity,
and the corresponding partitions is called the most critical

bisection cut. A network is said to have a full bisection band-
width, if it can sustain the full network access bandwidth
of every node across the most critical bisection while all
nodes communicate simultaneously. Common topologies of
data center networks, such as fat tree, usually provide full
bisection bandwidth.

In the network with full bisection bandwidth, it is possi-
ble for an arbitrary host in the data center to communicate
with any other host in the network at the full bandwidth
of its local network interface [38]. Thus, we can ignore the
routing details, and only guarantee the traffic at each host
not exceeds the full bandwidth of its local network interface.
Then, the LP problem (10) becomes:

max
∑K
k=1 lk

s.t.


∑
sk=i

lk ≤ Csi , i = 1, ...,H∑
dk=i

lk ≤ Cdi , i = 1, ...,H

lk ≥ 0, k = 1, ...,K

(12)

where Csi is the maximum amount of traffic that can be
received at host i, while Cdi is the maximum amount of
traffic that can be sent at host i. Besides, there are H hosts in
the data center. Then, we let L0 be the minimum of Csi and
Cdi . That is, min{Cs1 , ..., CsH} ≥ L0 and min{Cd1 , ..., CdH} ≥
L0. Similarly, we let R0 be the maximum of rk. That is,
max{r1, ..., rK} ≤ R0.

We now provide some supplement knowledge about lin-
ear programming. For a linear programming with standard

Algorithm 1: FPTA Algorithm.

Input: network G(V,E), link capacities c(e) for
∀e ∈ E, migration requests (sj , dj)

Output: Bandwidth lk, binary decision variable Xk for
each migration k, and the amount of flow x(p) in
path p ∈ P.

Initialize:
u(e)← δ ∀e ∈ E
x(p)← 0 ∀p ∈ P

for r = 1 to
⌈
log1+ε

1+ε
δ

⌉
do

for j = 1 to K do
p← shortest path in Pj
while dist(p) < min{1, δ(1 + ε)r} do

c← mine∈p c(e)
x(p)← x(p) + c
∀e ∈ p, u(e)← u(e)(1 + εc

c(e))
p← shortest path in Pj

for each p ∈ P do
x(p) = x(p)/log1+ε

1+ε
δ

for j = 1 to K do
lj =

∑
p∈Pj

x(p)
Xj = 0
if lj 6= 0 then

Xj = 1

Return (lk, Xk) and x(p)

8

form, which can be represented as:

max bTx

s.t.

{
Ax = c

x ≥ 0

(13)

where x, b ∈ Rn, c ∈ Rm, A ∈ Rm×n has full rank m, we
have the following definitions and lemmas.

Definition 1 (Basic Solution) Given the set ofm simulta-
neous linear equations in n unknowns of Ax = c in (13), let
B be any nonsingularm×m submatrix made up of columns
of A. Then, if all n − m components of x not associated
with columns of B are set equal to zero, the solution to the
resulting set of equations is said to be a basic solution to
Ax = c with respect to the basis B. The components of x
associated with columns of B are called basic variables, that
is, BxB = c [20].

Definition 2 (Basic Feasible Solution) A vector x satisfy-
ing (13) is said to be feasible for these constraints. A feasible
solution to the constraints (13) that is also basic is said to be
a basic feasible solution [20].

Lemma 1 (Fundamental Theorem of LP) Given a linear
program in standard form (13) whereA is anm×nmatrix of
rank m. If there is a feasible solution, there is a basic feasible
solution. If there is an optimal feasible solution, there is an
optimal basic feasible solution [20].

These definitions and the lemma with its proof can be
found in the textbook of linear programming [20]. Thus we
ignore the proof for the lemma. With these preparations, we
have the following lemma:

Lemma 2 There exists an optimal solution for (12), such
that there are at least N∗ equalities that hold in inequality
constraints of (12).

Proof: Problem (12) can be represented in matrix form
as:

max bT l

s.t.

{
Al ≤ c
l ≥ 0

(14)

where l = (l1, l2, ..., lK)T , b = (1, 1, ..., 1)T ∈ RK , c ∈
R2H , A ∈ R2H×K . Besides, A is composed of 0 and 1,
and each column of A has and only has two elements of
1. Then this problem can be transformed to standard form
represented as:

max bT l

s.t.

[A I]

[
l

s

]
= c

l, s ≥ 0

(15)

where s = c− Al ∈ R2H , I ∈ RK×K is the identity matrix
of the order K . Besides, [A I] ∈ R2H×(K+2H) has full rank
2H .

By Lemma 1, if the LP problem (15) has an optimal
feasible solution, we can find an optimal basic feasible
solution (l̂, ŝ) for (15). Then l̂ is an optimal solution for
(14). By the definition of basic solution, the number of
nonzero variables in (l̂, ŝ) is less than 2H . Meanwhile, By
the definition of N∗, the number of nonzero variables in l̂,
which is represented by N̂ , is greater than N∗. Thus the
number of nonzero variables in ŝ is less than 2H − N∗.

