
sensors

Article

Data-Driven Packet Loss Estimation for Node Healthy
Sensing in Decentralized Cluster

Hangyu Fan, Huandong Wang and Yong Li *

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
fhy14@mails.tsinghua.edu.cn (H.F.); whd14@mails.tsinghua.edu.cn (H.W.)
* Correspondence: liyong07@tsinghua.edu.cn

Received: 14 November 2017; Accepted: 12 January 2018; Published: 23 January 2018

Abstract: Decentralized clustering of modern information technology is widely adopted in various
fields these years. One of the main reason is the features of high availability and the failure-tolerance
which can prevent the entire system form broking down by a failure of a single point. Recently,
toolkits such as Akka are used by the public commonly to easily build such kind of cluster. However,
clusters of such kind that use Gossip as their membership managing protocol and use link failure
detecting mechanism to detect link failures cannot deal with the scenario that a node stochastically
drops packets and corrupts the member status of the cluster. In this paper, we formulate the problem
to be evaluating the link quality and finding a max clique (NP-Complete) in the connectivity graph.
We then proposed an algorithm that consists of two models driven by data from application layer to
respectively solving these two problems. Through simulations with statistical data and a real-world
product, we demonstrate that our algorithm has a good performance.

Keywords: failure detection; distributed system; gossip protocol; stochastic packet loss

1. Introduction

Clustering technologies leverage a set of connected computers to work as a single system [1],
which improves performance, fault-tolerance and scalability of the system. It is extremely important in
areas such as sensor networking, clouding computing, centralized controlling, etc. Compared with
centralized clustering technology, the decentralized cluster has many advantages such as no single
point bottleneck, no single point of failure, more flexibility [2]. However, it faces many challenges, one
of which is failure detection [3]. Failure detection technologies use mechanisms such as heartbeat and
timeout to provide failure sensing and troubleshooting approaches for the clusters and further make
them failure tolerable [4]. Different with centralized clusters, in decentralized clusters there is no fixed
supervisor who is responsible for failure detection and troubleshooting, leading to a more complicated
failure detecting problem.

Existing failure detection methods [5–12] are designed to detect completely unreachable nodes,
e.g., died or disconnected. A commonly used failure detection approach in a cluster is that, monitors
estimate the state of each node based on the φ FD each node in the cluster is monitored by a set of
other nodes. The monitor nodes send heartbeat requests to the target node and expect for heartbeat
responses to obtain the link state between monitor and its target. If φ FD is adopted, monitors assume
that the interval of heartbeat responses obey normal distribution. Not receiving a heartbeat response
within an expected interval, they start suspecting the target to be unreachable. Then, they use gossip
protocol [13] to spread the unreachability event to the rest of nodes. However, there are two main
drawbacks of this kind of implementation. First, the existing failure detectors [5–12] cannot correctly
detect a partially working node, e.g., a node which randomly drops packets. In this case, different
monitors may give out different detection results on this node. Second, because gossip is a weak

Sensors 2018, 18, 320; doi:10.3390/s18020320 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18020320
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 320 2 of 26

consistency protocol, it cannot properly deal with conflicts on reachability state, which is possible to
lead to the corruption of the system. Due to what we have tested, one certain malfunction breaks a
cluster with a size of 10 into pieces easily.

In this paper, we analyze the causes of the problem of the current work. As the φ FD and other
failure detection mechanisms proposed in [5–12] are not suitable for the scenario of stochastic packet
loss, we propose an algorithm that can estimate the severity of packet loss of a link between two nodes
based on the statistical information of TCP protocol, the round-trip-time (RTT). Further, we propose
a model that can sense a node’s healthy status from anywhere of the cluster without the limitation
of any node to be always reachable, choose a unique leader without election process and make more
reliable decisions about removing faulty nodes.

The contribution of this paper can be summarized as follows.

• First, we proposed a model to formulate the problem. Instead of modeling a link state to be
reachable or unreachable, we model the link state to be healthy or unhealthy considering about
unstable link. With a graph representing nodes and link states, the faulty nodes are found
by solving a max clique problem(MCP). Moreover, we discuss the transitivity of the link state.
For scenarios where link states have transitivity, we simplified the NP-Complete MCP to a linear
complexity problem; For other scenarios, we proposed a square complexity heuristic algorithm
which can find a maximal clique.

• Second, we proposed a data driven algorithm that solve the reliability issue in this specific case.
Our algorithm uses an evaluation model to evaluate the link state basing on data from application
layer. Basing on the evaluation results, the decision model takes care of the leader uniqueness
issue and infers the faulty nodes.

• Finally, extensive simulation results demonstrate that our approach is highly adaptable. Basing on
statistical data, the F1 score of the link evaluation method reaches more than 90%. And our
implementation makes a real-world product stably run for more than a week while some of the
the packet loss failure is injected in some of the nodes.

The rest of the paper is structured as follows. In Section 2, we introduce the related work in failure
detection and troubleshooting on decentralized clusters. In Section 3, we present the formal model of
our problem. In Section 4, we introduce our PingBased algorithm for enhancing the availability of
decentralized cluster. In Section 5, we extensively evaluate the performance of our proposed algorithms
compared with existing algorithms.

2. Related Work

2.1. Akka Cluster

A widely-used and well-recognized solution to the problem of failure detection and
troubleshooting in decentralized cluster is a framework named Akka [14]. In Akka, each node is
monitored by a number of other nodes with the technology of the φ FD. Each node in the cluster
holds a reachability table and uses gossip protocol to keep consistent with other nodes. If one monitor
detects that some node is faulty, it announces this event to the rest of the nodes by updating its own
reachability table and make it consistent with the rest of nodes using gossip protocol. If a member is
marked as faulty and has been broadcasted to all the other nodes, these nodes will then determine
whether themselves shall be responsible for troubleshooting with a non-electoral leader determination
algorithm. If different monitors have different outcome on whether a node is faulty, a pessimistic
algorithm is adopted that nodes are only treated to be healthy if all its monitors say it is healthy, which
in other words if any one of its monitors announces its faulty it will be treated as unhealthy.

2.2. Other Link Failure Detecting Algorithms

Besides φ FD, there are other algorithms aiming at detecting link failures. Analogous to φ FD,
Xiong et al. [9] and Liu et al. [11] assume that the interval of heartbeat responses follows exponential

Sensors 2018, 18, 320 3 of 26

distribution or Weibull distribution and calculate the probability of time interval between the current
time and the time of last heartbeat response. If the probability is lower than a threshold, the monitor
suspects the monitored node. Tomsic et al. [10] uses two windows with different sizes to collect the
intervals of heartbeat messages. By comparing the current time and a predicted next receipt time
calculated based on these two windows, the monitor decides whether the remote node is reachable
or not. Turchetti et al. [12] proposes an IFDS framework which can handle multiple concurrent
applications with different QoS requirements, whose purpose is different from us.

2.3. Packet Loss Measurement

Packet loss measurement of TCP has been studied in a number of works [15–17].
Sommers et al. [15], Wu et al. [16] predict the packet loss rate with implementations in routers where
they can acquire the low level sequence and acknowledge numbers of the TCP/IP stack which cannot
be obtained by applications. Basso et al. [17] provide a application layer estimation on packet loss rate.
However, it assumes the RTT is a constant. In addition, it mainly aims at end users who download
stream from a remote server, which is different from our work.

2.4. Other Works About Fault-Tolerance

Besides the solution above, there are also other works that focus on fault-tolerance in related
fields. For example, Sun et al. [18], Cerulli et al. [19], Yim et al. [20] mainly aim at failure-tolerance in a
more specific area of sensor networking. R. Şinca et al. [21] focuses on digital systems and implements
fault-tolerant mechanisms on the hardware field. However, targets of these works are different from
our work.

3. System Overview and Problem Formulation

3.1. System Overview

In this section, we give an overview of our system of sensing healthy status of nodes in
decentralized cluster based on Akka. Figure 1 shows the system overview of decentralized cluster
services such as Akka cluster. Specifically, this system manages its members by maintaining a globally
consistent member state table. To keep globally consistent, each node uses the Gossip Protocol [22] to
repeatedly replicate its state to a randomly selected neighbor. To detect and handle node failure, each
node in the cluster implements a heartbeat based failure detector to detect the reachability to some
node in its neighbor. If one detects a failure, it will mark this node in its own member state table and
try to gossip it to the rest of nodes in the cluster. Then a temporarily selected leader will handle this
issue. We next make an expression of these processes in detail.

3.1.1. Gossip Based Membership

In order to correctly cooperate with other nodes in the cluster, each member in the cluster holds a
table that contains the states of all the members in the cluster and uses Gossip protocol to make this
table globally consistent. The status of the member consists of two elements, i.e., working state and
reachability state. These two elements stand for whether the node is working and whether the node
can be reached, respectively. To make the state globally consistent, a node periodically exchanges its
state to a random neighbor. If their exchanged states are different, the node with state of older version
will update its state to the newer version. To add or remove a member, a node can simply modify its
member table. After that, it gossips its member states to other nodes. When the member state meets
the consistency, this add or remove action is finished.

