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Abstract—As power consumption of the Internet has been growing quickly in recent years, saving energy has become an important
problem of networking research, for which the most promising solution is to find the minimum-power network subsets and shut down
other unnecessary network devices and links to satisfy changing traffic loads. However, in traditional networks, it is difficult to implement
a coordinated strategy among the network devices due to their distributed network control. On the other hand, the new networking
paradigm – software defined network (SDN) provides us an efficient way of having a centralized controller with a global network view
to control the power states. As an emerging technology, SDNs usually coexist with traditional networks at present. Therefore, we need
to investigate how to save energy in partially deployed SDNs. In this paper, we formulate the optimization problem of finding minimum-
power network subsets in partially deployed SDNs. After proving the problem is NP-hard, we propose a heuristic solution to approach
its exact solution. Through extensive simulations, we demonstrate that our heuristic algorithm has a good performance; that is, on
average we can save about 50% of total power consumption in the full SDN, having a distance less than 5% of the exact solution’s
power consumption. Moreover, it also achieves good performance in the partially deployed SDN, on average saving about 40% of the
total power consumption when there are about 60% SDN nodes in the network. Meanwhile, it runs significantly faster than a general
linear solver of this problem, by reducing the computation time of the network containing hundreds of nodes by 100x at least.

Index Terms—Saving energy, partially deployed SDN, minimum-power network, mixed integer programming.
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1 INTRODUCTION

THERE have been increasing concerns about the en-
ergy crisis in recent years, considering that most of

our major energy resources are non-renewable and are
expected to be depleted in the not-too-distant future.
An early study showed that depletion times for oil,
coal, and gas reserves are approximately 35, 107, and 37
years old respectively [2]. Meanwhile, since energy we
use today mainly comes from the burning of fossil fuel,
large power consumption means releasing large amounts
of Green House Gases (GHG), such as carbon diox-
ide, which leads to global warming and brings various
negative effects. On the other hand, power consumed
and GHG producted by the Internet have been growing
fast in recent years. In 2007, the total footprint of the
Internet was 0.83 Gton CO2, about 2% of global GHG
emissions, with a compound annual growth rate of 6%
[1]. Meanwhile, energy efficiency of the Internet is very
low; that is, energy consumption is high compared to the
amount of carried traffic in the network. For example, if
transmitting data cross–country (New York to San Diego
is approximately 4480 km), the wireless link is between
2x to 3x times more efficient than that of the Internet [6].
The reason is that energy consumed by network devices
such as switches is not in proportion to the utilization
of its links. Generally speaking, turning on a switch
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consumes most of its power, and getting the utilization
of a link from idle to full only consumes an extra 8%
of power [5], [8]. Moreover, the link utilization of the
Internet is not very high most of the time. For example,
the average link utilization in backbone networks of
large Internet service providers is about 30–40% [12].
In a network whose link utilization is only 40%, about
95% of the power will be consumed compared with the
fully–loaded power consumption. That means we use a
lot of energy to transmit only a small portion of traffic,
and a huge quantity of energy is wasted. Thus, we must
find a way to change the network’s energy consumption,
in order to make energy usage grow in proportion
with traffic loads. The promising solution is to find
the minimum-power network subsets and shut down
other unnecessary switches and links to satisfy changing
traffic loads, and thus minimize network energy cost as
well. In [13], [14], the possibility of turning off switches
and links under connectivity and Quality of Service
(QoS) constraints is shown, and heuristic algorithms are
presented. In [7], a modification of the OSPF protocol to
switch off links in an IP network is proposed, showing
us the potential of energy-aware routing algorithms in
backbone networks. However, compared to previous
works, our work focuses on saving energy in partially
deployed SDNs.

In this problem, the routing decisions of a network
device are determined by the power states of other
devices. Paths of flows can only be composed of links
belonging to the active network subsets. In turn, a
device’s routing decisions have an influence on other
devices’ power states. Network devices that a deter-
mined path goes through cannot be powered off. Because
of the distributed control in traditional networks, it is
difficult to coordinate between devices. We need cen-
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tralized control to solve the problem. Software defined
network (SDN) is a new network architecture, which
has a logically centralized controller responsible for all
the control decisions in the network. Having a global
network view, the controller is able to determine the
power states and routing decisions in the network. By
using some protocols of power-state control, it can turn
off elements – links and switches – that are unnecessary
in the network to save energy. Thus, SDN provides us a
better way to save energy.

Despite these advantages SDN has, rapid adoption of
this new architecture remains difficult. One important
reason is that the budget is limited and only a part of the
network can be upgraded at a time especially for large-
scale networks. In addition, as an emerging technique,
SDN is not mature enough to replace the traditional
network at once. It is necessary to incrementally de-
ploy SDN to evaluate its practicality. Therefore, SDNs
are usually incrementally introduced into an existing
network, and the transition is likely to span several
years. During the transition, SDNs should coexist with
traditional networks, and network operators have to
manage the hybrid networks. In addition, in the hybrid
network, we can still implement centralized control of
these SDN-enabled devices to save energy, though the
effect in hybrid SDN is not as good as in full SDN.
Besides, in the partially deployed SDN, we must operate
the power states of devices to minimize the energy cost
of the whole network with only a part of the network
under control. It is a new problem that has not been
solved. Thus, partially deployed SDNs will be our main
scenarios to implement algorithms of saving energy,
rather than full SDNs. Our key question becomes how
to save energy in partially deployed SDNs.

However, there are several unique problems and chal-
lenges of saving energy in partially deployed SDNs. First
of all, different with saving energy in fully deployed
SDNs, not all elements in the network can be controlled
by the controller in the partially deployed SDN. On the
other hand, different with traditional networks, synchro-
nization and cooperation among SDN controllers should
be considered [28]. Moreover, the solution of saving
energy must apply to the transitional networks with all
different percentages of SDN and traditional switches.
It also need to be able to achieve efficient performance
for saving energy and be time-efficient enough to be
practical. Problems of bandwidth guarantee and network
update [18], [29] also need to be considered to provide
services with good quality to customers. Thus, it is not
an easy problem to be investigated.

In this paper, we investigate the problem of how to
reduce unnecessary energy consumption in partially de-
ployed SDNs. More specifically, we consider the problem
of finding minimum-power network subsets in partially
deployed SDNs. The objective of this paper is to develop
a scheme that is able to dynamically adjust the active
network subsets in the partially deployed SDN to satisfy
changing traffic loads, as well as to reduce unnecessary

Fig. 1. Partially deployed SDN for example
energy consumption. Our novel contribution is three-
fold, and is summarized as follows:
• We are the first to address the problem of saving en-

ergy in partially deployed SDNs. Although saving
energy in traditional networks and SDNs is an old
problem, saving energy in partially deployed SDNs
is a new problem that is not presented in previous
works.

• We formulate the problem of finding minimum-
power network subsets in partially deployed SDNs,
and further theoretically prove that it is NP-hard.

• We propose an efficient heuristic algorithm to solve
the formulated problem. By extensive simulation-
s, we demonstrate that our heuristic algorithm
achieves good performance of saving energy.

The rest of the paper is organized as follows. In
Section 2, we formulate the problem of shutting down
unnecessary network elements in partially deployed S-
DNs, and prove it is NP-hard. Based on the formula-
tion, we design a heuristic algorithm in Section 3. In
Section 4, we evaluate the performance of our solution
through extensive simulations. We present related work
in Section 5, and draw our conclusion in Section 6.