Then there are at least N∗ variables that are equal to zero in
ŝ. Meanwhile, ŝj = 0, j ∈ {1, ..., 2H} means the equality
holds in the inequality constraint corresponding jth row in
A. Therefore, we have at least N∗ equalities that hold in
inequality constraints of (12).�

Theorem 1 Assume R0 = ηL0. Let U be the optimal
value of the primal MIP problem (8), and V be the optimal
value of the LP problem (12). Then we have V − N∗R0 ≥
(1− σ)U , where σ = 2η

1−2η .
Proof: We first prove V ≥ 1

2N
∗L0. By lemma 2, we know

that there exists an optimal solution of (12) such that there
are at least N∗ equalities that hold in inequality constraints
of (12). We select the corresponding rows a1, ...aN∗ of A and
corresponding elements c1, ...cN∗ of c. Then we have aTi l̂ =
ci, i = 1, ..., N∗. Because each column of A has and only
has two elements of 1, elements of

∑N∗

i=1 ai are at most 2.
Thus, we have V =

∑K
k=1 l̂k ≥ 1

2

∑N∗

i=1 a
T
i l̂ =

1
2

∑N∗

i=1 ci ≥
1
2N
∗L0.
By definition of U and V , we have U ≤ V and

V − N∗R0 ≤ U . Then we have |U − (V −N∗R0)| =
U − V + N∗R0 ≤ N∗R0. Besides, by the last paragraph,
we have U ≥ V − N∗R0 ≥ 1

2N
∗L0 − N∗R0. Thus, we

have |U−(V−N∗R0)|
U = U−(V−N∗R0)

U ≤ N∗R0
1
2N

∗L0−N∗R0
=

2R0

L0−2R0
= 2η

1−2η = σ, i.e., V −N∗R0 ≥ (1− σ)U . �
By the definitions of N∗ and R0, we have that the net

transmission rate corresponding to the selected solution of
(12) is at least V − N∗R0. Thus, we obtain the bound of
the linear approximation compared with the primary MIP
problem.

3.2.2 Bound of the FPTA Algorithm

We next analyze the bound of the FPTA algorithm. Accord-
ing to theorem in [19], we have the following lemma:

Lemma 3 If p is selected in each iteration to be the
shortest (si, di) path among all commodities, then for a
final flow value W =

∑
p∈P x(p) obtained from the FPTAS

algorithm, we have W ≥ (1 − 2ε)V , where ε is the desired
accuracy level.

Because the value of x(p) is unchanged in our post-
processes of Algorithm 1, W is also the final flow value of
our proposed FPTA algorithm. Note that it is not the bound
of the FPTA algorithm compared with the LP problem (10),
because our objective function is the net transmission rate,
while W is only the transmission rate of the solution of
the FPTA algorithm. Besides, V is not the maximum net
transmission rate as well. The bound of the FPTA algorithm
is given in the following theorem:

Theorem 2 Let F be the net transmission rate corre-
sponding to the solution of Algorithm 1. In the data cen-
ter networks providing full bisection bandwidth, we have
F ≥ (1 − 2ε − σ)U , where U is the optimal value of the
primal MIP problem (8).

Proof: By the definitions of N∗ and R0, we have that the
net transmission rate corresponding to the solution of the
FPTA algorithm is at least W −N∗R0, i.e., F ≥W −N∗R0.
Thus we have F ≥ (1 − 2ε)V − N∗R0 = (1 − 2ε)(V −
N∗R0) − 2εN∗R0. Meanwhile, by U ≥ 1

2N
∗L0 − N∗R0 ≥

1
2ηN

∗R0 −N∗R0, we have N∗R0 ≤ 2η
1−2ηU = σU .

9

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

The Number of Migrations

T
o

ta
l
M

ig
ra

ti
o

n
 T

im
e

 (
s
)

One−by−one

Grouping

FPTA

MIP

60 70 80 90 100
30

40

50

60

(a)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

The Means of Memory Size (GB)

T
o

ta
l
M

ig
ra

ti
o

n
 T

im
e

 (
s
)

One−by−one

Grouping

FPTA

MIP

6 7 8 9 10
40

60

80

100

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700

800

900

1000

Background Traffic (GBps)

T
o

ta
l
M

ig
ra

ti
o

n
 T

im
e

 (
s
)

One−by−one

Grouping

FPTA

MIP

0.4 0.5 0.6
50

100

150

(c)

Fig. 5. Total migration time vs different parameters in one datacenter under the topology of PRV1.

By Theorem 1, we have F ≥ (1− 2ε)(1− σ)U − 2εσU =
(1 − 2ε − σ)U . Thus we obtain the bound of the FPTA
algorithm compared with the primal MIP problem.�

3.3 Complexity Analysis
We now analyze the computational complexity of the
FPTA algorithm. Since the computational time of the post-
processes is only a linear function of the network size and
the number of the VMs to be migrated, we mainly focus
on the computational complexity of FPTAS algorithm to the
maximum multicommodity flow problem. The dual to the
problem (11) is

max
∑
e∈P c(e)u(e)

s.t.

{ ∑
e∈p u(e) ≥ 1, ∀p ∈ P

u(e) ≥ 0, ∀e ∈ E
(16)

According to Algorithm 1, at start, we have l(e) = δ for
all e ∈ E. The last time the length of an edge is updated,
its length, u(e) is less than one, and it is increased by at
most a factor of 1 + ε in the update. Thus, the final length
of any edge is less than 1 + ε. Since every augmentation
increases the length of the capacity of the minimum capacity
edge by 1 + ε, the number of augmentations is less than
mlog1+ε

1+ε
δ , wherem is the number of links in the network.

