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Abstract

Understanding the linkability of online user identifiers (IDs)

is critical to both service providers (for business intelligence)

and individual users (for assessing privacy risks). Existing

methods are designed to match IDs across two services,

but face key challenges of matching multiple services in

practice, particularly when users have multiple IDs per

service. In this paper, we propose a novel system to

link IDs across multiple services by exploring the spatial-

temporal locality of user activities. The core idea is that

the same user’s online IDs are more likely to repeatedly

appear at the same location. Specifically, we first utilize

a contact graph to capture the “co-location” of all IDs

across multiple services. Based on this graph, we propose

a set-wise matching algorithm to discover candidate ID

sets, and use Bayesian inference to generate confidence

scores for candidate ranking, which is proved to be optimal.

We evaluate our system using two real-world ground-truth

datasets from an ISP (4 services, 815K IDs) and Twitter-

Foursquare (2 services, 770 IDs). Extensive results show

that our system significantly outperforms the state-of-the-

art algorithms in accuracy (AUC is higher by 0.1-0.2), and

it is highly robust against matching order and number of

services.

1 Introduction

Online services are playing critical roles in almost all
aspects of users’ life. It is very common for a user to
have multiple online identifiers (IDs) in different services
such as online social networks (OSN), e-commerce ser-
vices, online games, etc. Users may even have multiple
IDs in a single service, where different IDs are used for
different purposes [11].

Service providers have strong motivations to mas-
sively mining user data for monetization and optimizing
user experience [7]. To capture a more comprehensive
understanding of user behavior, it is increasingly in-
triguing to link user IDs across multiple services to fuse
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the separated data [17,20]. However, from the user per-
spective, linking IDs across services may have privacy
implications since more information are exposed [4,10].

To these ends, understanding the “linkability” of
online IDs is critical to both service providers (for busi-
ness intelligence) and users (for understanding privacy
risks). Early research has explored different ways to link
user IDs by using service-specific data such as user pro-
file attributes [2] and social graphs [6]. However, these
approaches depend on whether these services have the
same data type. For example, e-commerce services often
do not have social graphs to match with an online social
network. Moreover, users may fill in fake information
(e.g., name, gender) in their profiles, which makes the
linkage even harder.

In this paper, we explore a more generic approach
to link user IDs by leveraging the spatial-temporal
locality of user activities. The key intuition is that
no matter what online services a user accesses, we
can bind them to the user’s physical presence, which
is characterized by time and location. This becomes
possible because most online services today have a
mobile version with locations as parts of the service
(e.g., Uber, Yelp, Twiter). In addition, with some
tolerance on granularity, even network accessing related
information can be translated into location [5]. Our goal
is to link multiple online IDs that belong to the same
users across different services. This requires solving
three key challenges that have not be addressed in
existing work [6, 13,14]:

• Service multiplicity: existing methods mainly focus
on linking IDs of two services [8, 13]. In practice,
however, the number of services can easily go over
two. We find that adapting existing methods by
matching services one by one produces unreliable
results (see §5), which is significantly influenced by
the number of services and the matching orders.

• ID multiplicity: users may register more than one
ID in a service [11]. ID matching between two
services should be “set-wise”, i.e., linking a set of
IDs. However, existing methods are designed for
pair-wise ID matching, which fail to capture users’
multiple IDs in a single service [13,14].

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited



• Heterogeneous data quality: since user mobility be-
havior is extremely heterogeneous [8], the quantity
and resolution of location data are drastically dif-
ferent across services. Early works simply filter out
a large number of IDs with low-quality data [6, 13],
which significantly reduces the data coverage and
usability.

To solve these challenges, we propose a contact
graph model for multi-service ID linking. Instead of
matching IDs of just two services in a bipartite graph,
we directly map multiple services and all their IDs into
one big graph. In this graph, each node is an ID (re-
gardless of service), and an edge represents that the
connected IDs visited the same physical location, which
is weighted by the number of co-locations of them. The
high-level intuition is that the users’ daily movements
are fairly predictable with repeated patterns [16]. If
multiple IDs belong to the same user, they are more
likely to be “co-located” to build edges and form distin-
guishable subgraph structures over time.

Based on the contact graph, we propose a Bayesian-
based optimal ID matching algorithm, which identifies
the most probable ID sets that belong to the same phys-
ical user with the target ID. The high-level intuition is
to extract possible candidate sets from neighboring IDs,
and rank candidate sets based on their joint probability
to match the target ID. Then, we propose a Bayesian in-
ference method to obtain the joint probability for rank-
ing candidate sets, which is proved to be optimal.

