
Virtual Machine Migration Planning in
Software-Defined Networks

Huandong Wang∗,Yong Li∗, Ying Zhang†, Depeng Jin∗
∗Tsinghua National Laboratory for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
†Ericsson Research

Email: liyong07@tsinghua.edu.cn

Abstract—Live migration is a key technique for virtual ma-
chine (VM) management in data center networks, which enables
flexibility in resource optimization, fault tolerance, and load bal-
ancing. Despite its usefulness, the live migration still introduces
performance degradations during the migration process. Thus,
there has been continuous efforts in reducing the migration time
in order to minimize the impact. From the network’s perspective,
the migration time is determined by the amount of data to be
migrated and the available bandwidth used for such transfer.
In this paper, we examine the problem of how to schedule the
migrations and how to allocate network resources for migration
when multiple VMs need to be migrated at the same time. We
consider the problem in the Software-defined Network (SDN)
context since it provides flexible control on routing.

More specifically, we propose a method that computes the
optimal migration sequence and network bandwidth used for
each migration. We formulate this problem as a mixed integer
programming, which is NP-hard. To make it computationally
feasible for large scale data centers, we propose an approximation
scheme via linear approximation plus fully polynomial time
approximation, and obtain its theoretical performance bound.
Through extensive simulations, we demonstrate that our fully
polynomial time approximation (FPTA) algorithm has a good
performance compared with the optimal solution and two state-
of-the-art algorithms. That is, our proposed FPTA algorithm
approaches to the optimal solution with less than 10% variation
and much less computation time. Meanwhile, it reduces the total
migration time and the service downtime by up to 40% and 20%
compared with the state-of-the-art algorithms, respectively.

I. INTRODUCTION

The modern cloud computing platform has leveraged vir-

tualization to achieve economical multiplexing benefit while

achieving isolation and flexibility simultaneously. Separating

the software from the underlying hardware, virtual machines

(VMs) are used to host various cloud services [1]. VMs can

share a common physical host as well as be migrated from

one host to another. Live migration, i.e., moving VMs from

one physical machine to another without disrupting services,

is the fundamental technique that enables flexible resource

management in the virtualized data centers. By adjusting the

locations of VMs dynamically, we can optimize various ob-

jective functions to provide better services, such as improving

performance, minimizing failure impact and reducing energy

consumption [2].

While there are continuous efforts on the optimal VM

placements to reduce network traffic [3], [4], VM migration

has received relatively less attention. We argue that careful

planning of VM migration is needed to improve the system

performance. Specifically, the migration process consumes not

only CPU and memory resources at the source and the migrat-

ed target’s physical machines [4], [5], but also the network

bandwidth on the path from the source to the destination [4].

The amount of available network resource has a big impact

on the total migration time, e.g., it takes longer time to

transfer the same size of VM image with less bandwidth. As

a consequence, the prolonged migration time should influence

the application performance. Moreover, when multiple VM

migrations occur at the same time, we need an intelligent

scheduler to determine which migration tasks to occur first or

which ones can be done simultaneously, in order to minimize

the total migration time.

More specifically, there can be complex interactions be-

tween different migration tasks. While some independent

migrations can be performed in parallel, other migrations

may share the same bottleneck link in their paths. In this

case, performing them simultaneously leads to longer total

migration time. In a big data center, hundreds of migration

requests can take place in a few minutes [6], where the effect

of the migration order becomes more significant. Therefore,

we aim to design a migration plan to minimize the total

migration time by determining the orders of multiple migration

tasks, the paths taken by each task, and the transmission rate

of each task.

There have been a number of works on VM migration in

the literature. Work [9], [12] focused on minimizing migration

cost by determining an optimal sequence of migration. Howev-

er, their algorithms were designed under the model of one-by-

one migration, and thus cannot perform migration in parallel

simultaneously, leading to a bad performance in terms of the

total migration time. Bari et al. [7] also proposed a migration

plan of optimizing the total migration time by determining

the migration order. However, they assumed that the migration

traffic of one VM only can be routed along one path in their

plan. Compared with single-path routing, multipath routing is

more flexible and can provide more residual bandwidth. Thus,

we allow multiple VMs to be migrated simultaneously via

multiple routing paths in our migration plan.

In this paper, we investigate the problem of how to reduce

the total migration time in Software Defined Network (SDN)

scenarios [8], [9]. We focus on SDN because with a centralized

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 487

2

controller, it is easier to obtain the global view of the network,

such as the topology, bandwidth utilization on each path, and

other performance statistics. On the other hand, SDN provides

a flexible way to install forwarding rules so that we can

provide multipath forwarding between the migration source

and destination. In SDN, the forwarding rules can be installed

dynamically and we can split the traffic on any path arbitrarily.

We allow multiple VMs to be migrated simultaneously via

multiple routing paths. The objective of this paper is to develop

a scheme that is able to optimize the total migration time by

determining their migration orders and transmission rates. Our

contribution is threefold, and is summarized as follows:

• We formulate the problem of VM migration from the

network’s perspective, which aims to reduce the total

migration time by maximizing effective transmission rate

in the network, which is much easier to solve than

directly minimizing the total migration time. Specifically,

we formulate it as a mixed integer programming (MIP)

problem, which is NP-hard.

• We propose an approximation scheme via linear approxi-

mation plus fully polynomial time approximation, termed

as FPTA algorithm, to solve the formulated problem

in a scalable way. Moreover, we obtain its theoretical

performance bound.

• By extensive simulations, we demonstrate that our pro-

posed FPTA algorithm achieves good performance in

terms of reducing total migration time, which reduces

the total migration time by up to 40% and shorten the

service downtime by up to 20% compared with the state-

of-the-art algorithms.