3.1.2. Failure Detection

Failure detection mechanism is used in the system to detect link failure, which further makes the
cluster aware of node failures. To detect failure each node implements a failure detector. They use

Sensors 2018, 18, 320 4 of 26

heartbeat or other mechanisms to keep monitoring a number of remote nodes selected by a specific
principle. If a failure is detected, the monitor node will immediately mark that node by setting the
reachability status of it to be Unreachable and use gossip protocol to ensure the entire cluster finally
noticing this issue. Unlike the φ FD adopted by Akka, the failure detection mechanism in our work
has an extra feature of estimating the severity of stochastic packet loss.

2

1

3

Reachable -3

Unreachable -2

1 Leader(self)

LeadershipReachabilityNode uid

(self) -3

Unreachable -2

1 LeaderReachable

LeadershipReachabilityNode uid

Unreachable -3

(self) Leader2

1 -Unreachable

LeadershipReachabilityNode uid

!"
#$%
&'

(
')
'*
)+
&

,+--#./01'$+.'

2+3'45#-560&'"*7"8$'

(a)

2

1

3

Reachable -3

1 Leader(self)

LeadershipReachabilityNode uid

(self) -3

1 LeaderReachable

LeadershipReachabilityNode uid

Unreachable -3

(self) Leader2

1 -Unreachable

LeadershipReachabilityNode uid

!
"
#
$

%"&&'()$*+,"(+

-".+/0'&0!"#$

(b)

Figure 1. System overview of decentralized clusters that use gossip consensus protocol to manage
members. (a) shows the member states, leadership and gossip process when detects a failure; (b) shows
the down process of a leader.

3.1.3. Leadership

If an arbitrary node could decide whether a new node can join or leave, i.e., insert or remove
node into or from the global membership table, it is possible to cause problems, e.g., difficulties in
consistency of membership or logical issue in application. For example, if an arbitrary node could
decide so, this node can do the leaving action by directly removing itself from the its own member
table and gossip this table to the cluster. However, before the member table is globally consistent,
some other members may not notice this leaving action and keep communicating to the leaving node.
This may cause further issues like logical confusion. To avoid these problems, a temporary leader
is selected to deal with actions affecting cluster’s size. For adding or removing a node to or from
the cluster, the leader does this action gracefully with the following steps. First, instead of suddenly
adding or removing a member from the cluster, the leader sets an intermediate working state to this

Sensors 2018, 18, 320 5 of 26

member. Then the leader gossips its state to the cluster. After that, the leader waits until the member
state is converged. Converged state means that the member state is consistent in the cluster so that all
the members are conscious about the further action of this leaving or joining member. When the leader
confirms the consistency of the intermediate state, it finally does the action of inserting or removing
the member to or from the member table. The leader selection should be non-electoral to avoid being
centralized. In Akka, the process is that a node considers a reachable node with the smallest unique
identity to be de leader. The unique identity can be, for example, IP address and port. If the member
states of all the members are consistent, it is expected that only one leader exists in the cluster at a
time. And because the leader actions are only done when the leader obverses that the member state is
converged, all the members will keep pace with the leader. In this way, the member state can always be
easy to converge. Furthermore, the application can easily get the message of a member being joining
or leaving. Thus, this approach is demonstrated to be a reliable way for changing cluster size.

3.1.4. Downing

The leader has to deal with one more case. If a member is marked as unreachable, the leader
will stop the leader action until it is recovered or forcibly removed. This is because if the leader has
no access to an arbitrary node, it believes that the member state cannot be consistent (because the
leader cannot replicate its state to this unreachable node). We can see that a member being marked
as unreachable will block the leader action which has a critical function on the joining or leaving
behaviors of members. Down mechanism is thereby put forward to eliminate the long-term blocking
issue. With this mechanism, if a leader believes that the unreachable nodes are no longer available, it
will forcibly remove the unreachable nodes from the cluster so that the cluster would work as normal.

3.2. Mathematical Model

Table 1 shows the model of our system. The cluster is represented by a set of n nodes denoted
by V. The set of actual network state are denoted by Sn. The state of each node and each link are
represented by sn and sl , respectively. Each node manages a table of member states represented by
the function f s. Nodes use Gossip protocol to make member states globally consistent. To select a
leader, a node first selects a set of candidates basing on rc, namely candidate rule. And it uses the
function of h(v) and l(v) to determine a leader, where h(v) is used to get a unique identity of v and
l(v) is used to return who is the leader. Leader removes a faulty node basing on the function of rd,
namely downing rule.

Particularly, we model the link in our system to be undirected [19,23], i.e., sl(vi, vj) is equal to
sl(vj, vi). In addition, we only consider the scenario where the majority of the nodes in the cluster work,

Vh := {v : v ∈ V, sn(v) = Healthy}, |Vh| >
|V|
2

(1)

We next talk about an important property of connectivity between nodes, i.e., transitivity. With the
property of transitivity, no partial connectivity is appeared in the topology. This is to say two healthily
connected end-nodes have the same link states to any other end-nodes. In traditional network this
property is applicable because the endpoints do not have the ability to forward messages to others
and the route protocol will eventually take care of the partially connecting issue. However, in case of
topology like ad-hoc networking where endpoints are responsible for forwarding data or in case that
unfair QoS is adopted, this property may not be applicable then. Therefore, we classify our algorithm
into two cases divided by the applicability of this property. The transitivity can be described as the
following formula:

∃vi, vj ∈ V, vi 6= vj, sl(vi, vj) = Healthy,⇒ ∀vk sl(vi, vk) = sl(vj, vk) (2)

Sensors 2018, 18, 320 6 of 26

Table 1. Formal system model.

(a) A set V of n nodes (n = |V|)
(b) A set Sn. Two functions sl : V ×V → Sn, sn : V ×V → Sn. sl maps link to link state; sn maps
node to node state.

Sn = {Healthy, Unhealthy}

sl(vi, vj) =

{
Unhealthy, iff the link from vi to vj is unhealthy
Healthy, otherwise

sn(v) =

{
Unhealthy, iff the node v is unhealthy
Healthy, otherwise

An equation:
sl(vi, vj) = sl(vj, vi) (3)

(c) A set SR of two reachability states and a function f s : V ×V → SR that returns the result of
failure detecting.

SR = {Reachable, Unreachable}
f s(vi, vj) = reachability state of vj seen by vi

(d) A procedure GossipTo:

vi GossipTo vj : ∀v ∈ V let f s(vj, v)← f s(vi, v) iff f s(vi, v) is newer

(e) A function rc : V ×V → {TRUE, FALSE} used as candidate rule in leader selection process.

rc(vi, vj) =

{
TRUE, iff vj can be a candidate from the perspective of vi

FALSE, otherwise

and a relation cand : V → P(V) where vk ∈ cand(vi) iff rc(vi, vk) = TRUE
(f) Two functions about non-electoral leader selection h : V � I, l : V → V

h(vx) = unique identity of vx

l(vi) = argmin
vx∈cand(vi)

h(vx)

and an integer k, 0 < k 6 n, stands for number of leaders at a time:

k = |{v : v ∈ V, l(v) = v}|

(g) A function rd : V ×V → {TRUE, FALSE} used as rule of Downing. A procedure DoDowning

rd(vi, vj) =

{
TRUE, iff l(vi) = vi and vi believes vj is no longer vaild
FALSE, otherwise

vi DoDowning :let V ← V \ {v : v ∈ V, rd(vi, v) = TRUE}

3.3. Problem Formulation

The main weakness of gossip based membership management is that once a node receives a
newer version of member state from a valid sender it will merge the state into its own state with only a
simple conflict avoidance logic. This influences little on a normally working cluster. However, in some
cases, a problematic but valid node gossiping corrupt member state can bring severe problem to the
cluster. Stochastic packet loss is a typical case of a node being problematic but valid. In this case, the

Sensors 2018, 18, 320 7 of 26

problematic node with unstable links to other nodes may mark a part of other nodes as Unreachable
uncertainly if the failure detection mechanism is unreliable. Moreover, unlike network partition issue,
this node still has possibility to gossip its globally incorrect member state. If the incorrect member
state corrupts the cluster, it will cause at least 2 fatal problems:

1. The leader may remove normal nodes that are marked as unreachable by the problematic one if
the downing rule is not reliable.

2. There may be more than one nodes assume themselves to be leaders if all the normally working
nodes with smaller unique id are marked by the problematic node.

More specifically, a faulty node v f marks a set Vx ⊆ V \ {v f } of nodes as Unreachable by the
process of ∀v ∈ Vx let f s(v f , v)← Unreachale, and GossipTo vj, vj ∈ V \Vx \ {v f }. Finally, the member
state might converge to a result that ∀vi, vj, vk ∈ V s.t. f s(vi, vk) = f s(vj, vk). The commonly used
original implantations of rc and rd are shown in Table 2. In this case, the uniqueness of leader cannot
be guaranteed. As a result, it may happen that 2 6 k 6 n (recall Table 1f, k stands for the quantity of
leaders). Meanwhile, nodes in the set of Vx will be removed by these leaders after a period of time
regardless of their actual node states.

Table 2. Original implementation of rc and rd.