2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

2.1 System Overview

We consider a network where SDN elements are only
partially deployed. Take the network shown in Fig. 1 as
an example. In this network, nodes 1, 10, 12 are SDN
switches, which are controlled by the SDN controller.
The SDN controller is responsible for computing the
routing tables for all SDN switches in the network,
using information it get from the network. It use a
standardized protocol – Openflow – to communicate
with the SDN switches. SDN switches’ forwarding is
implemented according to their obtained routing tables,
which are determined by the SDN controller. The re-
maining nodes beyond the control of the SDN controller
run some traditional routing protocols such as OSPF.

The SDN controller gathers network information to
have a global view of the network. SDN switches carry
out traffic measurement, and the result is sent to the
controller. Besides, non-SDN switches use old routing
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protocols like OSPF to exchange bandwidth information
on links in the network, and it is available for the
SDN controller as well. Using this information from
SDN switches and non-SDN switches, the controller can
update routing tables at SDN switches, keeping in tune
with changing traffic conditions. In addition, energy
costs of switches or links can be known ahead of time
by the types and configurations of switches. Thus, the
SDN controller is able to compute the power states for
SDN elements – SDN switches or links connected to
SDN switches – and ensure a correct routing as well as
good performance of energy saving. If the mechanism of
saving energy is implemented in the traditional network,
the same computation must be done by each device
individually, which is much more complex than the
computation of OSPF routing. Besides, we cannot ensure
a safe update process during switching between two sets
of power states of devices in the network, which may
lead to problems such as routing loop, network black
holes.

The controller is responsible for all the SDN elements’
power states, but those non-SDN elements’ power states
cannot be operated by the controller. Therefore, the basic
idea of our solution is to shut down as many SDN
elements as possible, in the condition that the alive
network subset can satisfy the traffic demand, so that
we can reduce unnecessary energy consumption.
2.2 System Model
In this section, we present a simple mathematical mod-
el of forwarding in the partially deployed SDNs. Our
model is a multi-commodity flow (MCF) formulation.
Besides, we use binary variables to denote the power
states of links and switches.

We use a directed graph to describe network’s topolo-
gy: assume the network is comprised of a set of nodes N
interconnected by a set of directed links A. Considering
that actual links have no direction, if we have edge
(i, j) ∈ A, we also have edge (j, i) ∈ A. Let NS ⊆ N
be the set of SDN nodes and AS ⊆ A denote the set
of links connected to SDN switches. For all (u, v) ∈ A,
(u, v) ∈ AS if and only if u ∈ NS or v ∈ NS . For each
link (i, j) ∈ A, c(i, j) denotes its bandwidth capacity and
a(u, v) denotes its power cost. For each switch u, b(u)
denotes the switch’s power cost. In addition, we collect
all paths consisting of links belonging to A in the set PA.

To describe traffic in the network, we regard flow
demand from a source to a sink as a commodity. There
are M commodities K1,K2,K3....KM in the network,
defined by Km = (im, jm, rm), where for commodity m,
im is the source, jm is the sink, and rm is the demand.
The flow of commodity m along edge (i, j) is fm(i, j). In
addition, we let fm(i, j) denote flow from i to j, while
we let fm(j, i) denote flow from j to i. If the traffic
between these two nodes is from node i to node j, we
let fm(i, j) > 0 while fm(j, i) = 0. In turn, if the traffic
between these two nodes is from node j to node i, we
let fm(j, i) > 0 while fm(i, j) = 0. By this way, we can
ensure that each fm(i, j) is always no less than 0.

TABLE 1
List of commonly used notations and variables.

Notation Description
N ,NS Set of all switches and SDN switches, respectively.
A,AS Set of all links and links connected to SDN switches,

respectively.
PA Set of all paths consisting of links belonging to A.
c(u, v) Capacity for link (u, v).
km Commodity m with its source im destination jm

and demand rm.
K Set of all commodities.
a(u, v) Power cost for link (u, v).
b(u) Power cost for switch u.
X(u, v) Binary decision variable indicating whether link

(u, v) is powered on.
Y (u) Binary decision variable indicating whether switch

u is powered on.
fm(i, j) The flow of commodity m along link (i, j).
Except for these variables of normal MCF problem, we

add binary variables for every link and switch. Binary
variable X(i, j) indicate whether link (i, j) is powered
on. That is,

X(i, j) =

{
1, if (i, j) is powered on,
0, otherwise.

Similarly, Y (i) indicates whether switch i is powered on.
Only SDN switches and links connected to SDN switches
have binary variables to indicate their power states. The
notations used by our formulation are shown in Table 1.
2.3 Problem Formulation
Because the power states of non-SDN elements cannot
be operated by the controller, the power consumption
of the SDN elements can represent the total power
consumption in the network. Thus, the objective function
can be represented as:

min
∑

(u,v)∈AS

a(u, v)X(u, v) +
∑
u∈NS

b(u)Y (u).

In all notations shown in the last section, only X(i, j),
Yi and fm(i, j) are variables that are the output of our
algorithm, and other notations are all known constants.
At the same time, these variables and constants should
satisfy a set of constraints according to some principles
as follows:

1) Positivity constraints: The traffic from node i to
node j is greater than zero; that is, fm(i, j) must be
positive:

fm(u, v) ≥ 0, ∀m, ∀(u, v) ∈ A. (1)
2) Capacity constraints: The total flow along each link

must not exceed its capacity. Besides, a link connected
to SDN switches has no traffic if we turn it off. Thus,
for all commodity m, fm(i, j) = 0 when X(i, j) = 0. The
constraints for SDN links can be represented as:

M∑
m=1

fm(u, v) ≤ X(u, v)C(u, v), ∀(u, v) ∈ AS . (2)

The capacity constraints for normal links remain un-
changed, expressed by

M∑
m=1

fm(u, v) ≤ C(u, v), ∀(u, v),∈ A/AS . (3)

3) Flow Conservation & Demand satisfaction:∑
{v|(u,v)∈A} fm(u, v) presents the traffic created at the

node v and
∑
{v|(v,u)∈A} fm(v, u) presents the traffic de-

stroyed at the node v. There are rm units of traffic created
in its source im and rm units of traffic destroyed in its
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destination jm, and commodities are neither created nor
destroyed at other nodes. Thus,

∑
{v|(u,v)∈A} fm(u, v) −∑

{v|(v,u)∈A} fm(v, u) should be zero at other nodes. The
constraints are:∑
{v|(u,v)∈A}

fm(u, v)−
∑

{v|(v,u)∈A}

fm(v, u) =


rm, if u = im,

−rm, if u = jm,

0, otherwise.
(4)

4) Correlate link and switch decision variable:
When a SDN switch u is powered off, all links con-

nected to this switch are also powered off, which can be
expressed as:

X(u, v) ≤ Y (u), ∀u ∈ NS ∀(u, v) ∈ A. (5)
Similarly, when all links connecting to a SDN switch

are off, the switch can be powered off. The linearized
constraint is:

Y (u) ≤
∑

{v|(u,v)∈A}

X(u, v), ∀u ∈ NS . (6)

These are all the constraints. Then, the mixed-integer
linear programming (MIP) problem can be represented
as: min

∑
(u,v)∈AS

a(u, v)X(u, v) +
∑
u∈NS

b(u)Y (u)

s.t. (1) ∼ (6).

(∗)

Our problem is to find a feasible solution satisfying all
these constraints, and minimizing the objective function
as well.