Besides, there are klog1+ε
1+ε
δ shortest path computations

that do not lead to augmentations, where k is the number of
the commodities, i.e., the number of VMs to be migrated in
our problem. Using the Dijkstra shortest path algorithm, the
runtime of the algorithm is O(1

ε2 (m
2 + km)logn). This can

be further reduced by grouping commodities by a common
source node, of which the shortest path can be computed in
one computation. More details can be found in [19]. Thus
we have the following lemma.

Lemma 4 An ε-approximate maximum multicommodity
flow can be computed in O(1

ε2m(m + nlogm)logn) time,
where n is the number of nodes in the network and m is the
number of links in the network.

Note that ε is not the desired accuracy level of our FPTA
algorithm compared with the primal MIP problem. Then
based on Lemma 4 and Theorem 2, the complexity of our
proposed algorithm is given in the following theorem:

Theorem 3 An κ-approximate solution of the MIP
problem (8) can be computed by the FPTA algorithm in
O(1

(κ−σ/2)2m(m+ nlogm)logn) time.

Proof: According to Theorem 2, the accuracy level of the
FPTA algorithm is ε+ σ/2. Thus, to obtain a κ-approximate
solution of the primal MIP problem, we must ensure that
ε+σ/2 ≤ κ, i.e., ε ≤ κ−σ/2. Combining Lemma 4, we prove
that an κ-approximate solution of the primal MIP problem
(8) can be found in O(1

(κ−σ/2)2m(m+ nlogm)logn) time by
the FPTA algorithm. �

4 PERFORMANCE EVALUATION

4.1 Simulation System Set Up
With the increasing trend of owning multiple datacenter
sites by a single company, migrating VMs across datacenters
becomes a common scenario. Thus, to evaluate the perfor-
mance of our proposed migration plan inside one datacenter
and across datacenters, we select the following two topolo-
gies to implement our experiments: (1) The topology of a
private enterprise data center located in Midwestern United
States (PRV1 in [22]). There are 96 devices and 1088 servers
in the data center network, which utilizes a canonical 2-
Tier Cisco architecture. (2) B4, Google’s inter-datacenter
WAN with 12 data centers interconnected with 19 links [21]
(showing in Fig. 2(a)). In B4, each node represents a data
center. Besides, the network provides massive bandwidth.
However, to evaluate the performance of our proposed
algorithm under relatively hard conditions, we assume the
capacity of each link is only 1GBps. On the other hand, the
capacities of links in RPV1 are set ranging from 1GB to 10GB
according to [22]. If not special specified, the page dirty rate
of each VM is set to 100MBps. Besides, Vthd and Tr are set to
100MB and 20ms, respectively. The memory sizes of VMs are
also set ranging from 1GB to 10GB unless stated otherwise.

We use a self-developed event-driven simulator to eval-
uate the performance of our proposed algorithm. Given
the input, which includes the structure of the network,
background traffic, migration requests of VM, page dirty
rates, etc., the simulator will calculate the detailed process of
migrations, and output the related metrics we need, includ-
ing the total migration time, the total downtime and so on.
Specifically, we compare the performance of our proposed
FPTA algorithm with the optimal solution of the primary
MIP problem (referred to as MIP algorithm) and two state-
of-the-art algorithms. In the two state-of-the-art algorithms,
one is the algorithm based on one-by-one migration scheme
(referred to as one-by-one algorithm), which is proposed

10

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

The Number of Migrations

T
o
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

Grouping

FPTA

MIP

(a)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

The Means of Memory Size (GB)

T
o
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

Grouping

FPTA

MIP

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6
20

40

60

80

100

120

140

Background Traffic (GBps)

T
o
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

Grouping

FPTA

MIP

(c)

Fig. 6. Total migration time vs different parameters in inter-datacenter network under the topology of B4.

in [11], [35]. The other is the algorithm that migrates VMs
by groups (referred to as grouping algorithm), just as the
algorithm proposed in [9]. In this algorithm, VMs that can
be migrated in parallel are divided into the same group,
while VMs that share the same resources, such as the same
link in their paths, are divided into different groups. Then
VMs are migrated by groups according to their costs [9]. We
further set the function of the cost as the weighted value
of the total migration time and the number of VMs in each
group.

4.2 Results and Analysis

4.2.1 Migration Time
In our first group of experiments, we assume all the VM mi-
gration requests, which are generated randomly, are known
at the beginning. Given a group of VM migration requests,
the total migration time, i.e., the time spent to finish all
migrations, is evaluated as the metric of the performance.
Specifically, we compare the performance of our proposed
FPTA algorithm with that of other 3 algorithms introduced
above, in PRV1 and B4 with different number of VMs to be
migrated, different amount of background traffic, different
average memory size of VMs, respectively. In addition, the
volume of background traffic is generated randomly with
specific mean value we set. The results are shown in Fig. 5
and Fig. 6.

As we can observe from the Fig. 5, the performance of the
one-by-one algorithm is much worse than that of the other
three algorithms: when there are 100 VMs to be migrated,
the total migration time it takes is about 10 times more than
that of the other three algorithms, illustrating its inefficiency
in reducing the total migration time. Since the performance
gap between one-by-one algorithm and the other algorithms
is huge, we do not show its performance in Fig. 6.

As for the performance of the other three algorithms,
their total migration time vs different parameters in data
center networks and inter-datacenter WAN has a similar
trend: the total migration time of FPTA algorithm is very
close to that of the MIP algorithm, and much less than that
of the grouping algorithm. Take Fig. 5(a) and Fig. 6(a) for
example. In PRV1 (showing in Fig. 5(a)), total migration
time of the FPTA algorithm and the MIP algorithm almost
cannot be distinguished, while in B4 (showing in Fig. 6(a))
the gap is less than 15% relative to the MIP algorithm.