Our system allows a service provider to match its
own IDs (as target IDs) with multiple other services
simultaneously. The matching is based on “sets”,
capturing users who have multiple IDs in the same
service. In addition, the contact graph includes all IDs
without arbitrarily pre-filtering any data, and produces
a confidence probability for the candidate sets. This
allows applications to make use of the available data
based on specific contexts.

We evaluate our system based on two real-world
ground-truth datasets. One is from a large ISP that
contains 412,455 users (815,117 online IDs) and 31 mil-
lion access records to 4 online services: instant message
(QQ), social network (Weibo), e-commerce (Taobao)
and online review (Dianping). The second dataset con-
tains 24K check-ins from Twitter and Foursquare from
385 users (770 online IDs) [21]. We use the state-of-
the-art pair-wise ID matching algorithms POIS [13] and
WYCI [14] as baselines. The results show that our al-
gorithm significantly outperforms baselines (by 0.1 in
AUC), particularly on users with multiple IDs per ser-
vice (by 0.2 in AUC). We have three novel contributions
summarized as follows:

• First, we propose a generic and optimal ID linking
algorithm utilizing the spatial-temporal locality of
user activities. Our contact graph model achieves
set-wise ID matching for multiple services. The
model effectively captures users with multiple IDs
per service, and mitigates the ordering effect of
multi-service matching.

• Second, we propose a novel Bayesian-based method
to produce confidence probability for ID matching
with proof of optimality. This addresses the chal-
lenge of uneven data-quality across services: in-
stead of arbitrarily pre-filtering low-quality data, our
method keeps all IDs in the matching for maximum
data utilization.

• Third, we evaluate our system based on two real-
world ground-truth datasets. The results show that
our system significantly outperforms the start-of-
the-art in accuracy, and it is robust against number
of services and matching order.

2 Related Work

Applications of ID Linking. A number of
applications can benefit from linking IDs across services.
For example, Zafarani et al. [20] and Yan et al. [17]
leveraged linked IDs across social networks for better
friend recommendations. Kumar et al. [7] investigated
the user migration patterns across social media sites
to provide guidance for online social network design.
Yang et al. [18] leveraged linked IDs across sites for
better video recommendations. All these works indicate
the strong motivations for service provider to link IDs
belonging to the same user.
ID Linking Methods. Most existing ID linking
methods utilize either different portions of the same
dataset [2, 6], or observe the same behavior across
thematically similar domains [1, 10, 19]. For example,
Korula et al. [6] linked user IDs using social graphs.
Goga et al. [2] linked IDs based on user profile attributes
such as user names, profile photos. Zafarani et al. [19]
linked IDs based on user names through behavioral
modeling. Narayanan et al. [10] linked users of Netflix
and IMDB based on the similarity of their movies
ratings. Mu et al. [9] used “latent user space” for
linking user profiles. Goga et al. [1] described a set
of similarity features for ID linking such as timestamp
of posts and writing styles. All these approaches rely
on service-specific features (e.g., social graph), which
are depended on whether two services have overlapped
features. In this work, we explore the spatial-temporal
locality of user activities for ID linking, which utilizes
more generic information from services.
Linking ID using Location Data. A few
recent works examine the possibility of linking IDs
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Table 1: List of commonly used notations.

Notat. Description

A The the set of all online IDs.
S The set of types (services) for online IDs.

L,T The set of all locations and time bins.
As The set of all online IDs of type s ∈ S.
G Contact graph of online IDs in physical world.
N (v) The neighbor of v ∈ A.
r(ξ) The login records for a set of online IDs ξ ⊆ A.

X(ξ, v) Binary variable indicating whether all IDs in
ξ ⊆ A and v ∈ A belong to the same users.

s(v) The service type of online ID v ∈ A.
P(A) The set of all partitions of A.
P(A, ξ) The set of all partitions in which all IDs in ξ

are divided into one set.

based on location data [13, 14]. Riederer et al. [13]
linked two trajectory datasets with maximum weight
matching. Rossi et al. [14] proposed a trajectory-based
linking method based on their defined spatio-temporal
distance. These approaches can only perform pair-
wise ID matching between two services, and face key
challenges in the multiplicity of IDs and services. These
two algorithms will be used as our evaluation baselines.

3 Problem Formulation

In this section, we first propose a mathematical model
and formally define the set-wise ID matching prob-
lem. Then, we introduce two important concepts, i.e.,
contact graph and partition, and present a probability
model of users’ behavior to solve the set-wise ID match-
ing problem. For readability, we summarize the major
notations used throughout the paper in Table 1.

3.1 Mathematical Model. Let A represent the set
of online IDs, and S represent the set of types of online
IDs. For each ID v ∈ A, we denote s(v) as its type.
∀s ∈ S, we define As as the set of all IDs of type s.