The rest of the paper is organized as follows. In Section II,

we give a high-level overview of our system, and formulate

the problem of maximizing effective transmission rate in the

network. In Section III, we propose an approximation scheme

composed of a linear approximation and a fully polynomial

time approximation to solve the problem. Further, we provide

its performance bound. In Section IV, we evaluate the per-

formance of our solution through extensive simulations. After

presenting related works in Section V, we draw our conclusion

in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview
We first provide a high-level system overview in this section.

As shown in Fig. 1, in such a network, all networking

resources are under the control of the SDN controller, while

all computing resources are under the control of some cloud

management system, such as OpenStack. Our VM migration

plan runs at the Coordinator and it is carried out via the

OpenStack and SDN controller.
More specifically, devices in the network, switches or

routers, implement forwarding according to their obtained

forwarding tables and do some traffic measurement. The

SDN controller uses a standardized protocol, OpenFlow, to

communicate with these network devices, and gather link-

state information measured by them. Meanwhile, the SDN

�������	
����������

������	
����������

��
�������������������
���	��

Fig. 1. System Overview

controller is responsible for computing the forwarding tables

for all devices. On the other hand, the cloud controller,

OpenStack, is responsible for managing all computing and

storage resources. It keeps all the necessary information about

virtual machines and physical hosts, such as the memory

size of the virtual machine, the residual CPU resource of the

physical host. Meanwhile, all computing nodes periodically

report their up-to-date information to it. Besides, OpenStack

also provides general resource management functions such as

placing virtual machines, allocating storage, etc.

The processes of VM migration are described as follows.

Firstly, migration requests of applications are sent to the Coor-

dinator. Based on the data collected from the OpenStack and

SDN controller, the VM migration plan outputs a sequence of

the VMs to be migrated with their corresponding bandwidths.

After reconfiguring the network and providing a bandwidth

guarantee by SDN controller, the VM migration plan is carried

out at the corresponding time by OpenStack. By this way, it

realizes the control and management of VM migrations.

To compute the migration sequence of VMs, we need

network topology and traffic matrix of the data center. Besides,

memory sizes and page dirty rates of VMs, and residual

physical resources such as CPU and memory are also needed.

Most of them can be obtained directly from the SDN controller

or OpenStack, but measurements of page dirty rate and traffic

matrix need special functions of the platform. We next present

the approach to measure them in details:

Page Dirty Rate Measurement: We utilize a mechanism

called shadow page tables provided by Xen [1] to track dirty-

ing statistics on all pages [2]. All page-table entries (PTEs) are

initially read-only mappings in the shadow tables. Modifying

a page of memory would result a page fault and then it is

trapped by Xen. If write access is permitted, appropriate bit

in the VMs dirty bitmap is set to 1. Then by counting the dirty

pages in an appropriate period, we obtain the page dirty rate.

Traffic Measurement: We assume SDN elements, switches

and routers, can spilt traffic on multiple next hops correctly,

and perform traffic measurements at the same time [10], [11].

To aid traffic measurements, an extra column in the forwarding

table is used to record the node in the network that can reach

2015 IEEE Conference on Computer Communications (INFOCOM)

488

3

(a) Google’s inter-datacenter WAN

Prefix Node Next Hop Traffic
195.112/16 64.177.64.8 64.177.64.6 α
195.027/16 64.177.64.3 64.177.64.4 β

...

(b) Modified Forwarding Table

Fig. 2. Google’s inter-datacenter WAN and the modified forwarding table
for example.

the destination IP address as in work [10]. Take Fig. 2(a),

which is the topology of the inter-datacenter WAN of google,

as an example, where all nodes are SDN forwarding elements.

For instance, we assume node 8 (IP address 64.177.64.8) is

the node that can reach the subset 195.112/16, and the shortest

path from node 7 to node 8 goes through node 6 (IP address

64.177.64.6). Then, the forwarding table of node 7 is shown in

Fig. 2(b), where the first entry is corresponding to the longest

matched prefix 195.112/16. When a packet with the longest

matched prefix 195.112/16 is processed by node 7, α showed

in the figure increases by the packet length. Thus, it tracks

the number of bytes routed from node 7 to node 8 with the

longest matched prefix 195.112/16. Using these data, the SDN

controller easily obtains the traffic between arbitrary two nodes

as well as residual capacity of each link.

B. Problem Overview

In the system, we assume there is no alternate network dedi-

cated to VM migrations, because of the cost of its deployment,

especially in large-scale infrastructures. Thus, only residual

bandwidth can be used to migrate VMs. Then, our goal is to

determining the VMs’ migration orders and transmission rates

that satisfy various constraints, such as capacity constraints for

memory and links, to optimize the total migration time.

Now we give an example in Fig. 3. In this network, there

are 2 switches (S1 and S2) and 4 physical machines (H1 to

H4) hosting 4 VMs (V1 to V4). Assume the capacity of each

link is 100MBps and memory size of each VM is 500MB.

We want to migrate V1 from H1 to H2, V2 from H2 to

H3, and V4 from H3 to H4. The optimal plan of migration

orders and transmission rates is that first migrate V1 and V4

simultaneously, respectively with paths {(H1, S1, H2)} and

{(H3,S2,H4)} and the corresponding maximum bandwidths

of 100MBps. Then migrate V2 with paths {(H2, S1, H3),
(H2, S2, H3)} and the corresponding maximum bandwidth of

200MBps. It totally takes 7.5s to finish all the migrations.

Then, take random migration orders for example, i.e., first

migrate V1 and V2 simultaneously, respectively with paths

{(H1, S1, H2)} and {(H2, S2, H3)} and the corresponding

Fig. 3. An example of migration request and plan.

maximum bandwidths of 100MBps. Then migrate V4 with path

{(H3, S2, H4)} and the corresponding maximum bandwidth of

100MBps. It totally takes 10s to finish all the migrations.
In this example, V1 and V4 can be migrated in parallel,

while V2 can be migrated with multipath. However, V1 and

V2, V4 and V2 share same links in their paths, respectively.