(a) The original implementation of function rc:

rc(vi, vj) =

{
TRUE, iff f s(vi, vj) = Reachable
FALSE, iff f s(vi, vj) = Unreachable

(b) The original implementation of function rd:

rd(vi, vj) =

{
TRUE, iff f s(vi, vj) = Unreachable for a period of time and do not recover
FALSE, otherwise

From the discussion above, we can draw 4 problems. First, an approach for estimating the severity
of packet loss of link must be found. Second, faulty nodes must be prevented to make any decision on
changing the size of cluster. Third, the uniqueness of leader node should be guaranteed. Finally, the
leader need an approach to find faulty nodes and do responsible troubleshooting. These problems can
be formulated as follows:

(a) Link Estimate Problem (LEP)
Given: A local node vi and a remote node vj.
Problem: Find a network indicator In(vi, vj) and a function s′l : In → Sn such that the

misrecognition rate of link state σl is minimized, which can be expressed as:

σl(vi, vj, In) := P(s′l(In)! = sl(vi, vj)), min σl .

(b) Self Checking Problem (SCP)
Given: A local node v.
Problem: Find a node indicator Iv(v) and a function s′n : Iv → Sn such that the misrecognition rate

of node state σn is minimized, which can be expressed as:

σn(v, Iv) = P(s′n(Iv)! = sn(v)), min σn.

Sensors 2018, 18, 320 8 of 26

(c) Leader Uniqueness Problem (LUP)
Given: The node set V, the observation of connectivity from node vi to vj denoted by s′l(vi, vj).
Problem: Find a new implementation of function rc such that at a specified time it is guaranteed

that the quantity of leaders in the cluster is no more than 1, which can be expressed as k 6 1.
(d) Faulty Nodes Determination Problem (FNDP)
Given: The node set V, the observation of connectivity from node vi to vj denoted by s′l and the

candidate rule rc.
Problem: Find a new implementation of function rd such that reliability of the removing action is

maximized. A reliable removing action can be defined as removing only faulty nodes by the leader.

4. The PingBasedDown Algorithm

The PingBasedDown Algorithm is a distributed solution that helps to detect problematic nodes
reliably, which therefore enhance the availability of decentralized clusters who use Gossip protocol as
their main protocol to manage their membership. Each node in the cluster implements the full function
of this algorithm.

In our algorithm, we first collect enough data, which can be potentially used as network indicators
In, from application layer. After appropriately preprocessing, we bring them to the first model called
Link Evaluation Model which is designed to estimate the link quality with the consideration of
stochastic packet loss over TCP protocol. As for other message-based protocols such as UDP, the
packet loss rate can be estimated simply using the ping-pong tests without this model so that we
do not discuss them in this paper. The link evaluation results are then be used by the next model
called Decision Model. It firstly evaluates the healthy status of the local and remote nodes and then
determines the leadership. Finally, the node chosen as leader executes the faulty nodes selected by
this model.

Figure 2 shows the overall solution of the PingBasedDown algorithm.

Node

Evaluation Model Decision Model
!" #$ % #&

!" #$ % #& !" #$ % #' !" #$ % #"!!!

Noise Filtering Module

Jitter

Accumulating

Module

Latency

Estimating

Module

Normalization Module

Judgement Module

!"# $% & $'

! "# $ "%

!" #$ % #&

!" #$ %#&

!# $% &' (&)

Self-Checking Module

Leader Determination Module

Leader Execution Module

!# $% &' (&) !"
$% &' (&* !"

$% &' (&%!!!

!" #$

!"#$ %&

!" #$% #&

!" #$ % #&

#$%$%&'(')

!"

Figure 2. Algorithm overview.

In preparation for describing in detail, we define some operators on the vector and set:

Sensors 2018, 18, 320 9 of 26

Definition 1. (FindFirst: Xm × I → I) Giving a vector X = (x1, x2, ..., xm), FindFirst(X, α) is defined
as returning the subscript of the first value in X that equals to α. For example, suppose X = (1, 3, 5, 5, 4),
FindFirst(X, 5) = 2 because x2 is the first element in X that equals to 5.

Definition 2. (RemoveAt: Xm × I → Xm−1) Giving a vector X = (x0, x1, x2, ..., xm) and a subscript
i, 0 6 i 6 m, RemoveAt(X, i) = (x0, x1, x2, ..., xi−1, xi+1, ..., xm). For example, suppose X = (1, 3, 5, 5, 4),
RemoveAt(X, 3) = (1, 3, 5, 4).

Recall Section 3.3, to solve our problem we should first find a network indicator In(vi, vj), which
is sensitive to packet loss and hence has the ability to estimate the quality of link.

After the analysis of the collected data over TCP protocol with different packet loss rate, we find
that the round-trip-time (RTT) of a TCP message is especially sensitive to stochastically packet loss.
Here the RTT of a RPC message means time between a certain kind of message and its reply. We then
fetch this feature and use it as the network indicator.

To construct the input, i.e., In(vi, vj), of our model, the node vi keeps collecting the most recent Nw

groups of timestamps of communication records to vj. The timestamp group consists of the sending
timestamp of a message and the receiving timestamp of its reply. We then calculate a RTT by subtract
the two timestamps. Consider that it may take some time for a remote node vj to process some of the
messages, we should subtract the processing durations from corresponded RTTs. We denote Tr(vi, vj)

to be the vector of collected RTT from vi to vj, Tp to be a vector of processing delay corresponding to
the vector of Tr. Then, the notations of Tr, Tp and the indicator In can be expressed as follows.

Tr(vi, vj), Tp(vi, vj) : V ×V → RNw
+ ,

Tr(vi, vj) = The most recently collected Nw groups of round-trip-times,

Tp(vi, vj) = The processing time of messages corresponding to Tr(vi, vj),

In(vi, vj) = Tr(vi, vj)− Tp(vi, vj).

A simplified approach to construct the input is to collect the RTTs of messages which are
supposed to be replied immediately, e.g., heartbeat messages. In this case, the indicator can be
In(vi, vj) = Tr(vi, vj).

4.1. Link Evaluation Model

Link evaluation model is proposed to evaluate the link quality and solve the LEP. Specifically,
this model provides an implementation of function s′l . In addition to the two original states, a fuzzy
state Pending is introduced to avoid any arbitrary judgments. This model consists of the following
five modules and Table 3 shows the parameters of this model. First is Noise filtering module, which
filters the noise brought by applications from the collected RTTs. The filtered input then goes to the
next module named Jitter accumulating module to quantify the jitter. The filtered input also goes to
the module named Latency estimating module, which estimates the pure latency, i.e., latency without
processing or retransmitting delay, of the link. The quantified jitter and the estimated latency then go
through the Normalization module to calculate a normalized result. Finally, the result is compared with
two thresholds to evaluate the state of the link. Next, we make detailed description on these modules.

Sensors 2018, 18, 320 10 of 26

Table 3. Parameters of Link Evaluation Model.

Notation Parameter Name Description

Nw History size How many groups of rtt history we use as the basis.

FS Filter strength
Indicates the strength of filtering, e.g., the proportion of noise in
the records.

Lpos Latency positioning factor
Indicates rate of pure latency participate in calculating
among history of RTTs.

Talert Alert threshold
If the normalized accumulated value is higher than this threshold,
mark the link as Unhealthy

Tsa f e Safe threshold
If the normalized accumulated value is lower than this threshold,
mark the link as Healthy

4.1.1. Noise Filtering Module

Since our system works upon application layer, the input of this model In(vi, vj) is expected
to contain noises brought by the application, e.g., garbage collection or thread scheduling process.
This module is used to preprocess the input to eliminate the impact of noises. For different scenarios,
different implementations of noise filtering modules can be implemented, e.g., removing a part of
highest numbers from collected RTTs. Algorithm 1 shows an implementation of noise filtering process.
We denote the function of this process as follows,

NF : RNw → R[Nw×(1−FS)] (4)

Then the output În(vi, vj) = NF(In(vi, vj)) will be used in next steps.

Algorithm 1: Simple noise filtering algorithm.

Input: a vector of collected RTTs denoted by Rtts, Rtts ∈ RNw
+

Initialize:
R f ← Rtts
k← [Nw × FS]

i← 0
while i < k do

mv ← maxR f
im ← FindFirst(R f , mv)

R f ← RemoveAt(R f , im)
i← i + 1

Output:R f

4.1.2. Jitter Accumulating Module

Calculating the variance of data is a commonly used approach to measure the jitter. However,
this method is inaccurate in some cases. For example, the two vectors d1 = (1, 1, 1, 100, 100, 100)
and d2 = (1, 100, 1, 100, 1, 100) have the same variance, but what we want is that the jitter of d2 is
higher than that of d1. Therefore, in this module, we quantify the jitter of În(vi, vj) by accumulating
the quantified variation rate. Let A denote the quantification result. We quantify the jitter by the
following steps:

Giving a vector of numbers X ∈ RNw , we use first-order difference of this vector ∆X to extract the
rate of variation, i.e., jitter. Then we obtain the quantified jitter by accumulating the absolute value of
∆X. The output of this module A can then be represented as follows:

A : RNw → R, A(X) = ∑ |∆X| (5)

Sensors 2018, 18, 320 11 of 26

4.1.3. Latency Estimating Module

In order to make the algorithm adapt to different levels of latency, this module is proposed to
estimate the pure latency of the link. The pure latency denoted by LR means how long a RTT of the
message is without triggering the retransmission mechanism. Through a normal link from vi to vj,
LR is expected to be: LR(vi, vj) = E

(
În(vi, vj)

)
, where E : RNw → R is the operator of mathematical

expectation. However, when messages transmit through an abnormal link with stochastic packet loss,
the RTT sometimes may be much longer than the pure latency because of the retransmit mechanism.
Thus, we introduce an approach. It cuts off the bigger part of the collected RTTs which are supposed to
be caused by retransmission process. Then it calculates the average value of the rest, i.e., the smaller
part, of RTTs which are supposed to be transmitted without packet loss. This average value is used
as the estimate of pure latency. The cut off action is similar to that of the noise filtering algorithm
presented in Algorithm 1 with the replacement from FS to Lpos.