5) Extension of the programming problem:
However, the above-formulated programming prob-

lem does not always have a solution. For example, in the
peak time of traffic, the traffic demand usually cannot be
satisfied even when all devices in the network are active.
Take this factor into consideration, we loose constraint
(4) to be:∑
{v|(u,v)∈A}

fm(u, v)−
∑

{v|(v,u)∈A}

fm(v, u)=


(1−λm)rm, if u = im,

−(1−λm)rm, if u = jm,

0, otherwise,
(7)

in which λm represents the loss rate of traffic m, and
we have 0 ≤ λm ≤ 1. Let the maximum of the loss
rate to be the metrics of reduction in Quality of Service
(Qos). It can be written in the form of linear constraints
as follows: {

λm ≤ λ, ∀m,
CQ = λ.

(8)

By putting CQ in the objective function, it will auto-
matically become the maximum of the loss rate when
achieving the minimum of the objective function.

On the other hand, switching devices between dif-
ferent power states also leads to energy consumption
and causes problems such as synchronization between
switches. Thus, we should control the number of devices
of which the power states are switched. Let CS denote
the cost of switching devices between different power
states. We have the following equation:
CS= τ1

∑
(u,v)∈AS

|X(u, v)−XC(u, v)|+ τ2
∑
u∈NS

|Y (u)−Y C(u)|, (9)

in which XC(u, v) and Y C(u) are binary variables in-
dicating the current power states of devices, and τ1,
τ2 represent the cost of switching the power state of a
switch or a link, respectively.

Finally, let CE denote the power consumption, the
objective function of (∗), which can be represented as:

CE =
∑

(u,v)∈AS

a(u, v)X(u, v) +
∑
u∈NS

b(u)Y (u). (10)

Then, the extension of (∗), which takes both QoS and
cost of switching power states of devices into account,
can be represented as:

min αCE + βCQ + γCS
s.t. (1) ∼ (3), (5) ∼ (10),

(∗)
in which α, β and γ are weights of the three components
to adjust their influence. Considering saving energy
should not influence QoS, we have β � max{α, γ}.

Of course, solutions of the optimization problem are
closest to optimal. However, the mixed integer program-
ming (MIP) problem is NP-hard, of which the proof can
be found in Appendix A. Thus, the time to find the op-
timal solution is intolerable, especially on medium and
large sized problem. For example, finding the optimal
solution of the optimization of a network with 30 nodes
and a medium traffic load by GLPK on a Quad-Core
3.2GHz machine takes at least an hour. Therefore, we
need a heuristic algorithm with a low time complexity.

3 HEURISTIC ALGORITHM
If we want to connect all nodes and minimize the num-
ber of active links, using the topology of tree structure is
an obvious solution. However, not every pair of nodes in
the network has traffic to exchange. Thus, we only need
to create spanning trees of some subsets of nodes. These
subsets are called SCSs which will be introduced in
Section 3.1. Besides, there are a number of paths between
each pair of nodes. To reduce energy cost, we select
paths with the smallest power consumption between
nodes as edges of spanning trees. Thus, an intuitive
consideration of our proposed heuristic algorithm is
to use the topology of tree structure to connect nodes
that have traffic to exchange, and select paths with the
smallest power consumption between nodes as edges of
spanning trees. To select edges with the smallest power
consumption, weights are used to represent the energy
consumption of network elements, and the method of
modifying weights is used. More details about the mod-
ified weights will be introduced in Section 3.2. Thus, we
set a path’s weight according to the power states and
energy consumption of the path’s constituent elements.
We select paths of minimum weight between nodes to
form a group of spanning trees. If this group of spanning
trees cannot satisfy the traffic loads, we will remove
the overloaded links from the network topology, and
generate other groups of spanning trees according to
the current network topology. Finally, several groups
of spanning trees will be used to satisfy the traffic
loads, and they compose the target network subset that
our algorithm outputs. Now, we describe the proposed
algorithm in more details.

3.1 Smallest Closed Set
In preparation for description in detail, we define some
operators above the set:
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(a) SCSs of the given traffic de-
mand

(b) Shortest path between n-
odes 1,3,6 and their weight

(c) First group of spanning trees (d) Second group of spanning
trees

Fig. 2. SCSs and spanning trees for example.
Definition 0 (G(A), Delete and Add) If A is an

arbitrary set and b is an arbitrary element. Assume A
can be represented as {ai : i ∈ I}, where I is an index
set. We define G(A) = {{ai} : i ∈ I}, Delete(b,A) = {a :
a 6= b a ∈ A} and Add(b,A) = {b} ∪ A.

For example, assume A is a set of natural numbers
such as {1, 2, 3}. Let b1 = 2 and b2 = 4. Then we
have G(A) = {{1}, {2}, {3}}, Delete(b1,A) = {1, 3}, and
Add(b2,A) = {1, 2, 3, 4}.

If we have a traffic km = (im, jm, rm) of our demand,
we cannot turn off the switch im and jm. Besides, we
must ensure there is at least one complete active path
between im and jm. For simplicity, we define a relation
between nodes that have traffic to communicate.

Definition 1 (↔) A node i is said to communicate with
node j (written i ↔ j), if ∃km such that km = (i, j, r) or
km = (j, i, r).

Then, we collect nodes that should be connected in a
set named smallest closed set (hereafter referred to as
SCS).

Definition 2 (closed set) A node set A is called a
closed set, if ∀i ∈ A ∀j ∈ N i↔ j iff j ∈ A.

Definition 3 (SCS) A closed set A is called a smallest
closed set, if @B ⊂ A B 6= A such that B is a closed set.

Algorithm 1: Computing SCSs for traffic K.
Input: set of all commodities of traffic K
Initialize:
SK ← ∅

for each km ∈ K do
if im ∈ SKi and jm ∈ SKj i 6= j then

Delete(SKi ,SK)
Delete(SKj ,SK)
Add(SKi ∪ SKj ,SK)

else if im ∈ SKi then
Add(jm, SKi )

else if jm ∈ SKi then
Add(im, SKi )

else
Add({im, jm},SK)

Output: SK

A closed set is a set with the property that all nodes
belonging to this set only have traffic to exchange with
nodes also contained in this set. Besides, in this paper, we
only consider SCS – the smallest closed sets that do not
have any closed proper subset. We call the set of SCSs
we have SK = {SK1 ...SKN} under the taffic K. Then, more
detail about computing SCSs under a traffic K is shown
in Algorithm 1. For simplicity, we refer this algorithm as
SK = SCS(K) hereafter. After having SCSs, to form an
energy-saving network subset, we only need to create a
spanning tree for each SCS.

To illustrate the definition of SCS, consider an example
network with topology shown in Fig. 1 and having the
following traffic demand:

(kT1 , k
T
2 , k

T
3 , k

T
4 , k

T
5 ) =

 1 3 3 8 8
6 4 1 10 11
1 1 1 1 1

 .