By determining a proper order, these migrations can be im-

plemented making full use of the network resources. Thus,

the total migration time is reduced by 25% in the example,

illustrating the effect of the migration plan.

C. Mathematical Model for Live Migration
In this section, we present the mathematical model of live

migration. We use M to represent the memory size of the

virtual machine. Let R denote the page dirty rate during

the migration and L denote the bandwidth allocated for the

migration. Then, the process of the live migration is shown

in Fig. 4. As we can observe, live migration copies memory

in several rounds. Assume it proceeds in n rounds, and the

data volume transmitted at each round is denoted by Vi

(0 ≤ i ≤ n). At the first round, all memory pages are copied

to the target host, and we have V0 = M . Then in each round,

pages that have been modified in the previous round are copied

to the target host. The transmitted data can be calculated as

Vi = R · Ti−1, i > 0. Thus, the elapsed time at each round

can be calculated as Ti = Vi/L = R ·Ti−1/L = M ·Ri/Li+1.
Let λ denote the ratio of R to L, that is λ = R/L.

Combining the above analysis, the total migration time can

be represented as:

Tmig =
n∑

i=0

Ti =
M

L
· 1− λn+1

1− λ
. (1)

Let Vthd denote the threshold value of the remaining dirty

memory that should be transferred at the last iteration. We

can calculate the total rounds of the iteration by the inequality

Vn ≤ Vthd. Using the previous equations we obtain:

n =

⌈
logλ

Vthd

M

⌉
. (2)

In this model, the downtime caused in the migration can be

represented as Tdown = Td + Tr, where Td is the time spent

on transferring the remaining dirty pages, and Tr is the time

spent on resuming the VM at the target host. For simplicity,

we assume the size of remaining dirty pages is equal to Vthd.

2015 IEEE Conference on Computer Communications (INFOCOM)

489

4

��������	
���

������	��
����
���	�

�� �� �� �� �	��

���������
���	�
���	�
�

�

�

���

 	��

��������	�
���	��

����	

Fig. 4. Illustration of live migration performing pre-copy in iterative rounds.

D. Problem Formulation

The network is represented by a graph G = (V,E), where

V denotes the set of network nodes and E denotes the set

of links. Let c(e) denote the residual capacity of the link

e ∈ E. Let a migration tuple (sk, dk,mk, rk) denote that

a virtual machine should be migrated from the node sk to

the node dk with the memory size mk and the page dirty

rate rk. There are totally K migration tuples in the system.

For the migration k, lk represents the bandwidth allocated for

it. Let Pk denote the set of paths between sk and dk. The

flow in path p is represented by the variable x(p). Besides, as

different migrations are started at different times, we define

binary variable Xk to indicate whether migration k has been

started at the current time.

We first discuss the optimization objective. To obtain an

expression of the total migration time is difficult in our model,

because we allow multiple VMs to be migrated simultaneous-

ly. Thus, the total migration time cannot simply be represented

as the sum of the migration time of each VM like work [9],

[12], whose migration plans were designed under the model

of one-by-one migration. Moreover, even though we obtain

the expression of the total migration time, the optimization

problem is still difficult and cannot be solved efficiently. For

example, work [7] gives an expression of the total migration

time by adopting a discrete time model. However, they did not

solve the problem directly, instead, they proposed a heuristic

algorithm independent with the formulation without any the-

oretical bound. Thus, we try to obtain the objective function

reflecting the total migration time from other perspectives.

On the other hand, since the downtime of live migration

is required to be unnoticeable by users, the number of the

remaining dirty pages in the stop-and-copy round, i.e. Vn,

need to be small enough. According to the model provided in

the last subsection, we have Vn = M · λn. Thus, λn must be

small enough. For example, if migrating a VM, whose memory

size is 10GB, with the transmission rate of 1GBps, to reduce

the downtime to 100ms, we must ensure λn ≤ 0.01. Thus, by

ignoring λn in the equation (1), we have:

Tmig ≈ M

L
· 1

1− λ
=

M

L−R
. (3)

We call the denominator as net transmission rate. From

an overall viewpoint, the sum of memory sizes of VMs is

reduced with the speed of
∑K

k=1(lk−Xkrk), which is the total

net transmission rate in the network. In turn, the integration

of the net transmission rate respect to time is the sum of

memory sizes. By maximizing the total net transmission rate,

we can reduce the total migration time efficiently. Thus, it

is reasonable for us to convert the problem of reducing the

migration time to maximizing the net transmission rate, which

is expressed as
∑K

k=1(lk −Xkrk).

We now analyze constraints of the problem. A VM is

allowed to be migrated with multipath in our model. Thus,

we have a relationship between lk and x(p):∑
p∈Pk

x(p) = lk, k = 1, ...,K.

Besides, the total flow along each link must not exceed its

capacity. Thus, we have:∑
p∈Pe

x(p) ≤ c(e), ∀e ∈ E.

For a migration that has not been started, there is no bandwidth

allocated for it. Thus, we have constraints expressed as follow:

lk ≤ β ·Xk, k = 1, ...,K,

where β is a constant large enough so that the maximum

feasible bandwidth allocated for each migration cannot exceed

it. Then, the problem of maximizing the net transmission rate

can be formulated as follows:

max
∑K

k=1(lk −Xkrk)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
p∈Pk

x(p) = lk, k = 1, ...,K∑
p∈Pe

x(p) ≤ c(e), ∀e ∈ E

lk ≤ β ·Xk, k = 1, ...,K

Xk ∈ {0, 1}, k = 1, ...,K

x(p) ≥ 0, p ∈ P

(4)

which is a mixed integer programming (MIP) problem.

When some new migration requests come or old migrations

are finished, the input of the problem changes. Thus, we

recalculate the programming under the new updated input.