Given any online ID u ∈ A, we define its mobility
records as r(u) = {(l1, t1), (l2, t2), ...}, where (li, ti)
represents a login record in location li at time ti.
Specifically, locations and times are divided into bins,
corresponding to geographical regions and intervals of
time, respectively. We further define T as the set of all
time bins, and L as the set of all regions.

For a cluster of online IDs ξ, we define their mobility
records as r(ξ) = {r(w)|w ∈ ξ}. Then, for each pair of
online IDs u, v ∈ A, let binary variable X(u, v) indicate
whether they belong to the same user. That is,

X(u, v) =

{
1, if u, v belong to the same user,

0, otherwise.

More generally, for a set of online IDs ξ ⊆ A, we use
X(ξ) to indicate whether they belong to the same users.
Thus, we have X(ξ) =

∏
u,v∈ξX(u, v). Similarly, for an

online IDs v and a set of IDs ξ, we let X(ξ, v) indicate

whether they belong to the same users, which can be
expressed as X(ξ, v) =

∏
u∈ξX(u, v).

Our goal is that for an arbitrary target ID v ∈ A,
finding online IDs belonging to the same user. Based
on these notations, we formally define it as the follows:

Set-wise Identity Matching Problem (SIMP)
Given: The target ID v, a list of candidate sets of

IDs ξ1, ..., ξN ⊆ A, and their mobility records r(v) and
r(ξi) for i = 1, ..., N .

Problem: Find a ranking function φ : {ξ1, ..., ξN} →
{1, ..., N}, such that the IDs belonging to the same user
with v are ranked as high as possible, which can be
expressed as:

(3.1) min
φ

N∑
i=1

X(ξi, v)φ(ξi).

3.2 Contact Graph and Partition. It has been
found that users’ daily mobility is fairly predictable
with repeated patterns [16]. If multiple IDs belong to
the same user, they are more likely to be “co-located”.
Thus, we can define the contact graph of IDs to extract
the subgraph structures formed by IDs belonging to the
same user.

Definition 1 (Contact Graph) Contact graph
of IDs is defined as a graph G = (A,E). For a pair of
online IDs u, v ∈ A, we say there exists an edge between
u and v in E, if u and v have mobility records at the
same locations, i.e., ∃l ∈ L, such that (l, t1) ∈ r(u) and
(l, t2) ∈ r(v) hold for some t1, t2 ∈ T .

Note that the contact graph is defined only based on
spatial information of mobility records of IDs, regard-
less of the temporal information. The intuition is to
capture the candidate IDs belonging to the same user
through the connectivity of the contact graph as much
as possible. Actually, if two nodes have no common
location in their trajectories, there is very low prob-
ability for them to belong to the same user. Thus,
for each ID v, we can limit the candidate online IDs
belonging to the same user with it as a subset of its
neighbor N (v) = {b|b ∈ A, (b, v) ∈ E}. We further
define the neighbor of v with a certain type s ∈ S as
N s(v) = N (v) ∩ As. As for the temporal information,
we will model it in the weight of edge. Specifically,
for an edge (u, v) ∈ E, we define its weight w(u, v) as
the probability that they belong to the same user, i.e.,
w(u, v) = P (X(u, v) = 1). For example, nodes with
more frequent “co-locations” will have larger weight be-
tween them, which be introduced in detail in Section 4.

On the other hand, in order to describe the sub-
graph structures of IDs belonging to different users si-
multaneously, we define “partition” of IDs as follows:

Definition 2 (Partition) Given a node set V ,
p = {ξ1, ξ2, ..., ξn} is a set of nonempty subset of V ,
i.e., ∀k ∈ {1, ..., n}, ξk ⊆ V . Then, p is a partition
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of V if the following three conditions hold: (1) ∅ /∈ p,
(2) ∪ξ∈pξ = A, (3) if ξ1, ξ2 ∈ p and ξ1 6= ξ2, we have
ξ1 ∩ ξ2 = ∅.

There is an inherent partition of A composed of
the true set of online IDs belonging to each user.
Specifically, we assume, the number of each user’s IDs of
type s ∈ S follows independent geometric distribution
with parameter θs. That is, the prior probability of
a set of IDs ξ belonging to the same user is P (ξ) =∏
s∈S θ

ns(ξ)
s (1 − θs), where ns(ξ) is the number of IDs

of service s in ξ. Then, for a partition p, its prior P (p)
depends on the online IDs of each user, which can be
expressed as follows:

(3.2) P (p) =
∏
ξ∈p

P (ξ).

