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Abstract—In the modern information society, accurate pre-
diction of human mobility becomes increasingly essential in
various areas such as city planning and resource management.
With users’ historical trajectories, the inherent patterns of their
movements can be extracted and utilized to accurately predict the
future movements. In this paper, based on a dataset of 100,000
individuals’ actively uploaded location information collected by
apps, we discover the average theoretical limits of the predictabil-
ity to be as high as 93%. Since the app-collected data contains
the physical context of the location, we implement a clustering
method based on the contextual information that cluster the
locations into three divisions, street, district and region. In order
to solve the unevenly distribution and the high missing rate of
the application collected location data, we firstly use the Gibbs
sampling algorithm to complete the missing data of the trajectory
and then employ a high-order Markov chain model to predict the
most likely locations visited by each user. Result shows that our
prediction algorithm can achieve accuracy as high as 67%, 78%,
87% for the three context-based divisions respectively, which are
10% higher on average than the divisions without context. In
addition, the correlation coefficient between prediction accuracy
and predictability reaches as high as 0.86. Finally, we investigate
various factors including spatial and temporal resolution, orders
of Markov models, radius of gyration, in order to explore the
predictability under different circumstances.

I. INTRODUCTION

With the rapid development of the wireless and networking

technology, mobile neworks have imposed a profound impact

on people’s daily life for their marvelous capability. These

applications utilize the users’ current and historical location

information records (LIR) to analyze their mobility patterns

to enable numerous applications, such as targeted advertising,

city planning and smart navigation.

Generally speaking, the LIR data collected from the mobile

networks can be divided into two categories, i.e., data collected

by Internet service provider (referred to as ISP-collected data)

and data collected by applications (referred to as app-collected

data). The ISP-collected data are passively and periodically

collected regardless of behaviors of the users. This sort of data

preserves the complete and consecutive trajectory of each user.

Most of the existing studies are based on users’ ISP-collected

location data [1-7]. Song et al. [1] quantified the predictability

in human mobility by studying the regularities shown in the

trajectory. According to their studies, the potential predictabil-

ity reaches 93% on a mobile phone record dataset. Wang

et al. [2] link the human mobility with the social network,

by segregating the similar users using the information from

social media, more general and universal mobility patterns

on a certain group of people were extracted, suggesting the

huge predictability of the individual’s movements. Moreover,

applying the predictability into practice, many researches have

also been conducted on the prediction of human mobility on

various models, such as Markov Chain models [3], [4], neural

network [5], Bayesian network [6], finite state machine [7].

On the other hand, however, few researches have focused on

either predictability or prediction algorithm on app-collected

location data. This aspects of researches remain to be explored.
In comparison to ISP-collected data, app-collected LIR

data is actively triggered by users themselves in applications.

This kind of location data will be collected when using the

applications while the location information of the rest time

remains unknown. It is exactly the characteristics of the app-

collected data that arouses several difficulties to our study.

First, the app-collected data contains the physical context of

the location because the purpose of using the application

certainly correlates with the location recorded, e.g., ordering a

taxi, searching a restaurant. Such correlations provide valuable

information to analyze the human mobility patterns. However,

simple grid for the city apparently lose the information. Hence,

it is essential to find a proper spatial division of the city to

reserve the physical context of app-collected data. Second,

the app-collected data are partially missing since usually

the applications do not recordm users’ locations when they

are not using the apps. Third, the app-collected data are

heterogeneous in spatial and temporal domain since the time

when people use the application is unevenly distributed. Under

these circumstances, the methods aroused in the previous study

apparently are not suitable for accurate predictions on the

dataset. We need to propose new methods to adapt to these

features of the app-collected data.
In this paper, we address the above three challenges to

facilitate the analysis. Our work can be summarized as follows:

• In order to reserve the physical context of the locations,

we contextually cluster the locations into multiple non-

overlapping districts of the city instead of using fixed

coordinate grid that will lose the physical context. We

also compare the predictability and the prediction accu-

racy between the two divisions to analyze the effect of

context on prediction. Results reveal that the trajectories

on context-based division are more predictable than those

on division without context under the same spatial gran-

ularity.