We notice that migrations that have been started cannot be

stopped. Otherwise, these migrations must be back to square

one because of the effect of the page dirty rate. Thus, when

computing this problem next time, we add the following two

constraints to it:{
Xk ≥ X0

k , k = 1, ...,K

lk ≥ l0k, k = 1, ...,K
(5)

where X0
k and l0k are equal to the value of Xk and lk in the

last computing, respectively. It means a migration cannot be

stopped and its bandwidth does not decrease.

By solving the programming, we obtain the VMs that

should be migrated with their corresponding transmission

rates, maximizing the total net transmission rate under the

current condition. By dynamically determining the VMs to

be migrated in tune with changing traffic conditions and

migration requests, we keep the total net transmission rate

maximized, which is able to significantly reduce the total

migration time.

III. APPROXIMATION ALGORITHM

Solving the formulated MIP problem, we obtain a well-

designed sequence of the VMs to be migrated with their

2015 IEEE Conference on Computer Communications (INFOCOM)

490

5

corresponding bandwidths. However, the MIP problem is NP-

hard, and the time to find its solution is intolerable on

large scale networks. For example, we implement the MIP

problem using YALMIP – a language for formulating generic

optimization problems [13], and utilize the GLPK to solve

the formulation [14]. Then, finding the solution of a network

with 12 nodes and 95 VMs to be migrated on a Quad-Core

3.2GHz machine takes at least an hour. Therefore, we need an

approximation algorithm with much lower time complexity.

A. Approximation Scheme

1) Linear Approximation: Let us reconsider the formulated

MIP problem (4). In this problem, only Xk, k = 1, ...,K,
are integer variables. Besides, the coefficient of Xk in the

objective function is rk. In practical data center, rk is usually

much less than lk, i.e., the migration bandwidth of the VM.

Thus, we ignore the part of
∑K

k=1 Xkrk in the objective

function, and remove variables Xk, k = 1, ...,K. Then, we

obtain a linear programming (LP) problem as follows:

max
∑K

k=1 lk

s.t.

⎧⎪⎨
⎪⎩

∑
p∈Pk

x(p) = lk, k = 1, ...,K∑
p∈Pe

x(p) ≤ c(e), ∀e ∈ E

x(p) ≥ 0, p ∈ P

(6)

We select the optimal solution l∗ for (6) with most variables

that are equal to zero as our approximate solution. Then we

let N∗ denote the number of variables that are not zero in our

approximate solution l∗, and the corresponding binary decision

variables Xk are then set to be 1, while the other binary

decision variables are set to be 0. Then the final approximate

solution is denoted by (l∗k, X
∗
k).

As for the primary problem with the additional constraints

shown in (5), by a series of linear transformations, the problem

is converted to a LP problem with the same form as (6) except

for a constant in the objective function, which can be ignored.

Thus we obtain a linear approximation for the primary MIP

problem.

2) Fully Polynomial Time Approximation: The exact solu-

tion of the LP problem (6) still cannot be found in polynomial

time, which means unacceptable computation time for large

scale networks. Thus, we further propose an algorithm to

obtain the solution in polynomial time at the cost of accuracy.

Actually, ignoring the background of our problem and

removing the intermediate variable lk, we can express the LP

problem (6) as:

max
∑

p∈P x(p)

s.t.

{ ∑
p∈Pe

x(p) ≤ c(e), ∀e ∈ E

x(p) ≥ 0, p ∈ P

(7)

This is a maximum multicommodity flow problem, that is,

finding a feasible solution for a multicommodity flow network

that maximizes the total throughput.

Fleischer et al. [15] proposed a Fully Polynomial-time

Approximation Scheme (FPTAS) algorithm independent of the

number of commodities K for the maximum multicommodity

flow problem. It can obtain a feasible solution whose objective

function value is within 1 + ε factor of the optimal, and the

computational complexity is at most a polynomial function of

the network size and 1/ε.

Specifically, the FPTAS algorithm is a primal-dual algorith-

m. We denote u(e) as the dual variables of this problem. For

all e ∈ E, we call u(e) as the length of link e. Then, we define

dist(p) =
∑

e∈p u(e) as the length of path p. This algorithm

starts with initializing u(e) to be δ for all e ∈ E and x(p) to

be 0 for all p ∈ P . δ is a function of the desired accuracy level

ε, which is set to be (1+ε)/((1+ε)n)1/ε in the algorithm. The

algorithm proceeds in phases, each of which is composed of

K iterations. In the rth phase, as long as there is some p ∈ Pk

for some k with dist(p) <min{δ(1+ ε)r, 1}, we augment flow

along p with the capacity of the minimum capacity edge in the

path. The minimum capacity is denoted by c. Then, for each

edge e on p, we update u(e) by u(e) = u(e)(1+ εc
c(e)). At the

end of the rth phase, we ensure every (sj , dj) pair is at least

δ(1 + ε)r or 1 apart. When the lengths of all paths belonging

to Pk for all k are between 1 and 1 + ε, we stop. Thus, the

number of phases is at most
⌈
log1+ε

1+ε
δ

⌉
. Then, according

to theorem in [15], the flow obtained by scaling the final

flow obtained in previous phases by log1+ε
1+ε
δ is feasible. We

modified the FPTAS algorithm by adding some post-processes

to obtain the feasible (lk, Xk) and x(p) to the primal MIP

problem, and the modified algorithm is given in more detail

in Algorithm 1. The computational complexity of the post-

processes is only a linear function of the number of the VMs

Algorithm 1: FPTA Algorithm.

Input: network G(V,E), link capacities c(e) for ∀e ∈ E,

migration requests (sj , dj)
Output: Bandwidth lk, binary decision variable Xk for

each migration k, and the amount of flow x(p) in path

p ∈ P .