Then as shown in Fig. 2(a), we have two SCSs, the first
SCS contains nodes 1, 3, 6, and the second SCS contains
nodes 8, 10, 11.
3.2 Spanning Tree of SCSs
We now discuss how to create an energy-saving span-
ning tree of a SCS. We give each link (u, v) a weight

Algorithm 2: Computing Spanning Trees for {SKi }.
Input: the set of SCSs SK = {SKi }, the set of all
links A, binary decision variables for links’ and
nodes’ power states X , Y .
Initialize:
T ← ∅

for each SKi ∈ SK do
G = G(SKi )
while card(G) 6= 1 do

(A0, B0) =argminA∈G B∈G A6=BdisA(A,B)
Delete(A0,G)
Delete(B0,G)
Add(A0 ∪B0,G)
p =pathA(A0, B0)
for each (u, v) ∈ p do

Add((u, v), T )
X(u, v) = Y (u) = Y (v) = 1

Output: T
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a′(u, v) and each node a weight b′(u). The weights are
related to their energy cost. For elements having been
determined to be used, using their residual bandwidth
only consumes an extra 8% of power at most [5], [8],
which can be ignored. Thus, we set their weights to
be zero. Non-SDN elements’ power states cannot be
operated by the controller. Thus, they must be powered
on, and their weights are also set to be zero. Then the
sum of weights describes a path’s additional energy cost
when it will be used. However, in order to have a correct
routing with no routing loops when all switches and
links are used, we cannot let weights be exactly zero.
Thus, we finally define{

a′(u, v) = a(u, v)(1−X(u, v)) + c · a′′(u, v),
b′(u) = b(u)(1− Y (u)),

(11)

where a′′(u, v) is related to the link’s throughput, avail-
ability or reliability just as OSPF. Besides, c is a small
constant, so that if X(u, v) = 0, c·a′′(u, v) can be ignored.
Then the sum of weights can approximately present the
path’s additional energy cost when it will be used. On
the other hand, when all switches and links are used,
these weights have only the part of c · a′′(u, v) left,
and our routing becomes an approximate OSPF routing.
Thus, this kind of weight can meet the demand in all
cases. In addition, if considering the cost of switching
power states of devices, the weight can be extended to:{

aE(u, v) = a′(u, v) + τ1(1−XC(u, v)),

bE(u) = b′(u) + τ2(1− Y C(u)),
(12)

where XC(u, v) and Y C(u) are binary variables indicat-
ing the current power states of devices. The switches
and links which are currently powered on have relatively
smaller weight than those currently powered off. Thus,
they will be used in a relatively higher probability in
the next period, and they can stay active. In reverse,
those currently powered off will be used in a relatively
lower probability in the next period, and they can stay
inactive. By using this kind of weight, the number of
devices of which the power states are switched is able
to be controlled. However, in order to achieve good
performance, a lot of prior knowledge and repeated
attempts are needed to obtain the appropriate values of
τ1 and τ2. Thus, we only use a′(u, v) and b′(u) as the
weight in the following analysis and discussion. Then,
in order to have a more exact description, we have the
following definitions:

Definition 4 (length of path) ∀ path p ∈ PA, we define
lengthA(p) =

∑
(u,v)∈p a

′(u, v) +
∑
u∈p b

′(u).
Definition 5 (distance between nodes) ∀i, j ∈ N , we

define disA(i, j) = a if and only if ∀ path p ∈ PA from i
to j, lengthA(p) ≥ a and ∃ path p0 ∈ PA from i to j such
that lengthA(p0) = a. We define that p0 =pathA(i, j), p0
is called the shortest path between i and j under the
topology A.

Definition 6 (distance between node sets) ∀A,B ⊂
N , under the topology T , we define disT (A,B) = a if
and only if ∀i ∈ A ∀j ∈ B ∀ path p ∈ PT form i to
j, lengthT (p) ≥ a and ∃ path p0 ∈ PT from i0 ∈ A

to j0 ∈ B such that lengthT (p0) = a. And we define
p0 =pathT (A,B) as the shortest path between A and B
under the topology T .

A path’s length is the sum of weights of switches and
links that this path goes through. Distance between two
nodes is the minimum length of all paths between these
two nodes. We use a heuristic algorithm to create the
spanning tree. For all pairs of nodes in SKi , we find
the pair i, j ∈ SKi such that disA(i, j) is minimum. Let
the pair’s shortest path be an edge of SKi ’s spanning
tree. Besides, we treat nodes that have been connected
by selected edge as one node (node set). Thus, if we
want a shortest path from another node k to this node
set, we select the shortest path between node set {k}
and this set as Definition 6. It is similar when looking
for the shortest path between two node sets. When we
search for next edge, we should not let selected edges
form a loop. It is clear that we repeat this process until
all nodes of SKi are connected together, then we have a
spanning tree of SKi . By this process, all pairs of nodes
in the same SCS are guaranteed to be connected with
each other in the network subset consisting of all the
spanning trees of SKi ∈ SK, while nodes in different
SCSs or not in any SCS might be disconnected. Thus, the
spanning trees obtained from this heuristic algorithm are
different from minimum spanning tree (MST) obtained
from Kruskal algorithm [26]. In addition, the concept of
spanning tree of SCS is similar to the concept of SCT
in [22]. However, they use SCT to solve the problem of
planning and operating the hybrid network, while we
use the spanning tree of the SCS to converge traffic in
order to power off other unused devices. The detailed
process of creating a spanning tree of SK can be shown
in the Algorithm 2. Similarly, we refer to this algorithm
here as T = ST (SK,A, X, Y ). In addition, this algorithm
needs binary variables to calculate links’ weight, but it
does not modify them; that is, modifying X(u, v) and
Y (u) in this algorithm does not influence X(u, v) and
Y (u) out of this algorithm.

In the previous example of Section 3.1, for the first
SCS, we have nodes 1, 3, 6. For simplicity, we define
weights of all links as 1, and weights of all nodes as
3. The shortest paths between each pair of nodes are
shown in Fig. 2(b). The shortest path between node 1
and node 3 is represented by the short-dashed line, and
it has a length of 11. The shortest path between node 1
and node 6 is represented by the dash dot line and has
a length of 15. Between node 3 and node 6, the shortest
path is (3, 6), represented by the long-dashed line, and it
has a length of 7. Thus, we will first select link (3, 6) as
an edge of our spanning tree. Repeat this step, we will
have a spanning tree with links (1, 2), (2, 3), (3, 6), which
is shown in Fig. 2(c).
3.3 More Groups of Spanning Tree
When traffic loads in the network are low enough that
only one group of spanning trees can satisfy the traffic
demand, our algorithm can achieve excellent perfor-
mance, because the tree structure uses the fewest edges,
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and edges of our spanning are selected as paths of
minimum weight. However, an obvious problem is what
to do when only one group of spanning trees cannot
satisfy traffic demand.

We allocate traffic with shorter path in the spanning
trees with a higher priority. When the load of some
links exceed its capacity, we remove this link from the
network topology. Then we use left traffic’s closed sets
and current network topology to create another group
of spanning trees. We repeat this process until all traf-
fic in the network has been allocated. Considering the
design of our links’ weights, unused links’ weights are
obviously larger than weights of used links. Therefore,
when we select paths, unused links are more difficult to
be selected, and then the spanning trees we create have
smaller weights and more used links. Summing up the
above discussion, our solution consists of the following
steps. Besides, more detail is given in Algorithm 3.

1) Create spanning trees according to traffic demand
and current network topology, then go to step 2.

2) Allocate traffic in the spanning trees. If some link’s
loads exceed its capacity, go to step 3, or if all traffic
is allocated, we stop.