• We design a Markov-based method using Gibbs sampling
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to solve the unevenly distribution and the high missing

rate of the app-collected data. By restoring the trajectory,

we estimate the transition matrix to make prediction

of users’ movement. Results show that, based on app-

collected dataset, our method achieves the same accuracy

of the previous studies on the ISP-collected dataset.

• In order to investigate the effect of heterogeneity, we

carry out a thorough analysis of the predictability and

prediction accuracy based on our designed method on

the app-collected dataset. The varying factors include the

spatial and temporal resolution, the orders of Markov

models, the radius of gyration etc.

The rest of this paper is organized as follows: Section

II describes the dataset. In section III, we introduce the

methodology and metrics. Experiments and results will be

presented in Section IV. Then, we discuss the related works

in Section V and conclude the paper in Section VI.

II. DATASET

Our dataset was collected by a popular localization platform.

As mentioned in introduction, when users use related Apps,

such as WeChat (most pervasively used online instant messen-

ger in China), their location records (LIR) will be uploaded to

the servers and collected by this platform. Thus, these records

strongly imply users’ behavior patterns. Overall, the analysis

of this paper is based on a dataset collected on LIR from

1,000,000 anonymous users, who are active during September

17, 2016 to October 31, 2016 in Beijing. There are 800 million

records in our data set, which is a large-scale dataset and

guarantees the credibility of our study. Each entry consists of

the following fields: the anonymized ID of the user, the time of

the record (accurate to second), and the location information

in the format of GPS coordinates.

To further illustrate the characteristic of app-collected data,

we present the statistic metrics as follows. Probability density

function of the number of each users LIR is shown in the

Fig. 1(a). Unlike the log-normal distribution of ISP-collected

data [3], large proportion of the user in our dataset have

relatively small amount of records, which exactly indicates

that our dataset is highly sparse and heterogeneous. If we

define the proportion of the missing data of a user to be

parameter q, as a demonstration of the incompleteness of a

user’s location information. The distribution of q is presented

in Fig. 1(b). Large part of the users have missing ratio q more

than 0.5, suggesting again that app-collected data is partially

missing. In terms of time, we count the intervals of consecutive

two records, and show its distribution in the Fig. 1(c). The

character of unevenly distributed is obviously showing, with

average interval of consecutive two records achieve as high as

3.11 hours.

On the other hand, in terms of spatial aspect, we also

present several findings concerning our app-collected dataset.

Distribution of the total number of different districts visited by

each users is shown in Fig. 1(d), with 72% of users recording

in less than 30 locations during the 46 days, and few recoding

in more than 100. The distribution of the radius of gyration,
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Fig. 1: Characteristics of app-collected dataset

rg of sampled users is shown in Fig. 1(e), demonstrating a

significant decay as rg increases, which indicates that the

movements of the majority of users were confined within an

area of 30km.

In general, our dataset has highly sparse and heterogeneous

features in the temporal aspect, yet it shows huge regularity of

users’ mobility patterns in the spatial aspect. Hence, if given

the proper method, the users’ movements of app-collected data

can be as predictable as those of ISP-collected data, which will

be further discussed in the following section.

III. METHOD

In this section, we first introduce the process of trajectory

building together with the method of calculating entropy

and limits of predictability based on trajectories. Then, we

present our proposed prediction method. For readability, we

summarize all the notations used in this paper in Table I.

A. Trajectory Building

To investigate the predictability of users’ mobility, firstly

we need to build users’ trajectories based on the LIR by

determining the time interval and spatial division. In order

to accurately reveal the mobility patterns of each user, while

restraining the computational complexity, we carry out the

subsequent studies on the time interval of 1 hour, 2 hour and
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TABLE I: List of commonly used notations.

Notation Description
T The original trajectory.
R The restored trajectory.
R The set of all possible restored trajectories.
S The entropy of the trajectory.
Π The maximum predictability of the trajectory
i A state in the state space of the Markov model.
M Total number of distinctive states.
L The length of the trajectory.
L′ The total number of missing points of the trajectory.
sn A subsequence with length n.
P Transition matrix.
Psn The row of P indexed by sn.
Psni The ith entry of row Psn
γ The prediction accuracy.

σ(q) A parameter used in estimation of entropy.
Λi The length of the shortest substring starting at position i

which does not previously appear from position 1 to i.