Initialize u(e) = δ ∀e ∈ E, x(p) = 0 ∀p ∈ P
for r = 1 to

⌈
log1+ε

1+ε
δ

⌉
do

for j = 1 to K do
p ← shortest path in Pj

while u(p) < min{1, δ(1 + ε)r} do
c ← mine∈p c(e)
x(p) ← x(p) + c
∀e ∈ p, u(e) ← u(e)(1 + εc

c(e))
p ← shortest path in Pj

for each p ∈ P do
x(p) = x(p)/log1+ε

1+ε
δ

for j = 1 to K do
lj =

∑
p∈Pj

x(p)
Xj = 0
if lj �= 0 then

Xj = 1

Return (lk, Xk) and x(p)

2015 IEEE Conference on Computer Communications (INFOCOM)

491

6

to be migrated. In addition, the computational complexity

of the FPTAS algorithm is at most a polynomial function

of the network size and 1/ε [15]. Thus, the computational

complexity of our approximation algorithm is also polynomial.

and we obtain a fully polynomial time approximation (termed

as FPTA) to the primal MIP problem.

B. Bound Analysis

To demonstrate the effectiveness of our proposed algorithm,

we now analyze the bound of it. We first analyze the bound

of the linear approximation compared with the primary MIP

problem (4), then analyze the bound of the FPTA algorithm

compared with the linear approximation (6). With these two

bounds, we finally obtain the bound of the FPTA algorithm

showing in Algorithm 1 compared with the primary MIP

problem (4).

1) Bound of the Linear Approximation: We discuss the

bound of the linear approximation compared with the pri-

mary MIP problem in normal data center network scenarios.

Common topologies of data center networks, such as fat tree,

usually provide full bisection bandwidth, which enables all

hosts communicating with each other with full bandwidth at

the same time. Thus, we can ignore the routing details, and

only guarantee the traffic at each host not exceeds its maximum

bandwidth. Then, the LP problem (6) becomes:

max
∑K

k=1 lk

s.t.

⎧⎪⎨
⎪⎩

∑
sk=i lk ≤ Cs

i , i = 1, ..., H∑
dk=i lk ≤ Cd

i , i = 1, ..., H

lk ≥ 0, k = 1, ...,K

(8)

where Cs
i is the maximum amount of traffic that can be

received at host i, while Cd
i is the maximum amount of traffic

that can be sent at host i. Besides, there are H hosts in the data

center. Then, we let L0 be the minimum of Cs
i and Cd

i . That is,

min{Cs
1 , ..., C

s
H} ≥ L0 and min{Cd

1 , ..., C
d
H} ≥ L0. Similarly,

we let R0 be the maximum of rk. That is, max{r1, ..., rK} ≤
R0.

We now provide some supplement knowledge about linear

programming. For a linear programming with standard form,

which can be represented as:

max bTx

s.t.

{
Ax = c

x ≥ 0

(9)

where x, b ∈ Rn, c ∈ Rm, A ∈ Rm×n has full rank m, we

have the following definitions and lemmas.

Definition 1 (Basic Solution) Given the set of m simulta-

neous linear equations in n unknowns of Ax = c in (9), let

B be any nonsingular m×m submatrix made up of columns

of A. Then, if all n−m components of x not associated with

columns of B are set equal to zero, the solution to the resulting

set of equations is said to be a basic solution to Ax = c with

respect to the basis B. The components of x associated with

columns of B are called basic variables, that is, BxB = c [16].

Definition 2 (Basic Feasible Solution) A vector x satisfy-

ing (9) is said to be feasible for these constraints. A feasible

solution to the constraints (9) that is also basic is said to be a

basic feasible solution [16].

Lemma 1 (Fundamental Theorem of LP) Given a linear

program in standard form (9) where A is an m× n matrix of

rank m. If there is a feasible solution, there is a basic feasible

solution. If there is an optimal feasible solution, there is an

optimal basic feasible solution [16].

These definitions and the lemma with its proof can be

found in the textbook of linear programming [16]. With these

preparations, we have the following lemma:

Lemma 2 There exists an optimal solution for (8), such

that there are at least N∗ equalities that hold in inequality

constraints of (8).

Proof: Problem (8) can be represented in standard form as:

max bT l

s.t.

⎧⎪⎨
⎪⎩
[A I]

[
l

s

]
= c

l, s ≥ 0

(10)

where c ∈ R2H , l = (l1, l2, ..., lK)T , s = c − Al, b =
(1, 1, ..., 1)T ∈ RK , I ∈ RK×K is the identity matrix of

the order K, A ∈ R2H×K is composed of 0 and 1, and each

column of A has and only has two elements of 1. Besides,

[A I] ∈ R2H×K+2H has full rank 2H .

By Lemma 1, if the LP problem (10) has an optimal feasible

solution, we can find an optimal basic feasible solution (l̂, ŝ)
for (10). By the definition of basic solution, the number of

nonzero variables in (l̂, ŝ) is less than 2H . Meanwhile, By the

definition of N∗, the number of nonzero variables in l̂, which

is represented by N̂ , is greater than N∗. Thus the number of

nonzero variables in ŝ is less than 2H−N∗. Then there are at

least N∗ variables that are equal to zero in ŝ. Meanwhile, ŝj =
0, j ∈ {1, ..., 2H} means the equality holds in the inequality

constraint corresponding jth row in A. Therefore, we have at

least N∗ equalities that hold in inequality constraints of (8).�
Theorem 1 Assume R0 = ηL0. Let U be the optimal value

of the primal MIP problem (4), and V be the optimal value

of the LP problem (8). Then we have V −N∗R0 ≥ (1−σ)U ,

where σ = 2η
1−2η .

Proof: We first prove V ≥ 1
2N

∗L0. By lemma 2, we know

that there exists an optimal solution of (8) such that there

are at least N∗ equalities that hold in inequality constraints

of (8). We select the corresponding rows a1, ...aN∗ of A and

corresponding elements c1, ...cN∗ of c. Then we have aTi l̂ =
ci, i = 1, ..., N∗. Because each column of A has and only

has two elements of 1, elements of
∑N∗

i=1 ai are at most 2.