Meanwhile, FPTA algorithm performs much better than
the grouping algorithm: its migration time is reduced by
40% and 50% in comparison with the grouping algorithm
in PRV1 and B4, respectively. Thus, the solution of our
proposed FPTA algorithm approaches to the MIP algorithm
and outperforms the state-of-the-art solutions.

4.2.2 Net Transmission Rate

To illustrate the effectiveness of maximizing the net trans-
mission rate, we implement the second group of experi-
ments in the scenario where there are 40 VMs to be migrated
in B4. Net transmission rates, i.e., the sum of all migrating
VMs minus their page dirty rates, of the FPTA algorithm
and the grouping algorithm are evaluated, as functions of
time. The result is shown in Fig. 7.

According to previous theoretic analysis, we know that
the sum of memory sizes of VMs to be migrated is ap-
proximately equal to the integration of the net transmission
rate with respect to time. In the experiments, the sum of
memory sizes of the 40 VMs to be migrated are 203GB.
Meanwhile, in Fig. 7, the shaded areas of the FPTA and
grouping algorithm, which can represent the integrations of
the net transmission rates with respect to time, are 203.0GB
and 212.0GB, respectively. The relative errors are less than
5%. It proves the correctness of our theoretic analysis.

Besides, from the figure we observe that the net trans-
mission rate with the FPTA algorithm remains a relatively
high level in the process of migrations, about 2 times higher
than that of the grouping algorithm on average. Thus, the in-
tegration of the net transmission rate can reaches

∑40
k=1mk

with less time. Specifically, in this group of experiments, the
total migration time of FPTA algorithm is reduced by up
to 50% compared with grouping algorithm. Thus, our FPTA
algorithm significantly reduces the total migration time by
maximizing the net transmission rate.

4.2.3 Computation Time

In this group of experiments, we simulate the computation
time of the FPTA algorithm as a function of the number
of VMs to be migrated in the inter-datacenter WAN. To be
compared with, the computation time of using GLPK to
solve the MIP problem of (8) and the LP problem of (10)
is also simulated. The result is shown in Fig. 8. Since the
time complexity of solving the primal MIP problem is too

11

Time (s)

N
e
t
T

ra
n
s
m

is
s
io

n
 R

a
te

 (
G

p
b
s
)

Fig. 7. The net transmission rates vs time of FPTA algorithm and
grouping algorithm in inter-datacenter network under the topology of B4
with 40 VMs to be migrated.

high, we use the logarithmic scale for the computation time
in Fig. 8.

From the result we can observe that compared with
solving the MIP problem directly, the FPTA algorithm sig-
nificantly reduces the computation time. For example, when
there are 60 VMs to be migrated, the computation time of
the FPTA algorithm is only 6 seconds, while it takes 2.3
minutes to solve the primal MIP problem by GLPK. Besides,
the computation time of the FPTA algorithm is uniformly
less than that of solving the LP problem (10). When there
are 100 VMs to be migrated, the FPTA algorithm reduces
the computation time by 50% compared with solving the LP
problem. What’s more, we add a curve of the computational
time of the linear computational complexity as a baseline in
Fig. 8. We observe that the computation time of solving the
MIP problem and the LP problem has a superlinear growth
with respect to the number of VMs to be migrated, while
the growth speed of the computation time of the FPTA
algorithm is even less than the linear growth. The result
agrees with the theoretic analysis in Section 3. However,
as we can observe, the computation time of the grouping
algorithm is the smallest due to its simple structure and
greedy strategy, but we can also observe the superlinear
growth of its computation time. Overall, the FPTA algorithm
significantly reduces the computation time as well as guar-
antees a good performance.

4.2.4 Application Performance
The scenarios of this group of experiments are to optimize
the average delay of services in B4. Assume there are some
VMs located randomly in the data centers in B4 at the begin-
ning, and they are providing services to the same user, who
is located closely to the node 8 (data center 8). Thus we need
to migrate these VMs to data centers as close to the node 8 as
possible. However, memory that each data center provides
is not unlimited, which is set to range from 0.5TB to 1.5TB
randomly in our experiments. Thus, only a part of VMs can
be migrated to the node 8. To have the smallest average de-
lay, we find the final migration sets. Then we use the FPTA
and grouping algorithm to implement these migrations. The
total migration time and the total downtime are simulated

0 10 20 30 40 50 60 70 80 90 100

10
−1

10
0

10
1

10
2

The Number of Migrations

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

MIP

LP

FPTA

Linear

Grouping

Fig. 8. Computation time of different algorithms

when there are 100, 200, 300, 400 VMs, respectively, in which
the downtime is computed according to the mathematical
model for live migration provided in section 2. In addition,
we also evaluate the impact of the types of applications
running on the VMs. Specifically, if the applications running
on the VMs are data-heavy, such as database, video service,
etc., their page dirty rate is relatively large. Similarly, if the
applications running on the VMs are data-light, their page
dirty rate is relatively small. We simulate the performance
of our algorithm in these two conditions. The mean value of
page dirty rate corresponding to the data-light application
is set to be 0.1GBps, while for the data-heavy application, it
is set to be 0.5GBps. In addition, we also assume that page
dirty rate varies over time, and it ranges from 0.5 to 1.5 times
relative to its mean. The results are shown in Fig. 9.