3) Remove the overloaded links from the network
topology, and use left traffic and new network

Algorithm 3: Heuristic algorithm for energy saving.
Input: set of nodes N ,set of links A, link capacity
c(u, v) for all link (u, v) ∈ A.
Initialize:

X(u, v)← 0 ∀(u, v) ∈ A
Y (u)← 0 ∀u ∈ N

while K 6= ∅ do
SK = SCS(K)
T = ST (SK,A, X, Y ).
while K 6= ∅ do

m0 =argminmdisT (im, jm)
p =pathT (im0 , jm0)
cmin =min(u,v)∈pc(u, v)
(umin, vmin) =argmin(u,v)∈pc(u, v)
if cmin > rm0

then
for each (u, v) ∈ p do

c(u, v) = c(u, v)− rm0

fm0
(u, v) = fm0

(u, v) + rm0

X(u, v) = Y (u) = Y (v) = 1

Delete(km0
,K)

else
for each (u, v) ∈ p do

c(u, v) = c(u, v)− cmin
fm0

(u, v) = fm0
(u, v) + cmin

X(u, v) = Y (u) = Y (v) = 1

Delete((umin, vmin),A)
rm0

= rm0
− cmin

break

Output: {X(u, v)}, {Y (u)} and {fm(u, v)}

topology to repeat step 1.
Still use the example of Section 3.1 and Section 3.2. As-

sume all links’ capacity is 1. We now have the first group
of spanning trees composed of links (1, 2), (2, 3), (3, 6)
and (8, 11), (10, 11), which is shown in Fig. 2(c). Be-
cause paths of flows K2(3, 6, 1),K3(3, 1, 1),K4(8, 10, 1)
are shorter than those of K1(1, 6, 1),K5(8, 11, 1) in the
network, they are allocated in higher priority. How-
ever, when it comes to flows K1 and K5, links
(1, 2), (2, 3), (3, 6), (8, 11) are all overloaded. Thus, we
remove links (1, 2), (2, 3), (3, 6), (8, 11) from the network
topology, and use the left traffic – K1,K5 to create the
second groups of spanning trees, which are composed
of links (1, 4), (4, 7), (7, 6) and (8, 9), (9, 10) as shown in
Fig. 2(d). Then all traffic demand is satisfied by these two
groups of spanning trees. Only 10 switches and 10 links
are used, and power consumption of the other 5 switches
and 18 links is saved. Besides, in actual networks, the
volume of a flow is not so big compared with the links’
capacity as the example. Thus, the performance of this
algorithm will be much better.

With the growth of the number of SDN elements
deployed in the network, the ability of the controller
to manage traffic and power consumption becomes
stronger. When all elements are SDNs’, our proposed
solution is still feasible. In the fully deployed SND
network, we only need to set all elements’ weights as
the function of their energy cost at the beginning, then
the heuristic algorithm will work properly.
4 PERFORMANCE EVALUATION
4.1 Simulation System Set Up
To evaluate the performance of the heuristic algorithm in
various cases, we run simulations of networks from tens
of nodes to hundreds of nodes. Besides, simulations of
networks with low traffic loads and high traffic loads
are run, respectively. Then, we carry out a group of
experiments in typical data center network to simulate
the dynamic performance with varying time and traffic
load of the heuristic algorithm. After that, a group of
experiments are implemented by using the packet-level
traces provided in [3] to evaluate the performance of
the heuristic algorithm in realistic scenarios. Packet delay
and loss are also measured by conducting experiments
with the true packet traces using the packet-based emu-
lator for SDN, mininet [21].

As for some other solutions to be compared with, the
exact solution of the optimization problem is a good
choice. Thus, we implement the MIP problem using
YALMIP C a language for formulating generic optimiza-
tion problems [15], and utilize the GLPK to solve the for-
mulation [16]. However, when the network size is large,
its time cost cannot be tolerable. At the same time, per-
formance of the heuristic solution in large networks also
need to be discussed. Thus, simulations of a small size
network are run to compare performance of the exact
solution and the heuristic solution. In large networks, we
select three other algorithms to be compared with. The
first algorithm (referred to as simple dijkstra algorithm)
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Fig. 3. Power saving percentages (PSP) vs different parameters under the topology shown in Fig. 1
is selected to show the potential energy that can be saved
by using the current routing algorithm. Specifically, it is
a normal shortest path algorithm, but differently, after
we finish allocation of traffic, we will close switches and
links which are still idle. The second algorithm (referred
to as modified dijkstra algorithm) is selected to show
the profit of using tree structure by comparing with the
heuristic algorithm. On the basis of the first algorithm,
the method of modifying weight is used in the second
algorithm, i.e., the weights introduced in Section 3. By
using them, this algorithm can select paths with less en-
ergy consumption, having a correct routing at same time.
However, the minimum-power network subsets found
by it do not have a tree structure, which is different from
the heuristic algorithm. The third compared algorithm
(referred to as simple heuristic algorithm) is selected to
show the effect of using modified weight by comparing
with the heuristic algorithm. Specifically, it is almost the
same as the heuristic algorithm, expect that it does not
use the modified weight. In addition, to show robustness
of our proposed algorithm in fully deployed SDNs, it
is also compared with an existing algorithm for saving
energy in fully deployed SDNs in [5]. This algorithm
(referred to as greedy algorithm) chooses the leftmost
possible path for each flow. This is, within a layer of
some structured topology such as fat tree, paths with
sufficient capacity are chosen in a deterministic left-to-
right order.

We run five groups of experiments to check the ef-
fectiveness of our algorithm in the following five cases:
(1) The SDN of the 15 node topology shown in Fig. 1,
with varying traffic load, (2) The partially deployed
SDN of the same topology, with varying number of
SDN nodes, (3) Network of large size, whose topologies
are generated randomly, with varying network size, (4)
Typical data center network with a Fat-Tree topology
(shown in Fig 6), (5) Real data center network of a
university in Mid-United States (EDU1 provided in [3]).
Experiments in the first four cases are simulations of the
energy consumption with varying parameters. However,
in the 5th case, we implement the experiment by creating
a SDN network and using true packet traces of a data
center network. Performance in terms of packet loss and
delay is also evaluated.

In addition, we define Ptotal to indicate the power
consumption without any algorithm to save energy, and
Pactual to indicate actual power consumption with a

power saving algorithm. Let Psaved = Ptotal − Pactual
denote the energy saved by the algorithm. Then our
primary metric, which is referred to as power saving
percentage, denoted by PSP , can be computed as,

PSP =
Psaved
Ptotal

× 100 = (1− Pactual
Ptotal

)× 100.

This percentage gives an accurate idea of the power
saved by turning off switches and links. The higher its
value is, the better saving effect our solution has.

4.2 Results and Analysis
4.2.1 Performance Changes with Traffic Load
We run two groups of simulations to show the relation
between the performance and traffic load. The topology
of the network is shown in Fig. 1. In this group of
simulations, traffic load is adjusted by changing the
number of flows, while the volume of flows is set to
be following a uniform distribution from 0 to 50% of
the links’ capacity. The result is shown in Fig. 3(a) and
Fig. 3(b).

As result shown in Fig. 3(a), we run the simulation
of a full-SDN network with exact solution and heuristic
solution. The energy saving performance metrics are
evaluated, in terms of PSP , as a function of traffic load.
Here, we adjust traffic load by changing the number of
flows in the network. With the increase of the traffic load
in the network, we observe that our algorithm’s PSP
decreases: we save about 85 percent of energy with a low
load, and it becomes only about 35 percent when traffic
load is high. This is because larger traffic loads need to
be satisfied with more network elements. Thus, elements
that can be closed become less. Meanwhile, our heuristic
solution has a performance very close to the exact solu-
tion: for the exact solution, the heuristic solution results
in only a 5 percent drop at most. With a low traffic load,
the difference cannot even be distinguished.