4.1.4. Normalization Module

From the algorithm of the jitter accumulating module, we can find that the value of the
accumulated result has a strong correlation with the length of the vector, denoted by dim(A), and the
level of the link latency. This brings difficulty on the judgement of link quality. The Normalization
module adjusts this value to a notionally common non-dimensional scale using the formula as follows,

Â =
A

LR × dim(A) (6)

With the help of this module, no matter what level of link latency is and how long the vector is, the
evaluation result for links with same packet loss rates should be approximately within a same range.

4.1.5. Judgement Module

Recall the very first of this section, we define 3 states of link quality:

• Healthy, which stands for normally working link without packet loss;
• Unhealthy, it stands for abnormal link with packet losses;
• Pending, which stands for fuzzy link which may need further detection.

To determine which state the link should be, we compare the Â with two thresholds, namely safe
threshold and alert threshold, denoted by Tsa f e and Talert, respectively. In addition, the link status is
determined by the following equation:

In(vi, vj) =

Unhealthy, Â > Talert,

Pending, Talert > Â > Tsa f e,

Healthy, Â 6 Tsa f e.

(7)

Two parameters of Tsa f e and Talert determine the sensitivity of Link Evaluation Model on link
failures. A higher Talert makes the model more stable and decreases the false alarm rate when working
on noisy networks. However, an exorbitant Talert also makes the model hard to detect a link failure.
Moreover, when the normalized accumulated jitter Â is lower but very closed to Talert, it indicates
that the link quality is fuzzy. To make our model more robust, we must prevent giving a Healthy
mark on fuzzy links. Therefore, we propose the Tsa f e threshold. A lower Tsa f e makes the model give a
Healthy mark of a link more strictly. In the datacenter environment where the nodes in the cluster
are physically closed to each other, we believe that the jitter rate of latency there is low and therefore
a low Tsa f e shall be set. As for other scenarios such as cloud services, Tsa f e shall be set to a higher
value to make the model properly working. These two thresholds can be determined either statically
by empirical values or dynamically by adaptive algorithms. In the simulation, we set the thresholds
statically based on a long statistical data.

Sensors 2018, 18, 320 12 of 26

4.2. Decision Model

With the link evaluation results, the decision model is proposed to solve the following three
problems, first is whether a node itself is healthy(SCP), second is whether a node is the leader who is
responsible for removing faulty nodes(LUP), third is which nodes are faulty(FNDP).

We denote the cluster (nodes and its links) to be a simple undirected graph G = (V, E), where
E = {(vi, vj) : ∀vi, vj ∈ V, sl(vi, vj) = Healthy}. As shown in Figure 3, with the help of evaluation

model, a node vi can build a group of subgraphs G′(vi) = (V, E′(vi)) and G′(vi) = (V, E′(vi)) with
the result of Evaluation model. Similar to the relationship between sl and s′l , E′ (and also E′) is the
observation of E. If an edge is in the set E′, the evaluation result of this link is Healthy. As for edges
existing in E′, their evaluation results are Unhealthy. If an edge (vi, vj) is neither in E′(vi) nor in E′(vi),

its evaluation result is Pending. Formally, E′ and E′ are defined as follows:

E′(vi) := {(vi, v) : ∀v ∈ V, s′l(In(vi, v)) = Healthy}, (8)

E′(vi) := {(vi, v) : ∀v ∈ V, s′l(In(vi, v)) = Unhealthy}. (9)

Next, we present some definitions about the node state.

Global

Node 5Node 4Node 3Node 2Node 1

5

2

1

3
4

5

2

1

3
4

5

2

1

3
4

5

2

1

3
4

5

2

1

3
4

5

2

1

3
4

5

Legend

Healthy

Unhealthy

Pending

Figure 3. Example of global connectivity graph and sub connectivity graphs. In this example,
E′(v3) = {(v3, v2)} and E′(v3) = {(v3, v1), (v3, v4)}

Definition 3. Healthy node set. W is the healthy node set if and only if the following 3 conditions are satisfied:
(1) ∀v1, v2 ∈W, (v1, v2) ∈ E; (2) |W| > [V

2]; (3) 6 ∃v ∈ V s.t. ∀vh ∈W, (v, vh) ∈ E.

Definition 4. Healthy node. A node v is Healthy if and only if v ∈W.

Lemma 1. When a cluster is normally working, if a node vi is healthy, the degree of vi in G must be greater
than [|V|2]− 1.

(1), sn(vi) = Healthy⇒ deg(vi) >

[
|V|
2

]
− 1 (10)

Proof. Let Vh := {v : v ∈ V, sn(v) = Healthy}, V′h := Vh \ {vi}. Because of (1), we have |Vh| >
[
|V|
2

]
,

and according to the definition of V′h, we have:

|V′h| >
[
|V|
2

]
− 1 (11)

With Definition 4, we have deg(vi) = |V′h| − 1. Combining with (11), we have deg(vi) > [|V|2]− 1.

Sensors 2018, 18, 320 13 of 26

Lemma 2. A node vi is unhealthy, if and only if the degree of vi in G must lower than [|V|2].

(1), sn(vi) = Unhealthy⇔ deg(vi) < [
|V|
2

] (12)

From Lemma 1 we see that the condition that deg(vi) > [|V|2]− 1 is only the necessary but not the
sufficient condition of that vi is healthy. However, these nodes with degree greater than half of the
cluster size are also potentially healthy, which may need further determination. Thus, we make a new
definition with this kind of nodes to be PendingHealthy.

Definition 5. If the degree of a node v in G is greater than [|V|2]− 1, we say that it is PendingHealthy.

deg(vi) > [
|V|
2

]− 1⇔ vi is PendingHealthy (13)

Particularly, when the transitivity is applicable, if a node is PendingHealty, it must be Healthy.

Theorem 1. When the transitivity is applicable, if a node is PendingHealthy, it is Healthy. This can be
expressed as:

(1), (2), deg(vi) > [
|V|
2

]− 1⇒ sn(vi) = Healthy (14)

Proof. We let V′h := {v : v ∈ V, sl(vi, v) = Healthy} ∪ {vi}. For any two remote nodes vj and vk in V′h,
according to the transitivity (2), the link quality of vj to vk can be inferred by the local node vi, which
can be expressed as:

∀vj, vk ∈ V′h \ {vi}, sl(vj, vk) = Healthy (15)

Because the local node vi is PendingHealthy, the degree of vi is greater than [|V|2]− 1 so that the

size of V′h is greater than half of the cluster’s size: |V′h| > [|V|2]. (15) means that the nodes in |V′h| are
fully connected. Combine with Definition 4, the state of vi is Healthy, i.e., sn(vi) = Healthy.

We use the following 3 modules to solve the problem of SCP, LUP and FNDP. They are used to
check the state of local node, ensure the uniqueness of leader, construct a global G′ as an approximation
of graph G and remove faulty nodes based on G′, respectively.

4.2.1. Self-Checking Module

At any time, a faulty node should not be selected as the leader. However, the evaluation model or
other failure detection mechanisms cannot sense which side, i.e., whether themselves or their peers, is
faulty. We thereby design this module to do self-checking and if one’s self-checking procedure indicates
that itself is faulty, it will abandon all the next steps and report this issue to the upper applications.
More specifically, this module proposes the indicator Iv and the function of s′n.

With the basis of Lemma 1, Lemma 2 and Definition 5, we come up with the idea of this module
that, if the majority of the nodes in the cluster announce that v f (v f ∈ V) is the faulty one using
the evaluation module, v f should be unhealthy. Although it is possible that all the announcers are
unhealthy, however, in that case we can say that most of the nodes in the cluster have failed so that the
cluster is totally out of function and it would be meaningless to discuss the reliability and availability.
On the contrary of the condition of unhealthy, if the majority ones believe that vw is healthy, vw should
be healthy although it is actually PendingHealthy which we have already discussed about.

Sensors 2018, 18, 320 14 of 26

This idea can then be described as:

Iv(vi) := {v : v ∈ V \ {vi}, (v, vi) ∈ E′(v)},

Iv(vi) := {v : v ∈ V \ {vi}, (v, vi) ∈ E′(v)},

s′n(Iv) =

Unhealthy, |Iv| > [|V|2],

Healthy, |Iv| > [|V|2]− 1,

Pending, otherwise.

(16)

Unfortunately, the self-checking process is performed in vi, who has no knowledge about E′(v)
and E′(v), ∀v ∈ V \ {vi}. We thereby consider that sl(v, vi) = sl(vi, v). Because s′l(In(v, vi)) = sl(v, vi)

is expected, s′l(In(vi, v)) = s′l(In(v, vi)) is also expected due to transitivity. Combine with (8) and (9),
we have the following theorem:

Theorem 2. If (vi, vj) ∈ E′(vi) then (vj, vi) ∈ E′(vj) and if (vi, vj) ∈ E′(vi) then (vj, vi) ∈ E′(vj).