Fig. 9(a) and (b) show the performance of migration for
VMs with data-light and data-heavy applications, respec-
tively. From Fig. 9(a), we observe that the performance of the
FPTA algorithm is uniformly better than that of the group-
ing algorithm. Specifically, compared with the grouping
algorithm, FPTA algorithm reduces the total migration time
by 25.6% on average. In addition, it also reduces the total
downtime by 53.2% on average. As for the performance of
the VMs with data-heavy applications, we can observe from
Fig. 9(b) that the total migration time is obviously increased
for both algorithms, and the total migration time of FPTA
algorithm is still much smaller than that of grouping algo-
rithm, i.e., reduced by up to 43.3%. On the other hand, the
total downtime is not much influenced. The reason is that
in order to maximize the net transmission rate of VMs with
higher page dirty, our proposed FPTA algorithm reduces
the number of concurrent migrated VMs, and preserves
bandwidth for each single migration. Meanwhile, Vthd, the
remaining dirty memory transferred at the last iteration, is
fixed. Thus, the downtime, i.e., the time spent to transfer the
final remaining dirty memory, is not much influenced. Over-
all, our proposed FPTA algorithm outperforms the grouping
algorithm uniformly, which provides better services for the
user.

12

The Number of VMs The Number of VMs

T
o
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

T
o
ta

l
D

o
w

n
ti
m

e
 (

s
)

(a) Data-light application (small page dirty rate)

The Number of VMs The Number of VMs

T
o
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

T
o
ta

l
D

o
w

n
ti
m

e
 (

s
)

(b) Data-heavy application (large page dirty rate)

Fig. 9. Total migration time and downtime for optimizing delay in inter-
datacenter network under the topology of B4.

4.2.5 Performance under Real Packet Trace
In the previous experiments, the background traffic is as-
sumed to be time-invariant, and its volume is generated ran-
domly. Thus, to evaluate the performance of our proposed
algorithm with realistic traffic in data center, we conduct this
group of experiments. The amount of the background traffic
is obtained from the real packet-level traces from the data
center of a university in Mid-United States, EDU1 provided
in [22]. Then, we implement this group of experiments
under the topology of B4 and PRV1 with the new obtained
background traffic. For simplicity, in the experiments of the
inter-datacenter WAN, each datacenter is regarded as a huge
host, of which the internal structure is ignored. By elabo-
rately setting the bandwidth of the local network interface
of each host, the simplified problem can be equivalent to
the original problem. Besides, we assume that expect for
when there are some old migrations are finished, the SDN
controller also dynamically adjusts the transmission rates
of VMs every 5 seconds according to the mean amount of
background traffic of the past 5 seconds.

Similarly with the second group of experiments, the net
transmission rates of the FPTA algorithm and the grouping
algorithm are evaluated as functions of time under the
topology of B4 with 40 VMs to be migrated. The result is
shown in Fig. 10. Expect for the net transmission rates of the
two algorithms, the curve of the volume of the background
traffic is also plotted. As we can observe, compared with
Fig. 7, the net transmission rates of different algorithms are
also affected by the volume of the background traffic. For
example, there is a peak of the background traffic at the 4th
period of 5 seconds. In this period, the net transmission rates
of both algorithms are at low points. Though affected by
amount of the background traffic, the net transmission rate

Time (s)

B
a
c
k
g
ro

u
n
d
 T

ra
ff
ic

 (
G

b
p
s
)

N
e
t
T

ra
n
s
m

is
s
io

n
 R

a
te

 (
G

b
p
s
)

Fig. 10. The net transmission rates vs time of FPTA algorithm and
grouping algorithm in inter-datacenter network under the topology of B4
with 40 VMs to be migrated.

with the FPTA algorithm still remains a relatively high level
in the process of migrations, about 2 times higher than that
of the grouping algorithm on average, significantly reducing
the total migration time by up to 45%. It indicates that the
performance of our proposed algorithm with realistic traffic
remains good.

Then, the total migration time of the FPTA and grouping
algorithms is evaluated as a function of the number of VMs
to be migrated and the average memory size of VMs in
B4 and PRV1, respectively. The results are shown in Fig.
11. Still similarly with Fig. 5, the total migration time of
FPTA algorithm is very close to that of the MIP algorithm,
and much less than that of the grouping algorithm. Take
Fig. 11(a) as an example. The migration time of the FPTA
algorithm almost cannot be distinguished with that of the
MIP algorithm, and is reduced by 30% on average in com-
parison with the grouping algorithm. Thus, the solution
of our proposed FPTA algorithm approaches to the MIP
algorithm and outperforms the state-of-the-art solution with
realistic traffic.

5 RELATED WORK

Works related to our paper can be divided by three topics:
live migration, VM migration for improving quality and
resilience of services, and migration planning.