Thus, we have V =
∑K

k=1 l̂k ≥ 1
2

∑N∗

i=1 a
T
i l̂ =

1
2

∑N∗

i=1 ci ≥
1
2N

∗L0.

By definition of U and V , we have U ≤ V and V −N∗R0 ≤
U . Then we have |U − (V −N∗R0)| = U − V + N∗R0 ≤
N∗R0. Besides, by the last paragraph, we have U ≥ V −
N∗R0 ≥ 1

2N
∗L0 − N∗R0. Thus, we have

|U−(V−N∗R0)|
U =

U−(V−N∗R0)
U ≤ N∗R0

1
2N

∗L0−N∗R0
= 2R0

L0−2R0
= 2η

1−2η = σ, i.e.,

V −N∗R0 ≥ (1− σ)U . �
By the definitions of N∗ and R0, we have that the net

2015 IEEE Conference on Computer Communications (INFOCOM)

492

7

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

The Number of Migrations

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
)

One−by−one
Grouping
FPTA
Optimal

60 70 80 90 100
30

40

50

60

(a)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

The Means of Memory Size (GB)

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
)

One−by−one
Grouping
FPTA
Optimal

6 7 8 9 10
40

60

80

100

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700

800

900

1000

Background Traffic (GBps)

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
)

One−by−one
Grouping
FPTA
Optimal

0.4 0.5 0.6
50

100

150

(c)

Fig. 5. Total migration time vs different parameters in one datacenter under the topology of PRV1.

transmission rate corresponding to the selected solution of (8)

is at least V −N∗R0. Thus, we obtain the bound of the linear

approximation compared with the primary MIP problem.

2) Bound of the FPTA Algorithm: We next analyze the

bound of the FPTA algorithm. According to theorem in [15],

we have the following lemma:

Lemma 3 If p is selected in each iteration to be the shortest

(si, di) path among all commodities, then for a final flow value

W =
∑

p∈P x(p) obtained from the FPTAS algorithm, we

have W ≥ (1− 2ε)V , where ε is the desired accuracy level.

Because the value of x(p) is unchanged in our post-

processes of Algorithm 1, W is also the final flow value of our

proposed FPTA algorithm. Note that it is not the bound of the

FPTA algorithm compared with the LP problem (6), because

our objective function is the net transmission rate, while W
is only the transmission rate of the solution of the FPTA

algorithm. Besides, V is not the maximum net transmission

rate as well. The bound of the FPTA algorithm is given in the

following theorem:

Theorem 2 Let F be the net transmission rate corre-

sponding to the solution of Algorithm 1. In the data center

networks providing full bisection bandwidth, we have F ≥
(1 − 2ε − σ)U , where U is the optimal value of the primal

MIP problem (4).

Proof: By the definitions of N∗ and R0, we have that the net

transmission rate corresponding to the solution of the FPTA

algorithm is at least W −N∗R0, i.e., F ≥ W −N∗R0. Thus

we have F ≥ (1− 2ε)V −N∗R0 = (1 − 2ε)(V −N∗R0) −
2εN∗R0. Meanwhile, by U ≥ 1

2N
∗L0−N∗R0 ≥ 1

2ηN
∗R0−

N∗R0, we have N∗R0 ≤ 2η
1−2ηU = σU .

By Theorem 1, we have F ≥ (1− 2ε)(1− σ)U − 2εσU =
(1−2ε−σ)U . Thus we obtain the bound of the FPTA algorithm

compared with the primal MIP problem.�

IV. PERFORMANCE EVALUATION

A. Simulation System Set Up

With the increasing trend of owning multiple datacenter

sites by a single company, migrating VMs across datacenters

becomes a common scenario. Thus, to evaluate the perfor-

mance of our proposed migration plan inside one datacenter

and across datacenters, we select the following two topologies

to implement our experiments: (1) The topology of a private

enterprise data center located in Midwestern United States

(PRV1 in [18]). (2) B4, Google’s inter-datacenter WAN with

12 data centers interconnected with 19 links [17] (showing in

Fig. 2(a)). In B4, each node represents a data center. Besides,

the network provides massive bandwidth. However, to evaluate

the performance of our proposed algorithm under relatively

hard conditions, we assume the capacity of each link is only

1GBps. On the other hand, the capacities of links in RPV1 are

set ranging from 1GB to 10GB according to [18]. The page

dirty rate is set to 100MBps. Besides, Vthd and Tr are set to

100MB and 20ms, respectively. The memory sizes of VMs are

also set ranging from 1GB to 10GB unless stated otherwise.
In our experiments, we evaluate the performance of our

proposed FPTA algorithm compared with the optimal solu-

tion of the MIP problem (referred to as optimal algorithm)

and two state-of-the-art algorithms. In the two state-of-the-

art algorithms, one is the algorithm based on one-by-one

migration scheme (referred to as one-by-one algorithm), which

is proposed in [9], [12]. The other is the algorithm that

migrates VMs by groups (referred to as grouping algorithm),

just as the algorithm proposed in [7]. In this algorithm, VMs

that can be migrated in parallel are divided into the same

group, while VMs that share the same resources, such as the

same link in their paths, are divided into different groups. Then

VMs are migrated by groups according to their costs [7]. We

further set the function of the cost as the weighted value of the

total migration time and the number of VMs in each group.