4 hour. We add one data point of location to a user’s trajectory

every time interval. If a user visits more than one locations

within one interval, his most visited place will be marked as

location of this time interval in his trajectory. In comparison,

if there does not exist an LIR for a user during certain

time interval, that point of the trajectory remains unknown.

Specifically, we let T = (X1, X2, ..., XL) denote the sequence

of locations where a user was observed at each time interval,

in which L is the length of the sequence. For the unknown

time interval k, we let Xk to be uncertainty.

On the other hand, as for spatial division scale, in order to

reserve the physical context of the locations, we contextually

divide the city into multiple non-overlapping regions of three

different sizes, denoted separately by street, district and region.

Correspondingly, Beijing has 188 regions, 6353 districts and

65233 streets, respectively. To be specific, for the division of

street, we segregate the locations with similar functions on a

street level, since the sites of similar Points of Interest (POI)

usually gather in the same area. Hence, we can regard the a

segmented street as a unit that carries the context of certain

category, such as residence and entertainment areas, which

is exactly the physical context [8] . In addition, we cluster

these streets into larger segments, i.e., districts and regions, for

further study. Compared with the geographic grid, a street is of

the same scale as a 200m grid and a region is the same scale

as a 4km, whereas these grids provide no physical context

of the locations, as summarized in Table II. Hence, the three

context-based divisions are chosen for trajectory building. An

overview of geographical locations density with the division

of region is shown in the Fig. 2(a). A typical trajectory of

under division of street is depicted in Fig. 2(b).

B. Entropy and Predictability

We choose one of the most fundamental quantities capturing

the degree of predictability, i.e., the entropy to evaluate the

regularity of a trajectory, which is defined as the expected

value of the information contained in each element of the

sequence. For instance, if a trajectory has the entropy of S,

then every location of the trajectory contains S bits of new

TABLE II: Features of different spatial divisions

Spatial division Resolution Physical Context

Street High
√

200m grid High �

Region Low
√

4km grid Low �
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Fig. 2: Overview of spatial division on app-collected data

information on average, which means the user will choose

his/her next move in 2S locations randomly. Specifically, real

entropy is given by Sreal ≡ −∑Ti∈T p(Ti)log2p(Ti), where

Ti is a subsequence of the trajectory and T represents the

set of all Ti and p(Ti) is the probability that Ti is found in

T [1]. The real entropy considers both temporal and spatial

correlated factors. Therefore, it can provide the best evaluation

of the regularity of the trajectory. In addition, we introduce

another two metrics of the entropy to facilitate the subsequent

analysis, which are defined as follow:

• Random entropy given by Srand ≡ log2N , where N is

the number of distinct locations visited by the user. This

measurement illustrates the regularity in the precondition

that the user visits each location with equal probability.

• Temporal-uncorrelated entropy given by Sunc ≡
−∑N

j=1 p(j)log2p(j), where N has the same meaning as

above while p(j) represents the probability that location

j is visited by the user. This measurement takes the

frequency of different locations visited by users into

account, yet ignoring the visiting sequence.

Naturally, the three forms of entropy for the same user’s

trajectory follow the inequality: Sreal ≤ Sunc ≤ Srand.

From the expression of each entropy, we can see that both

Srand and Sunc can be easily derived from the trajectory,

while the Sreal requires much more complicated calculations,

of which the computational complexity reaches O(N4). To

calculate the real entropy with high accuracy and efficiency, we

use an estimator based on Lempel-Ziv data compression [9],

the real entropy of a trajectory with n points can be estimated

by

S =

(
1

n

∑
i

Λi

)−1

lnn, (1)

where Λi is the length of the shortest subsequence starting at

position i which does not previously appear from position 1 to
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i− 1. Kontoyiannis et al. [9] have proved that the expression

above converges to the real entropy when n approaches

infinity.

Apparently, the above measurements of entropy only apply

to the complete trajectories. Once the missing ratio q increases,

the entropy S(q) will accordingly increase since the missing

data introduces extra uncertainty. According to the research

of Song et al. [1], the parameter σ(q) ≡ ln(S(q)/Sunc(q))
is observed to have a linear relationship with q as shown in

Fig. 3. Taking advantage of the property, we manually mask

the known data to change the missing ratio q, at the same time

calculate the parameter σ(q). After obtaining several 2-tuples

(σ(q), q), we extrapolate the σ(q) to q = 0 to estimate σest

for a complete trajectory. The real entropy is then calculated

as Sest = eσestSunc. The detailed process of calculating Sest

is shown in the Algorithm 1.