Since Clark proposed live migration [2], there have been
plenty of works that have been done in this field. Ramakr-
ishnan et al. [23] advocated a cooperative, context-aware
approach to data center migration across WANs to deal
with outages in a non-disruptive manner. Huang et al. [24]
presented a VM migration design by exploiting fast inter-
connects that support remote memory access technology
to optimize migrations. Jin et al. [25] proposed a VM mi-
gration approach using memory compression algorithms to
optimize migrations. Michael et al. [26] proposed post-copy
based live migration for virtual machines, in which most

13

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

The Number of Migrations

T
o

ta
l
M

ig
ra

ti
o

n
 T

im
e

 (
s
)

Grouping

FPTA

MIP

(a) Total migration time vs the
number of VMs to be migrated in
PRV1

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

The Means of Memory Size (GB)

T
o

ta
l
M

ig
ra

ti
o

n
 T

im
e

 (
s
)

Grouping

FPTA

MIP

(b) Total migration time vs the
means of memory size in PRV1

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

The Number of Migrations

T
o

ta
l
M

ig
ra

ti
o

n
 T

im
e

 (
s
)

Grouping

FPTA

MIP

(c) Total migration time vs the
number of VMs to be migrated in
B4

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

The Means of Memory Size (GB)

T
o

ta
l
M

ig
ra

ti
o

n
 T

im
e

 (
s
)

Grouping

FPTA

MIP

(d) Total migration time vs the
means of memory size in B4

Fig. 11. Total migration time vs different parameters in one datacenter
under the topology of B4 and PRV1.

pages are transferred after the VM’s execution has been
resumed at the target host. By using this method, the total
migration time as well as downtime can be significantly
reduced. Svärd et al. [27] compared existing approaches
for live migration. From their results, it is seen that the
pre-copy approaches are more robust, while post-copy ap-
proaches outperform in terms of resource usage and mi-
gration downtime. Wood et al. [28] presented a mechanism
that provides seamless and secure cloud connectivity as well
as supports live WAN migration of VMs. Nasim et al. [39]
used multiplath-TCP (MPTCP) to efficiently aggregate the
bandwidth of multiple disjoint paths in a model datacenter,
and significantly reduce the downtime and migration time
of VMs. In addition, Teka et al. [40] also presented an
approach based on MPTCP to achieve seamless live VM
migration, i.e., not interrupting the application running on
the VM, seamless connection migration and zero network
VM downtime after the migration is completed. On the
other hand, there have been a number of works about VM
migration in SDNs. Mann et al. [29] presented CrossRoads –
a network fabric that provides layer agnostic and seamless
live and offline VM mobility across multiple data centers.
Boughzala et al. [10] proposed a network infrastructure
based on OpenFlow that solves the problem of inter-domain
VM migration. Meanwhile, Keller et al. [31] proposed LIME,
a general and efficient solution for joint migration of VMs
and the network. Mann et al. [30] presented a QoS frame-
work which uses a cost of migration model to allocate
a minimal bandwidth for a migration flow such that it
completes within the specified time limit while causing
minimal interference to other flows in the network. These
works indicate that SDN has big advantages in implement-
ing VM migration. In contrast, we focus on developing a
VM migration plan to reduce the total migration time in
Software Defined Network (SDN) scenarios.

VM migration for improving quality or resilience of
services has been studied in the literature [3]–[6], [32], [33].
Zhani et al. [5] focused on reducing network traffic to
support bandwidth requirements and performance isolation
among applications in data centers by migrating VMs to
dynamically adjust the resource allocation. They proposed
VDC Planner, a resource management framework for data
centers, which aims at achieving high revenue while min-
imizing the total energy cost over-time. Wood et al. [6]
presented Sandpiper, a system that automates the task of
monitoring, detecting hotspots, and relocating VMs from
overloaded to under-utilized nodes. Tsugawa et al. [3]
studied the migration of multiple VMs for disaster recovery
based on information collected after the Great East Japan
Earthquake, and presented the condition to migrate VMs
from damaged sites and keep IT services uninterrupted. The
approaches of [32], [33] mainly focused on the replication of
VMs rather than migration of VMs to improve the resilience
of services, which consumes more storage resources to keep
the replica and bandwidth resources to maintain synchro-
nization between the replica and primary VMs. Fischer et al.
[4] focused on the use of wide-area migration to increase the
resilience of network service. They analyzed the application
of VM migration or replication into the recovery of services,
and presented two concepts for network redirection after
the wide-area migration. Different with them, our work
focus on the migration planning of VMs to reduce the total
migration time.

Meanwhile, there have been some works about migra-
tion planning. However, most of them were designed under
the model of one-by-one migration [11], [35] or their main
focuses were not to optimize the total migration time [11],
[34]. Ghorbani et al. [11] proposed a heuristic algorithm
of determining the ordering of VM migrations and corre-
sponding OpenFlow instructions. However, they concen-
trated on bandwidth guarantees, freedom of loops, and their
algorithm is based on the model of one-by-one migration. Lo
et al. [12] proposed three algorithms for migrating multiple
virtual routers with the goal of minimizing the migration
time and cost. Al-Haj et al. [34] also focused on finding a
sequence of migration steps. They formulated their problem
as a Constraints Satisfaction Problem (CSP) and used Satisfi-
ability Modulo Theory (SMT) solvers to solve it. Their main
goal was to satisfy security, dependency, and performance
requirements. Another work [35] proposed an informed live
migration strategy which considers the VMs’ characteris-
tics and the workload to determine the migration order.
Hermenier et al. [36], [37] proposed a resource manager
– Entropy, which performs dynamic consolidation based
on constraint programming and takes migration overhead
(cost) into account. However, optimizing the total migration
time was still not their main goal. Table II summarizes the
comparison of the approaches on migration planning on the
basis of their objects to be migrated, target functions, and
whether they enable multipath routing and migrating multi-
ple objects simultaneously, where a dash will be displayed if
the approach is not related with the corresponding problem.