In the experiment shown in Fig. 3(b), we simulate
the performance of the heuristic solution in the network
with different numbers of SDN nodes. The curve with
more SDN nodes changes more violently, and the energy
saving effect is better as well. This is obvious because
with more SDN elements, the ability to control traffic
and elements’ power state becomes stronger. Besides, the
distance between curves with different numbers of SDN
nodes is large when the SDN nodes’ cardinal number is
small. When there are enough SDN nodes, such as 60%
of nodes, the performance of partially deployed SDN is
very close to that of full SDN.
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Fig. 4. Normalized power consumption percentage (NPCP) and computation time vs network size under randomly
generated topologies
4.2.2 Performance Changes with the Number of SDN
Nodes
Except for the number of SDN nodes in the network, the
locations of SDN nodes also have a strong impact on our
energy saving effect. However, the optimum selection of
nodes depends on the traffic pattern which will not be
known ahead of time. Thus, to show the influence of
the SDN nodes’ locations, we use a strategy of selecting
the locations of SDN nodes ignoring the traffic pattern.
The principle of this strategy is to separate SDN nodes
sufficiently and to have most links under the control of
the SDN controller, that is, to make the number of links
connected to SDN switches most at a fixed number of S-
DN nodes. We select the node with the largest number of
”uncontrolled” links connected to it as a SDN node each
time. An ”uncontrolled” link means it is not connected to
selected SDN nodes. Among those nodes that have the
same number of ”uncontrolled” links connected to them,
we select the SDN node randomly. As for topologies
that are highly symmetric such as fat tree, we select the
SDN node at different layers in rounds, that is, select
one node at each layer in a round. Take the network
with the topology shown in Fig. 1 as an example. At the
beginning, nodes 3, 4, 11, 13 all have 5 links connected to
them. Assume we select the node 3 as a SDN node. Then,
because the node 4 is connected to the node 3, there are
only 4 ”uncontrolled” links left connected to it. Thus, we
would choose the second SDN node from nodes 11 and
13 randomly. Repeat this process until we select enough
SDN nodes, and we get the target locations of the SDN
nodes.

We run two groups of simulations. In the first group,
we select the locations of SDN nodes randomly, while in
the second group of experiments we select the locations
of SDN nodes with the strategy described above. In
each group, energy saving metrics of exact solution
and heuristic solution are evaluated as a function of
the number of SDN nodes in the network, in terms of
power saving percentage (PSP ). The result is shown in
Fig. 3(c). The topology is unchanged, which is shown
in Fig. 1, and the volume of flows is also set to be
following a uniform distribution from 0 to 50% of the
links’ capacity. In addition, the number of flows is set to
be following a uniform distribution from 5 to 9, which is
a suitable range in the network with 15 nodes according
to the experiments in Section 4.2.1.

From the result, we observe that the performance of
algorithms with a location selecting strategy is better
than that of selecting nodes randomly, at a distance of 6
percent on average. The difference is most obvious when
there are about 30 percent of SDN nodes, because of
the difference in ability of controlling traffic in network,
and it becomes small when the number of SDN nodes
is large. Considering that when the cardinal number of
SDN nodes is large, there is little part beyond the control
of SDN controller, this result is pretty obvious. PSP ’s
changing rate with the number of SDN nodes shows
a similar trend: it is high with few SDN nodes, and
low with a large number of SDN nodes. When we have
60 percent of SDN nodes, PSP ’s changing rate is low
enough, and the performance is very close to full SDN.
4.2.3 Performance Changes with Network Size
Performance of saving energy is evaluated in the net-
work with low traffic loads and high traffic loads re-
spectively in the simulations.

To simulate the system with variable network size, we
use an variation on the Waxman model [25] to generate
network topologies randomly, in which the probability
that two nodes have a direct link is P (u, v) = β ·e−d/(αL),
where d is the distance between u and v, and L is the
maximum distance between two nodes. More specifi-
cally, we locate nodes uniformly in a square area with
border length

√
n, which means the maximum distance

between two nodes is about
√
n. Then, we set α = 0.1 and

β = 30 of the Waxman model, and get network topologies
randomly generated.

In this group of simulations, the number of flows is
set to be in proportion to n. Specifically, it is set to be
following a uniform distribution from b 1

12nc to b 7
12nc,

where for any real number a, bac is the biggest integer
less than a. Then, the traffic load is adjusted by changing
the mean volume of flows. Since the source and sink of
each flow are selected uniformly from all nodes in the
network, the average number of routing hops of flows
is increasing with the network size. Thus, by fixing the
mean volume of flows, we can simulate the case of high
traffic loads, in which the traffic load is increasing with
the network size. On the other hand, the mean volume
of flows is set to be 1/n of the links’ capacity to simulate
the case of low traffic load, in which the traffic load
is decreasing with the network size. These parameters
above are selected to make sure that the obtained traffic
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Fig. 5. Power saving percentage (PSP) vs different parameters in data center networks.
demands are feasible in most cases, where a feasible
traffic demand is one that can be satisfied with traffic
loads of all links under their capacity. On the other
hand, the volume of each flow is set to be a relatively
large value. Thus, to obtain feasible traffic demands, we
cannot scale the simulations to too large number of flows
in this groups of experiments.

For example, in the simulation of network with 159
nodes, the number of flows can be up to 92. However,
the traffic load generated by this way is unbalanced in
the small-scale network and large-scale network, which
leads to a big change of PSP. To highlight the influence
of the network size while reduce the influence of the
unbalanced traffic loads, we normalize the power con-
sumption with that of the simple dijkstra algorithm to
represent the performance of energy saving, which is
denoted by NPCP. It can be formulated as the follows:

NPCP (algorithmi) =
1− PSP (algorithmi)

1− PSP (simple dijkstra)
× 100,

in which algorithmi can be modified dijkstra, simple
heuristic or heuristic solution. Differently, this normal-
ized power consumption percentage (NPCP) is lower
when the energy saving effect is better. Besides, we
ignore the partial deployment of SDN in this group of
experiments in order to avoid the interference of factors
such as the number and the locations of SDN nodes.
At the same time, from the previous experiments, we
observe that power saving percentage in networks with
different numbers of SDN nodes shows a similar trend,
and has a relatively fixed gap between each other. Thus,
only considering fully deployed SDN in the experiment
is reasonable, which shows us the potential optimal
performance of the algorithm without interference of
other factors.

Then we can see the NPCP of the heuristic algo-
rithm, modified dijkstra algorithm, and simple heuristic
algorithm in Fig. 4(a) and Fig. 4(b), as a function of
the network size. The simulations for Fig. 4(a) are set
with low traffic loads, so that one or several groups of
spanning trees can satisfy the traffic demand. We can
see that the simple heuristic algorithm and the heuristic
algorithm have a similar effect, better than modified di-
jkstra algorithm, because both of them use the topology
of tree structure. Meanwhile, the simulations for Fig. 4(b)
are set with high traffic loads. The performance of the
modified dijkstra algorithm is still worse than that of
that of the heuristic algorithm, but it is better than that

of the simple heuristic algorithm. Moreover, without the
method of modifying weight, networks with the simple
heuristic algorithm consume even more power com-
pared with networks with the simple dijkstra algorithm.
It indicates that our algorithm that uses the topology of
tree structure is unsuitable when traffic load is high.

In the experiments of large networks, we also simulate
the time cost of algorithms. As shown in Fig. 4(c), when
the number of nodes is less than 100 in the network,
there is little difference of computation time between
these algorithms. But when the node number exceeds
100, we can obviously see that the heuristic algorithm
and simple heuristic algorithm use more time, which all
use the topology of tree structure. Using the topology
of tree structure can bring energy profit, but it also
makes algorithms more complex and cost more time. But
the time cost is not beyond ten seconds, which can be
acceptable in network routing. In addition, the size of
the subnet in SDN is limited by the capability of the
controller. Early benchmarks on NOX, which is the first
SDN controller, showed it could only handle 30,000 flow
initiations per second [24]. If we assume that each flow
lasts 1 second (100MB over a 1Gbps link), there are 3000
VMs at most that can be dominated by one controller.
Assuming there are 20 VMs per server, the maximum
number of hosts that can be dominated by one controller
is about 150. As we observe from Fig. 4(c), computation
time of the proposed algorithm in the network of 150
nodes is about 7 seconds, which can be further reduced
by running at servers with more computing resources.
Thus, the performance of our proposed algorithm is
quite good in terms of computation time.