Before predicting on the dataset, there is still one particular

Algorithm 1 Real entropy estimation algorithm

Input: Trajectory T = {X1, X2, ..., XL}
Output: Entropy Sest

1: procedure ENTROPY ESTIMATION(T )

2: Initiate D ← ∅
3: Calculate missing ratio q
4: while q < 0.9 do
5: S ←Randomly choose 5% of known data from T
6: for all points Xi ∈ S do
7: Set Xi ← ? to unknown

8: end for
9: q ← q + 0.05

10: Calculate Sunc(q) and Sreal(q) based on (1)

11: σ ← ln(Sreal(q)/Sunc(q))
12: D ← D ∪ (q, σ)
13: end while
14: σ̂(q)←Linear regression on D(q, σ)
15: Sest ← eσ̂(0)Sunc

16: end procedure

question we have to figure out in advance, which is to what

degree can we make prediction about human mobility. In other

words, we need to determine the maximum probability that

we can make the accurate prediction in advance of designing

an algorithm. We denote that maximum probability as Π .

According to the studies of Fano et al. [10] and Navet et al.
[11] , Π is subjected to the Fano’s inequality Π ≤ Πmax.

Specifically, if a user with entropy S moves between N
locations, then the limit of predictability Πmax satisfies:

S = H(Πmax) + (1−Πmax)log2(N − 1), (2)

where the binary entropy function H(Π) is:

H(Π) = −Πlog2(Π)− (1−Π)log2(1−Π), (3)

In the previous part, we discussed how to derive the entropy

of a trajectory. Therefore, we can easily calculate the limit

of predictability by solving Equation (2). Like the three

measurements of entropy, the limit of predicability also has

three different forms – Πrand, Πunc, and Πreal. According to

the inequality of Entropy S, we have:

Πreal ≥ Πunc ≥ Πrand, (4)

In this paper, we mainly analyze the predictability based on

Πreal since it best describes the limit taking both factors above

in to account.

C. Prediction

Having known the limit of predicability, we then design our

prediction algorithm to approach this limit. Specifically, we

propose a prediction algorithm based on Markov model while

using Gibbs sampling method to solve the problem caused by

missing data.

In a Markov chain model, the movements of human are

modeled as transitions among definite and countable states

space, which can be denoted as region R with M states.

If we assume the Markov chain to be time-homogeneous,

then for each user there exists a unique transition matrix

P of size M × M , where M is the total number of the

states. The entry Pij represents the probability that the user

moves from location i to location j. As for the n-order

Markov chain, the order n means n previous locations are

needed to derive the transition probabilities of the user transits

from current state i to other state j in the next time slot.

In other words, the next location of the user depends on

the past n visited locations, under the circumstances, the

transition matrix becomes a (n+1)-dimensions matrix. The

entry Pi0i1...in represents the probability that the user move to

location in given the historical n locations to be i0, i1, ..., in−1.

Because the n-order Markov chain is more complicated

than homogeneous Markov chain, we define the row of (n+1)-

dimension transition matrix P as the probability distribution

of the user’s next location giving his historical n locations.

Hence, the rows of P that are indexed by n parameters,

denoted as Pi0i1...in−1
. We use sn denoting the subsequence

i0, i1...in−1 of length n, then the rows of P becomes Psn and

the ith entry of the row becomes Psni, which represents the
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probability of a user moving to location i with his historical

n locations to be sn.

After obtaining both transition matrix P and historical

trajectory s of length n, the prediction of next location iest

becomes finding the maximum of the row of transition matrix

Psn , which can be expressed as follow:

iest = argmax
i

Psni. (5)

Therefore, it is our primary task to estimate the transition

matrix P based on the incomplete trajectories. We let R denote

the restored trajectory of the part-missing trajectory T , then

the estimation of transition matrix P est is:

P est = E[P |T ]. (6)

The distribution of P under the condition of T can be

calculated by enumerating R ∈ R , the set of all possible

R . The procedure can be expressed as follow:

Pr(P |T ) =
∑
R∈R

Pr(P |R, T ). (7)

Apparently, enumerating all the possible restored trajectory

involves tremendous calculating work, with the complexity

exponentially increasing as the length of trajectory increase.