In addition, we use P(V ) to denote the set of all
partitions of the set V . Then, for a subset ξ ⊆ V , we
define P(V , ξ) as the set of all partitions in which all
IDs in ξ are divided into one set, i.e., P(V , ξ) = {p|p ∈
P(V ), ∃ζ ∈ p, s.t. ξ ⊆ ζ}.
3.3 Probability Model of User Behavior. In or-
der to formally analyze the problem, a probability model
is needed to describe how users appear in different loca-
tions to generate records. Here, we do not distinguish
individuals, and aim to find a general model for all users.

In order to generally model the various user behav-
ior of generating location records in accessing different
services, we binarize the number of records in discrete
time bin, i.e., modeling whether users have generated
an observation (mobility record) in each time bin [13].
Based on this simplification, users’ visitation in discrete
time intervals can be modeled by Bernoulli distribution
related to the visited location, i.e., visitation to the lo-
cation l at each time bin follows Bernoulli distribution
with probability of pl. Then, under the condition that
the user has visited the location l, whether a record
of an ID of type s exists follows Bernoulli distribution
with probability of ps. Specifically, for an ID v ⊆ A, its
observed records are generated with the probability of:
P (r(v)) =

∏
l∈L

∏
t∈T

[
(1− pl)

1−Iv(l,t)+plp
Iv(l,t)
s(v)

(1− ps(v))
1−Iv(l,t)

]
,

where Iv(l, t) is the indicator function of whether the
login record (l, t) exists in r(v).

Parameters pl and ps can be estimated from the
perspective of expectations. Let Ns

l represent the total
number of records of service s in location l ∈ L. Then,
from a global viewpoint, the expected number of records
of service s accessed by all users can be expressed as
follow,
(3.3) |As| · ps · |T | =

∑
l∈L

Ns
l .

On the other hand, for each location l, the expected
number of records at location l can be expressed as

v u

(a) v and u ∈ N s1 (v).

v u
1

u
2

(b) A partition for N (v).

Figure 1: Diagrams for relationship between candidate
nodes or sets in N (v) and the target node v.

follows:
(3.4) |As| · pl · ps · |T | = Ns

l .
By combining (3.3) and (3.4), we achieve the estimation
for pl and ps.

On the other hand, for a set of online IDs ξ ⊆
A, under the condition that they belong to the same
user, their observed records are generated with the
probability:
P (r(ξ)|X(ξ) = 1)

=
∏
l∈L

∏
t∈T

(1− pl)1−Iξ(l,t)+pl
∏
w∈ξ

p
Iw(l,t)

s(w) (1− ps(w))
1−Iw(l,t)

 ,
where Iξ(l, t) is the indicator function of whether the
login record (l, t) exists in r(ξ).

4 Method

The goal of the set-wise ID matching problem is to
find a ranking function φ(ξk) for each candidate ID set
ξk. Specifically, we rank candidate ID sets ξk based on
the joint posterior probability of IDs in ξk belonging
to the same user conditioned on the observed mobility
records, i.e., P (X(ξk, v) = 1|r(V )), where V is the set
of candidate online IDs. As introduced above, we set
V to be N (v). We now introduce how to calculate
P (X(ξ, v) = 1|r(V )).

4.1 Pair-wise Matching Problem. Let us first
consider the case of pair-wise matching, i.e., linking the
pairs of IDs of two services that belong to the same
users. In this case, each user is assumed to have at
most one ID of each service. We denote the service of
target ID as s0, and the other service as s1. Then, V
can be further limited to V = N s1(v) ∪ v, of which an
example is shown in Figure 1(a).

For a target ID v ∈ As0 and an arbitrary ID
u ∈ N s1(v), v can only belong to the same user with
at most one ID in N s1(v), i.e.,

∑
w∈N s1 (v)X(w, v) ≤ 1.

Considering it is possible that v does not belong to the
owners of any IDs in N s1(v), we have:

(4.5)
∑

w∈N s1 (v)

P (X(w, v) = 1|r(V )) + β(v) = 1,
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where β(v) is the probability that v does not belong to
the same user with any IDs in N s1(v). On the other
hand, through Bayes’ theorem, we have:
(4.6)

P (X(w, v)=1|r(V )) =
P (X(w, v)=1)P (r(V )|X(w, v)=1)

P (r(V ))
.

According to (3.2), for any w ∈ N s1(v),
X(w, v) = 1 corresponds to a partition of V with
the same prior probability, due to their similar com-
ponent structure, i.e., one 2-size set {w, v} and other
|V | − 2 1-size sets. We denote their prior probability
as P (X(w, v) = 1) = P (p1). Further, we define Q(w, v)
as the joint probability of the observation r(V ) and
X(w, v) = 1, which can be expressed as follows:

Q(w, v) , P (X(w, v) = 1) · P (r(V )|X(w, v) = 1),

=P (p1) · P (r(w, v)|X(w, v) = 1)
∏

o∈V \{w,v}

P (r(o)).