14

TABLE 2
Comparison of approaches on migration planning.

Approach Object to be
migrated

Enable multipath rout-
ing

Enable migrating mul-
tiple objects simultane-
ously

Target function

[9] VMs No Yes Minimize the total migration time and service
penalty due to migration

[11] VMs No No Meet constraints on bandwidth and loop-
freedom

[12] Virtual routers No Both Minimize the migration time and cost
[34] VMs - Yes Satisfy security, dependency, and performance

requirements
[35] VMs No No Improve the efficiency of reconfiguration a vir-

tualized cluster
[36], [37] VMs - Yes Minimize the migration cost

6 CONCLUSION AND FUTURE WORK

In this work, we focus on reducing the total migration time
by determining the migration orders and transmission rates
of VMs. Since solving this problem directly is difficult, we
convert the problem to another problem, i.e., maximizing
the net transmission rate in the network. We formulate
this problem as a mixed integer programming problem,
which is NP-hard. Then we propose a fully polynomial
time approximation (FPTA) algorithm to solve the problem.
Results show that the proposed algorithm approaches to
the optimal solution of the primary programming problem
with less than 10% variation and much less computation
time. Meanwhile, it reduces the total migration time and the
service downtime by up to 40% and 20% compared with the
state-of-the-art algorithms, respectively.

In future work, we plan to extend our algorithm to
support the different priorities between migrations in the
scheduling process. It can be realised by replacing the
total net transmission rate in the objective function by the
weighted summation of the net transmission rates of dif-
ferent VMs. In addition, it is also an interesting problem to
extend our algorithm from migrating VMs to other network
elements, such as containers, virtual routers, etc., which
we leave as a future work. Besides, we assume that the
SDN controller dynamically adjusts the transmission rates
of VMs every 5 seconds according to the mean amount
of background traffic of the past 5 seconds in this work.
We plan to study more about dynamic performance of
our proposed algorithm to determine a more appropriate
dynamic model in future work.

ACKNOWLEDGMENT

This work is supported by National Basic Research Program
of China (973 Program) (No. 2013CB329105), National
Nature Science Foundation of China (No. 61301080,
No. 61171065 and No. 61273214), National High
Technology Research and Development Program (No.
2013AA013501 and No. 2013AA013505), Chinese National
Major Scientific and Technological Specialized Project
(No. 2013ZX03002001), Chinas Next Generation Internet
(No. CNGI-12-03-007). Part of this work was presented
as a paper at the 34th IEEE International Conference on
Computer Communications (INFOCOM 2015) [41].

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, “Xen and the art of virtual-
ization”, ACM SIGOPS Operating Systems Review, vol. 37, no. 5,
pp. 164-177, 2003.

[2] C. Clark, K. Fraser, and S. Hand, “Live migration of virtual
machines”, in Proc. 2nd NSDI, 2005, pp. 273–286.

[3] M. Tsugawa, R. Figueiredo, J. Fortes, “On the use of virtualization
technologies to support uninterrupted IT services: A case study
with lessons learned from the Great East Japan Earthquake”, in
Proc. of IEEE ICC, 2012, pp. 6324–6328

[4] A. Fischer, A. Fessi, G. Carle, “Wide-area virtual machine mi-
gration as resilience mechanism”, in Proc. of IEEE SRDSW, 2011,
pp. 72–77.

[5] M. F. Zhani, Q. Zhang, G. Simona, “VDC Planner: Dynamic
migration-aware virtual data center embedding for clouds”, in
Proc. of IFIP/IEEE IM, 2013, pp. 18-25.

[6] T. Wood, P. J. Shenoy, A. Venkataramani, “Black-box and Gray-box
Strategies for Virtual Machine Migration”, in NSDI, 2007, pp. 17.

[7] K. Ye, X. Jiang, D. Huang, “Live migration of multiple virtual
machines with resource reservation in cloud computing environ-
ments” in Proc. of IEEE CLOUD, 2011, pp. 267-274.

[8] C. Mastroianni, M. Meo, G. Papuzzo, “Self-economy in cloud data
centers: Statistical assignment and migration of virtual machines”,
Euro-Par 2011 Parallel Processing. Springer Berlin Heidelberg, 2011,
pp. 407-418.

[9] M. F. Bari, M. F. Zhani, Q. Zhang Q, “CQNCR: Optimal VM
Migration Planning in Cloud Data Centers”, in IFIP Networking
Conference, 2014, pp. 1-9.

[10] B. Boughzala, R. Ben Ali, M. Lemay, “OpenFlow supporting inter-
domain virtual machine migration”, in Proc. of IEEE/IFIP WOCN,
2011, pp. 1-7.

[11] S. Ghorbani, M. Caesar, “Walk the line: consistent network updates
with bandwidth guarantees”, in Proc. of HotSDN, 2012, pp. 67-72.

[12] S. Lo, M. Ammar, E. Zegura, “Design and analysis of schedules for
virtual network migration”, in IFIP Networking Conference, 2013,
pp. 1-9.

[13] S. Agarwal, M. Kodialam, T. V. Lakshman, “Traffic engineering
in software defined networks”, in Proc. of IEEE INFOCOM, 2013,
pp. 2211-2219.

[14] A. Sridharan, R. Guerin, C. Diot, “Achieving near-optimal traf-
fic engineering solutions for current OSPF/IS-IS networks”,
IEEE/ACM Transactions on Networking (TON), vol. 13, no. 2, pp. 234-
247, 2005.