Hence, we employ Gibbs sampling, a Monte Carlo method

that update both restored trajectory R and transition matrix

P alternatively at the same time. First, we fill in the missing

points with randomly chosen data from the locations the user

ever visited. Then, the iterative algorithm can be expressed as

follow:

P {n} ∼ Pr[P |R{n−1}, T ], (8)

R{n} ∼ Pr[R|P {n}, T ]. (9)

where (8) represents sampling transition matrix P {n} from

the restored trajectory R{n−1} and the original one T . We

Algorithm 2 Prediction Algorithm based on Gibbs sampling

Input: Trajectory T = {X1, X2, ..., XL}, Threshold of itera-

tion δth
Output: Restored Trajectory R, Transition matrix P

1: procedure PREDICTION(T )

2: Initiate R, δ
3: Set Threshold

4: while δ > δth do
5: for all sequence s ∈State Space do
6: Count the number of s appearing in R
7: end for
8: Sample every row of P based on Equation (10)

9: for all missing points X ∈ R do
10: Update X from P based on Equation (13)

11: end for
12: δ ← number of altered points of R
13: end while
14: end procedure

assume that the rows of transition matrix are independent. By

considering a Dirichlet prior for each row, we sample each row

of the transition matrix Psn from the following distribution:

Dirichlet({Countsni(R
{n−1}) + εin−1i}i=1...M ). (10)

where Countsni(·) is the number of sequence sni appearing

in R. And εin−1i is a small positive number to ensure the

all the states have the probability to be sampled, even if the

chances are small. Moreover, if there exists a physical barrier

between in−1 and i, εin−1i shall be set to zero to prevent the

case from sampling.

On the other hand, (9) represents sampling trajectory R{n}

from the transition matrix P {n}. We update the originally un-

known data with the posterior probability distribution derived

from transition matrix P {n} given the past n locations. For

example, if we assume the order of the model is 2, and there

is an originally unknown data in the lth of a trajectory T , with

trajectory from (l−2)th to (l−1)th denoted as R[l−2 : l−1].
Then, the probability of the T [l] to be state i is:

PR[l−2:l−1]iPR[l−1]iR[l+1]PiR[l+1:l+2]. (11)

After normalizing the M probabilities as above (since there

is M states), the distribution is obtained as follow:{
PR[l−2:l−1]iPR[l−1]iR[l+1]PiR[l+1:l+2]∑M

j=1 PR[l−2:l−1]jPR[l−1]jR[l+1]PjR[l+1:l+2]

}
i=1,2...M

.

(12)

Thus, applying the distribution to the model with order n,

for every originally missing points ml(l = 1, 2..L′) with L′

representing the total number of the missing points, we sample

the location based on the following distribution.{ ∏n
k=0 PR{i}[l−n+k:l+k]∑M

j=1

∏n
k=0 PR{j}[l−n+k:l+k]

}
i=1,2...M

, (13)

where T {j} represents the trajectory with missing data points

ml replaced by location rj . The detail process is shown in the

Algorithm 2.

Studies from Robert [12], [13] have proved the convergence

of the Gibbs sampling for this problem, which means the

estimated transition matrix P will eventually converge to the

actual matrix that describes the movement patterns of the user.

Meanwhile, the missing part of the trajectory can be fully

restored.

IV. PERFORMANCE EVALUATION

In this section, we will first study the entropy and the limits

of predictability. Then we make predictions by utilizing the

introduced methodologies with the purpose to discover the

moving patterns in human mobility.

A. Entropy and Predictability

In the previous section, we introduce three metrics of the

entropy on a trajectory, which is Srand, Sunc and Sreal. The

former two can be directly derived from the trajectory, while

the latter kind will be calculated by the estimation algorithm
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(a) PDF of Entropy (b) PDF of Maximum Predictability

Fig. 4: Distributions of entropy and predictability of three
different measurements

introduced above. Since overmuch missing data will bring

in considerably uncertainty, to avoid these interference while

test our designed method, we choose the users with missing

ratios q under 0.8 in the further study. Fig. 4(a) shows the

distributions of three forms of entropy of the trajectory we

build under street scale.

