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But data is not always available
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Urban Data Scarcity

Collect New Data Exploit Existing Data

Sparse Crowdsensing Urban Transfer Learning

Smart City 
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Full Coverage à Full Map

?

Sparsely Sensing à Full Map?

inference

Sparsely Sensing à Full Map

Traditional MCS Sparse MCS

High 
Quality

high/full coverage high inference accuracy 
(probably sparse coverage)

Sense Less, Infer More

Sparse mobile crowdsensing: challenges and opportunities. IEEE Communications Magazine (2016).
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DATA INFERENCECELL SELECTION
QUALITY 

ASSESSMENT



Area: fixed-size cells (e.g.100m*100m); Duration: fixed-length 
cycles (e.g., 1h)
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Step 1: Cell Selection Step 2: Data Inference

after five 
iterations

Step 3: Quality Assessment

Step 1. Cell Selection
Select the cell that is difficult to be inferred.

Step 2. Data Inference
Using spatio-temporal correlations to infer data.

Step 3. Quality Assessment
Use collected data to estimate inference error of unsensed

cells.

CCS-TA: quality-guaranteed online task allocation in compressive crowdsensing. UbiComp’15.



§ Feature of Environment Data
§ Spatial and temporal correlations
§ Low-rank property in sensing matrix

§ Spatio-Temporal Compressive Sensing (STCS) considers spatial 
and temporal correlations, and low-rank property all together.
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sensing matrix: entry [i, j] means 
the sensing data of cell i in cycle j. 

sensing 
matrix = L

RT

cells

cycles



§ Allocate Task to the cell that is hard to be inferred. Then which cell?
§ Intuition: If different inference algorithms get significantly different 

inferred values for a cell, then this cell is said to be hard to be inferred.

§ Called Query by Committee (QBC)
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Selected Cell:
Its           …      vary most significantly



§ LOO-BI
§ Step 1: Leave-one-out Resampling
§ Step 2: Bayesian Inference

§ probability distribution of error
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Example
Leave-one-out Result: 
One cell out of the five (1/5) is inferred with wrong air 
quality category (good/medium/bad)

Bayesian Inference:
Classification error ~ Beta(2,5)

CDF of Beta(2, 5)

P (classification error ≤ 0.5)=0.9

Current quality: In 90% of cycles, the classification error is ≤ 50%



§ Datasets
§ Temperature: 57 cells (30m*50m), 30-min cycle; mean absolute error
§ PM2.5: 36 cells (1km*1km), 1-hour cycle; classification error (six AQI 

categories) 

§ Our Method
§ CCS-TA

§ Baselines
§ RAND-TA: randomly selecting next sensing cell.
§ FIX-TA-k: keep same number of sensing cells (k) in each cycle.
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temperature

PM2.5

Q. How many sensed cells are necessary for sparse 
crowdsensing and baselines for the same quality requirement?
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Temperature (0.25◦C) PM2.5 (25%)

Sensing 29% of cells à
Classification error of PM2.5 ≤ 25% in 90% of cycles

Sense 13% of cells à
Mean absolute error of temperature ≤ 0.25◦C  in 90% of cycles
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Related Research from Other Teams
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Urban Data Scarcity

Collect New Data Exploit Existing Data

Sparse Crowdsensing Urban Transfer Learning

Smart City 



Transfer Learning
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Instance Transfer, Feature Transfer, Model Transfer …



Urban Transfer Learning
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Cross-Modality (heterogeneous data) Cross-City (spatial transfer)

Crowd flow
(long history)

Check-ins



Predict inflow/outflow of a region in 
next 30 minutes
- Deep learning has shown its advantage
Zhang J. et al. "Deep Spatio-Temporal Residual Networks for 
Citywide Crowd Flows Prediction." AAAI. 2017.

For a new city without so many data?

Cross-City Transfer Learning for Deep Spatio-Temporal Prediction. IJCAI, 2019.
19



20



§ Target city has very little crowd flow data

§ For each target region, use social network check-in data to find top-k
similar source regions
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§ Learn a model in source city, use the parameter as the start of the 
target city model

§ Use the little data in the target city to optimize the parameter

§ Optimization objective

Minimize representation 
discrepancy

Minimize prediction error
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RegionTrans can outperform 
state-of-the-art deep learning 
with fine-tune by reducing up 
to 10% error (RMSE)
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The performance of existing 
deep models gets worse when 
using fine-tune for D.C. à NYC, 
but RegionTrans still makes an 
effective transfer.
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Multi-Source Transfer Privacy-Preserving Transfer

CFQ 6OUFMF S c ad bZef
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L. Wang, B. Guo, Q. Yang, �Smart City Development with Urban Transfer 
Learning�. IEEE Computer 51(12): 32-41 (2018).
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