[15] A. Tootoonchian, M. Ghobadi, Y. Ganjali, “OpenTM: traffic matrix
estimator for OpenFlow networks”, in International Conference on
Passive and Active Network Measurement, Springer Berlin Heidel-
berg, pp. 201-210, 2010.

[16] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB”, in IEEE CACSD, 2004, pp. 284-289.

[17] A. Makhorin, “GLPK (GNU linear programming kit)”, 2008.
[18] N. Giorgetti, N. Klitgord, “Glpkmex: A matlab mex interface for

the glpk library”, 2009.
[19] L. K. Fleischer, “Approximating fractional multicommodity flow

independent of the number of commodities”, SIAM Journal on
Discrete Mathematics, vol. 13, no. 4, pp. 505-520, 2000.

[20] D. G. Luenberger, Y. Ye, “Linear and nonlinear programming”,
Springer, 2008.

15

[21] S. Jain, A. Kumar, S. Mandal, “B4: Experience with a globally-
deployed software defined WAN”, in Proc. of ACM SIGCOMM,
2013, pp. 3-14.

[22] T. Benson, A. Akella, D. A. Maltz, “Network traffic characteristics
of data centers in the wild”, in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, 2010, pp. 267-280.

[23] K. K. Ramakrishnan, P. Shenoy, J. Van der Merwe, “Live data
center migration across WANs: a robust cooperative context aware
approach”,in Proceedings of the 2007 SIGCOMM workshop on Inter-
net network management”, 2007, pp. 262-267.

[24] W. Huang, Q. Gao, J. Liu, “High performance virtual machine
migration with RDMA over modern interconnects”,in 2007 IEEE
International Conference on Cluster Computing, 2007, pp.11-20.

[25] H. Jin, L. Deng, S. Wu, “Live virtual machine migration with adap-
tive, memory compression”,in 2009 IEEE International Conference
on Cluster Computing and Workshops, 2009, pp. 1-10.

[26] M. R. Hines, U. Deshpande, K. Gopalan, “Post-copy live migra-
tion of virtual machines”, ACM SIGOPS operating systems review,
vol. 43, no. 3, pp. 14-26, 2009.

[27] P. Svärd, B. Hudzia, S. Walsh, J. Tordsson, E. Elmroth, “Princi-
ples and performance characteristics of algorithms for live VM
migration”, ACM SIGOPS Operating Systems Review, vol. 49, no 1,
pp. 142–155, 2015.

[28] T. Wood, K. K. Ramakrishnan, P. Shenoy, “CloudNet: dynamic
pooling of cloud resources by live WAN migration of virtual
machines”,in ACM SIGPLAN Notices, 2011, pp. 121-132.

[29] V. Mann, A. Vishnoi, K. Kannan, “CrossRoads: Seamless VM mo-
bility across data centers through software defined networking”,
in Proc. of IEEE NOMS, 2012, pp. 88-96.

[30] V. Mann, A. Vishnoi, A. Iyer, and P. Bhattacharya, “VMPatrol:
Dynamic and Automated QoS for Virtual Machine Migrations”,
in Proc. of 8th CNSM, 2012, pp. 174-178.

[31] E. Keller, S. Ghorbani, M. Caesar, “Live migration of an entire
network (and its hosts)”, in Proc. of HotNets, 2012, pp. 109-114.

[32] S. K. Bose, S. Brock, R. Skeoch, “Optimizing live migration of
virtual machines across wide area networks using integrated
replication and scheduling,” in Proc. of IEEE SysCon, 2011, pp. 97–
102.

[33] B. Cully, G. Lefebvre, D. Meyer, “Remus: High availability via
asynchronous virtual machine replication,” in Proc. of NSDI, 2008,
pp. 161–174.

[34] S. Al-Haj, E. Al-Shaer, “A formal approach for virtual machine
migration planning”, in CNSM, 2013, pp. 51-58.

[35] X. Li, Q. He, J. Chen, K. Ye, and T. Yin, “Informed live migration
strategies of virtual machines for cluster load balancing”, in Proc.
of NPC 2011, (Berlin, Heidelberg), 2011, pp. 111-122, Springer-
Verlag.

[36] F. Hermenier, X. Lorca, J. M. Menaud, “Entropy: a consolida-
tion manager for clusters”, in Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, 2009, pp. 41-50.

[37] F. Hermenier, A. Lèbre, J. M. Menaud, “Cluster-wide context
switch of virtualized jobs”, in proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing, 2010,
pp. 658-666.

[38] M. Al-Fares, A. Loukissas, A. Vahdat, “A scalable, commodity
data center network architecture”, in ACM SIGCOMM Computer
Communication Review, 2008, pp. 63-74.

[39] R. Nasim, A. J. Kassler, “Network-centric Performance Improve-
ment for Live VM Migration,” in Proc. of IEEE CLOUD, 2015,
pp. 106–113.

[40] F. Teka, C. H. Lung, S. Ajila, “Seamless Live Virtual Machine Mi-
gration with Cloudlets and Multipath TCP,” in Proc. of COMPSAC,
2015, vol. 2, pp. 607–616.

[41] H. Wang, Y. Li, Y. Zhang, D. Jin, “Virtual machine migration plan-
ning in software-defined networks”, in Proc. of IEEE INFOCOM,
2015, pp. 487-495.