From the figure, three separated peaks of these distribution

can be clearly observed, which represent Sreal, Sunc and

Srand, respectively. The random entropy has relatively largest

value with its distribution P (Srand) peaks at Srand ≈ 3.8,

which suggested that a typical user can be found randomly in

2S
rand ≈ 14 locations. This entropy provides an approximation

of the total numbers of the locations visited by the user, while

more factors will be considered in the other two forms.

The temporal-uncorrelated entropy Sunc lies in the middle

and the real entropy of the trajectory has the smallest value.

This is an intuitive result since former one considers the

spatial factor and the latter one considers both spatial and

temporal correlations, which are the very factors that introduce

the regularity and eliminate the uncertainty. Specifically, Sunc

peaking at 1.5 and Sreal peaking at 0.8 indicate that if we

fully explore the regularity of a trajectory, then the user’s next

movement can be predicted within 2 locations.

Then, we examine the limit of predictability utilizing the

three entropy, Πrand, Πunc and Πreal based on Equation (2).

The result is shown in the Fig. 4(b). As we expected, the

decrease in uncertainty results in the increase of maximum

predictability. If only given the numbers of the location that

a user ever visited, there is little chance to accurately predict

his next location, Πrand ≈ 0. Furthermore, if we take the

spatial factors into account, the maximum predictability Πunc

increases to a median value of 0.8, indicating the enormous

regularity hidden behind the visiting frequency of different

locations. Finally, if we consider both spatial and temporal

correlations, the maximum predictability can reach as high as

0.94, an unexpectedly high level that may exactly illustrate the

regularity regardless of the seemingly random human moving

pattern.

Also, we analyze the entropy and maximum predictability

under different spatial and temporal resolutions. As discussed

in the previous section, we introduce three scales of city

division: street, district and region. The average entropy and
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Fig. 5: Distributions of entropy and predictability under
different spatial and temporal resolution

maximum predictability of the three divisions are separately

shown in Fig. 5(a). By comparing the result between different

scales, we can concluded that trajectories on the large scale

are more predictable with the smaller entropy. This is for an

obvious reason that plenty of the users have their trajectories

appeared in only one or two regions since the large scale

divides Beijing into only 188 regions. Consequently, the

uncertainty of their movements are of small level and the

prediction on these users is relatively simple. In contrary,

under the small scale, the entropy becomes larger and the

predictability becomes smaller,indicating that uncertainty of

the trajectory increases. The predictability’s decreasing as

the spatial resolution becomes higher is another intuitive

result because a user will visit more locations in the smaller

scale, which undoubtedly increases the difficulty to accurately

predict his/her movement.

As for the temporal resolutions, we change the time interval

of a trajectory from 1 hour to 2 hours and 4 hours. The

average entropy and maximum predictability under the three

temporal resolutions are shown in the Fig. 5(b). Different

from the results of spatial resolution, as the time interval

extended, the maximum predictability decreases instead. A

potential explanation for the correlation is that the extended

interval leads to the reduction of points for every trajectory.

Only one point is sampled from two or four points of the

original trajectory, which undoubtedly masks the information

of users’ movements and breaks the regularity hidden behind

human mobility. Thus, it is even harder to make prediction on

the trajectory of extended time interval.

B. Overview of Prediction Accuracy

Now, we implement our designed method based on Markov

model to make prediction on the trajectories. For the reason

that our method make prediction by considering both temporal

and spatial correlations, we employ the maximum predictabil-

ity on the real entropy Πreal as a standard to evaluate the

performance of our prediction. Since the trajectory we build

consist of a user’s 46 days location in the rate of one location

per hour, we split the 1104 points trace into two parts. First

part has 36 days’ locations as train set, while the other part

include 10 days’ locations as test set.

