

Relation-Aware GCNs for Agent-Initiated Social E-Commerce Recommendation

Fengli Xu, 17 August 2019

joint work with Jianxun Lian, Xing Xie; Zhengyu Han, Yong Li.

MSRA

Tsinghua Univ.

What is social e-commerce?

Social e-commerce

Characteristics

	Item category distribution	Conversion rate
APP	Diverse	Higher
Social	Concentrated	Lower

Characteristics

- Network structure matters.
- Node attribute matters.
- They are correlated with each other.

Can we use GCN?

GCN for Recommendation

GCN 101

Propagate node feature through network connection.
Spatial invariant aggregator function.
Stack *K* layer to aggregate from K-hops away.

(Courtesy to Felix Wu)

GCN for RS

Researchers widely consider GCNs are prime for RS, because interactions beyond user-item matters!

Challenges

GCN on heterogeneous graph.

Going deeper, since important nodes are likely to be hops away (e.g. U-I-U-I).

Complex and dynamic motivations in each purchase.

(a) An example of social e-commerce network

Model Design

Relation-aware aggregator

(a) An example of social e-commerce network

(b) Illustration of the mechanisms in AGGREGATOR^r

Share aggregators *relation-wise* instead of *layer-wise*.

Meta-path defined receptive field

Algorithm 2 : Embedding generation algorithm

Input: social e-commerce graph $G_{SE} = (V, E)$, target node w, node features { $\mathbf{x}_{\upsilon}, \forall \upsilon \in V$ }, meta-path $\rho = (r_1, r_2, \cdots, r_l)$, relationbased aggregator function AGGREGATOR^r **Output:** vector representation \mathbf{h}_{w}^{ρ} for node *w* /*Sampling meta-path defined receptive field * $f_w^{\rho}(0) \leftarrow w$ for i = 1 to l do $f_{w}^{\rho}(i) \leftarrow \bigcup \left\{ \mathcal{N}_{r_{i}}(v) \mid \forall v \in f_{w}^{\rho}(i-1) \right\}$ end for 6: /*Generating embeddings */ 7: $\mathbf{h}_{\upsilon} \leftarrow \mathbf{x}_{\upsilon}, \forall \upsilon \in f_{w}^{\rho}(l)$ 8: **for** i = l to 1 **do** for $v \in f_w^{\rho}(i-1)$ do 9: $\mathbf{h}_{v} \leftarrow \text{AGGREGATOR}^{\mathbf{r}_{i}}(\mathbf{x}_{v}, \{\mathbf{h}_{j} | \forall j \in \mathcal{N}_{r_{i}}(v)\})$ 10: end for 11: 12: end for 13: $\mathbf{h}_{w}^{\rho} \leftarrow \mathbf{h}_{w}$

Carve out relevant receptive field with semantic-aware meta-paths.

Co-attentive embedding fusing

Dynamically assign attention weights by co-attending to other elements in each purchase.

Example of fusing item embedding from different Metapaths.

Experiments

Dataset & Settings

- Collect a dataset that consists of the interactions between 87,105 users, 77,982 items and 13,057 selling agents.
- □ Also a social scenario only dataset (-).
- 80% training, 10% validation, 10% test.
- We handcraft 11 metapaths for users, selling agents and items.

Table 2: The basic statistics of evalution dataset.

Node types	#Node	Avg. Inter. (Social)	Avg. Inter. (APP)
User	87105	6.36	26.15
Item	77982	7.10	29.21
Selling Agent	13057	40.99	-

Table 3: The selected meta-paths for each type of node.

	Meta-paths
Users	U-I, U-A, U-S-U-I, U-A-U-I, U-I-U-I
Selling Agents	S-U, S-U-I, S-U-A
Items	I-U, I-U-I-U, I-U-S-U, I-U-A-U

Baselines

- BMF: Classic biased matrix factorization model.
- DNN: Content-boosted deep learning recommendation model.
- Metapath MF: Perform matrix factorization on extended interaction matrices based on metapaths.
- ReGCN: A degraded variant of RecoGCN, which only employs the r-Aggregators.
- ReGCN*mP* : Integrates metapath defined receptive field sampler into ReGCN.

- PinSage: The state-of-the-art GCN recommender system.
- GAT: The state-of-the-art attention-based GCN model.
- HAN: The state-of-the-art GCN-based network embedding model for HINs.
- DiffNet: The state-of-the-art GCN model that considers the social influence diffusion in recommendation problem.

Performance

GCN models achieve superior performance in general.

- All variants of our model achieve superior performance.
- Each component results in significant performance gain.

Table 4: Performance comparison with baseline models, where (**) indicates p<0.01 significance over best baseline.