B. Results and Analysis
1) Migration Time: In our first group of experiments, we

compare the total migration time of our proposed FPTA

algorithm with that of other algorithms introduced above, with

the variation of different parameters, i.e., the number of VMs

to be migrated, the amount of background traffic, the average

memory size of VMs, in PRV1 and B4, respectively. The

results are shown in Fig. 5 and Fig. 6.
As we can observe from the Fig. 5, the performance of the

one-by-one algorithm is much worse than that of the other

three algorithms: when there are 100 VMs to be migrated,

the total migration time it takes is about 10 times more than

that of the other three algorithms, illustrating its inefficiency

2015 IEEE Conference on Computer Communications (INFOCOM)

493

8

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

The Number of Migrations

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
)

Grouping
FPTA
Optimal

(a)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

The Means of Memory Size (GB)

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
)

Grouping
FPTA
Optimal

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6
20

40

60

80

100

120

140

Background Traffic (GBps)

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
)

Grouping
FPTA
Optimal

(c)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

The Number of Migrations

C
om

pu
ta

tio
n

Ti
m

e
(s

)

GLPK
FPTA

(d)

Fig. 6. Total migration time or computation time vs different parameters in
inter-datacenter network under the topology of B4.

in reducing the total migration time. Since the performance

gap between one-by-one algorithm and the other algorithms

is huge, we do not show its performance in Fig. 6. Besides,

from Fig. 6(d) we can observe that the computation time of

our proposed FPTA algorithm is at most a polynomial function

of the number of the migrations, much less than that of using

GLPK to solve the LP problem (6).

As for the performance of the other three algorithms, their

total migration time vs different parameters in data center

networks and inter-datacenter WAN has a similar trend: the

total migration time of FPTA algorithm is very close to that

of the optimal algorithm, and much less than that of the

grouping algorithm. Take Fig. 5(a) and Fig. 6(a) for example.

In PRV1 (showing in Fig. 5(a)), total migration time of the

FPTA algorithm and the optimal algorithm almost cannot be

distinguished, while in B4 (showing in Fig. 6(a)) the gap is less

than 15% relative to the optimal algorithm. Meanwhile, FPTA

algorithm performs much better than the grouping algorithm:

its migration time is reduced by 40% and 50% in comparison

with the grouping algorithm in PRV1 and B4, respectively.

Thus, the solution of our proposed FPTA algorithm approaches

to the optimal solution and outperforms the state-of-the-art

solutions.

2) Net Transmission Rate: To illustrate the effectiveness

of maximizing the net transmission rate, we implement the

second group of experiments in the scenario where there are

40 VMs to be migrated in B4. Net transmission rates of the

FPTA algorithm and the grouping algorithm are evaluated, as

functions of time. The result is shown in Fig. 7.

According to previous theoretic analysis, we know that the

sum of memory sizes of VMs to be migrated is approximately

equal to the integration of the net transmission rate with

respect to time. In the experiments, the sum of memory sizes of

the 40 VMs to be migrated are 203GB. Meanwhile, in Fig. 7,

Time (s)

N
et

 T
ra

ns
m

is
si

on
 R

at
e

(G
pb

s)

Fig. 7. The net transmission rates vs time of FPTA algorithm and grouping
algorithm in inter-datacenter network under the topology of B4 with 40 VMs
to be migrated.

the shadow areas of the FPTA and grouping algorithm, which

can represent the integrations of the net transmission rates with

respect to time, are 203.0GB and 212.0GB, respectively. The

relative errors are less than 5%. It proves the correctness of

our theoretic analysis. Besides, from the figure we observe that

the net transmission rate with the FPTA algorithm remains

a relatively high level in the process of migrations, about 2

times higher than that of the grouping algorithm on average.

Thus, the integration of the net transmission rate can reaches∑40
k=1 mk with less time. Specifically, in this group of exper-

iments, the total migration time of FPTA algorithm is reduced

by up to 50% compared with grouping algorithm. Thus, our

FPTA algorithm significantly reduces the total migration time

by maximizing the net transmission rate.
3) Application Performance: The scenarios of this group

of experiments are to optimize the average delay of services

in B4. Assume there are some VMs located randomly in the

data centers in B4 at the beginning, and they are providing

services to the same user, who is located closely to the node

8 (data center 8). Thus we need to migrate these VMs to data

centers as close to the node 8 as possible. However, memory

that each data center provides is not unlimited, which is set to

be 50GB in our experiments. Besides, there are 11, 19, 27, 41

VMs in the network, respectively. We find the final migration

sets by minimizing the average delay. Then we use the FPTA

and grouping algorithm to implement these migrations. The

results are shown in Fig. 8.

Fig. 8(a) and (b) show the total migration time and down-

time, respectively. As we observe, FPTA algorithm reduces

the total migration time and downtime by 43.7% and 22.6%

on average compared with those of the grouping algorithm,

respectively. Thus, our proposed FPTA algorithm outperforms

the grouping algorithm uniformly, which provides better ser-

vices for the user.

V. RELATED WORK

Works related to our paper can be divided by two topics:

live migration and migration planning.

Since Clark proposed live migration [2], there have been

plenty of works that have been done in this field. Ramakr-

ishnan et al. [19] advocated a cooperative, context-aware

2015 IEEE Conference on Computer Communications (INFOCOM)

494

9

The Number of VMs The Number of VMs

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
)

To
ta

l D
ow

nt
im

e
(s

)
Fig. 8. Total migration time and downtime for optimizing delay in inter-
datacenter network under the topology of B4.

approach to data center migration across WANs to deal with

outages in a non-disruptive manner. Wood et al. [20] pre-

sented a mechanism that provides seamless and secure cloud

connectivity as well as supports live WAN migration of VMs.

On the other hand, VM migration in SDNs has made some

progress. Mann et al. [21] presented CrossRoads – a network

fabric that provides layer agnostic and seamless live and offline

VM mobility across multiple data centers. Boughzala et al.
[8] proposed a network infrastructure based on OpenFlow that

solves the problem of inter-domain VM migration. Meanwhile,

Keller et al. [22] proposed LIME, a general and efficient

solution for joint migration of VMs and the network. These

works indicate that SDN has big advantages in implementing

VM migration. In contrast, we focus on developing a VM

migration plan to reduce the total migration time in Software

Defined Network (SDN) scenarios.