For each user, we first train a Markov model based on

train set to obtain the transition matrix. Then we utilize the
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(c) Predictability Πreal-Accuracy γ

Fig. 6: Performance of our prediction algorithm Correlated with entropy and prediction limits

transition matrix to make prediction on the test set. Since our

prediction of a certain time slot relies on its past n locations,

we only make prediction when there are consecutive n known

locations. Additionally, the following location should also be

known if we desire to testify the prediction. Thus, we find the

consecutive (n+1) known locations during the test procedure

and make prediction based on the former n data. By comparing

the predicted result with the actual location, we can then

evaluate our prediction algorithm. We denote the accuracy of

prediction as γ:

γ =
number of accurate predictions

number of total predictions
(14)

We first implement our method on the trajectory built on

the scale of street. The distribution of prediction accuracy γ is

shown in the Fig. 6(a). Over 20% of our predictions achieve

the accuracy of 100%, which indicates that huge regularity

implied in human movement can be fully explored, regardless

of its appearing random. For the purpose of demonstrating

whether our prediction method has approached the predictabil-

ity, the relation between prediction accuracy γ and entropy

Sreal under the scale of street are manifested in a heat map

in Fig. 6(b). A strong correlation between two variables can

be observed. A trajectory with large entropy is supposed be

difficult to predict since the entropy represents the uncertainty.

Moreover, the relation between prediction accuracy γ and

predictability Πreal is also illustrated in Fig. 6(c). An apparent

linear relationship with most of data concentrated in the

upper right corner is clearly shown, which exactly proves

that our method makes full use of the regularity to achieve

the predictability. The highest correlation coefficient of γ and

Πreal reaches 0.82.

Then we analyze the effect of contextual information on pre-

diction. The division of the street is regarded as context-based

division since it is a combination of several sites which are

close in location and similar in function, while the geographic

grid provides no context of the location. Hence, we choose the

two divisions of the same scale in contrary. Specifically, as for

small scale, in comparison to the contextually clustered streets,

we divide the city into 200m grids according to geographical

coordinates. For the region scale, we choose 4km grid to be
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Fig. 7: Performance of prediction under different divisions

the contrary. The prediction accuracy of the four divisions are

shown in Fig. 7(a). It is clearly illustrated that under both

scales, the trajectories built on the context-based divisions

have smaller entropy and larger predictability than those of

geographic grids, which proves that the division with context

can provide more information about the user’s movement than

division simply based on the geographical coordinates. In other

words, context-based division preserves more information of

a user being recorded in certain locations. Those preserved

information, undoubtedly, will help us to explore the patterns

of human mobility.

In order to study how correlation coefficient varies as the

missing ratio q, we split the users into 10 groups according to

their missing ratio in a interval of 0.1 and separately calculate

the correlation coefficient of each group. The results under

two divisions of the street scale are shown in the Fig. 7(b).

As we can observe, the users with q < 0.5 have strongly

positive correlations (correlation coefficient r > 0.4) between

prediction accuracy and the predictability while the users with

a considerable part of missing data have little correlations.

The decrease of correlation may be explained by the reason

that excessive missing data mask the actual uncertainty of the

user’s movement, resulting in the increase of the predictability

that is practically hard to achieve. Also, in both small and large

scales, the divisions with context have stronger correlations

than the coordinate grid when the missing ratio q < 0.3, again

indicating that prediction on context-based division has a better

performance than on those without context.
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Fig. 8: Performance of prediction under different temporal
and spatial resolution

C. Analysis of accuracy under different situations

In this subsections, we analyze the prediction accuracy

under various situations to explore the human mobility.

We first employ the prediction algorithm on the different

spatial and temporal resolutions. For the spatial aspect, the

prediction accuracy of three different resolutions are shown in

the Fig. 8(a). The average of the prediction accuracy are listed

in Table III. We can conclude from the results that prediction

on the large scale is more accurate than prediction on the small

scale, which is consistent with the result from entropy and

predictability. As for the temporal aspect, we make predictions

on the trajectories of 1 hour, 2 hours and 4 hours time

interval. The average of prediction accuracy is illustrated in

Fig. 8(b). The result of prediction accuracy shows the same

characteristics as the entropy and maximum predictability: the

extension in time interval leads to the decrease in accuracy.

Then, we analyze the influence of the order of Markov

model and radius of gyration. We implement our prediction

algorithm based on MC(0), MC(1) and MC(2) models. In

other words, we make prediction of a user’s movement based

on different numbers of his past location data in trajectory.

The accuracy of three models is presented in the Fig. 9(a).