Then, (4.6) can be simplified as follows:

(4.7) P (X(w, v) = 1|r(V )) =
Q(w, v)

P (r(V ))
.

Similarly, for β(v), its corresponding partition is
p0 = {{w}|w ∈ V }. Thus, we have:

β(v) =
P (p0) ·

∏
w∈V P (r(w))

r(V )
.

By defining β′(v) as the numerator of β(v) and combin-
ing (4.5) and (4.7), we have:

P (X(u, v) = 1|r(V )) =
Q(u, v)∑

w∈N s1 (v)
Q(w, v) + β′(v)

,

So far, we have obtained the probability that u belongs
to the same user with v, which solves the pair-wise
matching problem.

4.2 Multiplicity of IDs and Services. Based on
the pair-wise matching problem, we further investigate
the problem of multiple IDs and services. For each
online ID u ∈ N s1(v), we have obtained the probability
that u belongs to the same user with v. However, in
the general SIMP, multiple IDs in N s1(v) can belong to
the same user with v simultaneously. IDs in N s0(v) can
also belong to the same user with v. In addition, IDs of
multiple services should also be considered. Thus, we
solve the problem in V = N (v), of which an example is
shown in Figure 1(b).

When considering multiple online IDs, e.g., u1, u2 ∈
N (v), random variables X(u1, v) and X(u2, v) are not
independent with each other. Thus, we cannot obtain
the joint probability by simply using the product of the
probability for each ID. For a set of IDs ξ ⊆ V , in
order to calculate P (X(ξ, v) = 1|r(V )), we first apply
condition probability formula, which obtains:

P (X(ξ, v) = 1|r(V )) = P (r(V ), X(ξ, v) = 1)/P (r(V )),

∝ P (r(V ), X(ξ, v) = 1).
Then, we utilize partition to further simplify this

equation. Specifically, by applying the formula of total
probability with respect to all possible partitions of V ,
we have:
P (r(V ), X(ξ, v) = 1) =

∑
p∈P(V )

P (r(V ), X(ξ, v) = 1|p)P (p),

where P (p) is the prior probability of the partition p.
Specifically, for an arbitrary partition p, if ξ and v are
divided into one set in p, we have P (X(ξ, v) = 1|p) = 1.
Otherwise, it equals to 0. We use P(A, ξ ∪ v) to
denote the set of all partitions in which all IDs in
ξ ∪ v are divided into one set. Then, the right hand
can be limited to P(A, ξ ∪ v). Combining relation of
P (r(V ), X(ξ, v)=1) and P (X(ξ, v)=1|r(V )) based on
Bayes’ theorem, we have:

(4.8) P (X(ξ, v) = 1|r(V )) ∝
∑

p∈P(V ,ξ∪v)

P (r(V )|p)P (p).

In addition, for an arbitrary partition p ∈ P(V ), we use
D(p) to represent the likelihood P (r(V )|p)P (p), which
can be calculated as follows,

D(p) = P (r(V )|p)P (p) = P (p)
∏
η∈p

P (r(η)|X(η) = 1).

Putting it into (4.8), we obtain:

(4.9) P (X(ξ, v) = 1|r(V )) ∝
∑

p∈P(V ,ξ∪v)

D(p).

On the contrary, X(ξ, v) 6= 1 corresponds to parti-
tions in which all IDs in ξ ∪ v are not divided into one
set. Thus, we also have:

(4.10) P (X(ξ, v) 6= 1|r(V )) ∝
∑

p∈P(V )\P(V ,ξ∪v)

D(p).

By combining (4.9) and (4.10), we have:

(4.11) P (X(ξ, v) = 1|r(V )) =
∑

p∈P(V ,ξ∪v)

D(p)/
∑

p∈P(V )

D(p).

So far, we have obtained the probability that all
IDs in ξ belongs to the same user with v, which solves
the set-wise matching problem. This ranking function
based on the posterior probability is optimal, which is
proved by the following theorem:

Theorem 1 The ranking function based on the pos-
terior probability P (X(ξ, v) = 1|r(V )) is the optimal
solution of Set-wise Identity Matching Problem.

Proof : Let φ0 denote the ranking function based
on the posterior probability. Since the target function
(3.1) is a random variable, we consider its expectation
conditioned on the observations, and have:

E(

N∑
i=1

X(ξi, v)φ(ξi)|r(V )) =

N∑
i=1

P (X(ξi, v) = 1|r(V ))φ(ξi).