Meanwhile, there have been some works about VM migra-

tion planning. However, most of them were designed under

the model of one-by-one migration [9], [12] or their main

focuses were not to optimize the total migration time [9],

[23]. Ghorbani et al. [9] proposed a heuristic algorithm of

determining the ordering of VM migrations and corresponding

OpenFlow instructions. However, they concentrated on band-

width guarantees, freedom of loops, and their algorithm is

based on the model of one-by-one migration. Al–Haj et al.
[23] also focused on finding a sequence of migration steps.

Their main goal was to satisfy security, dependency, and

performance requirements.

VI. CONCLUSION

In this work, we focus on reducing the total migration

time by determining the migration orders and transmission

rates of VMs. Since solving this problem directly is difficult,

we convert the problem to another problem, i.e., maximizing

the net transmission rate in the network. We formulate this

problem as a mixed integer programming problem, which is

NP-hard. Then we propose a fully polynomial time approxi-

mation (FPTA) algorithm to solve the problem. Results show

that the proposed algorithm approaches to the optimal solution

with less than 10% variation and much less computation time.

Meanwhile, it reduces the total migration time and the service

downtime by up to 40% and 20% compared with the state-of-

the-art algorithms, respectively.

ACKNOWLEDGMENT

This work is supported by National Basic Research Pro-

gram of China (973 Program) (No. 2013CB329105), Na-

tional Nature Science Foundation of China (No. 61301080,

No. 61171065 and No. 61273214), National High Technology

Research and Development Program (No. 2013AA013501 and

No. 2013AA013505), Chinese National Major Scientific and

Technological Specialized Project (No. 2013ZX03002001),

Chinas Next Generation Internet (No. CNGI-12-03-007)

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, “Xen and the art of virtualization”,
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164-177,
2003.

[2] C. Clark, K. Fraser, and S. Hand, “Live migration of virtual machines,”
in Proc. of 2nd NSDI, 2005, pp. 273–286.

[3] M. F. Zhani, Q. Zhang, G. Simona, “VDC Planner: Dynamic migration-
aware virtual data center embedding for clouds”, in Proc. of IFIP/IEEE
IM, 2013, pp. 18-25.

[4] T. Wood, P. J. Shenoy, A. Venkataramani, “Black-box and Gray-box
Strategies for Virtual Machine Migration”, in NSDI, 2007, pp. 17.

[5] K. Ye, X. Jiang, D. Huang, “Live migration of multiple virtual machines
with resource reservation in cloud computing environments” in Proc. of
IEEE CLOUD, 2011, pp. 267-274.

[6] C. Mastroianni, M. Meo, G. Papuzzo, “Self-economy in cloud data
centers: Statistical assignment and migration of virtual machines”, Euro-
Par 2011 Parallel Processing, 2011, pp. 407-418.

[7] M. F. Bari, Zhani M F, Zhang Q, “CQNCR: Optimal VM Migration
Planning in Cloud Data Centers”.

[8] B. Boughzala, R. Ben Ali, M. Lemay, “OpenFlow supporting inter-
domain virtual machine migration”, in Proc. of WOCN, 2011, pp. 1-7.

[9] S. Ghorbani, M. Caesar, “Walk the line: consistent network updates with
bandwidth guarantees”, in Proc. of HotSDN, 2012, pp. 67-72.

[10] S. Agarwal, M. Kodialam, T. V. Lakshman, “Traffic engineering in soft-
ware defined networks”, in Proc. of IEEE INFOCOM, 2013, pp. 2211-
2219.

[11] A. Sridharan, R. Guerin, C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks”, IEEE/ACM
Transactions on Networking (TON), vol. 13, no. 2, pp. 234-247, 2005.

[12] X. Li, Q. He, J. Chen, K. Ye, and T. Yin, “Informed live migration
strategies of virtual machines for cluster load balancing”, in Proc. of
NPC 2011, (Berlin, Heidelberg), 2011, pp. 111-122, Springer-Verlag.

[13] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB”, in IEEE CACSD, 2004, pp. 284-289.

[14] A. Makhorin, “GLPK (GNU linear programming kit)”, 2008.
[15] L. K. Fleischer, “Approximating fractional multicommodity flow inde-

pendent of the number of commodities”, SIAM Journal on Discrete
Mathematics, vol. 13, no. 4, pp. 505-520, 2000.

[16] D. G. Luenberger, Y. Ye, “Linear and nonlinear programming”, Springer,
2008.

[17] S. Jain, A. Kumar, S. Mandal, “B4: Experience with a globally-deployed
software defined WAN”, in Proc. of ACM SIGCOMM, 2013, pp. 3-14.

[18] T. Benson, A. Akella, D. A. Maltz, “Network traffic characteristics of
data centers in the wild”, in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010, pp. 267-280.

[19] K. K. Ramakrishnan, P. Shenoy, J. Van der Merwe, “Live data center
migration across WANs: a robust cooperative context aware approach”,in
Proc. of INM 2007”, pp. 262-267.

[20] T. Wood, K. K. Ramakrishnan, P. Shenoy, “CloudNet: dynamic pooling
of cloud resources by live WAN migration of virtual machines”,in ACM
SIGPLAN Notices, 2011, pp. 121-132.

[21] V. Mann, A. Vishnoi, K. Kannan, “CrossRoads: Seamless VM mobility
across data centers through software defined networking”, in Proc. of
IEEE NOMS, 2012, pp. 88-96.

[22] E. Keller, S. Ghorbani, M. Caesar, “Live migration of an entire network
(and its hosts)”, in Proc. of HotNets, 2012, pp. 109-114.

[23] S. Al-Haj, E. Al-Shaer, “A formal approach for virtual machine migra-
tion planning”, in CNSM, 2013, pp. 51-58.

2015 IEEE Conference on Computer Communications (INFOCOM)

495