In addition, according to [8], [9], assume the additional
power consumption of the server in which the controller
is located by running our algorithm is 50 watts, and
the static power consumption of the switch is 200 watts.
Assume the computation time and the period of running
our algorithm are 7s and 20s, respectively. Then, the en-
ergy saved by closing one switch is about 200×20 joules.
The energy consumed by the additional computation is
about 50×7 joules, which is less than 10% of the energy
saved by closing one switch. In addition, it is normal
to have a dozen of switches closed in a middle-scale
network. Thus, the power consumption caused by the
additional computation can be ignored compared with
the energy saved.
4.2.4 Performance in Data Center Network
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Fig. 6. Simple fat tree topology for example, in which all
links’ capacity is 1.0 Gbps (switches marked by gray color
and links denoted by thick lines compose the spanning
tree for example. )

In order to evaluate the performance of the heuristic
algorithm in special scenarios of real system, we imple-
ment these groups of experiments in typical data center
network with a Fat-Tree topology shown in Fig. 6.

Fig. 6 shows us a k = 4 fat tree topology. Switches
marked by gray color and links denoted by thick lines
in the figure compose a spanning tree for example. In a
k-ary fat tree, there are k pods, and each switch also has
k ports. Each pod contains two layers of k/2 switches.
For each switch in pods, there are k/2 ports connected
to switches of another layer and k/2 ports connected
to hosts or core switches. An advantage of the fat-tree
is that it provides full bisection bandwidth between all
pairs of hosts. Specifically in our experiment, we assume
no traffic comes from outside of the data center, and each
link’s capacity in the fat tree is 1Gpbs.

In our first group of experiments, the power saving
percentage (PSP) is evaluated as a function of the num-
ber of flows in the data center network. The volumes of
flows follow a uniform distribution from 0 to 1.0 Gbps.
The result is shown in Fig. 5(a). From the results, we
can observe that the trends of these curves are similar
with Fig. 3(a), which means the performance of our
proposed heuristic solution is very close to the optimal
solution, indicating that our algorithm is also fit for
special scenarios such as fat tree in data center networks.
In addition, the performance of the heuristic algorithm is
much better than that of the greedy algorithm, especially
when there are medium number of flows in the network,
indicating that our proposed algorithm also has compar-
ative advantages to the existing algorithm for data center
networks.

For the second group of experiments, we fix the num-
ber of flows, and vary the mean volume of flows. More
specifically, we let each host communicate with only
another host bidirectionally in the data center network,
and thus there are totally 8 flows with the same volume
of traffic between 16 hosts in the network. Fig.5(b)
shows us the result. We can observe that when the
traffic demand is less than 0.5 Gbps, about 25% of total
power consumption is saved in the data center. But when
the traffic demand exceeds 0.5 Gbps, the power saving
percentages (PSP) become less than 10%. To illustrate
the phenomenon, we now consider the spanning tree for
example, which is composed of switches marked by gray
color and links denoted by thick lines in the Fig.6. When
the traffic demand is less than 0.5 Gbps, an arbitrarily

Fig. 7. Power saving percentage (PSP) for time-varying
traffic demands in data center networks
spanning tree like it can satisfy the traffic demand. Thus,
we ensure 30% of energy saving. However, when the
traffic demand exceeds 0.5 Gbps, nearly all links and
switches must be active to satisfy the traffic demand.
However, in actual data center network, the volume
of flows is not all the same. Thus, we can have an
actual power saving percentage between 10% and 25%.
In addition, as we can observe, similar to Fig. 5(a),
performance of the heuristic solution is also very close
to that of the exact solution, which achieves the best
performance. Then, the performance of the heuristic
solution is still better than that of the greedy algorithm
in most cases, indicating the robustness of our proposed
heuristic solution.

In order to analyze the dynamic behavior of our pro-
posed heuristic algorithm, we simulate its performance
for time-varying traffic demands in our third group of
experiments. We assume the traffic demand d = 0.5-
0.4cos(t) (Gbps) at time t in our experments, and the
result is shown in Fig. 5(c). We can observe that the
data center consumes approximately 70% of fully loaded
power at begin when the traffic demand is low. Then
the traffic demand goes through a peak period, leading
to the increasement of the relative power consumption.
When the traffic demands exceed 0.5 Gbps, almost all
switches and links are active, and the relative power
consumption becomes nearly 100%. Though the power
consumption of the data center is not completely in pro-
portion to the traffic demand, we only consume 86.2%
of fully loaded power on average, while the average
utilization of links is 50.0% in our experiments.

4.2.5 Performance in Real Data Center Network
To evaluate the performance in realistic SDN scenarios,
we conduct this group of experiments using the true
packet-level traces from a data center of a university
in Mid-United States, EDU1 provided in [3]. There are
22 devices and 500 servers in the data center network,
which has a 2-Tier architecture. The packet traces of [3]
were captured using a Cisco port span, spanning 12
hours over multiple days. However, only a small part
is provided, which is divided into 20 compressed pcap
files. Each pcap file only spans 4 mins on average.

We first plot the curves of the relative power con-
sumption and traffic demand with varying time in Fig.
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Mean Delay (ms) Mean loss rate (%)
heuristic OSPF heuristic OSPF

Period 4 0.475 0.498 10.33 11.40
Period 37 0.161 0.143 4.80 4.16
Period 39 0.281 0.264 0.00 0.00
Period 48 0.397 0.313 3.00 4.10
Period 89 0.499 0.490 7.34 6.14
Period 95 0.492 0.484 19.47 19.01

TABLE 2
Comparision of Mean Delay and Mean loss rate of the

heuristic solution and OSPF
7. We assume each link or switch can be switched on
or switched off in 10 seconds, and the SDN controller
dynamically adjusts active network subsets according
to the mean traffic demands of the past 5 seconds
by running the proposed heuristic algorithm every 20
seconds. The packet traces we use are merged from the
first 9 pcap files provided by [3], ranging about 33 mins,
that is, 99 periods of 20 seconds.

From the Fig. 7, we can observe that the curve shape
of the relative energy consumption is in some way
similar to it of the traffic demand. That is, using the
proposed algorithm saves more energy in the off-peak
time compared with it of the peak time. Over all, the
effect of energy saving of the proposed algorithm is
good. There is 60% of energy saved on average by it.

To evaluate the service quality, we use mininet [21], a
network emulation platform, to create a SDN network
with the topology of EDU1. Floodlight [20] is run as
the controller. We use traffic matrices of 6 randomly
selected periods, that is, the period 4, 37, 39, 48, 89, and
95 in the previous merged packet traces. Given the traffic
matrices, Iperf is used to generate constant rate traffic
flows and measure the packet loss and delay. The packet
loss and delay of the proposed algorithm are evaluated
compared with those of the OSPF routing. The result is
shown in Table 2.

Our algorithm is designed to save energy by shutting
down network devices and links, which may lead to
performance degradation of packet loss and delay. How-
ever, at off-peak time, when there are plenty of residual
bandwidth resources, applying our algorithm will not
worsen the service quality. On the other hand, at peak
time, all devices should be powered on. According to
(12), the expression of weights of links and nodes, our
algorithm degenerates to an approximate OSPF routing.
Thus, the packet loss and delay still do not get worse
compared with OSPF.