Without loss of generality, we assume P (X(ξ1, v) =
1|r(V )) ≥ P (X(ξ2, v) = 1|r(V )) ≥ ... ≥ P (X(ξN , v) =
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1|r(V )). On the other hand, according to SIMP al-
gorithm, we have φ0(ξi) = i. Thus, we have φ0(ξ1)≤
φ0(ξ2)≤...≤φ0(ξN ). Combining these two inequalities
and applying the rearrangement inequality, for an arbi-
trary ranking function φ1, we have:
N∑
i=1

P (X(ξi, v)=1|r(V ))φ1(ξi)≥
N∑
i=1

P (X(ξi, v)=1|r(V ))φ0(ξi).

In another form, it can be expressed as:

E(

N∑
i=1

X(ξi, v)φ1(ξi)|r(V )) ≥ E(

N∑
i=1

X(ξi, v)φ0(ξi)|r(V )).

Thus, the ranking function φ0 generated by the algo-
rithm minimizes the target function

∑N
i=1X(ξi, v)φ(ξi)

of the set-wise identity matching problem, which proves
its optimality.�

4.3 Approximation Algorithm. The ranking
function based on posterior probability is optimal.
However, calculating it based on (4.11) suffers from
high computational complexity growing exponentially
with the size of V . In order to solve this problem, we
apply the three approximation methods as follows:

• Ignoring non-adjacent IDs: It is unreasonable to link
two IDs of which the trajectories have no co-location.
Thus, we limits the problem to the neighbor of v,
i.e., N (v), which significantly reduces the size of V .
For these IDs with a large number of neighbors, we
implement further approximation methods to them.

• Ignoring the denominator: From (4.11), we can
observe that the denominator is independent with
ξ. Thus, we alternatively rank the candidate ID sets
only based on the numerator of (4.11). By this way,
only partitions in P(V , ξ∪v) need to be considered.

• Reducing feasible partitions: We further reduce feasi-
ble partitions in P(V , ξ∪v) to reduce computational

Algorithm 1 RS(v, N (v), ξ)

Input: The target ID v, its neighborhood N (v) and a
set of IDs ξ ⊆ N (v).
Output: The probability-based ranking score
RS(v,N (v), ξ) = P (X(ξ, v)=1|r(V )).
Initialize: Dsum ← 0; Dtarget ← 0; f ← 0;
if |N (v)| > Nmax then

f = 1;

if f = 0 then
for p ∈ P(N (v)) do

Dsum = Dsum +D(p);
if ∃U ∈ p s.t. ξ ∪ v ⊆ U then

Dtarget = Dtarget +D(p);

CP(ξ, v) = Dtarget/Dsum.
else

p = {ξ ∪ v}
⋃
{{w}|w ∈ V \{v ∪ ξ}};

CP(ξ, v) = D(p).

complexity. Specifically, we use the constant param-
eter Nmax to represent the maximum accepted |V |.
If |V | ≥ Nmax, all IDs in V \{v ∪ ξ} are considered
to belong to different users.

Based on above approximation methods, the com-
putational complexity is reduced from O(2|V |) to
O(|V |). Based on them and (4.11), we propose an al-
gorithm to calculate the confidence score, which is de-
scribed in Algorithm 1. Given the target ID v and its
neighborhood N (v), if |N (v)| ≤ Nmax, the confidence
score is computed by traversing all partitions in P(V )
according to (4.11). Otherwise, the two proposed ap-
proximation methods are adopted to reduce the compu-
tational complexity. Based on Algorithm 1, we obtain
the ranking function φ of ID sets, where ID sets with
higher confidence probability are given higher rankings.

5 Performance Evaluation

We evaluate our system against two state-of-the-art
pair-wise matching algorithms using two ground-truth
datasets. Now we introduce the utilized datasets,
evaluation metrics and experiment results.

5.1 Datasets. We have two ground-truth datasets for
performance evaluation, including a new ISP dataset (4
services) and an existing dataset from a prior work (2
services).

ISP Dataset: This dataset is collected by a large
ISP in China, which covers 412,455 ground-truth users
and their 815,117 IDs in 4 representative online services
including instant messenger (QQ), online social network
(Weibo), e-commerce (Taobao) and online review site
(Dianping) during the full month of November 2015.
Details are shown in Table 2. It records users’ accessing
activities via broadband network, which are associated
to a physical locations, e.g., a WiFi access point or a
broadband interface. For simplicity, we refer them as
access points (AP). Each record represents the user’s
login action in a given service, characterized by “service
name”, “ID”, “AP name”, and “timestamp”. There are
31 million total records (on average 38.2 records per ID).

The ground-truth is also provided by the same
ISP, which collect users’ online IDs via the cellular
networks that are associated with the same device with
unique cellular identifier. Note that all the IDs and
cellular identifiers have been fully anonymized (hashed

Table 2: Four services in the ISP dataset.
Service Type # of IDs

QQ Instant messaging (IM) 725,621

Taobao E-commerce (EC) 7,545

Weibo Online social network (OSN) 2,545

Dianping Online review (OR) 79,403
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Figure 2: Performance on IDs with one-to-one relation
(IM vs. OR).

bit string) without any user PII or meta data. The real
IDs were never made available to or utilized by us. In
addition, the usage of anonymized datasets is approved
by the ISP and our institution.