With Theorem 2, the function of s′n can be easily calculated locally because (16) can be converted to:{
Iv(vi) = {v : v ∈ V \ {vi}, (vi, v) ∈ E′(vi)},

Iv(vi) = {v : v ∈ V \ {vi}, (vi, v) ∈ E′(vi)}.
(17)

If the self-checking result is healthy, this node should go forward to leader determination module.
Otherwise, the node may suffer from network failure and it should handle this issue. If the result is
pending, the node may do nothing but wait for more reliable link evaluation results.

4.2.2. Leader Determination Module

This module is to make healthy nodes find the cluster leader without election, i.e., find the
function rc. Recall Table 1 (f), each node is given a unique id by function h(v). With the help of this
function, the main idea of this module can be described as choosing the node from the healthy set with
the minimal unique id to be the leader. Therefore, we define the basic candidate rule rc to be:

rc(vi, vj) =

{
TRUE, i f f s′n(Iv(vj)) = Healthy,

FALSE, otherwise.
(18)

However, in this case of the basic candidate rule, we can find that one vi must obtain all remote
nodes’ healthy states, i.e., s′n(Iv(vj)) for all vj ∈ V \ {vi}, which cannot be directly acquired locally.
For this reason, an approach is needed to get or infer the status of remote nodes. Here we need to
consider about the transitivity. Recall Section 3.2, this property is applicable in most cases but do have
exceptions. Hence, we propose two different approaches classified by the applicability of this property.

The first approach is to infer healthy states of remote nodes. In the most common conditions that
transitivity is applicable, the two following theorems that can be proved:

Theorem 3. When transitivity is applicable, for an arbitrary node vt, if it has a healthy link that connected to a
healthy node vs, vt must be healthy. This can be formulated as:

∀vs, vt ∈ V :

{
sn(vs) = Healthy

sl(vs, vt) = Healthy

}
⇒ sn(vt) = Healthy

Sensors 2018, 18, 320 15 of 26

Proof. Because sn(vs) = Healthy, according to Definition 4, we have:

∃V′h s.t.

|V′h| > [

|V|
2

]− 1,

nodes in V′h are fully connected,

vs ∈ V′h.

(19)

Combine with (19), transitivity (2), and the fact that sl(vs, vt) = Healthy, it can be inferred that
∀v ∈ V′h \ {vt}, sl(v, vt) = Healthy. Thus, we have:

deg(vt) > [
|V|
2

]− 1 (20)

According to Theorem 1 and (20), the state of vt can be demonstrated: sn(vt) = Healthy.

Lemma 3. (With transitivity) For three nodes vi, vj and vk, if the link state from vi to vj is Healthy and that
from vi to vk is Unhealthy, it can be inferred that the link state from vj to vk is Unhealthy. This lemma can be
formulated to:

∃vi, vj, vk ∈ V s.t.

{
sl(vi, vj) = Healthy

sl(vi, vk) = Unhealthy

}
⇒ sl(vj, vk) = Unhealthy

Theorem 4. (With transitivity) For two nodes vs and vt, if the state of vs is Healthy, and the link between vs

and vt is Unhealthy, it can be inferred that the state of vt is Unhealthy.

∃vs, vt ∈ V s.t.

{
sn(vs) = Healthy

sl(vs, vt) = Unhealthy

}
⇒ sn(vt) = Unhealthy

Theorem 4 can be proved similar to the proof of Theorem 3.

Proof. According to Lemma 3 and (19), because the link status sl(vs, vt) = Unhealthy, we have inferred
that ∀v ∈ V′h : sl(v, vt) = Unhealthy, which also can be expressed as deg(vt) < [|V|2]. Combine with
Lemma 2, we can conclude that sn(vt) = Unhealthy.

With Theorems 3 and 4, the state of a remote node can be easily inferred from the link evaluation
results. In short, when the transitivity is applicable, if the state of a link starts with a healthy node
is healthy, the destination remote node is in state of healthy. Hence the candidate rule rc can be
redefined to:

rc(vi, vj) =

{
TRUE, i f f s′l(In(vi, vj)) = Healthy,

FALSE, otherwise.
(21)

The second approach is fetching healthy states from remote nodes. In the condition that the
transitivity is not applicable, we have to fetch all the partial topologies from remote nodes and combine
them to a global topology. This helps us to choose a unique leader in this module and further help to
do execution in the next module.

Recall the very first of this section, partial topology in node vx are denoted by a group of directed
graphs G′(vx) = (V, E′(vx)) and G′(vx) = (V, E′(vx)) and the global topology is denoted by an
undirected graph G = (V, E). For an arbitrary healthy node vi, the target of this module is to fetch the
remote partial G′(v) for v ∈ V − {vi}, and combine these G′(v) to an undirected graph G′ = (V, E′)
which is expected to be equal to G. When a node successfully constructs G′, it will be able to calculate
the states of nodes using the approach provided in Self-Checking module. The candidate rule can then
be defined as:

Sensors 2018, 18, 320 16 of 26

rc(vi, vj) =

{
TRUE, degG′(vj) > [|V|2]− 1,

FALSE, otherwise.
(22)

To introduce our approach in detail, we here make definitions on Healthy observation set and
Unhealthy observation set of nodes.

Definition 6. Healthy observation set of an arbitrary node vx is the set of nodes that the link between them and
vx is healthy, which can be expressed as Sh(vx) :=

{
v : v ∈ V \ {vx}, sl(vx, v) = Healthy

}
.

Definition 7. Unhealthy observation set is defined as vx: Sh(vx) :=
{

v : v ∈ V \ {vx}, sl(vx, v) = Unhealthy
}

.

For implementation, we also use s′l(In(vi, vj)) to approximate sl(vi, vj) in order to obtain the
observed Sh and Sh in each node.

To combine the partial topologies into a global topology, we have to deal with the following issues
(suppose the local node is vl). First, vl fetches partial topologies from the nodes in Sh(vl) directly.
Then, vl asks for partial topologies of unreachable nodes, i.e., nodes in Sh(vl), with the help of nodes
in Sh(vi). While fetching partial topologies, handle the ask timeout. While combining the partial
topologies, check for and resolve the conflict state of a certain edge from two sides of nodes. Finally,
give the combination result.

Algorithms 2–4 shows the full workflow of this module.
Algorithm 2 shows the workflow of fetching and combining process. This process is started

by the initiator who tries to acquire the global topology. It first initializes a pair of mutable graphs
(G ′,G ′), which will eventually hold the combination result, i.e., global graph; a mutable set Vseen, which
indicates whose sub connectivity graphs have been combined into the the intermediate G ′ and G ′, an
immutable Healthy observation set Sh. For all nodes in Sh ∩Vt, it sends a AskTopo RPC to these nodes.
If a ReplyTopo is replied, try to merge the replied graph G′(vr), G′(vr) with G ′,G ′. If merging process
succeeded, combine the returned seen set V′seen with the local seen set Vseen. If merging process failed,
stop the fetching and combining process immediately and report the conflict issue. If no ReplyTopo is
replied, mark the edge from the local node to this remote node as Unhealthy and also add this remote
node into seen set.

Algorithm 4 shows the workflow when a node receives a AskTopo RPC. If the sender of this
RPC asks for aid to grab sub connectivity graphs from other nodes in Sr

h (because the sender cannot
connect to these nodes), the receiver will invoke FetchAndCombine and set the parameter Vt to
be Sh ∩ Sr

h. If Vt = ∅, the FetchAndCombine will do nothing but return its own sub graph. After
FetchAndCombine process is completed, the receiver will pack the combine result into ReplyTopo
message and send back to the sender of AskTopo RPC.

Sensors 2018, 18, 320 17 of 26

Algorithm 2: Fetching and combining algorithm. FetchAndCombine(V, vl , G′, G′, Vt, Vaid).

Input:
the node set V
local node vl
its sub connectivity graph G′(vl) = (V, E′(vl)), G′(vl) = (V, E′(vl))

node set Vaid that need others help to fetch.

Initialize:
E ′ ← E′(vl), G ′ ← (V, E ′)
E ′ ← E′(vl), G

′ ← (V, E ′)
Vseen ← {vl}
Sh ← V \ E′(vl)

for vr ∈ Sh ∩Vt do
Send a RPC AskTopo(vl , Vaid) to vr

if Got the ReplyTopo(G′(vr), G′(vr), Vr
seen) then

(G ′,G ′, status)← Merge(G ′,G ′, Vseen, G′(vr), G′(vr), Vr
seen)

if status 6= success then
return (∅, ∅), (∅, ∅), con f lict

else
Vseen ← Vseen ∪Vr

seen

else
Vseen ← Vseen ∪ {vr}
E ′ ← E ′ ∪ (vl , vr)

return G ′,G ′, success

Algorithm 3: Merging algorithm. Merge(G1, G1, Vseen
1 , G2, G2, Vseen

2).

Input:
first and second graph to merge G1, G2; G1, G2

first and second observers set Vseen
1 , Vseen

2

Initialize:
E ′ ← ∅, G ′ ← (V, E ′)
E ′ ← ∅, G ′ ← (V, E ′)

for e ∈ Vseen
1 ×Vseen

2 do
if (e ∈ G1 and e ∈ G2) or (e ∈ G2 and e ∈ G1) then

return (∅, ∅), (∅, ∅), con f lict

else
if e ∈ G1 or e ∈ G2 then
E ′ ← E ′ ∪ {e}

if e ∈ G1 or e ∈ G2 then
E ′ ← E ′ ∪ {e}

return G ′,G ′, success

Sensors 2018, 18, 320 18 of 26

Algorithm 4: Replying algorithm.