The prediction based on MC(1) achieve a higher accuracy

than MC(2), which indicates that the human mobility actually

holds little memories of the past location. A user may simply

decides his next move based on his current location. As for the

correlation between prediction accuracy and radius of gyration,

we group the users according to their radius of gyration and

calculate the average accuracy of each group. The result is

shown in the Fig. 9(b). When the radius of gyration rg is

less than 10km, we can observe a decrease of accuracy as rg

TABLE III: Predictability and Accuracy under Different Divi-

sion

Division Accuracy Predictability Entropy

Street 67.07% 94.34% 0.58

200m Grid 54.63% 93.12% 0.67

Region 86.14% 96.80% 0.28

4km Grid 76.80% 95.20% 0.35

MC(0) MC(1) MC(2)
Markov Chain of different orders
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Fig. 9: Influence of the order of Markov model and radius
of gyration

increase. In comparison, when rg reaches 10km, the accuracy

remains steady regardless of increase in rg , which indicates

that the stationary users and non-stationary users may have

different movement patterns.

V. RELATED WORK

In regard to human mobility, there have been some studies

on calculating and estimating the predictability based on

several stochastic models. Song et al. [1] derived the limit of

predictability of mobility from entropy of a user’s historical

trajectory using Fano’s inequality [10], [14]. Brockmann et al.
[15] studied the travelling behaviors of human and established

a mathematical model to describe the moving patterns based

on Levy Flights, another probabilistic model proposed by

Shlesinger [16], [17], [18], [19], [20]. Furthermore, some

research link the human mobility with the social network,

by segregating the similar users using the information from

social media, more general and universal mobility patterns on

a certain group of people can be extracted [2], [21], [22]. Also,

research from Wesolowski et al. [23] suggested that mobility

predictability are robust to the substantial biases in phone

ownership across different geographical and socioeconomic

groups. In summary, most of study have concluded that there

exists huge regularity within a user’s moving patterns and

claimed that the human mobility is highly predictable. Our

work shown in this paper, in addition to the previous studies,

employs Markov models to make predictions, applying this

predictability into practice.

There are also many researches have been conducted on

the prediction of human mobility on various models, such as

Markov Chain models [3], [4], neural network [5], Bayesian

network [6], finite state machine [7]. Since the lack of standard

test set on this problem, accuracy of a certain method is

highly dependent on the location data used during the training

and testing procedure. Lu et al. [3] implemented a Markov

Chain model to analyze the travel patterns on mobile phone

call data records by utilizing an O(1)-MC model and their

accuracy of predictions achieved a average of 87% and 95%

for the stationary trajectories and non-stationary trajectories,

respectively. In comparison, another study conducted by Song

et al. [24] on a campus-wide Wi-Fi wireless network indicated

that the O(2)-MC model has the best performance with its

accuracy around 65-72%.
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It worth mentioning that most of the latest studies are based

on evenly distributed and rarely missing ISP-collected dataset.

As for researches on sparse trajectories, cluster-based methods

and sampling-based methods are commonly used to alleviate

the data sparsity. Zhang et al. [25] use a HMM-based group

method to cluster users and predict on group level. Jeong

et al. [26] propose a cluster-aided mobility predictor that

leverage the similarities among users to improve prediction

accuracy. Shokri et al. [27] use Markov model based on Gibbs

sampling to model the human mobility, which is similar to our

method. However, their model mainly focuses on trajectory

matching, and they only use O(1)-MC model. Our work, on

the other hand, aims at predicting users’ movement based

on partially missing app-collected dataset and restoring the

missing data. Furthermore, we analyze the prediction accuracy

under different situations, including different orders of the MC

model, trying to uncover the implied moving patterns.

VI. CONCLUSION

Prediction based on users’ historical trajectories are of

great importance to improve the location based services. In

this paper, aiming at addressing the three challenges of app-

collected dataset, we carry out a comprehensive analysis of

predictability and prediction method over a large scale app-

collected location data. First, we employ a context-based

segmentation method to preserve the physical context of app-

collected data. Under the division, trajectories achieve the

prediction accuracy 10% higher than those without context.

Second, we design a Markov chain method based on Gibbs

sampling in order to solve the unevenly distribution and the

high missing rate. The prediction accuracy of the method

reaches a high level with the correlation coefficient between

prediction accuracy and predictability reaching 0.86. Third,

we comprehensively analyze various factors that effect the

prediction accuracy, including spatial and temporal resolution,

orders of Markov models, radius of gyration. In general, Our

analysis provides a systematic and comprehensive understand-

ing of predictability of users’ mobility patters on app-collected

dataset.
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