From the results shown in Table 2, we can observe that
the performance degradation of packet loss and delay is
much smaller compared with the energy saved. Packet
loss and delay under the proposed algorithm are 8% and
2% more on average compared with these of only using
OSPF routing, respectively, which indicates the overall
performance is not affected much. On the other hand,
the energy is saved by 60%. Thus, it is worth to utilize
this algorithm in practice.
5 RELATED WORK
Works related to our paper can be divided by three
categories: saving energy in traditional networks, saving

energy in SDNs, other works about partially deployed
SDNs.

There have been a number of works focused on saving
energy in traditional networks. Cianfrani et al. [7] fo-
cused on saving energy of OSPF protocol. They proposed
a novel network-level strategy to save energy during low
traffic periods. Their solution is based on coordination
among routers, the idea of which is that only a subset
of router Shortest Path Trees (SPTs) are used to select
the routing paths, reducing the number of links used to
route traffic. The works [5], [10]–[12] focused on saving
energy of networks in other scenarios. Heller et al. [5]
studied saving energy in a data center network by
finding minimum-power network subsets. They formu-
lated the problem of finding minimum-power network
subsets, and presented a network-wide power manager,
which dynamically adjusts the set of active network
elements to save energy. Fisher et al. [12] developed
and evaluated techniques that save energy in core net-
works by selectively powering down individual cables of
large bundled links, and they developed several easy-to-
implement heuristics. In addition, Correia et al. [10] and
Marsan et al. [11] studied energy saving in mobile radio
networks and cellular access networks, respectively, and
developed their own heuristic algorithms as well.

Recently, some works studied the problem of saving
energy in software-defined networks [17], [27]. Kakadia
et al. [17] focused on saving energy based on OpenFlow.
Without explicit constraints, they dynamically detected
switches with minimal traffic and powered them off by
consolidating the flows to other switches from them.
Prete et al. [27] presented an OpenFlow controller that
created a loop-free layer-2 topology and reduced the
network energy consumption by switching off inactive
interfaces.

In terms of works about partially deployed SDNs,
Agarwal et al. [4] focused on traffic engineering in in-
crementally deployed SDNs. They formulated the rout-
ing optimization problem in the hybrid networks, and
used the Fully Polynomial Time Approximation Scheme
(FPTAS) to solve it. Their results show that the improve-
ments of network utilization, packet losses, and delays
are possible when SDN is only partially deployed in a
network. Vissicchiowork et al. [18] studied network up-
dates in incrementally deployed SDNs. They developed
a machinery to realize anomaly-free updates of hybrid
networks. Levin et al. [22] focused on the problem of
how to incrementally introducing SDNs into an existing
network. They proposed Panopticon, an architecture and
methodology that integrates legacy and upgraded SDN
switches and exposes an logical SDN abstraction to the
control platform. Their results show that by only upgrad-
ing a few SDN switches, the transitional network is able
to act as a SDN. In addition, Mukerjee et al. [23] focused
on tradeoffs in incremental deployment of new network
architectures such as SDN. They show that various de-
ployment mechanisms only differ in how they answer
four fundamental questions, i.e., selecting and reaching
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the egress and ingress, respectively. According to their
theories, they proposed two intriguing approaches that
were absent from existing mechanisms.

Different with the aforementioned works, our work
focuses on the partially deployed SDN scenario, and tries
to apply the traditional method of shutting down unnec-
essary network elements in partially deployed SDNs to
save energy.

6 CONCLUSION AND FUTURE WORK
In this work we analyzed the problem of saving energy
in partially deployed SDNs. By formulating a mixed in-
teger programming problem, which is proved to be NP-
hard. Then, a heuristic algorithm is proposed to solve
the problem. Results show that the proposed heuristic
algorithm achieves good performance of saving energy
and significantly reduces the computation time of the
problem in both large scale and practical scenarios.
Besides, the proposed algorithm achieves best perfor-
mance in full SDN networks, but when there are enough
SDN nodes, such as 60% of nodes, the performance of
partially deployed SDN is very close to that of full SDN,
that is, the performance gap is less than 10% relative to
the fully deployed SDN.

Our heuristic algorithm aims at saving energy when
traffic loads are not high in the network. On the other
hand, saving energy may cause extra delay and loss
of packets in the network, or it may increase traffic
congestion during peak periods. Thus, strategies of void-
ing various side effects need to be considered in future
works.
APPENDIX A
We now prove that the optimization problem is NP-
hard in this appendix. We prove the complexity of
the optimization problem by transforming it to a well-
known NP-hard problem, i.e., 0-1 knapsack problem.
Thus, some supplements about 0-1 knapsack problem
are first provided in the following subsection.
A.1 0-1 knapsack problem
0-1 knapsack problem can be described as follow: Given
a set of items, each with a mass and a value, determine
the number of each item to include in a collection so
that the total weight is less than or equal to a given limit
and the total value is as large as possible. Let vi, wi be
the value and the weight of the item i, respectively. Let
W be the limit of the total weight. Let binary variable
xi denote whether the item i is included. Then, the 0-1
knapsack problem can be represented as follows:

max
∑N
i=1 vixi

s.t.

{ ∑N
i=1 wixi ≤W,

xi ∈ {0, 1}, i = 1, ..., N.

(13)

This 0-1 knapsack problem is a well-known NP-hard
problem [19]. We next prove that the optimization prob-
lem (∗) is NP-hard.
A.2 Proof of the complexity of the optimization prob-
lem
Theorem 1 (NP-hard) The optimization problem (∗) of
finding the minimum-power network subsets described
before is NP-hard.

Fig. 8. Topology for example
Proof: To prove that the problem (∗) is NP-hard, we

use the technique of reduction. Considering a simple
case with a topology as shown in Fig. 8, the network
is full SDN and we have traffic demand K = {(s, d, r)}.

For all i ∈ {1, 2, ...N}, according to the flow conser-
vation and demand satisfaction of nodes i, s, d, we have
f1(i, s) = f1(d, i) = 0 and f1(s, i)− f1(i, d) = 0. Thus, we
have X(s, i) = X(i, d) = Y (i).

Define that
Xi , X(s, i) = X(i, d) = Y (i),

fi , f1(s, i) = f1(i, d),

ci , min{c(s, i), c(i, d)},
ai , a(s, i) + a(i, d) + b(i).

The optimization problem becomes:
min

∑N
i=1 aiXi + b(s) + b(d)

s.t.


0 ≤ fi ≤ ciXi, i = 1, ..., N,∑N
i=1 fi ≥ r,

Xi ∈ {0, 1}, i = 1, ..., N.

(14)

This problem is equivalent to the following problem
by removing the intermediate variable fi:

min
∑N
i=1 aiXi + b(s) + b(d)

s.t.

{ ∑N
i=1 ciXi ≥ r,

Xi ∈ {0, 1}, i = 1, ..., N.

(15)

Then we consider the following 0-1 knapsack problem,
where ai, ci are respectively the value and the weight of
item i:

max
∑N
i=1 aiZi

s.t.

{ ∑N
i=1 ciZi ≤W,

Xi ∈ {0, 1}, i = 1, ..., N.

(16)

Now by defining
Zi = 1−Xi,

W =
∑N
i=1 ci − r.

this 0-1 knapsack problem is transformed to problem (15)
except for a constant

∑N
i=1 ai+b(s)+b(d) in the objective

function, which can be ignored. Since the problem (15)
is equivalent to our optimization problem, and the 0-
1 knapsack problem is NP-hard, and the optimization
problem is NP-hard as well.�
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