Input:
the node set V
local node vl
its sub connectivity graphs G′(vl) = (V, E′(vl)), G′(vl) = (V, E′(vl))

RPC message AskTopo(vr, Sr
h)

Initialize:
E ′ ← E′(vl), G ′ ← (V, E ′)
E ′ ← E′(vl), G

′ ← (V, E ′)
Sh ← V \ E′(vl)

(G ′f ,G f
′
, status)← FetchAndCombine(V, vl, G′(vl), G′(vl), Sh ∩ Sr

h, ∅)

if status = success then
return ReplyTopo(G′f , G f

′, {vl} ∪ Sh ∩ Sr
h)

else
return ReplyTopo(G ′,G ′, {vl})

Generally speaking, the workflow is that, the initiator vi starts the fetching process by calling
FetchAndCombine(V, vi, G′(vi), G′(vi), Sh(vi), Sh(vi)), which will send AskTopo RPCs to all reachable
remote nodes. This will trigger the process of Algorithm 4 in all these remote nodes. All the receivers
then try to reply to vi ReplyTopo messages containing their sub connectivity graphs and possibility
containing the sub connectivity graphs of nodes cannot be reached by the sender. The function of
FetchAndCombine will call the function Merge, which is presented in Algorithm 3, to merge different
sub graphs after checking and resolving the conflict. Our default conflict resolving policy is that: if two
sides give the detection result of an edge as a Pending and a non-Pending, the resolving result will be
the non-Pending result; if two sides give the detection result of an edge as two different non-Pending
results, the merging process will stop and give out the result of “conflict”.

For example, if vi and vj detects the edge (vi, vj) to be Healthy and Pending, respectively, after
merging, the edge will be marked as Healthy which is to say the edge will appeared in the Healthy
edge set E′; if vi and vj detects the edge (vi, vj) to be Healthy and Unhealthy, respectively, merging
will be interrupted. Table 4 shows the detail of this policy.

Table 4. Edge merging policy.

Edge State 1 Edge State 2 Merge Result

Healthy Healthy Healthy
Unhealthy Unhealthy Unhealthy

Healthy Pending Healthy
Unhealthy Pending Unhealthy

Pending Pending Pending
Healthy Unhealthy Conflict

4.2.3. Leader Execution Module

Leader node chosen by the former module uses leader execution module to find the set of VR and
removes these nodes in VR from the cluster. Then, for a leader node vl and an arbitrary remote node
vx, the downing rule can be described as follows:

rd(vl , vx) =

{
TRUE, iff vx ∈ VR,

FALSE, otherwise.
(23)

Sensors 2018, 18, 320 19 of 26

We construct VR based on the idea that after the execution, the rest of the nodes can normally
transmit data with each other, which is to say they form a complete graph from the perspective of
graph theory. So we abstract the objective of this module to be (1) find a maximal clique, with best

effort, a maximum clique, of G′, which means finding a subgraph K′p =

(
Vm,

(
Vm

2

))
of G′ with

maximal or maximum nodes satisfying the condition that K′p is a complete graph; (2) let VR := V \Vm.
The MCP (max clique problem) is a NP-Complete problem [24]. Therefore, we need an algorithm

to reduce the computing complexity to make our algorithm available in big clusters. In this section,
according to the applicability of transitivity, we propose two algorithms for each case. In the first case
with the property, our algorithm will always find a max clique with the computing complexity of
O(|V|). While in the second case without the property, we propose simple heuristic algorithm that
will find a maximal (maybe max) clique with the computing complexity of O(|V|2).

The first scenario is that the transitivity is applicable. In this case, the leader vl can find a max
clique by a very simple policy of:

let Vm ←
{

v : v ∈ V \ {vl}, (vl , v) ∈ E
}
∪ {vl},

Kp =

(
Vm,

(
Vm

2

))
, where p = |Vm|.

(24)

This is because the theorem below can be proved.

Theorem 5. With the transitivity, a healthy node and all its peers end with healthy links construct the unique
max clique of the global graph G.

G = (V, E) is an undirected graph.

Sm is a set of max cliques of G.

(2)

∃v s.t. degG(v) > [
|V|
2

]− 1

⇒

(1)|Sm| ≡ 1,

(2)
∃Kp =

(
Vm,

(
Vm

2

))
,

Vm =
{

vx : (v, vx) ∈ E
}
∪ {v} s.t. Kp ∈ Sm.

(25)

Proof. We let Em =

(
Vm

2

)
, VR = V \Vm. We also introduce the notations of Kp, Sm, Vm, Em, G, V, E

in Theorem 5 (25).

Maximal proof:
Because the definition of VR means a set of nodes with unhealthy link state with at least one node

in set Vm, which can be expressed as: ∀v ∈ VR : ∃vh ∈ Vm s.t. (vh, v) 6∈ Em. We can then conclude that
∀v f ∈ VR :, the graph G̃ = (Vm ∪ {v}, Em ∪ {(v f , vh) : vh ∈ Vm, (v f , vh) ∈ E}) is not a complete graph,
which means the graph Kp = (Vm, Em) is a maximal clique of the graph G.

Maximum and unique proof:
We assume that,

∃Kx =

(
Vx,

(
Vx

2

))
, Kx 6= Kp, Vx ⊂ V s.t. x > p, where x = |Vx|. (26)

Sensors 2018, 18, 320 20 of 26

We denote Vp = VR ∩ Vx, Vq = Vm ∩ Vx. If (26) is true, and because p > [|V|2]− 1, we can infer
that Vp 6= ∅, Vq 6= ∅. Then ∃vp, vq, vp ∈ VR, vq ∈ Vm s.t. vp ∈ Kx, vq ∈ Kp. Thus we have,

∃vp, vq, vp ∈ VR, vq ∈ Vm s.t. (vp, vq) ∈ E. (27)

On the other hand, ∀vp ∈ VR, ∃vq ∈ Vm s.t. (vp, vq) 6∈ E. According to Lemma 3, we have the
inference that,

∀vp ∈ VR, ∀vq ∈ Vm, 6 ∃(vp, vq) s.t. (vp, vq) ∈ E. (28)

(27) conflicts with (28), thereby the assumption (26) is false. Thus, 6 ∃Kx 6= Kp s.t. x > p.

Therefore, in this case, the leader node vl can simply construct the global G′ from G′(vl) and
G′(vl) to approximate G. With a loose policy that a leader will not remove a node with the link state of
Pending between them, the G′ can be built with:

G′ = (V, E), E′ =

(
V

2

)
\ E′(vl). (29)

Finally, with (24) and (29), we find the set VR:

VR = {v : (vl , v) 6∈ E′} (30)

The second scenario is that the transitivity is not applicable. In this case, we propose an
easy-understanding, easy-implementing algorithm that will always find a maximal clique Kp of
G. Our idea is that, from the Self-Checking module, we can see that the healthy state of a node vx

has strong correlation with deg(vx). We therefore iteratively remove the node v f with worst state, i.e.,
minimal deg(v f) until the rest of the nodes are fully connected. Algorithm 5 shows the process of this
algorithm in details.

Algorithm 5: Finding a maximal clique.

Input: global graph G = (V, E)
Initialize:

Kp = (Vp, Ep)← G
Vf ← ∅

while |Ep| <
|Vp |(|Vp |−1)

2 do
Rcand ← {v : v ∈ Vp, degKp(v) = min

vi∈Vp
deg(vi)}

v f ← a random v ∈ Rcand
Vp ← Vp \ {v f }
Ep ← Ep \ {(v, v f) : v ∈ Vp \ {v f }, (v, v f) ∈ Ep}
Vf ← Vf ∪ {v f }

for v f ∈ Vf do
if ∀vh ∈ Vp s.t. (v f , vh) ∈ E then

Ep ← Ep ∪ {(v f , v) : v ∈ Vp}
Vp ← Vp ∪ {v f }

if |Vp| < [|V|2] then
Alert and prevent this leader execution.

Output: Kp

Sensors 2018, 18, 320 21 of 26

After the leader get the clique Kp =

(
Vm,

(
Vm

2

))
, it will find the set VR to be:

VR = {v : v 6∈ Vm} (31)

5. Performance Evaluation

5.1. Simulation Setup

5.1.1. Baseline Methods

We compare our evaluation model with four algorithms as follows: (1) Φ accrual failure
detector (PFD) [8] is a commonly used adaptive failure detector, which assumes that the interval
of heartbeat responses follows normal distribution. Specifically, they define a metric of link state
φ by φ = − log10(1− F(timeSinceLastHeartbeat)), where F is the cumulative distribution function
of a normal distribution with mean and standard deviation estimated from historical heartbeat
inter-arrival times. By comparing φ with a threshold Tφ, it gives out the state of a link. (2) Exponential
Distribution Failure Detector (EDFD) is an adaptive failure detector [9], which assumes the interval
of heartbeat responses follows exponential distribution. Specifically, it defines a metric of link state

Ed by Ed = F(timeSinceLastHeartbeat), where F(t) = 1− e−
1
µ t. By comparing Ed with a threshold Ted,

it gives out the state of a link. (3) 2WFD is an adaptive failure detector [10] that optimizes the Chen
FD [7]. It uses two windows with different sizes, i.e., size of n1 and n2, to store the interval of recent
heartbeats. By comparing current time Tnow and the predicted time τl+1 = max(EAn1

l+1, EAn2
l+1) + α, it

gives out the state of a link. In the formula above, EAn1
l+1 and EAn1

l+1 are the next heartbeat exptected
time calculated from the two windows respectively. (4) Calculating the coefficient of variation of
network latency is an approach to evaluate the severity of packet loss rate of a link. It quantifies the
jitter C by calculating the coefficient of variation of the collected RTTs. The coefficient of variation is
calculated by: C = σ

µ , where σ stands for the standard deviation, and µ stands for the mean value. By
comparing C with a threshold Tc, it gives out the state of a link. We denote this algorithm as CV. Also,
we denote our proposed algorithm as AV.