Twitter-Foursquare: On Foursquare, users may
display their Twitter account information, which makes
it possible to obtain the ground-truth mapping between
Twitter IDs and Foursquare IDs. This dataset is
collected by Zhang et al. [21]. In total, it contains 385
users with location check-ins on both sides (770 online
IDs), and totally 24,556 location check-ins collected
from both Twitter and Foursquare.

5.2 Baseline Algorithms. We compare our algo-
rithm with two state-of-the-art algorithms as follows:
POIS: Riederer et al. [13] assume the number of
visits of each user to a location follows a Poisson distri-
bution, and an action (e.g. login) on each service oc-
curs independently with Bernoulli distribution. Based
on the ranking score derived from this model, it finds
the maximum weighted matching of IDs as the results.
In addition, it filters out IDs by the “eccentricity” fac-
tor ε, which is defined as the threshold for the weight
gap between the best and second-best IDs.
WYCI: Rossi et al. [14] use the frequency of user
login activities in different locations to approximate
the probability of location visiting by P (l|r(v)) =

Nvl +α∑
l∈LN

v
l +α|L|

, where Nv
l is the number of login records

of v at location l. α > 0 is the smoothing parameter and
|L| is the number of locations. Then, it iteratively finds
ID u to maximize the probability

∏
(l,t)∈r(u) P (l|r(v)).

Both algorithms are designed for ID matching be-
tween two services, and we apply them by matching
multiple services one by one. For a given ID in one
service, they produce a ranked list of the matched IDs
(with ranking scores).

5.3 Evaluation Metrics. We use standard metrics
including precision, recall and AUC to evaluate the
algorithm performance with some adjustments. More
specifically, for a target ID v, POIS or WYCI produces
a ranked list of IDs: [u1, u2, ..., uk], where ui is the ith ID
and k is the number of matched IDs. Our system SIMP
produces a ranked list of sets: [U1, U2, ..., Uk], where
each item Ui is a set of IDs (Ui = {ui1, ..., uis}). For
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Figure 3: Performance on IDs with one-to-one relation
(Twitter vs. Foursquare).

comparison, we need to either convert a set-list to an
ID-list, or the other way around.

ID List Evaluation: First, we convert the set-list
generated by our algorithm to an ID-list, by setting the
set size as 1 (|Ui| = 1). That means for each set in the
list [U1, U2, ..., Uk], we choose the top one to form a new
ID list, and then compute the metrics using standard
precision, recall, and AUC.

Precision & Recall: Given the list of matched IDs,
precision is the fraction of IDs that truly belong to the
same user v. Recall is the fraction of v’s actual IDs that
are correctly matched in this list [12].

AUC pair-wise: AUC refers to “Area under ROC
curve” [3, 15] where ROC curve is plotting the true
positive rate (TPR) against the false positive rate
(FPR). AUC is essentially evaluating the quality of
a ranking, and its value equals to the probability of
ranking a randomly chosen positive instance higher than
a randomly chosen negative one,

AUC =

∑n0

i=1(n0 + n1 − ri)− n0(n0 + 1)/2

n0n1
,

where ri is the rank of ith positive instance, and n0 and
n1 are the number of positive and negative instances,
respectively. Here, “positive” means the matched ID is
correct based on ground-truth. We set k = 10 IDs in
the list, and thus n0 + n1 = k = 10. We refer this AUC
(for pair-wise matching algorithms) as AUC pair-wise.

Set List Evaluation: Clearly, converting the set-
list to an ID-list diminishes the key benefits of our
system. Our system may correctly match all the IDs
in the top candidate set, but had to shrink the set size
to 1 for the comparison. Thus, we introduce a method
to convert the ID list into set list (applied to results
of POIS and WYCI), and use a AUC to evaluate the
ranking quality of the set list. The basic idea is to
group IDs into sets (of pre-defined size), and then we
rank these sets based on the highest ranked ID in each
set. For example, for a given ID list [u1, u2, , ..., u3], we
can convert them to a set list (with set size = 2) as
[{u1, u2}, {u1, u3}, {u2, u3}].

AUC set-wise: For a given list of sets, we also use
AUC to evaluate the ranking quality. We follow the
same definition of AUC to calculate the probability of
ranking a randomly chosen “positive set” higher than
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Figure 4: Performance on IDs with one-to-many rela-
tion, with different combinations of services.

a randomly chosen “negative set”, where “positive set”
means that all the IDs in this set belong to the same
user as the target ID v. If any ID is incorrect, the set is
a negative one.

