

# From Fresnel Diffraction Model to Contactless Sensing with Commodity Wi-Fi Devices

# **Fusang Zhang**

Peking University, Beijing, China Institute of Software, Chinese Academy of Sciences, Beijing, China

Mobile Networking, Analytics and Edge Intelligence Workshop 2019

Joint Finland-China-Germany Workshop, Beijing, China, August 15-17, 2019

# Outline

- 1. Background
- **2. Fresnel Diffraction Model**
- **3. Applying the Model for Human Respiration Sensing**
- 4. Applying the Model for Human Activity Sensing
- 5. Summary

# 1. Background

Wi-Fi based device free sensing

#### ■ Application:

- Coarse-grained: Localization, Fall detection
- Fine-grained: Keystroke detection, Respiration sensing

#### Advantage : non-intrusive, cost-effective, privacy friendly



# Existing work

- Most of the existing work employ pattern-based approaches using a trialand-error methodology. It lacks lack of theoretical foundation for wireless sensing.
- Our group first proposes Fresnel refection model out first Fresnel zone (FFZ) in 2016 (Ubicomp paper). It explains when the human respiration can be detected using reflection signal.









### Motivation

FFZ?



The inner most zone between transmitter and receiver remains a mystery for researchers.

- 1. What's the theory behind sensing human activities in the FFZ?
- 2. How to detect human activity when the target located in the



# **2. Fresnel Diffraction Model**

## **The Basics of Fresnel Zone Model**

 Fresnel Zones refer to the concentric ellipses with foci in a pair of transceivers |TxQ<sub>n</sub>| +|RxQ<sub>n</sub>|-|TxRx|=nλ/2

> More than 70% of the energy is transferred via FFZ

## Diffraction Phenomenon

- **Case1: one-side diffraction.** Signals have diffractions at one side, corresponding to an infinite-size target presented in the FFZ.
- **Case2: double-side diffraction.** Signals have diffractions at both sides of the target, corresponding to a finite-size target presented in the FFZ.



## Diffraction Based Sensing Model

(1) One side diffraction model  $F(v) = \frac{1+j}{2} \int_{v}^{\infty} \exp\left(\frac{-J.\pi Z^{2}}{2}\right) dz$  (2) Double side diffraction model  $F(v) = |F(v_{front}) + F(v_{back})|$ 

• Front integral:  $\mathbf{F}(v_{front}) = \frac{1+j}{2} \int_{V_{front}}^{\infty} exp\left(\frac{-J \cdot \pi Z^2}{2}\right) dz$ 

• Back integral: 
$$\mathbf{F}(\boldsymbol{v}_{back}) = \frac{1+j}{2} \int_{-\infty}^{V_{back}} exp\left(\frac{-J.\pi Z^2}{2}\right) dz$$





#### Example: diffraction signal with target moving across the FFZ



**3. Applying the Diffraction Sensing Model for Human Respiration Detection** 

#### **Scenario: detecting respiration while sitting and lying**

- Case1: while subject lying, it corresponds to one-side diffraction, signals have diffractions at one side
- Case2: while subject sitting, it corresponds to double-side diffraction, signals have diffractions at double side



Lying: one side diffraction





Sitting: double side diffraction



#### **Modeling human respiration**

• Human body is modeled as a varying size flat-cylinder



C Lowanichkiattikul, M Dhanachai, C Sitathanee, S Khachonkham, and P Khaothong. *Impact of chest wall motion caused by respiration in adjuvant radiotherapy for postoperative breast cancer patients*. SpringerPlus 5, 1 (2016), 1–8.
Anders N Pedersen, Stine Korreman, Håkan Nyström, and Lena Specht. *Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold*. Radiotherapy and oncology 72, 1 (2004), 53–60.

#### **Extracting sensing signal of respiration**

• The chest displacement ∆d causes a fragment of the whole received signal



Chest location vs. signal variation (Lying)

• Same amount of chest displacement causes different amplitude variations



**Position2:** Good Position

#### Chest location vs. signal variation (Sitting)

- The received Wi-Fi signal waveform takes the form of 'W'
- The good position and bad position appear alternatively



#### Typical good and bad position for Lying and sitting



## **Detection Heat Map (Lying and Sitting)**

Lying: the boundary of FFZ is bad position, whereas the most inner positions are good position (stable performance)
Sitting: the interleaving of good and bad positions in FFZ (unstable performance)



Lying

Sitting

# 4. Applying the Diffraction Sensing Model for Human Fitness Activity Sensing

# Wi-Fi based human fitness activity sensing

- **Home exercises** have the great advantage as well-rounded workouts to keep people healthy.
- We utilize Wi-Fi signals to provide **non-intrusive** exercise monitoring, and show how the **diffraction model** give guidance of activity sensing.





### **Fresnel diffraction model for large-scale motion**

- Considering a target moves into the FFZ, stops and then moves back to the original position.
- Based on the diffraction model, we obtain unique signal patterns with different stopping positions.





### **Model Guides Activity Recognition**

• We use sit-up and push-up as an example to demonstrate how we identify different exercise activities without training.



## **Sensing results**



(a) Push-up



(b) Sit-up

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

(c) Walkout

#### Demo

![](_page_23_Figure_1.jpeg)

## Summary

- We develop diffraction-based wireless sensing theory in the FFZ with commodity Wi-Fi devices.
- We apply sensing model for fine-grained human respiration, and coarse-grained human fitness activity sensing.
- We believe this model can be used to guide other wireless sensing applications

## Publication

- Fusang Zhang, Kai Niu, Jie Xiong, Beihong Jin, Tao Gu, Yuhang Jiang, Daqing Zhang. *Towards a Diffraction-based Sensing Approach on Human Activity Recognition*, UbiComp 2019, September 8-13, 2019, LONDON, UK.
- Kai Niu, Fusang Zhang, Yuhang Jiang, Zhaoxin Chang, Leye Wang, Daqing Zhang. A Contactless Morse Code Text Input System Using COTS WiFi Devices, UbiComp 2019, Demo, September 8-13, 2019, LONDON, UK.
- 3. Kai Niu, **Fusang Zhang**, WiMorse: A Contactless Morse Code Text Input System using Ambient WiFi Signals, **IoT Journal**, Aug, 2019.
- 4. Fusang Zhang, Daqing Zhang, Jie Xiong, Hao Wang, Kai Niu, Beihong Jin, Yuxiang Wang. *From fresnel diffraction model to fine-grained human respiration sensing with commodity wifi devices*, UbiComp 2018, October 8-12, 2018, SINGAPORE.
- Kai Niu, Fusang Zhang, Zhaoxin Chang, Daqing Zhang. A Fresnel Diffraction Model Based Human Respiration Detection System Using COTS Wi-Fi Devices, UbiComp 2018, Demo, October 8-12, 2018, SINGAPORE.
- Kai Niu, Fusang Zhang, Jie Xiong, Xiang Li, Enze Yi, Daqing Zhang. Boosting fine-grained activity sensing by embracing wireless multipath effects, CoNext 2018, December 4-7, 2018, Heraklion/Crete, Greece.

![](_page_26_Picture_0.jpeg)

**Fuang zhang-** <u>zhangfusang10@otcaix.iscas.ac.cn</u> Peking University Institute of Software, Chinese Academy of Sciences

![](_page_26_Picture_2.jpeg)