We also compare our system-level testing results with a simulated controller cluster. In the
simulated controller cluster, we implement a cluster of nodes which uses the original Downing
mechanism, namely AutoDown, which we have already discussed before (Recall Table 2).

5.1.2. Evaluation Metrics

In order to measure the correctness of the link evaluation methods compared with the true link
state, we use a well-established and widely-used metric in binary classification to quantify the detection
accuracy, i.e., F1-score [25]. Specifically, F1-score is defined based on precision rate and recall rate [25].
Precision rate can be expressed as P(Mh, Nh) = Mh

Nh
. We denote Mh to be the number of healthy

markers on a healthy link while Nh is the number of evaluations on this link. Then, recall rate can be

expressed as R(M f , N f) =
M f
N f

. We denoteM f to be the number of unhealthy markers on a unhealthy
link while N f is the number of evaluations on this faulty link. Based on them, F1 score is defined as:
F1 = 2×P×R

P+R . A higher F1 score indicates a better performance on an evaluating approach.
To measure the performance of system-level testing results, we focus on the detection rate and

mis-kicking rate. The detection rateRD indicates the speed to detect and remove faulty nodes in the
cluster. Because in our testing environment, once a faulty node is kicked, it will restart immediately

and it takes about Tsetup = 2 min to startup. We then define the detection rate to beRD =
N f r×Tsetup
S f×Trun

,
where S f denotes how many faulty nodes are there in this test case, N f r denotes how many times faulty
nodes being removed and Trun denotes the total testing duration of this test. The mis-kicking rate Rk
indicates the severity of incorrect Downing process which causes healthy nodes being removed from

Sensors 2018, 18, 320 22 of 26

the cluster. We define the mis-kicking rate to beRk =
Nr−N f r
Nr

, where Nr denotes the total quantity of
downing actions. A higherRD and a lowerRk indicate a better performance.

5.1.3. Simulation Scenarios

We run three groups of experiments to check the accuracy of our algorithm compared with
baseline methods. In the first group of experiment, we compare the precision-recall and F1 score
with fixed optimized parameter and varying packet loss rate. In the second group of experiment, we
compare the precision-recall and F1 score with a fixed packet loss rate and varying parameters, i.e.,
number of records of RTT and thresholds. In the last group, we apply our algorithm on a real-world
product and compare the result with the baseline method.

5.2. Evaluation Results

5.2.1. Adaptability of Environment

We present the link evaluation results with varying packet loss rate of the three algorithms in
Figure 4. This group of experiment indicates the adaptability of each algorithm with different packet
loss rates. We fix the parameters of each algorithm. The parameters of each algorithm are set as follows.
For PFD, the size of historical heartbeats is set to 100, and the threshold Tφ is set to 0.45. For EDFD, the
size of historical heartbeats is set to 1000, and the threshold Ted is set to 0.65. For 2WFD, the size of
large window n1 is set to 2000, the size of small window n2 is set to 10, and the decision time α is set
to 0.

For AV and CV, Nw (number of records) is set to 30. The thresholds for AV are: Tsa f e = 0.6,
Talert = 1.5. The threshold for CV is Tc = 1.0. From the results, we can observe that our algorithm
achieves the highest F1 score in each network environment, which proves that our evaluation method
is accurate in detecting the severity of different packet loss rates.

2.5 5 7.5 10 12.5 15

Packet loss rate (%)

0

0.2

0.4

0.6

0.8

1

F
1

 S
c
o

re

PFD

EDFD

2WFD

CV

AV

Figure 4. Performance of Evaluation model vs. packet loss rates.

5.2.2. Impact of Parameters

Figure 5 shows the impact of parameters on the performance of each algorithm. In this group of
experiment, we fix the packet loss rate to 12.5%. Figure 5a shows the result with varying thresholds.
We select 4 groups of typical thresholds for each algorithm. Table 5 shows the thresholds we use.
We fix the size of historical heartbeats of PFD, EDFD, 2WFD the same as the latter group of experiment,
and fix the length of records Nw of AV and CV to be 30. Figure 5b shows the result with varying record

Sensors 2018, 18, 320 23 of 26

sizes. We check four different groups of sizes of records and fix the other parameters as same as the
former experiment (Adaptability of Environment).

Table 6 shows the count of records we use in this group of experiment.
Results show that, with different parameters, the performance of our algorithm is higher than the

other four algorithms. Specifically, the accuracy can be improved by adjusting the number of records
Nw to higher values.

1 2 3 4

Group of thres(#)

(a) Performance vs thresholds

0

0.2

0.4

0.6

0.8

1

F
1

 S
c
o

re

PFD

EDFD

2WFD

CV

AV

1 2 3 4

Group of window size(#)

(b) Performance vs #records

0

0.2

0.4

0.6

0.8

1

F
1

 S
c
o

re

PFD

EDFD

2WFD

CV

AV

Figure 5. Performance of Evaluation model vs. parameters.

Table 5. Thresholds used by experiment on parameters.

Algorithm Threshold #1 Threshold #2 Threshold #3 Threshold #4

PFD φ = 0.05 φ = 0.25 φ = 0.45 φ = 1.5
EDFD Ted = 0.6 Ted = 0.7 Ted = 0.8 Ted = 0.9
2WFD α = 0 α = 10 ms α = 20 ms α = 30 ms

CV Tc = 0.6 Tc = 1.0 Tc = 1.5 Tc = 2.0

AV
Tsa f e = 0.6
Talert = 1.5

Tsa f e = 1.0
Talert = 3.0

Tsa f e = 1.5
Talert = 6.0

Tsa f e = 2.0
Talert = 10.0

Table 6. Window sizes used by experiment on parameters.

Algorithm Record Size #1 Record Size #2 Record Size #3 Record Size #4

PFD 100 500 1000 2000
EDFD 100 500 1000 2000

2WFD
n1 = 100

n2 = 1
n1 = 1000

n2 = 1
n1 = 1000

n2 = 10
n1 = 2000

n2 = 10
CV 10 30 60 400
AV 10 30 60 400

Results of Real-world Testing To test and verify the reliability of our algorithm, we apply the
algorithm on a product named AgileController. This product is provided by Huawei Inc. It is
developed based on a famous open source SDN controller, i.e., OpenDaylight. OpenDaylight supports
the feature of constructing a SDN controller cluster to provide most of the advantages brought
by distributed systems. Specifically, the OpenDaylight project adopts Akka cluster service, which
provides a decentralized and gossip protocol-based membership management service. Thus, we
implement PingBasedDown algorithm as a plugin of Akka, and hook this plugin into this product.
The AgileController has the ability to automatically restart if it is shut down. The startup process
takes about 2 min if restarted. We first construct a cluster of AgileControllers containing several nodes
in their simulated production environment. Then we injure failures into some of these nodes with
various packet loss rate by the tool named TC of linux operating system. During testing, if one node

Sensors 2018, 18, 320 24 of 26

is removed by a leader, a log containing the information of this removing action, e.g., who is being
removed, is generated. After a relatively long period of time, we collect the logging data and calculate
RD andRk of each test.

The scenario of our simulated production environment is that, each controller runs in a virtual
machine. The hosts of these virtual machines are within the same data center with network bandwidth
of 1 Gbps. The average transmission delay is around 400 µs. The physical jitter of the network latency is
low but the garbage collection process in JVM causes extra jitter when measuring the latency. Based on
this environment, we set the parameters of PingBasedDown algorithm as follows. The length of
records Nw is set to be 30, filter strength FS is set to be 0.15, latency positioning factor Lpos is set to be
0.2, and the two thresholds Talert, Tsa f e are set to be 17.0 and 2.0, respectively.

During 8 days, we do 15 groups of testing that cover different numbers of nodes, different packet
loss rates, different numbers of faulty nodes. To show the benefit of our proposed algorithm, we also
provide 6 groups of results with AutoDown algorithm. Table 7 shows the results of this experiment
using PingBasedDown algorithm, while Table 8 shows the results using the original AutoDown
mechanism provided by Akka. For example, the 7th row in Table 7 means that, we run this group
of test with a cluster with 5 nodes. The 1st node and the 3rd node (ordered by h(v) ascendingly)
are injured with packet loss failures, and the packet loss rate is set to 15% and 40%, respectively.
The result of this group is that, the detection rate RD reaches 61.3% and the mis-kicking rate Rk is
0.0%. Compared with the baseline method, we can see that when the packet loss rate is as low as
15%, theRD of AutoDown is less than 9.1%, while that of our algorithm ranges from 44.7% to 54.4%.
This indicates that our algorithm can detect nodes with packet loss issues faster than AutoDown.
TheRk of AutoDown ranges from 8.9% to 48.1%, which indicates a poor performance on the accuracy
of downing action. With our algorithm, the Rk in all test cases reach a perfect low rate 0.0%, which
means that each removing action removes only faulty nodes. Therefore, we can conclude that the
results prove the effectiveness and robustness of our proposed algorithm.