Method	MRR@30	NDCG@30	HR@1	HR@3
BMF(-)	0.2326	0.3795	0.1454	0.2305
BMF	0.2105	0.3621	0.1181	0.2106
DNN(-)	0.2348	0.3814	0.1472	0.2336
DNN	0.1895	0.3445	0.0991	0.1863
Metapath MF(-)	0.2226	0.3710	0.1394	0.2152
Metapath MF	0.2207	0.3691	0.1390	0.2118
PinSage(-)	0.2533	0.4015	0.1448	0.2611
PinSage	0.2493	0.3988	0.1348	0.2637
GAT(-)	0.2536	0.4020	0.1439	0.2637
GAT	0.2339	0.3867	0.1191	0.2429
DiffNet	0.2254	0.3721	0.1449	0.2204
HAN	0.2571	0.4037	0.1542	0.2621
ReGCN	0.2553	0.4033	0.1463	0.2628
ReGCN _{MP}	0.2593	0.4061	0.1526	0.2663
RecoGCN(-)	0.2619	0.4073	0.1596	0.2675
RecoGCN	0.2632**	0.4086**	0.1592**	0.2708**

Performance

Table 4: Performance comparison with baseline models,where (**) indicates p<0.01 significance over best baseline.</td>

Combining APP interactions	
surprisingly result in	Met
performance degeneration in	
most baselines.	1

RecoGCN is able to leverage APP interactions.

BMF(-) 0.2326 0.3795 0.1454 0.230)5)6
	6
BMF 0.2105 0.3621 0.1181 0.210	
DNN(-) 0.2348 0.3814 0.1472 0.233	6
DNN 0.1895 0.3445 0.0991 0.186	3
Metapath MF(-) 0.2226 0.3710 0.1394 0.215	2
Metapath MF 0.2207 0.3691 0.1390 0.211	8
PinSage(-) 0.2533 0.4015 0.1448 0.261	1
PinSage 0.2493 0.3988 0.1348 0.263	7
GAT(-) 0.2536 0.4020 0.1439 0.263	7
GAT 0.2339 0.3867 0.1191 0.242	9
DiffNet 0.2254 0.3721 0.1449 0.220	4
HAN 0.2571 0.4037 0.1542 0.262	1
ReGCN 0.2553 0.4033 0.1463 0.262	8
ReGCN _{MP} 0.2593 0.4061 0.1526 0.266	3
RecoGCN(-) 0.2619 0.4073 0.1596 0.267	5
RecoGCN 0.2632** 0.4086** 0.1592** 0.2708	} **

Embeddings Visualization

- Users are well distinguished based on categories and regions.
- Semantic-aware. Coupon is isolated, Fresh foods close to Foods, etc.

Baby Per. Care Cloth Foods Grocery Fresh Health Coupon User/agent area legend North Central East South NW NE SW

2D t-SNE plot of Embeddings from $ReGCN_{MP}$.

Meta-paths Importance

- High importance in U-S-U-I indicates strong social regularization.
- Importance on U-I-U-I is surprisingly low. Could be U-A-U-I better capture CF effect.
- Adding in high quality metapaths result in constantly performance boost.

Summary

- An exploratory study to analyze the behavior characteristics in the newly-emergent agent-initiated social e-commerce.
- □ A relation-aware GCN framework for heterogeneous graph.
- A method to leverage metapath to reduce receptive field size and makes it semantic-aware.
- A co-attentive mechanism to dynamically reason the motivation of each purchase.
- Experiments and model analysis to evaluate and understand the performance of the proposed model.

Related Projects

Accepted:

- When E-Commerce Meets Intimacy: An Empirical Study of Social Commerce Site Beidian. Hancheng Cao, Zhilong Chen, *Fengli Xu*, Yong Li, Tao Wang. In ICWSM, 2020.
- Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation. <u>Fengli Xu</u>, Jianxun Lian, Zhenyu Han, Yong Li, Yujian Xu, Xing Xie. In CIKM, 2019.
- "I Think You'll Like It": Modelling the Online Purchase Behavior in Social Ecommerce. <u>Fengli Xu</u>, Zhenyu Han, Jinhua Piao, Yong Li. In ACM CSCW, 2019.

In submission:

Growth Via Referral: Understanding the Invitation Acceptance in Agentinitiated Social E-commerce. <u>Fengli Xu</u>, Guozhen Zhang, Yuan Yuan, Diyi Yang, Yong Li. In submission to ACM CHI, 2020.

Thanks!

Any questions?

You can find me at

- Email: xfl15@mails.tsinghua.edu.cn
- Homepage: http://fenglixu.com
- Code: anonymous0522/RecoGCN @ Github