5.4 Experiment and Results. We evaluate our
system by experiments in different cases with IDs of
one-to-one relation (one ID per service) and of one-to-
many relation (multiple IDs per service and multiple
services).

One-to-One Relation: We first select users who
only have one IM identity and one OR identity as the
ground-truth, and evaluate the performance of different
algorithms for IDs with one-to-one relation. The results
are shown in Figure 2. Specifically, Figure 2(a) shows
our algorithm (SIMP) has a higher AUC than two
state-of-the-art algorithms. Figure 2(b) shows the
precision-recall trade-off by adjusting parameters (e.g.,
θs for SIMP, ε in POIS). Our algorithm achieves better
performance.

In Figure 3, we conduct the same experiments using
the Twitter-Foursquare dataset, whose quality is found
to be worse than the ISP data — check-in data is much
more sparse. The overall AUC becomes lower than
that of Figure 2, but the trend is still consistent: our
algorithm outperforms the baselines by 0.1 in AUC. The
largest precision gain is about 0.32. Note that this is
comparing the ID-list metrics. In this case, the set size
shrinks to 1, which is to our disadvantage.

One-to-Many Relation: Then, we select users
with IDs of one-to-many relation, e.g., users with one
IM identity and multiple OR identities, and evaluate the
performance of our system using both pair-wise and set-
wise AUC. The results are shown in Figure 4. From the
results, we can have three key observations. First, our
algorithm significantly outperforms the baselines over
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Figure 5: Performance on IDs of multiple services and
overall performance.

different combinations of services and AUC metrics.
Second, the performance of our algorithm is more
consistent over different services. The baselines, in
contrary, have a larger variance in the AUC. Third,
the gaps between our algorithm and baselines are larger
for set-wise AUC than pair-wise AUC. This indicates
the advantage of our algorithm in finding multiple IDs
in one service simultaneously. The highest gain over
baselines is 0.2 in terms of AUC (pair-wise), when
matching IM to OSN.

Multiple Services: Next, we examine the per-
formance of our algorithm in linking IDs over multiple
services by selecting users who have three IDs (i.e., one
IM, one OR and one OSN) as the ground-truth. We
examine the impact of number of services and matching
order. In this particular experiment, we use IM identity
as the target ID, and find the other two IDs belonging
to the same user. There are three possible matching se-
quences: (IM-OR, IM-OSN), (IM-OR, OR-OSN), (IM-
OSN, OSN-OR). We perform each sequence and obtain
the set-wise AUC shown in Figure 5.

From Figure 5(a) and (b), we find that number of
services has a significant influence on the two baseline
algorithms. Both POIS and WYCI have a clear perfor-
mance degradation from 2-service matching to 3-service
matching, where the average AUC difference is 0.16. In
addition, the matching order also matters, particularly
for WYCI. In this case, the AUC difference between the
best and worse sequences can be as large as 0.2. This
confirms our design intuition, that the pair-wise match-
ing has fundamental limitation to scale-up to multiple
services. On the other hand, as we can observe from
Figure 5(b), performance degradation of our proposed
algorithm is only 0.05 in terms of AUC from 2-service
matching to 3-service matching, while it is 0.16 on av-
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erage for two baseline algorithms. It indicates that our
algorithm is much less sensitive to the matching order
nor the number of services.

Figure 5(c) shows the result by extending the ex-
periment scope to users who have four IDs (i.e., one ID
for each service). We can observe that our algorithm
consistently outperforms baselines under these settings.
The advantage is more obvious for multi-service match-
ing. Finally, we discard all constraints and evaluate
the performance of different algorithms. The results are
shown in Figure 5(d). From the results, we can observe
that our algorithm outperforms other algorithms with
performance gap of over 0.1 in terms of AUC.
Summary. The evaluation results show that
our proposed system outperforms the state-of-the-art
algorithms in different aspects, particularly for IDs of
many-to-many relation across multiple services. Its
AUC beats baselines by 0.1 in overall performance, and
by 0.2 in many-to-many ID matching, demonstrating
the effectiveness of our proposed system.

6 Conclusions

In this work, we propose an ID-linking algorithm across
multiple services by modeling the spatial-temporal lo-
cality of user activities. We propose a novel contact
graph and an optimal Bayesian-based inference method
to link IDs across services. Our system solves a number
of open problems in multi-service ID linking, includ-
ing service and identity multiplicity and heterogeneous
data quality. Extensive experiments on large scale and
real-world datasets demonstrate the effectiveness of our
system. In addition, we will release parts of the dataset
and all the code, which is available at our github repos-
itory∗. We believe it paves the way toward solving ID
linkage problems in practice.
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