Table 7. The system-level testing results. Each group is tested for 12 h.

Size of Cluster Faulty Nodes Packet Loss Rate (%) Detection Rate RD (%) Mis-Kicking Rate Rk (%)

5 1 15 44.7 0
5 1 25 58.3 0
5 1 40 61.9 0
5 1, 3 15, 15 47.5 0
5 1, 3 25, 25 58.6 0
5 1, 3 40, 40 60.2 0
5 1, 3 15, 40 61.3 0
5 1, 3 25, 40 60.8 0
5 1, 3 15, 25 57.5 0
7 1, 2, 3 15, 15, 15 54.4 0
7 1, 2, 3 25, 25, 25 56.1 0
7 1, 2, 3 40, 40, 40 66.4 0
7 1, 2, 3 15, 40, 25 63.1 0
7 1, 2, 3 40, 40, 15 67.2 0
7 1, 2, 3 25, 25, 40 58.3 0

Sensors 2018, 18, 320 25 of 26

Table 8. The system-level testing results with the original AutoDown mechanism of Akka. Each group
is tested for 6 h .

Size of Cluster Faulty Nodes Packet Loss Rate (%) Detection Rate RD (%) Mis-Kicking Rate Rk (%)

5 3, 4 15, 15 5.0 29.4
5 3, 4 25, 25 32.3 43.4
5 3, 4 40, 40 31.9 8.9
7 4, 5, 6 15, 15, 15 9.1 27.8
7 4, 5, 6 25, 25, 25 50.2 48.1
7 4, 5, 6 40, 40, 40 57.7 33.0

6. Conclusions

In this work, we propose an algorithm that consists of Evaluation model and Decision model.
This algorithm solves the problem of reduced availability in decentralized clusters when nodes occur
to randomly drop packets. Driven by the application layer data, the Evaluation model estimates the
link and gives relatively accurate evaluation on link quality. With the link evaluations, the Decision
model further identifies the only leader. By modeling the cluster to a simple undirected connectivity
graph, the leader finds a max clique of this graph. Then, the leader removes the nodes which are not in
this clique in which way to make the cluster more stable and available. Classified by the applicability
of transitivity, we simplified the NP-Complete maximum clique problem to a linear and a square
complexity algorithm. We then evaluate our algorithm with statistical data. Moreover, we implement
our solution and adopt it in a real-world product. All these results show that our approach is highly
adaptable and available.

Author Contributions: Hangyu Fan designed the PingBasedDown algorithm, implemented the link evaluation
model and decision model, collected and conducted analysis of the experimental data and did the comparative
experiment. Huandong Wang investigated the related work, implemented different kinds of failure detection
algorithms as baseline methods and helped to formulate the system into the mathematical model. Yong Li helped
to provide the simulated production environment in Huawei Inc. and to polish the language and expression of
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wikipedia. Computer Cluster—Wikipedia, The Free Encyclopedia. Available online: https://en.wikipedia.
org/w/index.php?title=Computer_cluster&oldid=802238893 (accessed on 20 October 2017).

2. Kahani, M.; Beadle, H.W.P. Decentralised approaches for network management. ACM SIGCOMM Comput.
Commun. Rev. 1997, 27, 36–47.

3. Xiong, N.; Yang, Y.; Cao, M.; He, J.; Shu, L. A survey on fault-tolerance in distributed network systems.
In Proceedings of the IEEE International Conference on Computational Science and Engineering (CSE’09),
Vancouver, BC, Canada, 29–31 August 2009; Volume 2, pp. 1065–1070.

4. Sari, A.; Akkaya, M. Fault tolerance mechanisms in distributed systems. Int. J. Commun. Netw. Syst. Sci.
2015, 8, 471–482.

5. Renesse, R.V.; Minsky, Y.; Hayden, M. A Gossip-Style Failure Detection Service; Springer: London, UK, 1998;
pp. 55–70.

6. Bertier, M.; Marin, O.; Sens, P. Implementation and Performance Evaluation of an Adaptable Failure
Detector. In Proceedings of the IEEE International Conference on Dependable Systems and Networks (DSN),
Washington, DC, USA, 23–26 June 2002; pp. 354–363.

7. Chen, W. On the quality of service of failure detectors. IEEE Trans. Comput. 2002, 51, 13–32.
8. Hayashibara, N.; Dfago, X.; Yared, R.; Katayama, T. The φ Accrual Failure Detector. In Proceedings of the

23rd IEEE International Symposium on Reliable Distributed Systems, Florianpolis, Brazil, 18–20 October
2004; pp. 66–78.

https://en.wikipedia.org/w/index.php?title=Computer_cluster&oldid=802238893
https://en.wikipedia.org/w/index.php?title=Computer_cluster&oldid=802238893

Sensors 2018, 18, 320 26 of 26

9. Xiong, N.; Vasilakos, A.; Yang, Y.; Wei, S.; Qiao, C.; Wu, J. General Traffic-Feature Analysis for an Effective Failure
Detector in Fault-Tolerant Wired and Wireless Networks; Technical Report; Georgia State University: USA, 2011.

10. Tomsic, A.; Sens, P.; Garcia, J.; Arantes, L.; Sopena, J. 2W-FD: A failure detector algorithm with QoS.
In Proceedings of the Parallel and Distributed Processing Symposium, Hyderabad, India, 25–29 May 2015;
pp. 885–893.

11. Liu, J.; Wu, Z.; Wu, J.; Dong, J.; Zhao, Y.; Wen, D. A Weibull distribution accrual failure detector for cloud
computing. PLoS ONE 2017, 12, e0173666.

12. Turchetti, R.C.; Duarte, E.P.; Arantes, L.; Sens, P. A QoS-configurable failure detection service for internet
applications. J. Internet Serv. Appl. 2016, 7, 9.

13. Ganesh, A.J.; Kermarrec, A.M.; Massoulie, L. Peer-to-peer membership management for gossip-based
protocols. IEEE Trans. Comput. 2003, 52, 139–149.

14. Akka. Akka Introduction. Available online: https://doc.akka.io/docs/akka/current/scala/guide/
introduction.html (accessed on 20 October 2017).

15. Sommers, J.; Barford, P.; Duffield, N.; Ron, A. A geometric approach to improving active packet loss
measurement. IEEE/ACM Trans. Netw. 2008, 16, 307–320.

16. Wu, H.; Gong, J. Packet Loss Estimation of TCP Flows Based on the Delayed ACK Mechanism; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 540–543.

17. Basso, S.; Meo, M.; Martin, J.C.D. Strengthening measurements from the edges: Application-level packet
loss rate estimation. ACM 2013, 43, 45–51.

18. Sun, X.; Coyle, E.J. Low-complexity algorithms for event detection in wireless sensor networks. IEEE J. Sel.
Areas Commun. 2010, 28, 1138–1148.

19. Cerulli, R.; Gentili, M.; Raiconi, A. Maximizing lifetime and handling reliability in wireless sensor networks.
Networks 2014, 64, 321–338.

20. Yim, S.J.; Choi, Y.H. An adaptive fault-tolerant event detection scheme for wireless sensor networks. Sensors
2010, 10, 2332–2347.

21. Şinca, R.; Szász, C. Fault-tolerant digital systems development using triple modular redundancy. Int. Rev.
Appl. Sci. Eng. 2017, 8, 3–7.

22. Aysal, T.C.; Yildiz, M.E.; Sarwate, A.D.; Scaglione, A. Broadcast gossip algorithms for consensus. IEEE Trans.
Signal Process. 2009, 57, 2748–2761.

23. Peng, K.; Lin, R.; Huang, B.; Zou, H.; Yang, F. Node importance of data center network based on contribution
matrix of information entropy. J. Netw. 2013, 8, 1248–1254.

24. Feige, U.; Goldwasser, S.; Lovasz, L.; Saila, S.; Szegedy, M. Approximating clique is almost NP-complete.
In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
1–4 October 1991; pp. 2–12.

25. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and
correlation. J. Mach. Learn. Technol. 2011, 2, 37–63.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doc.akka.io/docs/akka/current/scala/guide/introduction.html
https://doc.akka.io/docs/akka/current/scala/guide/introduction.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	blackAkka Cluster
	blackOther Link Failure Detecting Algorithms
	blackPacket Loss Measurement
	blackOther Works About Fault-Tolerance

	System Overview and Problem Formulation
	System Overview
	blackGossip Based Membership
	blackFailure Detection
	blackLeadership
	blackDowning

	blackMathematical Model
	Problem Formulation

	The PingBasedDown Algorithm
	Link Evaluation Model
	Noise Filtering Module
	Jitter Accumulating Module
	Latency Estimating Module
	Normalization Module
	Judgement Module

	Decision Model
	Self-Checking Module
	Leader Determination Module
	Leader Execution Module

	Performance Evaluation
	Simulation Setup
	Baseline Methods
	Evaluation Metrics
	Simulation Scenarios

	Evaluation Results
	Adaptability of Environment
	Impact of Parameters

	Conclusions
	References

